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The analysis of nonstationary time series using
regression, correlation and cointegration �with an
application to annual mean temperature and sea

level

Søren Johansen�

University of Copenhagen
and CREATES University of Aarhus

October 15, 2010

Abstract

There are simple well-known conditions for the validity of regression and cor-
relation as statistical tools. We analyse by examples the e¤ect of nonstationarity
on inference using these methods and compare them to model based inference.
Finally we analyse some data on annual mean temperature and sea level, by ap-
plying the cointegrated vector autoregressive model, which explicitly takes into
account the nonstationarity of the variables.

Keywords: Regression correlation cointegration, model based inference, likeli-
hood inference, annual mean temperature, sea level

JEL Classi�cation: C32.

1 Introduction

The purpose of this chapter is to conduct a statistical analysis of two time series mea-
suring annual mean temperature anomalies and sea level from 1881 to 1995, using a
cointegration analysis. We start, however, with a discussion of regression and correla-
tion which are commonly applied statistical techniques, and emphasize the assumptions
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underlying the analysis in order to point out some instances, where these method can-
not be used in a routinely fashion, namely when the variables are nonstationary, either
because they contain a deterministic trend or a random walk.
Thus we consider two time series Xt and Yt; t = 1; : : : ; T; and a substantive theory

that X in�uences Y in a linear fashion formulates as Y = �X: For given data such a
relation does not hold and there is most often no substantive theory for the deviations,
and to quote Haavelmo (1943) �we need a stochastic formulation to make simpli�ed
relations elastic enough for applications�. We therefore introduce the error term "t and
write the relation as a statistical or semi-empirical relation

Yt = �Xt + "t; t = 1; : : : ; T: (1)

We want to estimate the parameter � and evaluate its uncertainty in order to be
able to test hypotheses, for instance that � = 0; which means that there is no in�uence
of Xt on Yt.
For notational reasons we formulate the discussion of regression and correlation for

two variables only. As a general reference we use the textbook by von Storch and
Zwiers (2002), referred as (SZ 1998), for statistical concepts and the basic results for
regression, correlation and stationary (ergodic) time series.

2 Two approaches to inference

There are two common approaches to deal with inference in linear regression and
correlation analysis

� The method based approach
Regression is used to estimate the e¤ect ofX on Y by calculating the least squares
estimators and the residual error variance using the formulae

�̂ =

PT
t=1XtYtPT
t=1X

2
t

; (2)

�̂2 = T�1
TX
t=1

(Yt � �̂Xt)
2: (3)

These are then used to conduct asymptotic inference by comparing the t-ratio

t�=�0 = (

TX
t=1

X2
t )
1=2 �̂ � �0

�̂
; (4)

with the quantiles of a standard normal distribution. Regression works well if
the estimates �̂ and �̂2 are close to their theoretical counterparts, � and �2; and
if the asymptotic distribution of t�=�0 is close to the Gaussian distribution. We
discuss below some examples, where there is no relation between the empirical
regression estimates and the theoretical values.
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Correlation is used to describe the linear relation between two observed variables
Y and X. We de�ne the theoretical correlation coe¢ cient between Y and X as

� =
Cov(X; Y )p
V ar(Y )V ar(X)

; (5)

and the empirical correlation coe¢ cient between two time series Yt andXt is calculated
as

�̂ =

PT
t=1(Xt � �X)(Yt � �Y )qPT

t=1(Xt � �X)2
PT

t=1(Yt � �Y )2
: (6)

both (5) and (6) are commonly called correlation, which causes some confusion. We
distinguish here using the quali�cations empirical and theoretical, and we discuss be-
low some examples where the empirical correlation is not related to the theoretical
correlation.

� The model based approach
In the model based approach we �rst formulate a hypothetical mechanism for
how the data is generated and then derive the relevant statistical methodology
by an analysis of the likelihood function (SZ p. 88). One such model, which also
speci�es how Xt is generated, is

Yt = �Xt + "1t; (7)

Xt = �Xt�1 + "2t; (8)

where "t = ("1t; "2t) are i.i.d. Gaussian with variances �21 and �
2
2 and covariance

�12: We then conduct inference using the method of maximum likelihood and
likelihood ratio test. These methods, however, require that the assumptions of
the model are carefully checked in any particular application in order to show
that the model describes the data well, so that the results of asymptotic inference,
which are derived under the assumptions of the model, can be applied.

It is well known that linear regression analysis can be derived as the Gaussian
maximum likelihood estimator provided that "t in (1) are i.i.d. N(0; �2); and Xt is
nonstochastic, see (SZ 1998, p. 151). Similarly if (Xt; Yt) are i.i.d. Gaussian with
variances �21; �

2
2 and covariance �12; then the theoretical correlation is � = �12=�1�2;

and the maximum likelihood estimator of � is �̂ given in (6). Thus there is no clear-cut
distinction between the method based approach and the model based approach, but a
di¤erence of emphasis, in the sense that regression and correlation are often applied
uncritically by "pressing the button on the computer", and the model based method
requires more discussion and checking of assumptions.
We discuss below some examples where regression analysis and correlation analysis

cannot be used, and hence one has to take properties of the data into account in order
to avoid incorrect inference.
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3 Regression and Correlation

We specify a set of conditions under which regression and correlation methods work
well, and then analyse some examples where the methods do not work.

3.1 Regression

We formulate the statistical assumptions of the regression model (1) as

Assumption 1 We assume that

� "1; : : : ; "T are innovations in the sense that they are i.i.d. (0; �2) and "t is inde-
pendent of X1; : : : ; Xt; t = 1; : : : ; T

� X1; : : : ; XT are stochastic (or deterministic) variables for which the normalized
sum of squares is convergent to a deterministic limit

n�1T

TX
t=1

X2
t
P! � > 0;

for some sequence nT !1.

These assumptions are enough to show that

E(n
�1=2
T "tXtjX1; : : : ; Xt) = 0; (9)

n�1T

TX
t=1

V ar("tXtjX1; : : : ; Xt)
P! �2� > 0: (10)

Apart from a technical assumptions on the third moment, these relations show
that n�1=2T "tXt is a so-called martingale di¤erence sequence, and that the sum of its
successive conditional variances converges to a deterministic limit. This again implies
that one can apply the Central Limit Theorem for martingales, see Hall and Heyde
(1980). The theorem shows, in this particular case, that

TX
t=1

n
�1=2
T "tXt

d! N(0; �2�); (11)

where d! means convergence in distribution (SZ p. 46).
From (2) and (3) we �nd that

�̂ =

PT
t=1 YtXtPT
t=1X

2
t

=

PT
t=1(�Xt + "t)XtPT

t=1X
2
t

= � + n
�1=2
T

n
�1=2
T

PT
t=1 "tXt

n�1T
PT

t=1X
2
t

;

�̂2 = T�1[

TX
t=1

"2t �
(n
�1=2
T

PT
t=1 "tXt)

2

n�1T
PT

t=1X
2
t

]:
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The result (11) then implies that

�̂
P! �; (12)

�̂
P! �2; (13)

n
1=2
T (�̂ � �) d! N(0; �2��1), (14)

t�=�0 = (

TX
t=1

X2
t )
1=2 (�̂ � �0)

�̂

d! N(0; 1): (15)

The �rst two results state that the estimators are close to the theoretical values,
that is, the estimators are consistent, and the third that �̂ is asymptotically nor-
mally distributed. The last result is used to conduct asymptotic inference and test the
hypothesis that � = �0; by comparing a t�ratio with the quantiles of the normal dis-
tribution. In this sense the regression method works well when the above Assumption
1 is satis�ed.

3.2 Correlation

We formulate the condition that guarantees that the theoretical correlation can be
measured by the empirical correlation.

Assumption 2 We assume that (Yt; Xt) is a stationary and ergodic time series with
�nite second moments.

It follows from the Law of Large Numbers for ergodic processes that if Assumption
2 is satis�ed, then

�̂
P! �: (16)

Thus in order for the calculation of an empirical correlation to make sense as an ap-
proximation to the theoretical correlation, it is important to check Assumption 2.
This problem was pointed out by Yule (1926) in his presidential address to The

Royal Statistical Society, and he introduced the concept of spurious or nonsense corre-
lation, and showed by simulation that for some nonstationary processes, the empirical
correlation seems not to converge in probability, even if the processes are independent.
This was later discussed by Granger and Newbold (1974), and Phillips (1986) found
the limit distributions in terms of Brownian motion.

3.3 Examples

The �rst example shows that we have to choose di¤erent normalizations depending on
which regressor variable we have.

Example 1. (Regression) If Xt = 1 we have
PT

t=1X
2
t = T and we choose nT = T;

and if Xt = t; then
PT

t=1X
2
t =

PT
t=1 t

2 � 1
3
T 3; and we choose nT = T 3: If Xt is
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an ergodic process with E(X2
t ) < 1; see (SZ 2002, p. 202), then the Law of Large

Numbers for ergodic processes shows that T�1
PT

t=1X
2
t

P! E(X2
t ): Hence we use the

normalization nT = T in this case. This, however, is not enough to apply the regression
method because we also need "t to be independent of the regressor, see Assumption 1.
Consider for instance the model de�ned in (7) and (8) for j�j < 1; which de�nes an

ergodic process Xt: Then T�1
PT

t=1X
2
t

P! V ar(Xt) = �22=(1 � �2); but note that (9)
fails because

E("1tXtjX1; : : : ; Xt) = XtE("1tj"2t) = �12��22 Xt"2t = �12�
�2
2 Xt(Xt � �Xt�1) 6= 0;

when "1t is not independent of the regressor, and we cannot apply the asymptotic
theory unless �12 = 0: Thus even for stationary processes an autocorrelated regressor
variable is enough to invalidate the simple regression.
If, however, we take the model based approach we can analyse model (7) and (8)

as follows. We �rst �nd the conditional mean of Yt given X1; : : : ; Xt :

E(YtjX1; : : : ; Xt) = �Xt + E("1tjX1; : : : ; Xt) = �Xt + �12�
�2
2 (Xt � �Xt�1):

This means we can replace (7) and (8) by the equations

Yt = �Xt + �12�
�2
2 (Xt � �Xt�1) + "1t � �12��22 "2t; (17)

Xt = �Xt�1 + "2t: (18)

Because the error terms "1t � �12��22 "2t and "2t are independent, we can analyse
the equations separately and estimate � by regressing Xt on Xt�1; and determine
� + �12�

�2
2 and ��12��22 � by regression of Yt on Xt and Xt�1; and that allows one

to derive consistent asymptotically Gaussian estimators for the parameter of interest
�: Thus by analysing the model we can determine the relevant regression analysis. �

Example 2 (Correlation) Let again the data be generated by (7) and (8) for j�j < 1:
ThenXt; Yt is an ergodic process and the empirical correlation, �̂; will converge towards
the theoretical correlation

� =
Cov(�Xt + "1t; Xt)p
V ar(�Xt + "1t)V ar(Xt)

=
��22 + �12(1� �2)q

[�2�22 + �
2
1(1� �2) + 2��12(1� �2)]�22

;

using the results that V ar(Xt) = �
2
2=(1� �2) and Cov(Xt; "1t) = �12:

If Xt instead is generated by

Xt = 
t+ "2t; (19)

then
Yt = ��t+ �"2t + "1t
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and correlation analysis does not work. We �nd E(Xt) = 
t and E(Yt) = �
t; so that
the theoretical correlation is

� =
E(Yt � �
t)(Xt � 
t)p
E(Yt � �
t)2E(Xt � 
t)2

=
E(("1t + �"2t)"2t)p
E("1t + �"2t)2E("22t)

=
�12 + ��

2
2q

(�2�22 + 2��12 + �
2
1)�

2
2

;

that is, the correlation between the stochastic error term of Yt and Xt.
The empirical correlation, however, measures something quite di¤erent. It contains

the averages �X = 
�t + �"2; where �t = T�1
PT

t=1 t = (T + 1)=2; so that Xt � �X =

(t� �t)+ "2t��"2 and Yt� �Y = �(Xt� �X)+ "1t��"1 = �
(t� �t)+�("2t��"2)+ "1t��"1
are dominated by the linear trend and we have

�̂
P! �

j�j = �1;

if � 6= 0: Thus, if the regressor is trending with a linear trend, there is no relation
between the empirical correlation, which is often very close to �1; and the theoretical
correlation which measures a correlation between the error terms. The mistake made
is of course that �X and �Y do not measure the expectation of Xt and Yt:
The model based approached leads to estimating (�
; 
) from a regression of (Yt; Xt)

on t and that gives consistent asymptotically Gaussian estimators of the parameters of
interest without using or misusing any measure of correlation:
A good check of the relevance of the empirical correlation is very simply to calculate

it recursively, that is, de�ne �̂t based on date up to time t; and then plot it and check
if it is reasonably constant in t: �

Next we give an example where one cannot normalize
PT

t=1X
2
t so that the limit

exists as a deterministic limit, and hence that simple regression analysis may fail.

Example 3. (Random walk regressor) A very special situation occurs in example
(7) and (8) if � = 1; so that Xt is stochastic and nonstationary in the sense that,

Xt =

tX
i=1

"2i +X0:

In this case E(XtjX0) = X0 and V ar(XtjX0) = �22t which increases to in�nity,
and something completely di¤erent happens. Let us �rst �nd out how to normal-
ize E(

PT
t=1X

2
t jX0); because such a normalization could be a good candidate for the

normalization of
PT

t=1X
2
t . We �nd

E(

TX
t=1

X2
t jX0) =

TX
t=1

E(X2
t jX0) = �

2
2

TX
t=1

t =
1

2
�22T (T + 1):

Thus a good choice seems to be nT = T 2; which at least makes sure that the mean
converges when normalized by T 2.
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Unfortunately T�2
PT

t=1X
2
t does not converge to a deterministic limit but to a

stochastic variable. The detailed theory of this is quite complicated because it involves
Brownian motion.
Brownian motion is a continuous stochastic process de�ned on the unit interval for

which B(0) = 0; B(u) is distributed as N(0; u) and for 0 � u1 < u2 < u3 � 1 we have
that B(u2) � B(u1) is independent of B(u3) � B(u2): The main reason for this to be
interesting in the present context, is that we can approximate Brownian motion by
random walks, because

T�1=2
X

1�i�Tu

�
"1i
"2i

�
d!
�
�1B1(u)
�2B2(u)

�
; 0 � u � 1 (20)

Thus a Brownian motion can be thought of as a random walk with a very large
number of steps, and that is how its properties are studied using stochastic simulation.
The two Brownian motions in (20) are correlated with correlation � = �12=�1�2:
Two fundamental results about Brownian motion are

T�2
TX
t=1

X2
t

d! �22

Z 1

0

B2(u)
2du;

T�1
TX
t=1

Xt"1t
d! �2�1

Z 1

0

B2(u)(dB1):

These limits are stochastic variables, and for our purpose the main result is that the
product moments should be normalized by T 2 and T respectively to get convergence. It
follows that Assumption 1 is not satis�ed because the limit of T�2

PT
t=1X

2
t is stochastic,

and we cannot count on the results (12) to (16) to be correct.
If we run a regression anyway, we can calculate the t-ratio and �nd its limit

(
TX
t=1

X2
t )
1=2(�̂ � �) = T�1

PT
t=1 "1tXtq

T�2
PT

t=1X
2
t

d!
�1
R 1
0
B2(u)dB1(u)qR 1
0
B2(u)2du

: (21)

If "1t and "2t are independent, one can show that the limit distribution (21) is N(0; �21);
and therefore (12) and (15) hold anyway, whereas (14) is di¤erent, because we get
instead a so-called mixed Gaussian distribution of the limit of T (�̂��). So despite the
fact the �̂ is not asymptotically normally distributed one can still test hypotheses on �
using the usual t-ratio, but the independence of "1t and "2t is crucial for this last result.
A simulation is show in Figure 1. It is seen that for � = 0; where there is independence
between the regressor and the error term in the regression, the distribution of the t-
ratio is very close to Gaussian, but the distribution of T (�̂ � �) is centered around
zero, but far from Gaussian.
The result in (21) shows that applying a simple regression analysis, without checking

Assumption 1, can be seriously misleading, and we next want to show how we can solve
the problem of inference by analysing the model, that generated the data.
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Distribution of t­ratio and beta^
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Figure 1: The densities are based upon 10.000 simulations of T = 100 observations.
The plots show simulations of the t-ratio, (15), and T (�̂ � �); (14), in the regression
of Yt = �Xt + "1t, when Xt is a random walk, �Xt = "2t; see Example 3, and "1t
is independent of "2t. Each plot contains a Gaussian density for comparison. It is
seen that the t-ratio has approximately a Gausisan distirbution and that the estimator
normlized by T has a distribution with longer tails than the Gaussian.

Density of empirical correlation and beta^
Distribution of correlation, rho = 0.0
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Figure 2: The densities are based upon 10.000 simulations of T = 100 observations. The
left panel shows the distribution of the empirical correlation between two independent
random walks. The results are the same for higher values of T; thus there is no tendency
to converge to � = 0: The right panel shows the similar results for the empirical
regression coe¢ cient.
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If � = 1; then �Xt = "2t; and we �nd the equations, see (17) and (18)

Yt = �Xt + �12�
�2
2 �Xt + "1t � �12��22 "2t; (22)

�Xt = "2t:

Here the errors are independent and

V ar("1t � �12��22 "2t) = V ar("1tj"2t) = �21 � �212��22 = �21j2:

Equation (22) is analysed by regression of Yt on Xt and �Xt to �nd an asymptotically
Gaussian estimator for �. This simple modi�cation of the regression problem solves
the inference problem. We still get an expression like (21)

(
TX
t=1

X2
t )
1=2(�̂ � �) d!

�1
R 1
0
B2(u)dB1j2(u)qR 1
0
B2(u)2du

; (23)

where B1j2(u) = B1(u)� �B2(u) is independent of B2; so the limit is mixed Gaussian
and inference can be conducted using the usual t-ratio and comparing it to the quantiles
of the Gaussian distribution.
The correlation analysis of Yt and Xt leads to a theoretical correlation (conditional

on X0)

�t =
Cov(�Xt + "1t; XtjX0)p

V ar(�Xt + "1tjX0)V ar(XtjX0)
=

��22t+ �12q
[�2�22t+ �

2
1 + 2��12)]�

2
2t
! �

j�j = �1;

if � 6= 0: Thus for large t we �nd a value �1 depending on the sign of �:
The empirical correlation coe¢ cient has the same limit

�̂ =
�
PT

t=1(Xt � �X)2 +
PT

t=1("1t � �"1)(Xt � �X)qPT
t=1(�(Xt � �X) + "1t)2

PT
t=1(Xt � �X)2

P! �

j�j = �1;

if � 6= 0; so that it estimates the limit of the theoretical correlation for T !1.
This model with � = 1 is an example of two nonstationary variables with a station-

ary linear combination, that is, a model for cointegration. �

Example 4. (Spurious correlation and regression)
Assume (Xt; Yt) are generated by the equations

�Yt = "1t;

�Xt = "2t;

where we assume that �12 = 0; so Xt and Yt are independent of each other. The
theoretical correlation is, conditioning on initial values,

�t =
Cov(Yt; XtjY0; X0)p
V ar(YtjY0)V ar(XtjX0)

=
t�12p
t�21t�

2
2

=
�12
�1�2

= 0:
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If we calculate the empirical correlation, (6), all product moments should be normalized
by T�2 and we �nd the limit

�̂
d!

R 1
0
(B2(u)� �B2)(B1(u)� �B1)duqR 1

0
(B1(u)� �B1)2du

R 1
0
(B2(u)� �B2)2du

:

Thus �̂ does not converge to zero or any other value but is stochastic even for in�nitely
many observations. This phenomenon was observed by Yule (1926) who simulated the
limit distribution by producing random uniform integers from -10 to 10, using a deck
of cards and found a distribution between 0 and 1, see Figure 2 for a simulation of the
distribution. He called this "nonsense correlation".
A regression of Yt on Xt gives similarly

�̂
d!
R 1
0
B2(u)B1(u)duR 1
0
B2(u)2du

;

where the stochastic limit is totally unrelated to any theoretical measure of the e¤ect of
Xt on Yt. Thus by calculation of a correlation or a regression coe¢ cient one may infer
an e¤ect of Xt on Yt; when absolutely no e¤ect is present because they are independent,
see Figure 2.
If the independent random walks contain a trend, we model them as

�Yt = "1t + �1; Yt =
tX
i=1

"1i + �1t+ Y0; (24)

�Xt = "2t + �2; Xt =
tX
i=1

"2i + �2t+X0; (25)

where we again assume �12 = 0: In this case, the trend is dominating the random walk,
and we �nd that for instance

T�1(Xt � �X) = T�1
tX
i=1

"2i � T�1
TX
t=1

[T�1
tX
i=1

"2i] + �2(
t

T
� T + 1

2T
)
P! �2(u� 1=2);

for t=T ! u; because T�1
Pt

i=1 "2i
P! 0. It follows that because

PT
t=1(t � �t)2 � T 3=3

we get
�̂

P! �2�1
j�2�1j

= �1;

if �1�2 6= 0: Thus, despite the fact that Yt and Xt are stochastically independent, an
empirical correlation suggests something quite di¤erent.
The regression coe¢ cient satis�es similarly

�̂
P! �1
�2
;
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which is the ratio of the slopes of the trends, which makes some sense, but an analysis
of the data, using the model (24) and (25), would �nd a linear trend in each variable
and estimates of �1 and �2 which would contain more information.
It is therefore very easy to calculate an empirical correlation between two variables

that are completely uncorrelated, but which each depend on the same third variable,
like here a time trend. It is important in the calculation of correlations to replace
E(Xt) and E(Yt) by reasonable estimates, not use averages.
Sober (2001), considered the example of Venetian sea levels and British bread prices.

He claims they are truly correlated but not causally connected by construction. The
claim of "true correlation" is based on the calculation of the empirical correlation,
which of course is very high, because both variables trend with time. �

4 The cointegrated vector autoregressive model

Cointegration was introduced in econometrics by Granger (1981) because many macro
variables show nonstationarity of the random walk type, but also clear co-movement.
Engle and Granger (1987) contains the �rst statistical analysis of cointegration using
regression methods, and Phillips (1991) modi�ed the regression approach to allow for
valid inference. The analysis of cointegration and model based inference in the vector
autoregressive framework was initiated by Johansen (1988). The technique of cointe-
gration is described in most text book on times series econometrics and many computer
programs are available, see for instance Cats for Rats, (Dennis et al. 2005), which was
used for the calculations in section 5. For a systematic account of the theory, see Jo-
hansen (1996), and for applications the monograph by Juselius (2006) is recommended.
A recent survey is given in Johansen (2006).
Below we give a simple example of such a model and discuss brie�y the statistical

analysis of the model.

4.1 An example of a model for cointegration

We consider two variables Xt and Yt which are generated by the equations

�Yt = �(Yt�1 � 
Xt�1) + "1t; (26)

�Xt = �(Yt�1 � 
Xt�1) + "2t; t = 1; : : : ; T (27)

The special choices of � = �1; � = 0; and 
 = � give the model (7) and (8)
with a rede�nition of the error term. Each equation is linear in past variables, but
note that the levels Yt�1 and Xt�1 enter only through the same linear combination
Ut�1 = Yt�1 � 
Xt�1 in both equations. We call Ut�1 the disequilibrium error and
think of the relation Y = 
X as an equilibrium relation, to which the variables react
with adjustment coe¢ cients � and � respectively.
It is seen that the equation for Ut = Yt � 
Xt is

�Ut = (� � 
�)Ut�1 + "1t � 
"2t;
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Figure 3: Plots of integrated series generated by the equations (26) and (27). To the
left are two random walks (� = � = 0). To the right are two cointegrated random
walks (
 = 1; � = �1=2; � = 1=2): Note how they follow each other in the upper panel
and move around the line Y �X = 0 in the lower panel.

so that Ut is an autoregressive process with one lag, which is stationary if j1+��
�j < 1:
By eliminating Ut�1 from (26) and (27) we get

��Yt � ��Xt = �"1t � �"2t;

which, by summation, shows that

�Yt � �Xt =
tX
i=1

(�"1i � �"2i) + �Y0 � �X0 = St;

where St, is a random walk and hence nonstationary.
The solution of the equations can be expressed as�
Xt

Yt

�
=

1

�
 � �

�
St � �Ut

St � �Ut

�
=

1

�
 � �

"�
1



��
�
��

�0 tX
i=1

"i �
�
�
�

�
Ut

#
(28)

which is a special case of the general formula below, see (30).
That is, the model produces nonstationary variables, each of which is composed of a

stationary and a nonstationary variable. The linear combination (1;�
) eliminates the
common random walk (common trend) and makes the linear combination stationary.
This is expressed by saying that (Yt; Xt) is nonstationary but cointegrated with

cointegrating vector (1;�
) and common stochastic trend St, see Granger (1981).
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Note that the variables are both modelled and treated similarly, unlike in a regres-
sion of Yt on Xt: Thus for instance if Yt � 
Xt is stationary then so is 
�1Yt � Xt;
so we can normalize on either one of them, provided the coe¢ cient is nonzero. A
cointegration relation is a relation between variables.

4.2 The general vector autoregressive model and its solution

The vector autoregressive model with two lags and a constant term for a p�dimensional
process Xt is given by the equations,

Hr : �Xt = ��
0Xt�1 + ��Xt�1 + �+ "t; "t i.i.d.Np(0;
); t = 1; : : : ; T (29)

where � and � are p� r matrices. Note that we need the values X�1 and X0 as initial
values in order to be able to determine the process recursively.
We de�ne the polynomial

�(z) = det((1� z)Ip � ��0z � �(1� z)z):

In order to avoid explosive processes we assume that the roots of �(z) = 0 satisfy either
jzj > 1 or z = 1; see Tables 1 and 2 where the reciprocal roots (which should satisfy
jzj < 1 or z = 1) are given for the two models analysed. Under a further regularity
condition, the solution is nonstationary with stationary di¤erences and given by

Xt = C
tX
i=1

"i + C�t+
1X
n=0

C�i ("t�i + �): (30)

The matrix C satis�es �0C = 0 and C� = 0; and C�i are functions of �; �; and �. Note
that the trend disappears if � = ��0 because C� = 0; and in this case there is no linear
trend in the solution only a level

P1
n=0C

�
i �, and E(�

0Xt) = ��0:The representation
(28) is a special case of (30) for a bivariate system where � = (1;�
)0 and � = (� ; �);
so that �0? = (�;��): The model de�ned in (7) and (8) is a special case of (29) for
�1 = �1; �2 = 0 and �0 = (1;�
).
Thus we have seen that

� Xt is nonstationary with linear trend, C�t; and �Xt is stationary.

� �0Xt =
P1

n=0 �
0C�i ("t�i + �) is stationary; so that Xt is cointegrated with r

cointegrating relations � and disequilibrium error �0Xt � E(�0Xt):

� Xt has p � r common stochastic trends, �0?
Pt

i=1 "i; where �? is p � (p � r) of
full rank and �0�? = 0:

14



4.3 Statistical inference in the cointegrated VAR model

It is important to emphasize that before inference can be made in this model the
assumptions of the model should be carefully checked. Thus we have to �t a lag
length so that the residuals are close to being i.i.d. We therefore plot the residuals and
their autocorrelation function. The Gaussian assumption is not so important for the
analysis, but the assumption that the error term is i.i.d. is crucial for the application
of the result from the asymptotic theory below.
Thus brie�y summarize, we can conduct inference as follows

� First determine the lag length needed to describe the data and check the assump-
tions behind the model, in particular the independence of the residuals.

� Find the cointegration rank and estimate and interpret the cointegrating relation.

� Simplify the model by testing coe¢ cients to zero.

4.4 The test for cointegrating rank

The rank of � and � is the number of cointegrating relations and it is important either
to check ones knowledge of the rank, or estimate it from the data. The statistical
formulation starts by considering the unrestricted vector autoregressive model

Hp : �Xt = �Xt�1 + ��Xt�1 + �+ "t; (31)

where "t i.i.d. N(0;
) and �;�; �; and 
 are unrestricted. If we denote

"t(�;�; �) = �Xt � �Xt�1 � ��Xt�1 � �;

then the conditional Gaussian log likelihood function, given the initial values X�1
and X0; is apart from a constant,

logL(Hp) = �
T

2
[log det(
) + trf
�1T�1

TX
t=1

"t(�;�; �)"t(�;�; �)
0g]: (32)

Note that in (SZ 1998, p. 257) the likelihood function is based upon the joint
density of the data. This is not possible for nonstationary variables, like random walks,
as there is no joint density. We therefore condition on X0 and X�1; and consider the
conditional density of X1; : : : ; XT given X0 and X�1. It follows that, conditional on
initial values, the (conditional) maximum likelihood estimators of (�;�; �;
) in (31)
can be found by multivariate regression of �Xt on Xt�1; �Xt�1; and a constant: The
maximized likelihood function, Lmax(Hp); can be found from (32) by inserting the
maximum likelihood estimators (�̂; �̂; �̂; 
̂):
The hypothesis of r cointegrating relations is formulated as in model (29)

� = ��0;
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where � and � are p�r matrices. It turns that the maximum likelihood estimators can
be calculated explicitly by an eigenvalue problem, even though this is a nonlinear maxi-
mization problem, see for instance Johansen (1996). This gives estimates (��; ��; ��; ��; �
)
and the maximized value, Lmax(Hr); calculated from (32). From this we calculate the
likelihood ratio test

�2 logLR(� = ��0) = �2 log Lmax(Hr)

Lmax(Hp)
:

The asymptotic distribution of this statistic is a functional of Brownian motion, which
generalizes the so-called Dickey-Fuller test, see Dickey and Fuller (1981), for testing
a unit root in a univariate autoregressive model. The asymptotic distribution does
not depend on parameters, but depends on the type of deterministic terms and dif-
ferent tables are provided by simulations, because the distributions are analytically
quite intractable, see Johansen (1996, Ch. 15). It should be noted that the asymp-
totic distribution is not a �2 distribution as one often �nds when applying likelihood
methods.
After the rank is determined, and for the data below we �nd r = 1; we often

normalize on one of the variables to avoid the indeterminacy in the choice of coe¢ cients.
When that is done, one can �nd the asymptotic distribution of the remaining parameter
estimators in order to be able to test hypotheses on these, using either likelihood ratio
tests statistics or t�test statistics. Thus the only nonstandard test is the test for rank,
and all subsequent likelihood ratio tests in the model are asymptotically distributed as
�2(f); where f is the number of restrictions being tested.

4.5 Asymptotic distribution of the coe¢ cients of the cointe-
grating relation

Unlike usual regression, as described in Section 3, the estimators of the parameters
in the cointegrating relation are not asymptotically Gaussian. Nevertheless one can
estimate scale factors, �̂ i; so that

t�i=�i0 = �̂
�1
i (�̂i � �i0)

d! N(0; 1): (33)

Thus one can use these t-ratios for testing hypotheses on individual coe¢ cients,
for instance that they are zero. In general one can also test any linear (or nonlin-
ear) hypothesis on the cointegrating parameters using a likelihood ratio test, which is
asymptotically distributed as �2(f), where f is the number of restrictions tested.
A simple example of maximum likelihood estimation is given in model (22), where

the scale factor can be chosen as �̂ = �̂
1=2
11:2(

PT
t=1 x

2
t )
�1=2, and the limit is Gaussian

because B1j2 is independent of B2 in (23).

4.6 Regression analysis of cointegrating relations

The cointegration coe¢ cients can also be estimated by regression, provided we know
the value of r, but inference is di¢ cult in the sense that running a regression of X1t
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on X2t; : : : ; Xpt will give consistent estimators of the cointegrating coe¢ cients, but the
corresponding t� ratios will not converge to the normal distribution, and one cannot
�nd scale factors so that (33) holds. This was illustrated in Example 3 above, where
the equations for � = 1; become

Yt = �Xt + "1t;

�Xt = "2t:

This is an example of two cointegrated series, where the usual t-test leads to a strange
limit distribution if �12 6= 0, see (21). The problem of how to modify the regression ap-
proach by �nding a nonparametric estimator of the so-called long-run variance, C
C 0;
was solved by Phillips (1991).
If, however, Xt contains a trend, then the analysis is di¤erent because a regression

will in fact give valid inference becausevuut TX
t=1

X2
t (�̂ � �) =

PT
t=1 "1tXtqPT
t=1X

2
t

=

PT
t=1 "1t(

Pt
i=1 "2i + �t)qPT

t=1(
Pt

i=1 "2i + �t)
2

� �

j�j

PT
t=1 "1ttqPT
t=1 t

2

which converges to N(0; 1): The reason for the change of result is that the trend dom-
inates the random walk asymptotically in this case.

5 An example of a cointegration analysis of sea
level and temperature 1881�1995

The data for this analysis consists of annual temperature anomalies from 1881 to 1995
taken from Hansen et al. (2001).
Inspection of the data in Figure 4 shows that both variables are clearly nonstation-

ary, but it is di¢ cult to see if they are stationary around a linear trend or if there is
a random walk component in the data. The di¤erences, however, look like stationary
processes. In order to investigate this we analyse the data using model (31) (p = r = 2)
and test model (29) for r = 0; 1:
We use the notation Xt = (temperaturet, sea levelt) = (Tt; ht), t = 1881 to 1995

and �t the model
�Xt = �Xt�1 + ��Xt�1 + �+ "t:

We use the unrestricted drift term �; which creates a linear trend in the processes,
because each of the variables show a clear trending behavior. The choice of linearity
in trend is of course just a simple description of some of the variables left out. The
adequacy of the model is checked by residual analysis in Figures 5 and 6 where it is
seen that there is only little autocorrelation in the residuals and no seriously large
normalized residuals.
The primary hypothesis of interest is the test for � = ��0; which, if accepted,

would establish cointegration. In Table 1 we summarize the analysis of the rank. The
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Figure 4: Plot of sea level and temperature in levels and di¤erences. Note the clear
nonstationarity in the levels, which could be due to a stochastic trend or possibly a
deterministic trend. The di¤erences, however, behave like stationary processes.

Rank determination of � = ��0 without forcing variables
p� r r �2 logLR(HrjHp) 95%quantile p-value

2 0 20:76 15:41 0:005
1 1 0:36 3:84 0:540

The reciprocal roots of �(z) = 0 are 1:005; 0:625; �0:187� 0:040i

Table 1: We �nd that the hypothesis r = 0 is rejected and r = 1 accepted

�ndings are that r = 0 should be rejected (p-value 0:005), but r = 1 is not rejected
(p-value 0:54) so that the analysis indicates that the two variables are nonstationary
but cointegrate. We have also given the reciprocal roots, and the largest is actually
1.002, so very close to a unit root. We �nd the estimates of the cointegrating relation

Ut = Tt � 0:0031
(�7:37)

ht;

with t�=0 in parenthesis, which allows one to evaluate the signi�cance of the coe¢ cients.
We then estimate the remaining parameters of the model

�ht = 4:15
(0:86)

Ut�1 � 0:2805
(�3:11)

�ht�1 + 3:04
(0:60)

�Tt�1 + 2:22
(3:55)

(�̂h = 4:939)

�Tt = �0:40
(�4:26)

Ut�1 � 0:0024
(�1:40)

�ht�1 � 0:053
(�0:54)

�Tt�1 � 0:023
(�1:91)

(�̂T = 0:095)
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Figure 5: Plot of actual and �tted values of �ht; the normalized residuals, their auto-
correlation function, and histogram.

Note that ht almost satis�es the equation

�ht = �0:2805
(�3:11)

�ht�1 + 2:22
(3:55)

;

because the coe¢ cients to the cointegrating relation Ut�1 is 4:15 (t = 0:86) and to the
lagged changes �Tt�1 is 3:04 (t = 0:60) are insigni�cant. We can test three overiden-
tifying restrictions by eliminating Ut�1 in the �rst equation and �Tt�1 in both, and
�nd

�ht = � 0:25
(�2:86)

�ht�1 + 1:87
(3:83)

;

�Tt = �0:45
(�5:64)

(Tt�1 � 0:0031
(�7:37)

ht�1)� 0:0025
(�1:47)

�ht�1 � 0:027
(�2:30)

;

�2 logLR = 2:55 � �2(3); p� value = 0:47:

The results of this model show that temperature reacts to a disequilibrium between Tt
and ht; as measured by the disequilibrium error Ut�1 = Tt�1 � 0:0031ht�1; whereas ht
seems to move without being related to temperature.
As a further check of the results we plot the two estimated eigenvectors from the

estimation algorithm in Figure 7, and see that the analysis has found two linear com-
binations where one could be stationary and the other not.
As a �nal check of the results we plot temperature against sea level, see Figure 8,

and there it is apparent that there is something wrong with the model so far analysed.
It is as if there is one relation before 1940 and another one after 1960, corresponding
to the leveling o¤ of temperature between 1940 and 1960. We conclude that the model
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Figure 6: Plot of actual and �tted values of �Tt; the normalized residuals, their auto-
correlation function and histogram.

is too simple and that it is a better idea, and perhaps even more interesting, to include
in the analysis also the radiative forcing variables.
We conclude this �rst analysis by summarizing the �ndings.

� A bivariate autoregressive model with 2 lags �ts the data quite well.

� There is one cointegrating stationary relation Tt = 0:0031ht:

� Sea level is not adjusting but temperature is adjusting to the disequilibrium error.

� The plot of temperature versus sea level indicates that the model does not de-
scribe the variation satisfactorily.

5.1 The analysis of temperature and sea level including forc-
ing variables

We next improve the analysis by including variables measuring radiative forcing, such
as greenhouse gases, ozone, aerosols, volcanic activity, and solar irradiation to see if
they can explain better the variation in temperature and sea level. The data is taken
from Myhre, Myhre, and Stordal (2001).
We de�ne the variables

X1t = (temperature; sea level)t = (Tt; ht);

X2t = (wmgg(CO2; NH4); aerosol(sulphate; soot); sun; vol(dust); ozone)t
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Eigenvectors for model with unrestricted constant without forcing

10 20 30 40 50 60 70 80 90 100 110
­0.4

­0.3

­0.2

­0.1

­0.0

0.1

0.2

0.3

10 20 30 40 50 60 70 80 90 100 110
­3.75

­3.50

­3.25

­3.00

­2.75

­2.50

­2.25

­2.00

Figure 7: The plot shows the �rst eigenvector as stationary and the second as nonsta-
tionary, which con�rms the tests in Table 1
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Figure 8: The plot shows that there is something that does not work well in the model.
There seems to be a linear relation before 1940 and another after 1960
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Eigenvectors for model with restricted constant and forcing
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Figure 9: The plot con�rms that the �rst eigenvector is stationary and the second is
nonstationary.

The forcing variables are given in Watts=m2 and are therefore positive for wmgg and
negative for aerosol:
We want to analyse X1t conditional on the forcing variables and therefore specify a

conditional or partial model, by the equations for �X1t conditional on the past of X1t

and X2t and the forcing variables �X2t:We decompose the parameters as � = (�01; �
0
2)
0

and similarly for � = (�01;�
0
2)
0: Then the conditional model is, see (17) and (18), is

�X1t = �1(�
0
1X1t�1 + �

0
2X2t�1) + !�X2t + �

�
1�Xt�1 + �

�
1 + "

�
1t;

where ! = 
12
�122 and �
�
1 = �1�!�2; ��1 = �1�!�2; and "�1t = "1t�!"2t is independent

of "2t; see Johansen (1996, Ch. 8), and equation (22):
The equation for �X2t given the past of X1t and X2t is assumed to be

�X2t = �2�Xt�1 + �2 + "2t:

Thus we assume that there is a cointegrating relation, �01X1t�1 + �
0
2X2t�1; between

temperature, sea level, and the forcing variables; and that �X2t does not react to the
disequilibrium error from this cointegrating relation.
Fitting the unrestricted conditional vector autoregressive model to these data gives

much the same �t as the previous model, and the plots corresponding to Figures 5 and
6 have been left out.

5.2 Cointegration analysis of the conditional model

With the forcing variables in the model, the nonstationarity of temperature and sea
level can be determined partly by the forcing variables, and partly by the dynamics of
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Rank determination of � = ��0 with forcing
p� r r �2 logLR(HrjHp) 95%quantile p-value

2 0 51:26 45:74 0:014
1 1 20:93 23:52 0:100

The reciprocal roots of �(z) = 0 are 0:731; 0:482; �0:143� 0:050i

Table 2: We �nd that the hypothesis r = 0 is rejected and r = 1 accepted

Temperature against Temperature*
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Figure 10: Plot of Tt and the right hand side, T �t ; of the cointegrating relation solved
for Tt: The plot indicates that the two variables move together for the whole period.

the model. If it were completely explained by the forcing variables, then the rank of
��01 would be two and we would �nd two cointegrating relations.
Similarly the forcing variables could explain the deterministic trend in temperature

and sea level, and we therefore restrict the drift term to be proportional to �; so that
the equations do not generate a linear trend.
The rank analysis is given in Table 2, together with the reciprocal roots of �(z) = 0.

The hypothesis of no cointegration is rejected with p-value of 0.01 and rank r = 1 is
accepted with a p�value of 0:10: Note that the largest inverse root in this model is
estimated to be 0:731; so the evidence for nonstationarity created by the dynamics is
not so clear-cut in the model which conditions on the forcing variables. If we reject
r = 1; then the rank is two and all nonstationarity in Tt and ht would be due to the
forcing variables, which causes most of the nonstationarity in temperature and sea
level.
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With r = 1; we �nd the cointegrating relation

�̂
0
Xt = Tt � 0:0052

(�2:02)
ht � 0:573

(�0:75)
wmggt � 1:405

(�1:81)
aerosolt (34)

�0:1750
(�0:59)

sunt � 0:0048
(�0:11)

volt � 1:1877
(�0:17)

ozonet + 0:011
(0:05)

and the equations

�ht = 6:6920
(1:0958)

�̂
0
Xt�1 + : : : ; �̂1 = 4:7836;

�Tt = �0:5437
(�5:180)

�̂
0
Xt�1 + : : : ; �̂2 = 0:0875;

where we have left out the short term dynamics to save space, that is, the coe¢ cients
to �X2t and �Xt�1:
In this data it appears that the contributions in the cointegrating relation (34) from

the three variables solar irradiation, volcanic activity, and ozone are very small and we
can test by a likelihood ratio that the coe¢ cient are zero. Renewed estimation of this
simpler model gives

�0Xt = Tt � 0:0068
(�3:66)

ht �0:775
(�4:70)

wmggt � 1:532
(�3:62)

aerosolt � 0:041
(�0:30)

(35)

and the equations

�ht = 9:4720
(1:58)

�̂
0
Xt�1 + : : : ; �̂1 = 4:690;

�Tt = �0:506
(�4:84)

�̂
0
Xt�1 + : : : ; �̂2 = 0:0820;

�2 logLR = 0:221 � �2(3) p� value = 0:97

A graphical check on the cointegrating relation is found by plotting Tt against the
right hand side of (35), see Figure 10, and now the movement around the identify line,
looks much more like stationary deviations.
We �nd again that sea level does not react to the disequilibrium error, whereas tem-

perature does adjust. Note also that the coe¢ cients of the forcing variables are much
more signi�cant now, due to the collinearity of the variables, and that the constant
term is insigni�cant.
A nice way of summarizing the �ndings, see Kaufmann, Kauppi, and Stock (2006),

is in Figure 11 where we have plotted Tt; and the components of the cointegrating
relation wmgg� = 0:775 wmgg; aerosol�t = 1:532 aerosolt; level

�
t = 0:0068 ht; and

their sum
T �t = 0:0068 ht + 0:775 wmggt + 1:532 aerosolt:

It is seen that the contribution from the forcing variables wmgg and aerosol are very
large and with opposite sign, so that the measured temperature anomalies, is a delicate
balance between the large contribution from heating and cooling.
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Figure 11: A plot of the e¤ects of the di¤erent components in cointegration relation
solved for temperature.

6 Conclusion

We have contrasted two approaches. The regression or correlation based approach and
the model based approach to statistical inference.
It is argued that it is a good idea to distinguish between the empirical and the

theoretical correlation and regression coe¢ cients. We need a limit theorem to relate
the empirical value to the theoretical value, and this limit theorem may not hold for
nonstationary variables.
We illustrate by example that the empirical coe¢ cients may therefore be spurious,

in the sense that the conclusions drawn from them cannot be considered conclusions
about the theoretical concepts.
The solution to the spurious correlation or regression problem in practice, is to

model the data and check the model carefully before proceeding with the statistical
analysis.
Model based analysis of the climate data is consistent with a long-run relation

between temperature, sea level and forcing variables. The main e¤ects seem to be from
well mixed greenhouse gases and aerosols.
Temperature reacts to a disequilibrium in the long-run relation, but sea level does

not. These results are consistent with the notion of the oceans as the main heat
reservoir to which temperature reacts through the disequilibrium error.
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