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1 Introduction

This study analyzes a continuous-time N -agent Brownian hidden-action model where

agents jointly determine the mean and the variance of the outcome process at every

instant.1 The main purpose of this paper is to establish a theoretical justification for

the use of linear contracts by showing that among the optimal contracts there exist one

that is linear in the final output and susceptible to neither collusion nor renegotiation

among agents. To that regard, we consider an N -agent Brownian agency model: The

principal and N agents, all having CARA (constant absolute risk aversion) utilities,

interact over a time interval; and, agents jointly determine the drift and the diffusion

rates of a stochastic process governed by a Brownian motion, and can exploit all

collusion and renegotiation opportunities at every instant.

In this setting, we prove that there is an optimal stationary and linear sharing rule

which is also immune to collusion and renegotiation. Thus, it is as if agents, who can

exploit all collusion and renegotiation opportunities, were to choose the mean and the

variance only once and the principal were restricted to employ stationary and linear

sharing rules.

The nature of the strategic interaction among agents is important. We assume

that agents can perfectly observe and verify others’ behavior, and can engage in

perfectly enforceable side contracts. Hence, agents observing all of the history of

their previous choices, results in a bargaining among agents at every instance, the

outcome of which may be implemented by the agents with a feasible date and state

dependent side contracting scheme. Hence, agents, in our model, are able to not only

collectively coordinate their efforts, but also share risk optimally; and, our model

1For instance, with two agents one could be the sales manager, and the other the finance manager,
both affecting the mean and the variance at different rates and with different marginal costs.
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does not involve the free-rider concerns of Holmstrom (1982). 2 3

On the other hand, the principal knows that this bargaining (induced by her own

offer) must result in an ex-ante efficient outcome, yet she does not need to know the

particular bargaining weights of the agents. Hence, the requirement is: The optimal

contract, an individually rational sharing rule and control laws (for drift and diffusion

rates), must be on the Pareto frontier (i.e. be ex-ante efficient) of the bargaining

problem induced by itself, at every instance and history.

It is appropriate to point out that ex-ante efficiency implies a collective incentive

compatibility condition on the set of all agents, which we will refer to as the team. It

turns out that thanks to the use of CARA utilities, the specific form of the bargaining

rule and the “real” values of agents’ bargaining coefficients are not relevant. This is

because, whenever all individuals’ preferences are CARA, Bone (1998) shows that

efficient risk sharing (implied by ex-ante efficiency) entails that agents’ utilities can

be aggregated with a CARA utility function in which the CARA coefficient of the

team (alternatively, the representative agent) is given by the inverse of the summation

of agents’ CARA coefficients (hence, is less than each one of the CARA coefficients of

agents). Moreover, by using bargaining weights where each agent’s weight is given by

the team’s CARA coefficient divided by his CARA coefficient, the share of an agent

in the team’s state dependent compensation level is simply given by this particular

bargaining weight of his. This, in turn, implies that an agent’s utility in any date

and state under this sharing rule equals to that of the team. In other words, in such

a situation interests of the team and each one of the agents’ are perfectly aligned.

Thus, when using these particular bargaining weights, it will be as if the principal

2The effects of agents forming a team through side contracting on principal’s welfare is not clear.
See Varian (1990), Itoh (1993), Holmstrom and Milgrom (1990) and Barlo and Özdog̃an (2008) for
a detailed discussion on this issue.

3We refer the reader to Koo, Shim, and Sung (2008) in order to point to a different type of
strategic interaction among agents, involving free-rider considerations of Holmstrom (1982).
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faces a team with a CARA utility and members with perfectly aligned interests. This,

then, provides us with the ability to reduce agents’ instantaneous bargaining problem

to a form which is suited to use techniques given in Sung (1995), and to prove that

there is an optimal and stationary linear contract for the team even when the team

can control both the mean and the variance.

Finally, we show that the allocation of the team’s stationary and linear compen-

sation to each agent according to the ratio of the team’s CARA coefficient divided

by his one, is linear and ex-ante efficient. Hence, principal’s optimal contract is ex-

ante efficient in the bargaining problem that it creates, stationary, and linear, thus is

immune to collusion and renegotiation.

The rest of this section will discuss the related literature. In section 2 we present

the ingredients of the model and the principal’s problem. Section 3 states our main

result and the rest of it is devoted to the proof of our main theorem.

1.1 Related Literature

It is well known that static agency models lead to optimal contracts with very com-

plicated shapes even in simple environments.4 The continuous-time approach, on the

4Most of the early literature analyzes static agency settings often by the use of “first-order”
approach that replaces incentive constraints of the agents with the first-order conditions for the op-
timality of agents’ problem, ignoring the possible interaction that could take place among the agents.
However, as is well known and first pointed out by Mirrlees (1975), the equivalence of the original
problem and the problem with this weaker constraint is not immediate. The sufficiency conditions
for the validity of first-order approach, as given by Rogerson (1985), involve monotone likelihood
ratio condition and convexity of the distribution function. Jewitt (1988) replace convexity of the
distribution function with a weaker condition, but the requirements are still quite strong. Grossman
and Hart (1983) propose another method to avoid the drawbacks of the first-order approach. They
convert principal’s problem to a convex programming problem by first finding a cost-minimizing way
of implementing a certain action profile and then determining which action should be implemented.
On the other hand, both approaches lead to optimal contracts having very complicated shapes even
in simple environments. However, it is observed that the real life contracts generally have much
simpler forms. As far as empirical evidence is concerned Lafontaine (1992) reports that “franchise
contracts generally involve the payment, from the franchisee to the franchisor, of a lump-sum fran-
chise fee as well as a proportion of sales in royalties, with the latter usually constant over all sales
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other hand, offers more tractable principal-agent models and simpler optimal con-

tracts than static and discrete-time counterparts. The pioneer work displaying the

optimality of linear contracts in a repeated agency setting with exponential utilities

is Holmstrom and Milgrom (1987). In this study, they consider a principal-agent pair

involved in a repeated agency relation where the agent determines the drift rate of

a Brownian motion governing the returns of an asset belonging to the principal who

is able to observe only the time-path of the outcome process (at any instant). Due

to the lack of income effects with exponential utility functions and time-state inde-

pendent cost functions, Holmstrom and Milgrom (1987) establishes that the optimal

control the agent chooses is time-state independent. Stationarity of the environment,

and thus, the stationarity of the optimal control by the agent imply that among all

possible compensation schemes, an optimal one is stationary and linear in the final

output.5 Therefore, it is as if the agent were to choose the mean of a normal distribu-

tion only once and the principal were restricted to employ linear sharing rules.6 On

the other hand, Schättler and Sung (1993) generalizes the continuous-time principal-

agent problem with exponential utility to a larger class of stochastic processes, in

which Holmstrom and Milgrom (1987)’s Brownian model is a special case. They use

martingale methods to derive necessary conditions for optimality of the agent’s prob-

lem, and also provide sufficiency conditions for the validity of the first-order approach

to the continuous-time principal agent problems, which are simpler compared to the

levels.” Furthermore, another observation is given in Slade (1996) where the author notes that only
linear contracts are used by the oil companies engaged in franchising in retail-gasoline markets in
the city of Vancouver.

5More precisely, they prove that an optimal compensation scheme is a linear function of a finite
set of time-aggregated “accounts,” each describing the number of times a certain outcome occurs
(can be different tasks, sales, profits etc). Further aggregation over accounts is not generally possible.
In particular, if the profit is aggregation of these accounts, then optimal sharing rule may not be
linear in profits.

6This gives a resolution for Mirlees (1974) nonexistence result obtained by approximating the
first-best solution arbitrarily closely via “two-wage” scheme.
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ones given for the sufficiency of the first-order approach in static models.7 The key

restriction of the model presented by Holmstrom and Milgrom (1987) and also by

Schättler and Sung (1993) is that the agent is not allowed to control the variance

of the outcome process. Sung (1995), on the other hand, extends Holmstrom and

Milgrom (1987)’s Brownian model to the case where the agent can also control the

diffusion rate of the Brownian motion governing the returns. Again, time-state inde-

pendent technology and exponential utility functions imply that at every instant the

agent’s best responses are time-state independent even when the agent can control

the diffusion rate privately. The resulting problem becomes similar to that in Holm-

strom and Milgrom (1987) with an additional time-state independent constraint (thus,

features a similar stationary decision-making environment), and he proves that the

linearity in outcome result holds.8

In a study related to our analysis, Koo, Shim, and Sung (2008) present a continuous-

time principal-agent model under moral hazard with many agents. Their model is a

continuous-time counterpart of Holmstrom (1982) discrete-time model and an exten-

sion of Holmstrom and Milgrom (1987) with a team of finitely many agents. Indeed,

an important difference from our analysis is that in theirs, the principal has N pro-

duction tasks one for each one of the N agents. They use Schättler and Sung (1993)’s

martingale method to model both the principal and agents’ problems, in which all

7Sufficiency of the first-order approach to the continuous-time model was conjectured, but not
proved in Holmstrom and Milgrom (1987).

8For more on the continuous-time approach to principal-agent problems with a single agent,
we refer the reader Cvitanic, Wan, and Zhang (2005), Sannikov (2008) and Williams (2003). On
the other hand, whether or not the linearity results are due to the specific nature of continuous-
time models is analyzed by Schättler and Sung (1997) and Hellwig and Schmidt (2002). Schättler
and Sung (1997) relate the first-order approaches for discrete and continuous-time problems by
considering continuous-time agency problems as limiting cases of discrete-time formulations. On
the other, Hellwig and Schmidt (2002) derive the continuous-time model as a limit of discrete-time
models and prove that Holmstrom and Milgrom (1987)’s result, optimal compensation scheme being
linear in accounts in continuous-time Brownian motion model, can be approximated by a sequence
of optimal compensation schemes in discrete models.

6



agents jointly choose probability distributions of given outcome processes. However,

agents, in their model, cannot observe each other, thus, cannot write binding side

contracts. Each one of their agents chooses an effort level as if all other agents’ effort

choices have already been made. Then, they show that optimal team contracts with

finitely many agents are also linear in all outcomes (produced separately by each

agent). For their linearity result, the formulation involving the simultaneous-move

game played by agents is important to preserve Holmstrom and Milgrom (1987)’s

stationary decision making environment for the principal, which, in turn, is crucial to

obtain linear contracts as optimal ones. In our model, we do not restrict attention to

separate production processes, and our agents can perfectly observe each other and

can engage in renegotiable side contracting.

2 Model

We consider a variant of the model given by Sung (1995), a generalization of the

Brownian model of Holmstrom and Milgrom (1987). In our version, there are N

agents who can control not only the mean but also the variance of output, and

instantaneously exploit all collusion opportunities knowing that an arrangement made

at an instance may be renegotiated in the future. In this setting, we prove that among

optimal sharing rules there exists a stationary and linear one.

The principal and N agents interact over the time interval t ∈ [0, 1] during

which agents jointly determine (with strictly convex costs) the instantaneous drift

and diffusion rates of a stochastic process governed by a Brownian motion defined by

dXt = µtdt + σtdBt. As usual, the intermediate outcome Xt should be thought of as

the total returns up to period t ∈ [0, 1] where µt and σ2
t are the instantaneous mean

and variance of the accumulated return at time t, and Bt is the standard Wiener pro-
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cess. We keep the standard restriction that the mean, the variance and intermediate

accumulated returns are neither observable nor verifiable by the principal. However,

X1, the level of accumulated returns at the end of the project, is both observable and

verifiable by the principal.

At the beginning of the project, the principal and agents agree upon a contract,

i.e. salary rules Si, i = 1, ..., N , 9 and control laws (µ(.), σ(.)). Salaries are payable

at time 1, the end of the project, according to the salary functions agreed upon at

time 0 which depend solely on principal’s observation of X1.
10

It is assumed that the probability space is given by (Ω,F , P ) where Ω is the

space C = C([0, 1]) of all continuous functions on the interval [0, 1] with values in

<. Hence, a particular event w ∈ Ω is of the form w : [0, 1] → <. The control laws

µ and σ are Ft-predictable mappings, µ : [0, 1] × Ω → U and σ : [0, 1] × Ω → S,

where U is a bounded open subset of < and S is a compact subset of <++.11 These

control laws, µ and σ, determine the instantaneous values of µs and σs at each date

s ∈ [0, t] as functions of the history of the process X up to time t, for every t ∈ [0, 1].

Moreover, we adopt the notation of calling the controls determined at time t, by µt

and σt, i.e. µt = µ(t,X) and σt = σ(t,X). Furthermore, we assume σ satisfies a

uniform Lipschitz condition in Z, Z̄ ∈ C[0, 1] and there exists a constant K such that

|σ(t, Z)− σ(t, Z̄)| ≤ K sup0≤s≤t ‖Z(s)− Z̄(s)‖.
9With an abuse of notation, we also denote the set of agents by N .

10It is appropriate to point out that this formulation is consistent with our hypothesis of the mean
and variance being unobservable and/or nonverifiable by the principal. Indeed, if (Si)i∈N were to
depend on the entire process {Xt}t, implying the requirement that {Xt}t is both observable and
verifiable by the principal, then the principal could infer {µt}t and/or {σt}t. For more on this issue,
we refer the reader to Sung (1995) footnote 7 and 8.

11Y is Ft-predictable: Suppose Z : [0, 1]×Ω → < is measurable, i.e. for any Borel set B in <, the
inverse image {(t, w)|Zt(w) ∈ B} is in B([0, 1])×F1 ( B([0, 1]) is the σ-algebra of Borel sets on [0, 1]);
and let L be the family of such measurable processes Z whose sample paths are left-continuous and
Zt is Ft-measurable for all t ∈ [0, 1] (Ft-adapted). Let G be the smallest σ-algebra of subsets of
[0, 1] × Ω such that all the processes in L are G-measurable. Then a process Y is Ft-predictable if
Y (t, w) is G-measurable. Any Ft-adapted measurable process with left-continuous sample paths is
predictable.
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We let agents’ instantaneous time-state independent cost functions be given by

ci(µt, σt), where ci : U × S → <, i ∈ N and is assumed to be twice continuously

differentiable. We assume ci and ciµ (derivative with respect to mean) are bounded

and are strictly increasing, i.e. ciµ, ciµµ > 0. The total costs incurred by agent i is

given by
∫ 1

0
ci(µt, σt)dt, i ∈ N .

All the parties involved are von Neumann-Morgenstern (henceforth, abbreviated

as vNM) utility maximizers having exponential utilities with constant absolute risk

aversions. We denote the coefficient of absolute risk aversion for the principal by R

and those for the agents by ri, i ∈ N . The reservation certainty equivalent figures for

the agents are given by Wi0, i ∈ N .

We assume that at each instance t ∈ [0, 1], every agent observes {Xs, µs, σs}s≤t.

Therefore, when modeling a dynamic interaction among agents (choosing effort levels

with the set of information they possess) a consistent formulation is one that involves

the use of perfect information among agents: At any instance each agent observes all

the others’ previous choices and all the previous levels of the instantaneous accumu-

lated returns. Therefore, because that at any instance t ∈ [0, 1] the whole history

{Xs, µs, σs}s≤t (along with all the previous effort choices) are observable and verifi-

able by all agents and salary functions (Si)i∈N are determined by the principal at the

beginning of the project, a bargaining problem among agents emerges due to collusion

at each instance τ ∈ [0, 1] for a given history {Xs, µs, σs}s≤τ . Given any state, the

outcome of this bargaining then can be implemented via a state contingent binding

contract, i.e. the salary rules and control laws, drafted and agreed upon in period

zero, specifying the arrangement among agents for each possible date and state. 12

Ex-ante efficiency implied by agents’ bargaining necessitates that there should not

12Because that this state contingent contract is drafted and agreed upon at date zero, we will have
the participation constraint in the agents’ problem formulated with only the date zero information.
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be any history and state and any other feasible contract that every agent prefers to

the one that was agreed upon. This, then, brings about optimal risk sharing among

agents. And, given any history, any utilitarian bargaining rule and bargaining weights

θ = (θ1, ..., θN) ∈ ∆ (where ∆ denotes the N dimensional simplex), the ex-ante effi-

ciency requirement can be handled by Bone (1998) thanks to the use of CARA utility

functions. The details about how this task is accomplished will be presented in the

next section. Nevertheless, it is appropriate to point out that Bone (1998) considers a

group (alternatively, team) of CARA agents involved in a static utilitarian bargaining

(with given bargaining weights) over a state contingent financial returns. It establishes

that the collective behavior of agents can be represented by a vNM utility function

which, in fact, is CARA, with a coefficient given by rc ≡
(∑

i∈N
1
ri

)−1

. Furthermore,

Bone (1998) shows that agent i’s share in a given state from the team’s compensation

involves (1) a fixed, state-independent constant payment (determined by the profile of

agents’ CARA coefficients and bargaining weights: rc

ri

∑
j∈N

ln(θiri)−ln(θjrj)

rj
), plus (2) a

uniform proportion (depending only on the profile of agents’ CARA coefficients: rc

ri
)

of the team’s state contingent compensation. Across all individuals, the proportions

sum to unity, while the fixed payments sum to zero. Hence, various efficient state

contingent distributions of team’s compensation must differ only in the fixed pay-

ments, and to any zero-sum vector of fixed payments, there corresponds an efficient

contingent distribution.

The principal is aware of the bargaining among agents, and knows that it is

induced by her own offer. Yet, she does not know the particular bargaining rule or

weights of the agents. She simply knows that the bargaining problem must produce

an ex-ante efficient outcome. Hence, principal’s optimal contract, a sharing rule for

each agent and control laws (for drift and diffusion rate), must be on the Pareto

frontier of the agents’ bargaining problem starting from any given history.
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Definition 1 (Principal’s Problem) Principal chooses salary functions (Ŝi)i∈N ,

which depend only on X1, and control laws (µ̂, σ̂) such that

(
(Ŝi)i∈N , µ̂, σ̂

)
∈ argmax((Si)i∈N ,µ,σ) E

[
− exp

{
−R

(
X1 −

N∑
i=1

Si(X1)

)}∣∣∣∣∣F0

]

subject to

(i) (Feasibility) For all t ∈ [0, 1]

dXt = µtdt + σtdBt,

(ii) (Individual rationality) For all i = 1, ..., N ,

E

[
− exp

{
−ri

(
Si −

∫ 1

0

ci(µt, σt)dt

)}∣∣∣∣F0

]
≥ − exp{riWi0}.

(iii) (Bargaining: Agents’ problem) Salary functions (Si)i∈N , and control laws (µ, σ)

must be such that for all t ∈ [0, 1] and {Xs, µs, σs}s≤t, ((Si)i∈N , µ, σ) is on the

Pareto frontier of the agents’ bargaining problem, i.e. for some some θ ∈ ∆,

E

[
θiri

(
exp

{
−ri

(
S̃i(X)−

∫ 1

0

ci(µ̃τ , σ̃τ )dτ

)})∣∣∣∣Ft

]
(1)

= E

[
θjrj

(
exp

{
−rj

(
S̃j(X)−

∫ 1

0

cj(µ̃τ , σ̃τ )dτ

)})∣∣∣∣Ft

]

for all i, j ∈ N , where for all i ∈ N salary functions and control laws given

by
(
(S̃i)i∈N , µ̃, σ̃

)
, S̃i : [0, 1] × Ω → < (where S̃i(t,X) is interpreted as the

compensation of agent i in period 1 formed with the information in period t)

and µ̃ : [0, 1] × Ω → U and σ̃ : [0, 1] × Ω → S, are all Ft-predictable mappings
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and

dXτ = µ̃τdτ + σ̃τdBτ , τ ≥ t (2)
N∑

i=1

S̃i,t(X1) ≤
N∑

i=1

Si(X1), for all t ∈ [0, 1] and every X1 ∈ Ω (3)

E

[
− exp

{
−ri

(
S̃i −

∫ 1

0

ci(µ̃τ , σ̃τ )dτ

)}∣∣∣∣F0

]
(4)

≥ E

[
− exp

{
−ri

(
Si −

∫ 1

0

ci(µτ , στ )dτ

)}∣∣∣∣F0

]

The feasibility and individual rationality requirement in the above definition is

standard. On the other hand, collusion concerns result in some modifications to the

standard case, and they are discussed below.

Agents’ ability to employ binding side contracts and to observe each others’ choices

and history of accumulated returns defines their interaction as a bargaining problem.

We assume that agents are rational, and thus, their agreement is ex-ante efficient

given the principal’s offer. This implies that at any instance t ∈ [0, 1] given the

history {Xs, µs, σs}s≤t the control laws for the salaries (specified for instance t and

the particular history at that instance, and these salaries are to be paid at the end of

the project depending on the particular realization of X1) the mean and variance must

be chosen in order to provide optimal risk sharing among agents (formed with agent

specific and time-invariant bargaining weights, i.e. Equation 1), with the following

constraints: (1) feasibility concerns given by the physical form of the stochastic return,

i.e. Equation 2; (2) any salary arrangements specified for any further histories, as a

result of the bargaining at history {Xs, µs, σs}s≤t, has to be a feasible redistribution of

salaries specified by the principal, i.e. Equation 3; and (3) voluntary participation of

all the agents into this arrangement, meaning that under this arrangement each agent

obtains at least as much as he would obtain without this arrangement, i.e. Equation

12



4. 13

An important aspect that needs to be pointed out is that agents’ problem is

restricted to be solved at the beginning of the project, but in every instance based

on the observations of the past. This arrangement, then, can be implemented by

employing state contingent binding side contracts among agents. That is, agents are

required to commit to these side contracts and control laws via the use of binding

side contracts which are drafted at the beginning of the project for every possible

history of the project. Hence, our formulation of collusion among agents involves

renegotiation concerns, because for every given history agents’ arrangement drafted

and agreed upon at the beginning of the project ensures optimality from that state

onwards. The only requirement is that the bargaining weights are stationary. In

fact, this restriction can be replaced with one where agents’ bargaining weights are

given by a measurable function mapping histories in the interior of the N dimensional

simplex.

Finally, the principal knows agents’ collusion capabilities, and hence, is aware

that the control laws associated with her offer may be altered unless it is ex-ante

efficient in the bargaining problem that starts at every history possible. Therefore,

the principal knows that she is restricted to offer contracts which are ex-ante efficient

in any possible history that might arise during the life-span of the project. On the

other hand, she does not know the specific bargaining weights that are to be employed

in this bargaining. These, then, imply that for the principal’s salary offers to be

immune against such arrangements, they have to be robust against such bargaining

13In fact in this formulation of the voluntary participation constraint, we only consider the grand
coalition and not sub-coalitions of agents. Due to that regard our formulation can be interpreted
as one in which each agent has the ability to report/present his observable and verifiable informa-
tion/evidence regarding the past to the principal, whenever he obtains lower payoffs due to some
other agents’ (a sub-coalition’s) arrangements. Therefore, in essence, each agent has a veto power
over any one of the feasible side contracting schemes, where the disagreement payoff levels are the
ones obtained from the principal’s salary offers.
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given any feasible bargaining weight agents may employ and any history possible.

3 Optimality of Linearity under Collusion

The following is our main result:

Theorem 1 There exists a stationary and linear optimal collusion proof and renego-

tiation proof contract.

That is, (S∗i )i∈N are optimal compensation schemes and (µ∗, σ∗) are stationary

and optimal control laws solving the principal’s problem given in Definition 1, where

(µ∗, σ∗) determine (S∗i )i∈N as follows:

S∗i (µ
∗, σ∗)(X1) = ci(µ

∗, σ∗) + Wi0 + θ∗i

[
S∗c (µ

∗, σ∗)(X1)−
∑
j∈N

(cj(µ
∗, σ∗) + Wj0)

]
,

where

S∗c (µ
∗, σ∗) =

∑
i∈N

Wi0 +
∑
i∈N

ci(µ
∗, σ∗) +

[∑
i∈N

ciµ(µ∗, σ∗)

]
(X1 −X0)

+

[∑
i∈N

ciµ(µ∗, σ∗)

]
µ∗ +

rc

2

[∑
i∈N

ciµ(µ∗, σ∗)

]2

σ∗2,

rc =

∏
i∈N ri∑

i∈N

∏
j 6=i rj

,

θ∗i =
rc

ri

=

∏
j 6=i rj∑

i∈N

∏
j 6=i rj

and the control pair (µ∗, σ∗) ∈ U × S solves the following “static” maximization

problem,

Φp(µ̂, σ̂) ≡ µ̂t + R

[∑

i∈N

ciµ(µ̂t, σ̂t)

]
σ̂2

t −
∑

i∈N

ci(µ̂t, σ̂t)− 1
2
(R + rc)

( ∑

i∈N

ciµ(µ̂t, σ̂t)
)2

σ̂2
t −

R

2
σ̂2
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subject to (µ̂, σ̂) maximizing

Φa(µt, σt; µ̂t, σ̂t) ≡
[∑

i∈N

ciµ(µ̂t, σ̂t)

]
µt −

∑

i∈N

ci(µt, σt)− 1
2
rc

( ∑

i∈N

ciµ(µ̂t, σ̂t)
)2

σ2
t .

This Theorem displays that among collusion proof and renegotiation proof ar-

rangements, non-trivial sharing rules contingent on the realization of the accumulated

returns at the end of the project, a linear and stationary contract must be among

the optimal ones. The main reason of this observation is the lack of income effects

and the well behaved nature of the bargaining among agents (both of which are due

to CARA utilities), and the use of a Markovian stochastic process as in Holmstrom

and Milgrom (1987), Schättler and Sung (1993), and Sung (1995). Thus, our main

Theorem displays that this result is robust against colluding and renegotiating agents

even when the variance of the stochastic process can be controlled by agents.

The representation of the total salary function Sc involves the following economics

interpretation: The first two terms provide agents with their reservation certainty

equivalents and actual costs incurred to implement (µ∗, σ∗); the second two terms

represent the compensation error as salaries depend on the realized outcomes rather

than the actual performances of agents; and finally, the last term involves the risk

premia given to agents because of compensation errors. These risk premia are formed

with the team’s CARA coefficient, rc, which is less than any of the agents’ individual

CARA coefficients.

Then, this total compensation is divided among agents as follows: Each one gets

his costs and reserve payoffs and some additional compensation which is proportional

to the inverse of their coefficients of risk aversions (which, indeed, is the particu-

lar bargaining weight with which this contract achieves ex-ante efficiency) from the

total compensation net of total costs and total reserve utilities. Recall that when

15



splitting this total share, the principal is not aware of the “real” bargaining powers

of the agents. Yet, she knows that for this given contract, the stationary nature of

the optimal solutions of the agents’ problem for any given date and state (due to

CARA utilities and the use of Brownian Motion) implies: Because that principal’s

stationary offer formed with bargaining weight vector θ∗ is on the Pareto frontier of

agents’ bargaining problem for any date and state, that particular offer must be the

optimal one in this very same date that state, even if agents were to employ different

bargaining weights in the formation of the date and state contingent side contracts.

Thus, this representation shows that the principal sees the agents as a single entity

with the cost function given by the sum of individual cost functions, and the CARA

coefficient given by rc =
∏

i∈N ri∑
i∈N

∏
j 6=i rj

=
(∑

i∈N
1
ri

)−1

. The principal knows that, then,

the particular sharing of the salaries among agents will be done according to the

particular bargaining weight profile θ∗. Moreover, thanks to stationarity and the par-

ticular choice of bargaining weights given by θ∗ the following compensation scheme

is ex-ante efficient due to Bone (1998): First, θ∗i = rc

ri
=

( ∏
j 6=i rj∑

i∈N

∏
j 6=i rj

)
, implies that

an agent’s relative bargaining power against the other must equal to inverse ratios of

coefficients of risk aversion, i.e.
θ∗i
θ∗j

=
rj

ri
for all i, j ∈ N , and θ∗ ∈ ∆ because θ∗i ∈ [0, 1]

and Σiθ
∗
i equals

∑
i

(
1

ri

∏
j∈N rj∑

k∈N
1
rk

∏
j∈N rj

)
=

∑
i

(
1

ri

1∑
k∈N

1
rk

)
=

∑
i∈N

1
ri∑

k∈N
1
rk

= 1.

Second, agent i’s compensation net of agent i’s incurred costs and his reserve payoffs

from the team’s state contingent compensation net of the total costs and total reserve

payoffs, does not involve any state-independent constant terms, because

rc

ri

∑
j∈N

(
ln(θ∗i ri)− ln(θ∗j rj)

rj

)
=

rc

ri

∑
j∈N

(
ln( rc

ri
ri)− ln( rc

rj
rj)

rj

)
= 0.
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Third, agent i having been paid his incurred costs and reserve payoffs, agent i’s

uniform proportion of rc

ri
from the team’s state contingent compensation net of the

total costs and total reserve payoffs, constitutes the rest of his compensation.

3.1 Proof of Theorem 1

First, we reduce the principal’s problem in Definition 1 into the following one where

she interacts with the team, rather than with each agent separately, by using the

results of Bone (1998) that were discussed above.

Definition 2 Principal chooses a total salary function for the team Ŝc, which depend

only on X1, and control laws (µ̂, σ̂), such that

(
Ŝc, µ̂, σ̂

)
∈ argmax(Sc,µ,σ) E [− exp {−R (X1 − Sc(X1))}|F0]

subject to

(i) (Feasibility) For all t ∈ [0, 1]

dXt = µtdt + σtdBt,

(ii) (The team’s participation)

E

[
− exp

{
−rc

(
Sc −

∑
i∈N

∫ 1

0

ci(µt, σt)dt

)}∣∣∣∣∣F0

]
≥ − exp{rc

∑
i∈N

Wi0}.

(iii) (The team’s problem) Total salary function Sc and control laws (µ, σ) must be
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such that for all t ∈ [0, 1] and rc =
∏

i∈N ri∑
i∈N

∏
j 6=i rj

, (Sc, µ, σ) must be in

argmax(S̃c,µ̃,σ̃) E

[
−

(
exp

{
−rc

(
S̃c(X)−

∑
i∈N

∫ 1

0

ci(µ̃τ , σ̃τ )dτ

)})∣∣∣∣∣Ft

]
(5)

subject to total salary function and control laws
(
S̃c, µ̃, σ̃

)
are all Ft-predictable

mappings and

dXτ = µ̃τdτ + σ̃τdBτ , τ ≥ t (6)

The principal uses bargaining weights θ∗ in the computation of the ex-ante efficient

outcome of agents’ bargaining problem and proposes contracts implementing that

particular solution. The resulting technical convenience is that this method simplifies

agents’ instantaneous bargaining problem to a form which is suited to use techniques

given in Sung (1995). Then, we can apply Sung (1995)’s Theorem to obtain an optimal

total salary rule for the team and optimal control laws. In the last step, we divide

this optimal total salary among the agents according to the discussion presented at

the end of the previous paragraph.

The problem stated in Definition 2 belongs to the class of problems studied by

Schättler and Sung (1993) and Sung (1995). Schättler and Sung (1993) provide the

first-order approach in the continuous-time setting where the agent controls only the

mean of the process. They relate the principal’s problem to a stochastic optimal

control problem by replacing agent’s incentive compatibility condition with the first-

order conditions of the agent’s problem. These first-order necessary conditions for

optimality lead to a semi-martingale representation of agent’s salary function. The

principal’s relaxed problem is formulated by replacing the salary function in the prin-

cipal’s maximization with this semi-martingale representation. Following the same
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lines, we can come up with a representation rule for the total salary function pro-

posed to the representative agent, i.e. agents are treated as a team by the use of the

first-order approach on the representative agent’s problem given in definition 2. The

sufficiency conditions for the validity of the first-order approach for a general class of

continuous-time models provided in Schättler and Sung (1993), are met in our Brow-

nian setting. Then, following the direct implication of Proposition 2 of Sung (1995)

which allows the agents control the variance as well as the mean in the Brownian

model, we can come up with the following Proposition for the representation of the

total salary function and optimal control laws:

Proposition 1 There exists a stationary and linear optimal contract for the team.

That is, S∗c optimal compensation of the team and (µ∗, σ∗) are stationary and opti-

mal control laws solving the principal’s problem given in Definition 2, where (µ∗, σ∗)

determine S∗c as follows:

S∗c (µ
∗, σ∗) =

∑
i∈N

Wi0 +
∑
i∈N

ci(µ
∗, σ∗) +

[∑
i∈N

ciµ(µ∗, σ∗)

]
(X1 −X0)

+

[∑
i∈N

ciµ(µ∗, σ∗)

]
µ∗ +

rc

2

[∑
i∈N

ciµ(µ∗, σ∗)

]2

σ∗2,

and the control pair (µ∗, σ∗) ∈ U × S solves the following “static” maximization

problem,

Φp(µ̂, σ̂) ≡ µ̂t + R

[∑

i∈N

ciµ(µ̂t, σ̂t)

]
σ̂2

t −
∑

i∈N

ci(µ̂t, σ̂t)− 1
2
(R + rc)

( ∑

i∈N

ciµ(µ̂t, σ̂t)
)2

σ̂2
t −

R

2
σ̂2

subject to (µ̂, σ̂) maximizing

Φa(µt, σt; µ̂t, σ̂t) ≡
[∑

i∈N

ciµ(µ̂t, σ̂t)

]
µt −

∑

i∈N

ci(µt, σt)− 1
2
rc

( ∑

i∈N

ciµ(µ̂t, σ̂t)
)2

σ2
t .
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The last step of the proof entails the following allocation of the total salary among

agents:

S∗i (µ
∗, σ∗)(X1) = ci(µ

∗, σ∗) + Wi0 + θ∗i

[
S∗c (µ

∗, σ∗)(X1)−
∑
j∈N

(cj(µ
∗, σ∗) + Wj0)

]

= ci(µ
∗, σ∗) + Wi0 +

rc

ri

(A1(X1 −X0) + A2) ,

where

A1 =

(∑
j∈N

cjµ(µ∗, σ∗)

)

and

A2 =

(∑
j∈N

cjµ(µ∗, σ∗)

)
µ∗ +

rc

2

(∑
j∈N

cjµ(µ∗, σ∗)

)2

σ∗2.

Recall that because ciµ, ciµµ are strictly positive, both A1 and A2 are strictly positive.

Next, we show that the individual rationality constraint of agent i, i.e. condition

(ii) in Definition 1, is satisfied. First, E0

[
− exp

{
−ri

(
S∗i −

∫ 1

0
ci(µ

∗, σ∗)dt
)}]

equals

E0

[
− exp

{
−ri

(
Wi0 +

rc

ri

(A1(X1 −X0) + A2)

)}]

= − exp {−riWi0}E0 [− exp {−rc (A1(X1 −X0) + A2)}]

= − exp {−riWi0}E0

[
− exp

{
−rc

(
S∗c (µ

∗, σ∗)−
∑
j∈N

Wj0 −
∑
j∈N

cj(µ
∗, σ∗)

)}]
.

Second, because of the individual rationality constraint of the team (condition (ii) in

Definition 2) we have

E0

[
− exp

{
−rc

(
Sc −

∑
j∈N

Wj0 −
∑
j∈N

cj(µ
∗, σ∗)dt

)}]
≥ 0,
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and this implies that

E0 [− exp {−ri (S
∗
i − ci(µ

∗, σ∗))}] ≥ − exp {−riWi0}

establishing that this arrangement is individually rational for agent i, i.e. condition

(ii) in Definition 1, is satisfied.

Ex-ante efficiency condition in the agents’ bargaining problem in Definition 1 re-

quires that after agents are compensated for their individual costs and reserve payoffs,

they have to share the total excess profit (total salary net of total costs and total re-

serve payoffs) proportional to θ∗i = rc

ri
. Therefore, as was discussed at the end of the

previous section, the principal’s offer is also ex-ante efficient. Because that the total

salary is linear in the final outcome and each individual’s compensation net of his

own costs and reserve payoffs only depends on the team’s compensation net of total

costs and total reserve payoffs and the profile of agent’s CARA coefficients, (S∗i )i∈N

are linear in X1 as well.

This completes the proof.
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