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Abstract 

In this paper we propose an artificial stock market model based on 
interaction of heterogeneous agents whose forward-looking behaviour is 
driven by the reinforcement learning algorithm combined with some 
evolutionary selection mechanism. We use the model for the analysis of 
market self-regulation abilities, market efficiency and determinants of 
emergent properties of the financial market. Distinctive and novel features of 
the model include strong emphasis on the economic content of individual 
decision making, application of the Q-learning algorithm for driving 
individual behaviour, and rich market setup. 

Keywords: Agent-based financial modelling, artificial stock market, complex 
dynamical system, emergent properties, market efficiency, agent 
heterogeneity, reinforcement learning. 
JEL classification: G10, G11, G14. 

Santrauka 

Šiame straipsnyje pateikiamas dirbtin÷s akcijų rinkos modelis, pagrįstas 
heterogeninių agentų sąveika. Ateities galimybių vertinimu pasižyminčią
agentų elgseną lemia skatinamojo mokymosi algoritmas, taikomas kartu su 
evoliucine agentų atranka. Modelis n÷ra tiesiogiai taikomas empirinei 
analizei, jis vertintinas kaip struktūrizuotos analiz÷s pagrindas, tiriant rinkos 
savireguliacijos galimybes, rinkos efektyvumą bei kylančias rinkos savybes 
lemiančius veiksnius. Lyginant su daugeliu kitų dirbtin÷s akcijų rinkos 
modelių, šiame modelyje ekonominei individų elgsenai ir individualiai 
adaptacijai skiriamas gerokai didesnis d÷mesys. Riboto racionalumo agentai 
šiame modelyje investicinius sprendimus grindžia ekonomine logika, t.y. 
vertindami tik÷tinus diskontuotus pajamų srautus bei lygindami alternatyvių
investicijų grąžas. Jie taip pat siekia tinkamai vertinti ateitį dideliu 
neapibr÷žtumu pasižyminčioje aplinkoje bei atsižvelgia į kitų rinkos dalyvių
veiksmų poveikį bendrai rinkos kainos dinamikai. Šis darbas yra vienas 
pirmųjų bandymų ekonominiu požiūriu įdomų skatinamojo mokymosi 
algoritmą (konkrečiau, Q-mokymąsi) dirbtin÷s akcijų rinkos modeliuose. 
Modelis taipogi pasižymi gan÷tinai sofistikuota imitacin÷s rinkos struktūra. 
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In this paper we develop an artificial stock market (ASM) model, which could be used to 
examine some emergent features of a complex system comprised of a large number of 
heterogeneous learning agents that interact in a detail-rich and realistically designed 
environment. This version of the model is not calibrated to empirical data, so at this stage 
the main aim of this research is to offer, implement and test some new ideas that could 
lay ground for a robust framework for analysis of financial market processes and their 
determinants. We believe that the model does offer an interesting framework for the 
structured analysis of market processes without abstracting from relevant and important 
features, such as an explicit trading process, regular dividend payouts, trading costs, 
agent heterogeneity, dissemination of experience, competitive behaviour, agent 
prevalence and forced exit, etc. Of course, some of these aspects have already been 
incorporated in existing agent-based financial models. However, the lack of the widely 
accepted fundament in this area of modelling necessitates the individual and largely 
independent approach, which is pursued in this study. 

One of distinctive features of the proposed agent-based model is a strong emphasis on 
economic behaviour of individual agents. In the proposed model boundedly rational 
agents base their decisions on economic considerations, such as estimation of discounted 
earnings and comparison of returns on different investment strategies, and pursue 
forward-looking behaviour in highly uncertain environment. Agents’ individual 
adaptation, intertemporal decision making and forward-looking behaviour in the multi-
agent setting is governed by reinforcement learning technique borrowed from the field of 
machine learning. To our knowledge, this work is one of the first attempts to apply the 
reinforcement learning techniques in an ASM model. Also, this is apparently the first 
full-fledged artificial stock market model in the Lithuanian economic literature. 

By conducting simulation experiments in this model, we aim to address some specific 
questions, such as market self-regulation abilities, the congruence between the market 
price of the stock and its fundamentals (the market efficiency issue), importance of 
intelligent individual behaviour and interaction at the population level for market 
efficiency and functioning, and relationship between stock prices and market liquidity. It 
should be stressed, however, that at this stage the model should largely be seen as a 
thought experiment that proposes to study financial market processes in the light of 
complex interaction of artificial agents acting an economically appealing way. 
Nevertheless, the proposed modelling approach serves as a basis for a refined and 
suitable for empirical analysis version of the model, which is developed in Ramanauskas 
(2009). 

The paper is organised as follows. We provide a detailed description of model’s main 
building blocks and basic internal processes in Section 2. Section 3 describes 
implemented simulation experiments and discusses results of model simulation in 
controlled environment. Section 4 concludes. The paper also contains two appendices. In 
Appendix 1, basic principles of reinforcement learning algorithm (more specifically, Q-
learning) are presented. Description of model parameters, experimental settings and 



Ba
nk

 o
f 

Li
th

ua
ni

a 
W

or
ki

ng
 P

ap
er

 S
er

ie
s 

N
o 

6 
/ 2

00
9

6

selected simulation graphs are given in Appendix 2. Since the current paper is an integral 
part of our broader research effort, we do not provide a review of the related literature but 
rather refer an interested reader to Ramanauskas (2008) for a review of related ASM 
models. 





The ASM research area is relatively new but there is a growing body of literature on the 
subject. There is a clear lack of the comprehensive literature review and classification of 
existing models. Some popular models and ASM modelling principles are presented in 
LeBaron (2006), Samanidou et al. (2007) have a review of some agent-based financial 
models, with the emphasis on econophysics. At the heart of ASM models lies interaction 
of heterogeneous agents, which leads to complex systemic behaviour and emergent 
systemic properties. There are two broad classes of ASM models, namely, models based 
on agents’ hard-wired behavioural rules (see, e.g. Kim and Markowitz (1989), Sethi and 
Franke (1995), Lux (1995)) and models supporting systemic adaptation. The most 
prominent example of the latter category is the Santa Fe ASM model developed by 
Arthur et al. (1997); also see, e.g. Beltrati and Margarita (1992), Lettau (1997), LeBaron 
(2000), Tay and Linn (2001). See Ramanauskas (2009) for a general discussion about 
agent-based financial modelling and the abovementioned models. 

An important caveat of many ASM models is that systemic adaptation often relies 
merely on evolutionary search algorithms. This means that systemic dynamics, e.g. 
trading and market price formation is generated by simply ensuring the sufficient variety 
of investment strategies and inducing some sort of evolutionary selection of strategies in 
favour to those that give highest utility to individuals. Such approach often downplays the 
importance of individual behaviour, which is often assumed to be driven by simplistic 
rules. Also, these algorithms generally do not support forward-looking behaviour except 
special cases, in which agents try to achieve myopic one-period optimisation. Unlike 
neoclassical financial theories, most existing agent-based models are not well-suited to 
model the intertemporal choice and hence miss a crucial aspect of financial decision 
making. 

In our view, agents should exhibit economically interesting behaviour and retain 
elements of economic reasoning rather than constitute mere collections of behavioural 
rules Hence, the present ASM model does not fully abstract from many important 
features of real financial markets that are usually omitted both from standard financial 
models and other ASMs. For example, just like in the real world financial markets, agents 
in this ASM do not know the “true model” but try instead to adapt in the highly uncertain 
environment, they exhibit bounded rationality, non-myopic forward-looking behaviour, 
as well as diversity in experience and skill levels; the trading process is quite realistic and 
detailed; dividends are paid out in discrete time intervals and the importance of dividends 
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as a fundamental force driving stock prices is explicitly recognised. In this section we 
present the architecture of the artificial stock market in detail. 



The artificial stock market is populated by a large number of heterogeneous 
reinforcement-learning investors. Investors differ in their financial holdings, expectations 
regarding dividend prospects or fundamental stock value. This ensures diverse investor 
behaviour even though the basic principles governing experience accumulation are the 
same across population. We can summarise agents’ basic behavioural principles as 
follows. All agents forecast an exogenously given, unknown dividend process and base 
their estimates of the fundamental stock value on dividend prospects. These estimates are 
intelligently adjusted to attain immediate reservation prices. Agents explore the 
environment and accumulate the experience with the aim of maximising long-term 
returns on their investment portfolios but there are no optimality guaranties against the 
background of high uncertainty and complex interaction of agents. 

Figure 1. Main building blocks of the ASM model 
Forming private forecasts of exogenously generated dividends 

Based on: 
 Exponential moving average  
 Adjustment as a result of reinforcement learning (agents seek to minimise 

forecast errors) 
Making individual estimates of fundamental stock value and its reservation price 
Based on: 

 Discounted expected dividend flows 
 Adjustment as a result of reinforcement learning (agents seek to maximise 

portfolio returns) 
Making individual trading decisions  
Based on: 

 Private estimates of fundamentals, 
 Maximisation of expected individual wealth at the end of a trading period 
 Publicly announced estimated probabilities of successful trades for given prices

Carrying out trades via the centralised exchange and collecting trading statistics 
Based on: 

 Double auction system 
 Simultaneous submission of trade orders and random queuing of individual 

orders
Learning to forecast dividends and learning about fundamental stock value 
Based on: 

 Standard Q-learning with linear gradient-descent approximation
Augmenting learning processes by specific interaction among agents (optional) 
Based on: 

 Successful strategy imitation 
 Evolutionary selection and resultant prevalence of successful investment 

strategies 
 Noise trading behaviour
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As usual in financial market modelling, the modelled financial market is very simple. 
Only one, dividend-paying stock (stock index) is traded on the market. Dividends are 
generated by an exogenous stochastic process unknown to the agents, and they are paid 
out in regular intervals. The number of trading rounds between dividend payouts can be 
set arbitrarily, which enables interpretation of a trading round as a day, a week, a month, 
etc. Paid out dividends and funds needed for liquidity purposes are held in private bank 
accounts and earn constant interest rates, whereas liquidity exceeding some arbitrary 
threshold is simply removed from the system (e.g., consumed). Borrowing is not allowed. 
Initially agents are endowed with arbitrary stock and cash holdings, and subsequently in 
every trading round each of them may submit a limit order to buy or sell one unit of 
stock, provided, of course, that financial constraints are non-binding. Trading takes place 
via the centralised exchange. 

For the ease of detailed model exposition, it is useful to break the model into a set of 
economically meaningful processes, though some of them are inter-related in complex 
ways. The general structure of the model is laid out in Figure 1. We will discuss these 
logical building blocks in the following subsections. 



Expected company earnings and dividend payouts are the main fundamental determinants 
of the intrinsic stock value. Even though in standard models based on the efficient market 
hypothesis corporate earnings and dividend dynamics are not forecasted explicitly, it is 
usually implicitly assumed that some market players do conduct fundamental analysis, 
which ultimately gets reflected in stock prices. Hence, the fundamental analysis of 
earnings perspectives does matter. It is only that some theories are willing to go so far as 
to assume that communication among market participants is efficient enough for most 
investors not to bother inquiring into companies’ financial books. 

Here we propose the view that in the uncertain environment investors (i) form their 
individual beliefs about the risk-neutral value of a risky stock as some basic value anchor, 
(ii) acknowledge that the market price of the stock may fluctuate about or systemically 
differ from individual risk-neutral fundamentals due to various factors, such as investors’ 
risk preferences, animal spirits or heterogeneity of beliefs, and (iii) flexibly determine 
their individual reservation prices in the process of adaptive interaction with the 
environment. The inertia of beliefs about future prospects, as well as the entirety of 
individual incentives and reward structures then determine market’s aggregate attitude 
toward risk and, consequently, result in episodes of market euphoria or pessimism. 

We assume that all agents make their private forecasts of dividend dynamics. 
Dividend flows generated by an unknown, potentially non-stationary data generating 
process specified by a modeller. The only information, upon which agents can base their 
forecasts, is past realisation of dividends, and agents know nothing about stationarity of 
the data generating process. Hence, they are assumed to form adaptive expectations, 
augmented with the reinforcement learning calibration. We also allow for possibility to 
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improve a given agent’s forecasting ability by probabilistic imitation of more successful 
individuals’ behaviour (see Section 2.6 for more on this). 

Agents start with determining basic reference points for their dividend forecasts. The 
exponentially weighted moving average (EWMA) of realised dividend payouts can be 
calculated as follows: 

.)1( 1,11,
EWMA

yiy
EWMA

yi ddd −−+⋅= λλ       (1) 

Here yd  denotes dividends paid out in period y (year) and 1λ  is the arbitrary 

smoothing factor (the same for all agents), which is a real number between 0 and 1. The 
subscript i on the averaged dividends in equation (1) to indicates that they vary across the 
population of agents. The differences arise due to different arbitrarily chosen initial 
values but over time, however, these exponential averages converge to each other. Also 
note that dividend payouts can be arbitrarily less frequent than stock trading rounds, e.g. 
if one trading period equals one month, dividends may be scheduled to be paid out every 
twelve periods and in equation (1) one time unit would be one year.  

Exponential moving averages would clearly be unacceptable estimates of future 
dividends in a general case. Hence, their function in this model is twofold. First, they 
provide a basis for further “intelligent” refinement of dividend forecasts, i.e. these 
moving averages are multiplied by some adjustment factors calibrated in the process of 
the reinforcement learning. And second, forecasting dividends relative to their moving 
averages, as opposed to forecasting dividend levels directly, makes forecasting 
environment more stationary, which facilitates the reinforcement learning task. 

The n-period dividend forecast is given by the following equation: 

,)( ,,,
div

yi
EWMA

yinyi addE ⋅=+        (2) 

where yia ,  is agent i’s dividend adjustment factor. These adjustment factors are gradually 

changed as agents explore and exploit their accumulated experience, with the long-term 
aim to minimize squared forecast errors. The detailed description of the reinforcement 
learning procedure is provided in Section 2.6 and Appendix  1. Individual forecasts for 
periods y + 1, …, y + n formed in periods y – n + 1, …, y, respectively, are stored in the 
program and used for determining individual estimates of the fundamental stock value. 



Quite similarly to the dividend forecasting procedure, agents’ estimation of the intrinsic 
stock value is a two-stage process. It embraces formation of initial estimates of the 
fundamental value, based on discounted dividend flows, and ensuing intelligent 
adjustment grounded on agents’ interaction with environment. We refer to this refined 
fundamental value as the reservation price. 

The initial evaluation of the future dividend flows is a simple discounting exercise. To 
calculate the present value of expected dividend stream, the constant interest rate is used 
as the discount factor. Moreover, beyond the forecast horizon dividends are assumed to 
remain constant. Under these assumptions, individual estimates of the present value of 
expected dividend flows are 



Ba
nk

 o
f 

Li
th

ua
ni

a 
W

or
ki

ng
 P

ap
er

 S
er

ie
s 

N
o 

6 
/ 2

00
9

10

,
)1(
/

)1(
...

1 1
,,1,

, 







+

+
+

++
+

+= +
+++

n
nyi

n
nyiyi

y
fund
yi r

rd
r

d
r

d
Edv     (3) 

where r  is the constant interest rate. The last term in this equation is simply the 
discounted value of the infinite sum of steady financial inflows. These present value 
estimates are subject to further refinement. 

To avoid excessive volatility of the estimates of the discounted value of dividend 
stream, they are again smoothed by calculating the exponentially weighted moving 
averages: 

.)1( 1,2,2,
EWMA

yi
fund
yi

EWMA
yi vvv −−+⋅= λλ       (4) 

The role of these averages is very similar to that of the averaged dividends in the 
dividend forecasting process, namely, to provide some background for the reinforcement 
learning procedure and (partially) stationarise the environment in which agents try to 
adapt. 

The second stage in the estimation of the individual reservation prices of the stock is 
calibration based on the reinforcement learning procedure. For this we have to switch to 
the different time frame (in the base version of the model it is assumed that dividends are 
paid out annually, whereas agents can trade once per month). In a given trading round t, 
individual reservation prices reserve

tiv ,  are obtained from equation (4) by multiplying 

exponentially smoothed estimates of fundamental value by individual price adjustment 
factors, p

tia , : 

.,,,
p
ti

EWMA
ti

reserve
ti avv ⋅=         (5) 

In this context the individual reservation price is understood as an agent’s subjective 
assessment of the stock’s intrinsic value that prompts immediate agent’s response (to buy 
or sell the security). 



Having formed their individual beliefs about the fundamental value of the stock price, 
agents have to make specific portfolio rebalancing decisions. In principle, they weigh 
their own assessment of the stock against market perceptions and make orders to buy 
(sell) one unit of the underpriced (overpriced) stock at the price that is expected to 
maximise their wealth at the end of the trading period. We give a more detailed 
description of these processes below. 

The individual reservation price reflects what investors think the stock price should be 
worth. If the last period’s average market price 1−tp  is less than agent i’s reservation 

price today, it is willing to buy stock and pay at most reserve
tiv , . Conversely, if the 

prevailing market price is higher than the agent’s perceived fundamental, it is willing to 

sell it at reserve
tiv ,  or higher price. So its decision rule is like this: 

If 1, −> t
reserve
ti pv  and 0

,tim  is sufficient →  submit limit order to buy 1 share at price q
tip ,
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if 1, −< t
reserve
ti pv  and 00

, >tih →  submit limit order to sell 1 share at price q
tip ,

otherwise, make no order.
Here 0

,tih  and 0
,tim  denote, respectively, agent i’s stock holdings (i.e. number of owned 

shares) and cash balance at the beginning of a trading round, q
tip ,  is the quoted price to be 

determined below. 
We would not expect real world investors to make orders to buy or sell the stock 

precisely at reservation prices because in that case they would miss potentially profitable 
asset allocation opportunities. The real world investor whose perception of the stock 
value considerably differs from the average market opinion is likely to take advantage of 
market liquidity and make an order to trade at a price close the prevailing market price 
rather than to his own reservation price. But what price would it be? There is no answer 
in the theory. The first obvious step, implemented in the model, is to allow limit orders, 
i.e. orders to trade the security at a specified or better price. Given the complexity of the 
agent interaction, the optimal pricing solution generally cannot be found. Thus we 
proceed in the following, intuitively appealing way: (i) we determine the possible price 
quote grid around the prevailing market price (i.e. determine tick sizes and possible price 
fluctuation bands), (ii) estimate aggregate supply and demand schedules, (iii) compute 
each individual’s expected end-of-period wealth for every possible trading price and (iv) 
allow agents to make trading decisions that maximise their expected end-of-period 
wealth. 

Agents, of course, aim at getting most favourable prices for their trades but they must 
take into account the fact that better bid or ask prices are generally associated with 
smaller probabilities of successful trades. The assumption that each agent is allowed to 
trade only one unit of stock in a given trading round has a very useful implication in this 
context – the probabilities of successful trades at all possible prices faced by a buyer and 
a seller can be loosely interpreted as the supply and demand schedules, respectively. So 
we further assume that these supply and demand schedules are estimated by the exchange 
institution from past trading data and constitute public knowledge. 

Estimated probabilities of successful trades at given (relative) price quotes are 
computed as follows. Simply put, these estimated probabilities should indicate chances of 
successful trading at prices that are “high” or “low” relative to the prevailing market price 
(i.e. last period’s average price). So the probability of the successful trade for a given 
price quote (relative to the benchmark price) is calculated from the past trading rounds as 
a fraction of successfully filled buy (sell) orders out of all submitted orders to buy (sell) 
at that price. Unfortunately, due to computational constraints the number of agents and 
successful trades is not sufficiently high to obtain reliable estimated probabilities in this 
straightforward way. For this reason we employ the following three-step procedure: 
i) estimates of probabilities of successful buy and sell orders for every price quote are 
smoothed over time by computing exponential moving averages; 
ii) if there are no orders to buy or sell at a given price at time t, the exponential moving 
average estimates of successful trade probabilities are left unchanged from the t–1 period 
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iii) the scattered estimates are fitted to a simple cross-sectional regression line (with its 
values restricted to lie in the interval between 0 and 1) to ensure that the sets of 
successful trade probabilities retain meaningful economic properties. 

Figure 2. Typical estimated demand and supply schedules in an upward-moving 
market 
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As a result, we get a nice upward-sloping line, which represents probabilities of 
successful buy orders for each possible price quote, and a downward-sloping line for the 
sell orders case. Figure 2 shows a typical example of estimated probabilities of 
successfully buying and selling one unit of stock at all possible prices (last period’s 
average price set equal to 25 in this relative pricing grid). This particular example reflects 
an upward-trending market, in which agents reckon they have higher chances (estimated 
at around 60%) of selling the stock than buying it (estimated at around 40%) at the last 
period’s average price. 

At this stage agents have all the components needed to choose prices that give them 
highest expected wealth at the end of the trading round. First, agent i estimates its 
expected end-of-period stock holdings (i.e. the number of shares) for each possible price 
quote j: 

itjititji bqEhhE ⋅+= )()( ,,
0
,

1
,,  for all j.      (6) 

Here )( ,, tjiqE  denotes of expected number of shares to be bought or sold by agent i at 

any quotable price j (as was explained above, these numbers lie in the closed interval 
between 0 and 1).  The indicator variable ib  takes value of 1 if the agent is willing to buy 

the stock or  –1 if it is willing to sell the stock. 
Similarly, agent i’s expected end-of-period cash holdings for each possible price 

quote j are 
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)()()()()( ,
1

,,,,,
0
,

1
,, titjiitjtjititji dEhEcbxqEmmE ⋅+−−⋅⋅+=  for all j.  (7) 

Here tjx ,  denotes possible price quote j, c is the fractional trading cost and )( ,tidE
denotes the expected dividends, which are to be paid out following the trading round (this 
term equals zero in between the dividend payout periods). It is important to note here that 
the interest on spare cash funds is paid, as well as excess liquidity (cash holdings above 
some prespecified amount needed for trading) is taken away, at the beginning of the 

trading period. All of this is reflected in .0
,tim  Dividends are paid out for those agents that 

hold stocks after the trading round, as can be seen from equation (7). 
Finally, agent i’s expected end-of-period stock holdings are valued at the individual 

reservation price and each agent calculates its expected end-of-period wealth for every 
possible price quote: 

).()()( 1
,,,

1
,,

1
,, tji

reserve
titjitji mEvhEwE +⋅=       (8) 

Hence, agent i’s quoted price, ,q
ip  is the price that is associated with the highest 

expected wealth at the end of the trading round: 
).(maxarg 1

,ti
x

q
i wEp

i


=         (9) 

If several price quotes result in the same expected wealth, the agent chooses randomly 
among them. It is also important to note that in the process of the reinforcement learning, 
agents are occasionally forced to take exploratory actions. In those cases exploring agents 
choose prices from the quote grid in a random manner.  

Market price determination and actual trading take place on the centralised stock 
exchange. The trading mechanism basically is the double auction system, in which both 
buyers and sellers contemporaneously submit their competitive orders to implement their 
trades. Agents are assumed to have no knowledge of individual market participants’ 
submitted orders. 

In this model the order book mechanism works as follows. Prior to a trading round, all 
agents’ trade orders are queued randomly and then each of them undergoes the 
processing procedure. During this procedure, for an order that is being processed all 
earlier-queued orders are scanned in search for the most favourable matching (opposite) 
order. If such an order is found (a tie among several equally good orders is broken 
arbitrarily), the trade is executed at the average of the bid and ask price. Otherwise, the 
order remains open until it makes a match for other subsequently processed orders or 
until the end of the trading period, when it is closed as an unexecuted order. Following 
the trading round, all agents’ cash and securities accounts are updated accordingly. 

The centralised stock exchange also produces a number of trading statistics, both for 
analytical and computational purposes. These statistics include the market price, trading 
volumes and volatility measures. The market price in a given trading period is calculated 
as the average traded price. As was mentioned before, it is crucially important for making 
further trading decisions and it serves as the reference value in the subsequent trading 
round. 
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Let us now turn to the learning process through which individual agents’ pricing 
considerations, attitudes to risk and, more generally, goal-oriented behaviours are 
determined. Quite some learning methods are known, ranging from psychology-based 
models (stimulus-response, belief-based conscious learning, associative learning, etc.) to 
rationality-based methods (Beyesian, least-squares learning) to artificial intelligence 
approaches (evolutionary algorithms, replicator dynamics, neural nets, reinforcement 
learning). For an overview of popular learning algorithms see, e.g., Brenner (2006). As 
Brenner notes, virtually all of the learning models used in economic contexts are largely 
ad hoc, based only on introspection, common sense, artificial intelligence research or 
psychological findings. 

We assume that agents’ behaviour is driven by reinforcement learning since these 
learning algorithms borrowed from the machine learning literature seem to be 
conceptually suitable for modelling investor behaviour. Agents take actions in the 
uncertain environment and obtain immediate rewards associated with these (and possibly 
previous) actions. A specific learning algorithm allows agents to adjust their action 
policies in pursuit of highest long-term rewards. It is a very desirable feature of any 
financial model that agents strive for strategic, as opposed to myopic, behaviour. The 
reinforcement-learning agents do just that. On the other hand, it is the immense 
complexity of investors’ interaction, both in real world financial markets and in the 
model, that dramatically limits agents’ abilities to actually achieve optimal investment 
policies if not makes the optimal investment behaviour outright impossible. 

In our model we use a popular reinforcement learning algorithm, also known as the 
Q-learning, which was initially proposed by Watkins (1989). It is the temporal difference 
learning based on the step-wise update (or back-up) of the action-value function and 
associated adjustment of behavioural policies (a more detailed exposition of basic Q-
learning principles is given in Appendix 1). The principal back-up rule is closely related 
to Bellman optimality property and takes the following form: 

.)),(max(),()1(),(
),(   of    estimateNew  

11

),(  of   estimate  Old
  

tt
tt asQ

tat

asQ

tttt asQrasQasQ ++ ++⋅−← γαα   (10) 

Here ts  denotes the state of environment, ta  is the action taken in period t and 1+tr  is 

the immediate reward associated with action ta  (and possibly earlier actions). Parameter 

α  is known as the learning rate and γ  is the discount rate of future rewards. Function 

),( tt asQ is usually referred to as the action-value function (or Q-function) and it 

basically shows the value of taking action ta  in state ts  under behavioural policy .π
More specifically, the action-value function is the expected cumulative reward 
conditional on the current state, action and pursued behavioural policy.  

However, the so-called “curse of dimensionality” implies that the straightforward 
implementation of the basic version of this algorithm is rarely possible in complicated 
environments. Following the standard practice, we apply the Q-learning algorithm with 
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gradient-descent approximation, which is briefly presented in Appendix 1. Here we only 
describe specific variables that are used in the Q-learning algorithm. 

As was mentioned before, there are two instances of individual agent learning in the 
model: learning to forecast dividends and learning to adjust perceived fundamentals. In 
the dividend forecasting case agent i learns to adjust the dividend adjustment factor, 

div
tia , (see equation (2)). In each state there are three possible actions – the agent can 

increase the dividend adjustment factor by a small proportion specified by the modeller, 
decrease it by the same amount or leave it unchanged.  

Due to the complex nature of environment, the state of the world – as perceived by 
investor i – must be approximated, and it is described by a vector of so-called state 

features, sφ


(see Figure A1.2 in Appendix 1). We choose four state features that are 

indicative of the reinforcement learner’s “location” in the environment and summarize 
some properties of the dividend-generating process, which can provide basis for 
successful forecasting. These features include the size of the dividend adjustment factor, 
relative deviation of current dividend from its EWMA (compared to the standard 
deviation), the square of this deviation (to allow for nonlinear relation with forecasts) and 
the size of the current dividend relative to the EWMA.  

The forecast decision is taken at time y and the actual dividend realisation is known at 
forecast horizon y + n. Then agent i gets the reward, which is the negative of the squared 
forecast error: 

( ) .)( 2
,, nyiyny

d
nyi dEdr +++ −−=        (11) 

Hence, the agent is punished for the forecasting errors. The learning process is 
augmented by modeller-imposed constraints on dividend forecasts. The forecast is not 
allowed to deviate by more than a prespecified threshold (e.g. 30%) from the current 
level of dividends. In that case, the agent gets extra-punishment and the dividend forecast 
is forced to be marginally closer to the current dividend level. Once the agent observes 
the resultant state, i.e. the actual dividend realisation, it updates its behavioural policy 
according to the Q-learning procedure. 

In the case of the individual stock value estimation, agent i also can take one of three 

actions: fractionally increase or decrease the price adjustment factor, p
tia ,  (see 

equation (5)), or leave it unchanged. Analogously to the dividend forecasting case, the 
four state features are the price adjustment factor, the stock price deviation from its 
exponential time-average (this difference is divided by the standard deviation), the square 
of this deviation and the current stock price divided by the weighted time-average. 

The agent observes the state of the world and acts according to the pursued policy. 
After the trading round, the agent observes trading results and the resultant state of the 
world, which enables the agent to update its policies according to the usual Q-learning 
procedure. In this model, the basic immediate reward, ,1,

p
tir +  is simply the log-return on 

the agent’s portfolio: 
( ) ( ).ln)1(ln 0

,1
0
,

1
,

1
,1, titti

monthly
titti

p
ti mphrmphr +−++= −+     (12) 
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Recall that tp  denotes the market price following a trading round in time t and monthlyr  is 

a one-period return on bank account. In order to ensure more efficient learning – just like 
in the case of dividend learning – constraints are imposed on the magnitude of price 
adjustment factors, and additional penalties are invoked if these constraints become 
binding. 

The chosen specification of the reward function implies that the reinforcement-
learning agents try to learn to organise their behaviour so that they maximise long-term 
returns on their investments. We could interpret agents in this model as professional fund 
managers that care about maximising clients’ wealth, seek best long-term performance 
among peers and shun under-performance. They need not to be risk-averse, as is 
conventionally assumed about individual consumption-smoothing investors. Indeed, 
recent evidence from extremely turbulent financial markets shows that it might well quite 
the opposite – in some cases excessive risk-taking might generate superior performance 
for a prolonged period of time, which in turn generates solid growth in fee income during 
that time. In addition, it should be noted that in the model an agent’s attitude toward risk 
is determined not only by its reward function but also by evolutionary selection and other 
systemic adaptation. 

The model allows for optional alteration of agent behaviour via sharing private trading 
experience, competitive evolutionary selection and noise trading behaviour. These 
options help enhance realism of the artificial stock market and arguably augment the 
reinforcement learning procedure by removing clearly dominated trading policies 
implemented by individual agents and by strengthening competition among them. 

In our model, dissemination of agents’ experience is very stylised. At the end of each 
period agents are randomly matched in pairs. In every pair, agents’ long-term 
performance measures, which are cumulative past rewards, are compared to each other. If 
the difference between matched agents’ performance measures is sufficiently large (the 
threshold level is allowed to fluctuate randomly to reflect the random nature of 
knowledge dissemination), the worse-performing agent simply replicates the more 
successful agent’s experience. 

Evolutionary selection is another available option in the present ASM model. It 
assumes bankruptcy of worst-performing agents and their replacement with best-
performers. So agents, whose performance relative to the benchmark (which is the 
average agents’ performance) falls below a modeller-specified threshold, go bankrupt. 
Their place is taken over by best-performers, which then are forced to split so that the 
number of agents remains constant. This has a natural interpretation: inferior fund 
managers are forced out of the market as unsatisfied clients bring their wealth over to 
best-performing funds and the latter then have to split for regulatory or any other reasons. 
Successful agents are given substantial extra rewards in the event of the split, to 
encourage their performance. 

Finally, the model allows for noise trading behaviour. Unlike in the evolutionary 
selection, the worst-performers are not replaced by most successful agents. Rather, they 
scrap their prior learning experience and, as a result, start learning from scratch. 
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Like the vast majority of other ASM models, the current model is based on a large 
number of parameters, and it is very difficult to calibrate the model to match empirical 
data. At this stage of model development we do not attempt to do that. Instead, we assign 
reasonable and, where possible, conventional values to the parameters and assume very 
simple forms of dividend-generating processes. This enables us to determine the 
approximate fundamental stock value dynamics and study how the market stock price, 
determined by the complex system of interacting heterogeneous agents, fares in relation 
to stock price fundamentals. Even though the model is not calibrated to the market data, 
model results can offer qualitative insights about market self-regulation, efficiency and 
other aspects of market functioning. In this section we examine these issues in more 
detail and report some of the more interesting simulation results. 

The simulation procedure is implemented by performing batches of model runs. Each 
run consists of 20,000 trading rounds (about 1667 years). Batches of ten runs repeated 
under identical parameter settings are used to generate essential data and statistics that are 
in turn used for analysis and generalisation. In every run, the first 5,000 trading rounds – 
as the learning initiation phase – are excluded from the calculation of the descriptive 
statistics (presented in Table A2.3 in Appendix 2). The simulation concentrates on 
altering features of the reinforcement learning, interaction among agents and dividend-
generating processes in an attempt to understand relative importance of intelligent 
individual behaviour, market setting and population-level changes for the aggregate 
market behaviour. Other model parameters are kept unchanged. Their values are provided 
in Table A2.1. 

Dividends are assumed to fluctuate around an exponential trend and their volatility is 
proportional to the dividend level. The role of the trend is to necessitate the intelligent 
adjustment of dividend estimates, as forecasts based on exponentially-weighted moving 
averages would be clearly biased. Large dividend growth rates can only be sustained over 
relatively short time horizons, and hence in our very long-term model we have to choose 
very low dividend growth rates (e.g. 0.15 % per year). We also examine deterministic 
constant dividends, as a special case (see exact specifications of dividend generating 
processes in Table A2.2). 

The primary question addressed in most ASM models is the market efficiency issue. 
Here efficiency is loosely interpreted as the congruence between the stock market price 
and its fundamentals. In the current setting it is not possible to know the right theoretical 
stock price, so we basically want to compare the market stock price with risk-neutral 
estimates of fundamentals. 

Let us start with the examination of agents’ ability to forecast dividends. Since 
dividends are driven by very simple data generating processes, it is not surprising that in 
the model version with enabled both reinforcement learning and evolutionary selection 
(Experiment 1 in Table A2.3) agents are able to form very precise forecasts. The average 
dividend forecast error for this model specification is -0.1%, while the average absolute 
forecast error again amounts to 0.4%. To assess the actual importance of the 
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reinforcement learning behaviour for dividend forecasting, simulation batches with 
disabled reinforcement learning are run (Experiment 3). In these runs agents neither learn 
to forecast dividends, nor try to optimise their portfolios, as their commensurate 
reinforcement rewards d

ntir +,  and  p
tir 1, +  are set to zero. In this case, the average forecast 

bias considerably increases to -0.8% and the average absolute errors stands at 1.4%. In 
this no-learning case the average percentage of agents hitting the modeller-imposed 
dividend forecast bounds increases significantly, as compared to the enabled learning 
case. In other words, learning agents are able to effectively form “reasonable” forecasts, 
while non-learning agents are simply forced to remain within prespecified boundaries but 
perform much worse, taken on individual basis. This leads us to a very natural conclusion 
that in the dividend forecasting process intelligent adaptation matters.  

As the next step of our analysis we examine dynamics of the market price in relation 
to the fundamentals. In Experiment 1 fundamentals anchor the stock price dynamics to 
some extent, and the market price fluctuates in the vicinity of the perceived fundamental 
value The average percentage bias of market price from the fundamentals is low and 
stands at -1.6% (see Table A2.3). Nevertheless, the valuation errors are clearly 
autocorrelated – due to the market inertia and prevailing expectations, the stock price 
may be above or below risk-neutral fundamentals for extensive periods of time. For 
instance, runs of uninterrupted overvaluation stretch on average for 44 trading periods 
and an average length of undervaluation runs is 60 periods. By the same token, average 
market price deviations from the fundamental valuation are large relative to the price 
volatility. The enabled evolutionary selection option in the model ensures relatively even 
wealth distribution among agents and each trading period active agents (i.e. agents that 
have sufficient funds and/or stock holdings to trade constitute on average 89.7% of total 
population). Finally, the average fraction of agents whose adjusted fundamental 
valuations (reservation prices) fall out of modeller-imposed “reasonable” bounds is very 
low and stands on average at 0.1% of total population in a trading round. 

It turns out that the above results strongly depend on the evolutionary competition 
assumption. It suffices to disable the evolutionary selection (Experiment 2), and the 
average percentage stock price bias from the fundamentals boosts to 5.9% along with a 
dramatic increase in average overvaluation runs to 406. By the end of a simulation run 
the number of inactive agents per trading round increases to 70-80%, and wealth 
naturally concentrates in the hands of remaining 20-30% agents. There are some possible 
explanations to this overvaluation and wealth concentration. Such overvaluation can be to 
some extent associated with the model’s feature that excess liquidity is simply taken 
away from the market, which means that the agents that tend to sell their stock holdings 
are more likely to “consume” their money and become inactive. In other words, those 
agents that highly value the stock tend to dominate in the market. Another interpretation 
is that worse-performing agents are simply driven out of the market. Moreover, a 
diminishing number of active participants and a smaller degree of competition allows 
agents to concert their portfolio rebalancing actions in such a way that the market price is 
driven up, which leads to larger unrealised returns and thereby stronger reinforcement for 
the remaining active players. These results make sense from the real world perspective. 
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The largest mass of investors want stock prices to be as high as possible (though possibly 
still compatible with fundamentals), and it is not in their direct interest to have prices that 
match fundamentals precisely. 

We also perform simulations to examine market’s self-regulation ability. In particular, 
we want to know whether economic forces are strong enough to bring the market to the 
true fundamentals if they systematically differ from average perceived fundamentals. For 
this purpose, we introduce and an arbitrary upward bias to the estimates of the 
fundamental value by adding an arbitrary term in equation (3). Then simulation runs are 
implemented for different model settings, with or without reinforcement learning. It turns 
out that the market is not able to find the true risk-neutral fundamentals. In the case of no-
learning, stock prices tend to slowly grow larger than the perceived fundamentals. In the 
case of enabled reinforcement learning, agents tend to stick to the perceived 
fundamentals, and the market price fluctuates around them as a result.  

The above results confirm the market self-regulation mechanism in this model is 
weak. We do not find evidence of agents adjusting their perceived fundamentals so that 
the market price gets in line with modeller-imposed fundamentals or, say, the usually 
assumed risk-averse behaviour. On the other hand, it is not surprising. Well known 
puzzles of empirical finance and recent mega-bubbles suggest that markets may not be 
tracking fundamentals so closely after all. It can be the case that markets exhibit so strong 
inertia that even fundamentally correct investment strategies pay out only in too distant 
future and may not be applied successfully or act as the market’s self-regulating force. 
The obtained results suggest that (not necessarily objectively founded) market beliefs of 
what an asset is worth are a very important constituency of its market price. 

Figure 3. Typical relationship between stock returns and liquidity 
in a constant dividend case 
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Last but not least, we want to examine the relationship between the market price 
fluctuations and the financial market liquidity. This experiment also helps to shed light on 
the reasons for a relatively loose connection between the market price and fundamentals. 
In this simulation run, the standard model version with reinforcement learning and 
evolutionary selection is used, while dividends are assumed to be deterministic and 
constant. It is notable that even in this environment market price fluctuations remain 
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significant and trading does not stop. The clue to understanding this excessive price 
volatility may be the positive relationship between market liquidity and the stock price. 
Since unnecessary liquidity at the individual level is removed from the system, overall 
liquidity fluctuates in a haphazard way. Increases in market liquidity bolster solvent 
demand for the stock and lifts its price. As can be seen from Figure 3, liquidity growth 
spikes are associated with strong price increases. The linear correlation between growth 
of money balances and stock price growth is found to be 0.32. 

It should be noted that the latter experiment is devised so as to ensure that positive 
relationship between stock returns (with dividends included) and investors’ cash holdings 
is not linked to fluctuations in dividend payouts, as they are assumed constant. This 
allows us to conclude that liquidity fluctuations affect the asset price in this case, and not 
vice versa. The evidence that market liquidity changes can move markets is very 
important for understanding the way liquidity crises, credit booms and busts 
(deleveraging), portfolio reallocations between asset classes and other exogenous factors 
may affect stock markets. 



In this paper we developed an artificial stock market model based on the interaction of 
heterogeneous agents whose forward-looking behaviour is driven by the reinforcement 
learning algorithm combined with some evolutionary selection mechanism and economic 
reasoning. Other notable features of the model include knowledge dissemination and 
agents’ competition for survival, detailed modelling of the trading process, explicit 
formation of dividend expectations and estimates of fundamental value, computation of 
individual reservation prices and best order prices, etc. Bearing in mind the uncertain 
nature of the model environment, mostly brought about by this same interaction, 
strategies followed by artificial agents seem to exhibit a good balance of economic 
rationale and optimisation attempts. Quite a strong emphasis on the model’s economic 
content distinguishes this model from some other ASM models, which are most often 
based on evolutionary selection procedures and are sometimes criticised for lack of 
economic fundament. 

Simulation results suggest that the market price of the stock in this model broadly 
reflects fundamentals but over- or under-valuation runs are sustained for prolonged 
periods. Both individual adaptive behaviour and the population level adaptation 
(evolutionary selection in particular) are essential for ensuring any efficiency of the 
market. However, market self-regulation ability is found to be weak. The institutional 
setting alone, such as the centralised exchange based on the double auction trading, 
cannot ensure effective market functioning. Even in the case of active adaptive learning, 
the market does not correct itself from erroneously perceived fundamentals if they are in 
the vicinity of actual fundamentals, which underscores the importance of market 
participants’ beliefs for the market price dynamics. We also find a positive relationship 
between stock returns and changes in liquidity – there are indications that exogenous 
shocks to investors’ cash holdings lead to strong changes in the market price of the stock. 
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Overall, this line of research seems promising. In our related research, we aim at 
developing a version of the model suitable for calibration to empirical data. This requires 
simplification of some processes in the model, taking steps to ensure more effective and 
robust learning, etc. The noteworthy implication of the proposed study is that similar 
modelling principles could be expanded and applied for modelling of other markets, such 
as markets for goods or labour. More generally, intelligent adaptive agents could form the 
basis of applied dynamic macroeconomic models. 
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Reinforcement learning addresses the question of how an autonomous agent that senses 
and acts in its environment can learn to choose optimal actions to achieve its goals 
(Mitchell 1997, p. 367). More specifically, by taking actions in an environment and 
obtaining associated rewards, a reinforcement-learning agent tries to find optimal 
policies, which maximise long-term rewards, and the process of improvement of agent 
policies is the central target for reinforcement learning methods. A good introduction to 
the reinforcement learning techniques may be found in Sutton and Barto (1998), 
Bertsekas and Tsitsiklis (1996) and Mitchell’s (1997) books, and some broad overview of 
reinforcement learning models is given in Kaelbling, Littman and Moore (1996) survey. 
In this subsection we present briefly some basic principles of the reinforcement learning 
methodology with a special emphasis on Watkins’ Q-learning algorithm, as it forms the 
basis of agent behaviour in our ASM model. 

The iterative sequence of agent’s interaction with environment is as follows. At time t, 
the agent observes environment state ts  and acts according to its action policy to produce 

action .ta  In the next time step it receives numerical reward signal 1+tr  from the 

environment and observes new state .1+ts  Finally, it is ready to update its policies (if 

necessary) and take new action .1+ta  In the reinforcement learning problems it is also 

assumed that environment possesses the Markov property, i.e. all relevant information 
about possible future development of environment is encapsulated in the information 
about the current state and action. More formally, 
{ }
{ }tttt

tttttttt

asrrss
asrrasrasrrss
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If condition (A1) holds, such reinforcement learning task is called a Markov decision 
process. To completely specify the environment dynamics for a Markov decision process, 
it suffices to define state transition probabilities and expected rewards. State transition 
probabilities constitute a distribution of probabilities of each possible next state ,'s  given 
any current state s and action a: 

{ }.,|'Pr 1' aassssP ttt
a

ss ==== +       (A2) 
Notably, in a general case, state transition probabilities are not known to the 
reinforcement-learning agent but can be inferred from interaction with environment. The 
expected next reward is 

).',,|( 11' ssaassrER tttt
a
ss ==== ++       (A3) 
As was mentioned above, learning is understood in this context as an attempt to find 

optimal policies. Here, a policy is defined as a mapping from each state s and action a to 
the probability ),( asπ  of taking action a when in state s (if a policy is deterministic, 
then it is simply a set of deterministic rules describing how to behave in each state). For 
the further elaboration of the reinforcement learning task, the notion of value functions 
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should be introduced. The state-value function for policy π  is defined as the expected 
discounted cumulated reward conditional on state s and policy :π

,|)(
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1 
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tkt

k ssrEsV γπ
π                 (A4) 

where πE  denotes the expectation given that the agent sticks to its policy ,π  and γ  is a 

discounting parameter. It proves very useful to define also the value of taking action a in 
state s under policy .π  The action-value function is given by 
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It is obvious that both value functions possess the Bellman property, i.e. they must be 
dynamically consistent. For instance, it follows from equation (A4) that 

( ).|)()( 11 sssVrEsV ttt =+= ++
π

π
π γ                   

(A6) 
Since condition (A6) holds for all value functions, it also holds for optimal value 
functions, i.e. those associated with optimal policies1. This leads directly to Bellman 
optimality equations for the state-value function 

( )aasssVrEsV tttta
==+= ++ ,|)(max)( 11

* γ   for all s             (A7) 

and for the action-value function 

( ).,|)',(max),( 1'1
* aassasQrEasQ tttat ==+= ++ γ  for all s             (A8) 

The most prominent feature of Bellman optimality equations is that they actually 
rearrange the multi-period optimisation problem into a problem consisting of a set of 
difference equations (one for each state). Notably, if value functions are known, it 
becomes very easy to find optimal policies. Equation (A7) implies that in any state s it 
suffices to take the greedy action (that is, concerned with only one period ahead) that 
maximises the expected sum of the immediate reward and the (discounted) next state-
value2. It is even simpler if the problem is expressed in terms of known action-value 
functions – from equation (A8) it follows that action 'a  taken in state 1+ts  will be 

optimal if it maximises the associated expected action-value function. To put differently, 
it is optimal to take actions that simply maximise each period’s Q-function value (such 
actions are sometimes called Q-greedy actions). 

The big question is, of course, how to find optimal value functions. One of the ways to 
do this is to apply dynamic programming, which also provides the foundation for 
reinforcement learning methods. The basic idea is to apply some iterative procedure 
aimed at evaluating current policies and gradually improving them until they converge to 
optimal policies. More specifically, the so-called generalised policy iteration consists of 
two interacting processes: (i) policy evaluation, which is the process of finding the value 
function for an arbitrary policy, and (ii) policy improvement, whereby policies are 
improved by making them greedy with respect to the current value function. 

                                                
1 Optimal policies are defined as policies that maximise state values πV  in all states. 
2 Notice that expectations are no longer conditioned on specific policies in equations (7) and (8). 
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The policy evaluation procedure uses Bellman equation (A6) as an update rule: 
( ),|)()( 111 sssVrEsV ttktk =+= +++ γπ       (A9) 

where kV  denotes the k-th approximation of the state-value function ( 0V  is chosen 

arbitrarily). It can be shown that estimate kV  converges to true policy πV  as k converges 

to infinity. Each iteration is a sweep through all states – the value of every single state is 
backed up using equation (A9). 

The policy improvement step is closely linked to Bellman optimality equation (A7). It 
can be shown that for every state s, the policy can be improved by taking action that 
maximises the immediate action value or, in other words, looks best in the short term 
(examining only one period ahead): 

                       (A10) 

The two procedures, given in equations (A9) and (A10), are implemented alternately in 
each iteration, and the iterative process continues until state values and associated 
policies stabilise, which is when they become optimal. The problem with the dynamic 
programming is that in order to implement these back-up sweeps, state transition 

probabilities a
ssP '  and expected rewards a

ssR '  (see equations (A2) and (A3)) must be 

known, and it is very rarely the case in practice. 
A natural way to overcome the problem of incomplete information is to use sample 

estimates instead of expectations. This is exactly what is done in two broad classes of 
reinforcement learning, namely, Monte Carlo methods and temporal difference models of 
learning. In the remainder of this section we present just one specific temporal difference 
learning method devised by Watkins (1989), also known as the Q-learning. This 
method’s principal back-up rule is closely related to Bellman optimality equation (A8) 
and is of the following form: 

.)),(max(),()1(),(
),(   of    estimateNew  

11

),(  of   estimate  Old
  

tt
tt asQ

tat

asQ

tttt asQrasQasQ ++ ++⋅−← γαα   (A11) 

There are two differences from the dynamic programming update rule based on the 
Bellman optimality condition. First, as was already mentioned, the expectations operator 
is gone – the actual realised reward and actual action value from the look-up table are 
used instead of the expected reward and expected Q-value, respectively. Second, the Q-
value in the look-up table is not directly replaced with its new estimate but is rather 
averaged with the previous estimate (which provides needed additional stability for the 
convergence to the correct Q function). The speed of learning, of course, depends on the 
learning parameter α  – higher values of the learning parameter ensure faster learning. 
Higher values of α  may be useful at the beginning of the learning process as the learning 
starts from arbitrary policies, or in nonstationary environment where the reinforcement-
learning agent needs to adapt faster and more flexibly. 

It was shown that under quite general conditions the update rule (A11) guarantees 
convergence of the action-value function to the optimal Q-function, provided all state-
action pairs are visited infinitely many times. The latter condition is needed to avoid early 

( ).,|)(maxarg 11
* aasssVrE tttt

a
==+= ++ γπ
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convergence to suboptimal policies. It requires that the learning agent continues to 
explore the environment by occasionally taking seemingly suboptimal values so as to 
ensure that all actions in all states are sufficiently explored. Hence, the Q-learning agent 
follows the Q-greedy policy most of the time but sometimes (e.g. with prespecified 
probability ε ) takes an exploratory action, which may be completely random or oriented 
towards more efficient exploration. Such a behavioural policy is usually called ε -greedy. 

Figure A1.1. Basic Q-learning algorithm 
Initialise Q(s,a), s arbitrarily 
Repeat: 
       Choose a using policy derived from Q (e.g. ε -greedy) 
       Take action a, observe r, s’ 
       ( ))','(max),()1(),(

'
asQrasQasQ

a
γαα ++⋅−←

        'ss ←
until convergence is achieved or process is terminated 

Source: adapted from Sutton and Barto (1998). 

Having discussed the basic principles of the Q-learning agent’s behaviour, now it is 
possible to describe its behaviour in the procedural form – see the pseudo-code in 
Figure A1.1. Unfortunately, this simple algorithm can be rarely applied in practice. The 
reason is that it requires representation of the Q-function as a table with one entry for 
each state-action pair. This is not possible if the state space is continuous. Even in 
discrete real-world problems – and especially in the problem of investment behaviour 
modelling – the size of the Q-table and the computational burden associated with back-up 
operations are basically unmanageable. This implies that usually it is impossible for the 
Q-learning agent to fully explore the state space and it is necessary to generalise its prior 
experience to unfamiliar, but qualitatively similar state-action pairs that are of interest. 
Such generalisation is also called structural credit assignment – another important feature 
of the reinforcement learning. 

There are a number of readily available methods for experience generalisation. In our 
model we use the standard linear gradient-descent function approximation for the Q-
function, which we now describe briefly.  

The idea of the linear approximation procedure is to replace the representation of the 
Q-function as a look-up table with some linear function and iteratively update its 
parameters instead of updating Q-values for every single state. Hence, the estimate of the 
action value function is replaced by the following linear approximation: 

∑
=

Θ≈
n

i
stt iaiasQ

1
),(),(),( φ


 for all a.     (A12) 

Here sφ


 is the 1×n  vector of state features, i.e. arbitrarily chosen variables that reflect 

the distinctive features of a given state. Matrix tΘ  is the mn×  parameter containing 

parameters associated with n state features for each of m possible actions. For more 
intuitive exposition it is convenient to work with column vectors of this matrix. 
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The gradient-descent methods seek to gradually adjust the current approximation of 
the Q-value toward its new estimate and the step size is proportional to the negative 
gradient of some measure of current deviation (e.g. mean squared error). More 

specifically, for a given action a, the parameter vector tθ


 can be updated as follows: 

,)],([
2
1 2

1 tttttt asQv
t

−∇−=+ θαθθ 


 for all a,    (A13) 

where tv  is the new approximation of the action-value function and serves as a training 

example for the parameter update, and )( tf
t

θθ


∇  is the gradient of this example’s 

squared error, i.e. the column vector of partial derivatives of function f with respect to 

elements of tθ


. By taking the derivatives in equation (A13), one gets 

( ) ,),(1 stttttt asQv φαθθ


−+=+  for all a.    (A14) 
The new sample estimate of the action-value function, ,tv  is obtained similarly to the 

basic Q-learning algorithm (see equations (A8) and (A11)). The parameter update 
equation (A14) thus becomes 

( ) ,),(),(max 1111 sttttttattt asQasQr φγαθθ


−++= ++++   for all a. (A15) 

This equation forms the basis of the Q-learning algorithm, which is applied by artificial 
agents in our model when forming expectations about the intrinsic stock value. The 
detailed procedural form of the algorithm is given in Figure A1.2. 

Figure A1.2. Gradient-descent function approximation Q-learning algorithm 
Initialise ,Θ ,sφ s, a  arbitrarily 
Repeat: 
       Take action a, observe r, s’ 
       s

T
a φθδ


−←
       For all actions a: 
               '),'( s

T
aasQ φθ


=
       ),'(max asQr aγδδ ++←

       ': saa φαδθθ


+=
       With probability ε−1 : 
               ),'(maxarg asQa a←
       else: 
                Choose a  randomly 
       'ss ←
until convergence is achieved or process is terminated 

Source: Adapted from Sutton and Barto (1998). 

The gradient-descent Q-learning is the so-called off-policy control method, as the 
value function backup procedure uses the highest Q-value of the resultant state,  

),,'(max asQa  rather than the one associated with the current policy, ).','( asQ
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Unfortunately, convergence to the optimal solution or its vicinity is not guaranteed for the 
off-policy methods. Nevertheless Sutton and Barto (1998) suggest that it may be possible 
to guarantee convergence for the Q-learning algorithm when the Q-function estimation 
policy and the action policy are sufficiently close to each other, which is the case if the 
ε -greedy policy is followed. There is also evidence that these methods give good 
practical performance despite the lack of theoretical guarantees of convergence to 
optimal policies (Tesauro and Kephart, 2002). 
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Table A2.1. Key parameter settings of the ASM model
General parameters
Length of a simulation run (number of trading periods in a run) 20000 
Number of simulation runs in a batch 10 
Number of agents 100 
Total number of shares 10000 
Frequency of dividend payouts Annual 
Monthly discount rate 0.995 
Annual interest rate on bank account 0.062 
Liquidity ceiling (as a multiple of current stock price) 5 

Trading 
Number of feasible price quotes in a trading period 50 
Frequency of trading rounds Monthly 
Trade cost (as a fraction of trade value) 0.001 

Learning 
Learning rate (alpha) 0.1 
Exploration rate (epsilon) 0.1 
Subjective discount parameter of reinforcement learning 0.995 
Dividend forecasting horizon 5 years 
Smoothing parameter in the EWMA of dividends, fundamental value 0.1 
Dividend forecast constraint (as a fraction of current dividend) ± 0.3 
Individual reservation price constraint (as a fraction of perceived 
fundamentals) ± 0.2 

Action step size in the process of dividend learning (allowed 
percentage changes of the dividend adjustment factor) -0.02; 0; 0.02 

Action step size in the process of reservation price formation (allowed 
percentage changes of the price adjustment factor) -0.02; 0; 0.02 

Bankruptcy conditions in evolution procedure (and noise trading) 
Maximum number of bankruptcies in a trading round 3
Performance threshold (as a percentage of average performance) 0.7 

Threshold for strategy imitation 
Average difference between two compared strategies (as percentage of 
the leading strategy) 0.2 

Table A2.2. Specification of model experiment runs 
Dividend generating process (Model 1) tt

t
t divdiv ε⋅⋅+⋅= −105.0000125.125

Dividend generating process (Model 2) 25=tdiv
    

Model Learning Evolution 
Experiment 1 Model 1 ON ON 
Experiment 2 Model 1 ON OFF 
Experiment 3 Model 1 OFF ON 
Experiment 4 Model 2 ON ON 
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Table A2.3. Basic descriptive statistics of simulation experiments 
Experiment 

1 2 3 4 
Dividend forecasting     
Average forecast bias, % -0.1 -0.1 -0.8 0.0 
Average absolute forecast error, % 0.4 0.4 1.4 0.1 

    
Price dynamics relative to perceived fundamentals     
Average price bias from fundamentals, % -1.6 5.9 7.6 -0.1 
Average length of overvaluation runs 43.7 405.9 63.2 63.5 
Average length of undervaluation runs 59.9 2.9 2.8 62.4 
Upper semi-deviation (avg. overvaluation during a 
run above fundamentals), % 7.9 6.7 9.0 8.5 

Lower semi-deviation (avg. undervaluation during a 
run below fundamentals), % 8.9 1.6 1.8 8.6 

Average volatility (per trading round), % 2.9 2.2 3.6 2.8 
    

Behavioural and budget constraints     
Average proportion of agents  forming 
“unreasonable” dividend forecast (per forecasting 
round), % 

0.0 0.0 5.0 0.0 

Average number proportion of agents  that have 
“unreasonable” reservation price (per trading round), 
% 

0.1 0.4 3.3 0.1 

Number of active agents, % 89.7 29.2 22.2 90.5 
    

Adaptive adjustment     
Average dividend adjustment factor 1.0152 1.0162 0.9543 0.9979 
Average price adjustment factor 0.9863 1.0044 0.9734 1.0022 
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Figure A2.1. Selected graphs of Experiment 1
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Figure A2.2. Selected graphs of Experiment 2
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Figure A2.3. Selected graphs of Experiment 3
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Figure A2.4. Selected graphs of Experiment 4
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