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ASYMMETRIES, BREAKS, AND LONG-RANGE DEPENDENCE:
AN ESTIMATION FRAMEWORK FOR DAILY REALIZED VOLATILITY

ERIC HILLEBRAND AND MARCELO C. MEDEIROS

ABSTRACT. We study the simultaneous occurrence of long memory and nonlinear effects,
such as structural breaks and thresholds, in autoregressive moving average (ARMA) time se-
ries models and apply our modeling framework to series of daily realized volatility. Asymptotic
theory for the quasi-maximum likelihood estimator is developed and a sequence of model spec-
ification tests is described. Our framework allows for general nonlinear functions, including
smoothly changing intercepts. The theoretical results in the paper can be applied to any series
with long memory and nonlinearity. We apply the methodology to realized volatility of indi-
vidual stocks of the Dow Jones Industrial Average during the period 1995 to 2005. We find
strong evidence of nonlinear effects and explore different specifications of the model frame-
work. A forecasting exercise demonstrates that allowing for nonlinearities in long memory
models yields significant performance gains.

KEYWORDS: Realized volatility, structural breaks, smooth transitions, nonlinear models, long
memory, persistence.
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1. INTRODUCTION

1.1. Overview and Main Results. In this paper we propose a framework to model and fore-
cast time series that display long-range dependence and nonlinear behavior. The methodology
is applied to series of daily realized volatilities of 23 stocks of the Dow Jones Industrial Aver-
age during the period 3-Jan-1995 to 31-Dec-2005. Realized volatility can be seen as a proxy
for the conditional volatility of daily returns.

Our modeling framework disentangles the confounding effects of long memory and non-
linearities, such as change points and threshold effects. We study the asymptotic behavior of
the quasi-maximum likelihood estimator and propose a sequence of Lagrange multiplier (LM)
tests for nonlinearity in the presence of long memory. The test and estimation procedure can
be applied to any time series that is suspected to have long memory and nonlinear effects.
Therefore, the results in this paper are not restricted to financial volatility. Furthermore, we
make no explicit assumption about the distribution of the random term in the model.

Recently, Baillie and Kapetanios (2007, 2008) have considered a similar problem. Baillie
and Kapetanios (2007) construct tests for the presence of nonlinearity of unknown form in ad-
dition to a fractionally integrated, long memory component in a time series process. The tests
are based on artificial neural network approximations and do not restrict the parametric form
of the nonlinearity. Baillie and Kapetanios (2008) consider joint maximum likelihood esti-
mation of long memory and Exponential Smooth Transition Autoregressive (ESTAR) models.
We extend their results in different ways. First, Baillie and Kapetanios (2007) consider lin-
earity tests only, whereas a full modeling cycle, partly based on van Dijk, Franses, and Paap
(2002), Medeiros, Teräsvirta, and Rech (2006), and McAleer and Medeiros (2008a), is de-
veloped here. Second, our sequence of tests is robust to non-Gaussian disturbances. Finally,
contrary to the results in Baillie and Kapetanios (2008), which are derived under specific non-
linear dynamics, we formally derive the asymptotic properties of the QMLE under general
nonlinearity without assuming that the error distribution is correctly specified. In a multiple-
regime model, if time is the transition variable, asymptotic theory of the QMLE cannot be
achieved in the standard way, because as the sample size T goes to infinity, the proportion of
finite sub-samples goes to zero. Our solution to this problem is to scale the transition variable
t so that the location of the transition is a certain fraction of the total sample rather than a
fixed sample point. This modification allows asymptotic theory of the QMLE; see Andrews
and McDermott (1995) and Saikkonen and Choi (2004) for similar transformations.

The joint modeling of long memory and structural breaks and/or nonlinearities in realized
volatility has been considered in a couple of papers. For example, Morana and Beltratti (2004)
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test for the existence of long memory and structural breaks in the realized volatility series of
Deutsche Mark/US Dollar and Japanese Yen/US Dollar exchange rates. They conclude that
realized volatility series display long memory even when structural changes are accounted for.
In addition, they find that neglecting breaks is not important for very short-term forecasting
once a long-memory component is included in the model, but that superior forecasts can be
obtained at longer horizons by modeling both long memory and structural change. However,
their model and testing procedures are different from the ones considered here. Since that
paper was written, estimators of realized volatility that are more robust to microstructure noise
have been developed; see the discussion in Section 1.2. McAleer and Medeiros (2008a) put
forward a nonlinear heterogeneous autoregressive (HAR) model that is able to describe both
long range dependence and nonlinear dynamics, such as leverage effects. Long memory is
approximated by aggregation and is not explicitly modeled by fractional differencing. Scharth
and Medeiros (2009) consider a multiple-regime model based on regression trees to describe
high persistence in daily realized volatility series. Similarly to McAleer and Medeiros (2008a),
the authors do not consider long memory directly.

Simulation results show that our modeling strategy is successful in correctly determining
the structure of models in a variety of situations where long-memory and nonlinearity such as
breaks or asymmetry coexist. Applying our model and testing framework to 23 stocks of the
Dow Jones Industrial Average, we find evidence of structural breaks in the individual realized
volatility time series. In particular, we detect transitions from high to low volatility around
2003. Dependence of volatility on the level of lagged returns is a robust finding across all
stocks and in different model specifications, indicating asymmetry effects. We conclude that
both long memory and non-linear effects coexist in realized volatility data. Accounting for
non-linear terms in the volatility model specification yields forecast gains, as we show in a
prediction experiment.

1.2. Volatility, Long-Memory, Breaks, and Nonlinearity: A Brief Overview of the Lit-
erature. Andersen, Bollerslev, Christoffersen, and Diebold (2007) provide a recent overview
of the literature on the key role of financial volatility in risk management. However, there is
an inherent problem in using models where the volatility measure plays a central role. Con-
ditional variance is not directly observable and must, in some sense, be specified as a latent
variable. Common examples of such models are the (Generalized) Autoregressive Conditional
Heteroskedasticity, or (G)ARCH, model of Engle (1982) and Bollerslev (1986), various sto-
chastic volatility models (see, for example, Taylor (1986)), and the exponentially weighted
moving averages (EWMA) approach, as advocated by the Riskmetrics methodology (J. P.
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Morgan 1996). McAleer (2005) gives a recent exposition of a wide range of univariate and
multivariate, conditional and stochastic models of volatility, and Asai, McAleer, and Yu (2006)
provide a review of the rapidly growing literature on multivariate stochastic volatility models.
However, as observed by Bollerslev (1987), Malmsten and Teräsvirta (2004), and Carnero,
Peña, and Ruiz (2004), among others, most of the latent volatility models have been unable
to simultaneously capture several important empirical features of financial time series. For
example, standard latent volatility models fail to describe adequately the slowly decreasing
autocorrelation in squared returns that is associated with the high kurtosis of returns.

The search for an adequate framework for estimation and prediction of the conditional vari-
ance of financial asset returns has led to the analysis of high frequency intraday data. Merton
(1980) noted that asset return variance over a fixed interval can be estimated to any degree of
accuracy as the sum of squared realizations, provided the data are available at a sufficiently
high sampling frequency. More recently, Andersen and Bollerslev (1998) showed that ex-post
daily foreign exchange volatility is best measured by aggregating squared five-minute returns.
The five-minute frequency is a trade-off between accuracy, which is theoretically optimized
using the highest possible frequency, and microstructure noise, which can arise through bid-
ask bounce, asynchronous trading, infrequent trading, and price discreteness, among other
factors (see Madhavan (2000) and Biais, Glosten, and Spatt (2005) for recent reviews). Ander-
sen and Bollerslev (1998), Hansen and Lunde (2005), and Patton (2005) use realized volatility
to evaluate the out-of-sample forecasting performance of several latent volatility models. See
also Martens, van Dijk, and de Pooter (2009), Scharth and Medeiros (2009) and McAleer and
Medeiros (2008a), among others. Realized volatility can be used as a benchmark for the fore-
casting performance of latent variable models (Andersen and Bollerslev 1998, Hansen and
Lunde 2005, Patton 2005).

Based on the results of Andersen, Bollerslev, Diebold, and Labys (2003), Barndorff-Nielsen
and Shephard (2002), and Meddahi (2002), several recent studies have documented the statis-
tical properties of realized volatility that is constructed from high frequency data. Measure-
ment error still remains an issue. There are now a number of consistent estimators of realized
volatility for one day in the presence of microstructure noise: the two-time scales realized
volatility estimator proposed by Zhang, Mykland, and Aı̈t-Sahalia (2005), the realized kernel
estimator of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), and the modified MA
filter of Hansen, Large, and Lunde (2008); see McAleer and Medeiros (2008b) for a recent
review.
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The day-to-day dynamics of realized volatility exhibit long memory or high persistence,
just as the dynamics of squared or absolute daily returns (for example, Ding, Granger, and
Engle 1993). Andersen, Bollerslev, Diebold, and Labys (2003) use an ARFIMA specification
to model this long-range dependence. An alternative to ARFIMA are models that approx-
imate long memory by aggregation. Here volatility is modeled as a sum of different pro-
cesses, each with low persistence. The aggregation induces long memory; see, for example,
Granger (1980), LeBaron (2001), Fouque, Papanicolaou, Sircar, and Sølna (2003), Davidson
and Sibbertsen (2005), or Hyung, Poon, and Granger (2005). This phenomenon is used in
Corsi’s (2009) widely used HAR-RV model (Heterogeneous Autoregressive Model for Real-
ized Volatility), which builds on the HARCH specification proposed by Müller, Dacorogna,
Dave, Olsen, Pictet, and von Weizsäcker (1997).

The literature has also documented nonlinear effects in volatility, such as leverage and
feedback effects or multiple regimes (Black 1976, Nelson 1991, Glosten, Jagannathan, and
Runkle 1993, Campbell and Hentschel 1992). Regime changes can take the form of switches
in the model parameters, for instance governed by a Markov chain, as in Hamilton and Susmel
(1994), Cai (1994), and Gray (1996), hard thresholds, as discussed in Rabemananjara and Za-
koian (1993), Li and Li (1996), and Liu, Li, and Li (1997), or smooth transitions as in Hagerud
(1997), Gonzalez-Rivera (1998), or Medeiros and Veiga (2009). Commonly found are three
regimes associated with the size and sign of past returns; see for instance, Longin (1997) and
Medeiros and Veiga (2009).

The statistical consequences of neglecting or misspecifying nonlinearities have been dis-
cussed in the context of structural breaks in the GARCH literature (Diebold 1986, Lam-
oureux and Lastrapes 1990, Mikosch and Starica 2004, Hillebrand 2005) and in the litera-
ture on long memory models (Lobato and Savin 1998, Granger and Hyung 2004, Diebold
and Inoue 2001, Granger and Teräsvirta 2001, Smith 2005). Neglected changes in levels or
persistence induce estimated high persistence. This has often been called “spurious” high per-
sistence; see also Hillebrand and Medeiros (2008). In the reverse direction, it is also possible
to mistake data-generating high persistence (in the form of long memory or unit roots) for non-
linearity. Spuriously estimated structural breaks were reported for unit root processes (Nunes,
Kuan, and Newbold 1995, Bai 1998) and extended to long memory processes (Hsu 2001). In
summary, it has been found over a wide array of studies that nonlinearity (such as breaks) and
long memory (or high persistence) are confounding factors.

The rest of the paper is organized as follows. Section 2 presents the model and develops the
asymptotic theory of the quasi-maximum-likelihood estimation. The sequence of nonlinearity
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tests is introduced in Section 3. Monte Carlo evidence for its adequacy is reported in Section
4 and we describe how the test can be used in the model selection process. Empirical results
are shown in Section 5. Section 6 gives some concluding remarks. All proofs are relegated to
an appendix.

2. LONG MEMORY AND NONLINEARITY IN REALIZED VOLATILITY

2.1. Model Specification. Set yt := log(RVt)− µ, where RVt is any consistent estimator of
daily integrated volatility and µ = E[log(RVt)] < ∞.1 Consider the following long memory
model with time-varying coefficients:

vt ≡ (1− L)dyt,

vt = φ0(st; ξ0) + φ1(st; ξ1)vt−1 + . . . + φp(st; ξp)vt−p + Θ(L)ut,
(1)

where d ∈ (−1/2, 1/2) is the fractional differencing parameter, such that

(1− L)d =
∞∑

k=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)
,

with Γ(·) denoting the Gamma function; φi(st; ξi), i = 0, . . . , p, is some nonlinear func-
tion to be specified. It is indexed by the vector of parameters ξi ∈ Rkξi , and st ∈ Rks

is a vector of state variables. The error process ut is a martingale difference sequence.
Θ(L) = (1 + θ1L + θ2L

2 + · · ·+ θqL
q) is a moving average lag polynomial of order q.

Set ξ =
(
ξ′0, ξ

′
1, . . . , ξ

′
p

)′ ∈ Rkξ . The model is indexed by the vector of parameters ψ =

(d, ξ′,θ′, σ2
u)
′ ∈ Rkψ , where θ = (θ1, . . . , θq)

′ ∈ Rq.

2.2. Interpretation. The choice of the function φi(·), i = 1, . . . , p, is very flexible and allows
for different specifications. The following examples list some possibilities.

EXAMPLE 1 (Linear ARFIMA). Set φi(st; ξi) = φi, i = 1, . . . , p and φ0(st; ξ0) = 0. In this
case, equation (1) may be written as

Φ(L)(1− L)dyt = Θ(L)ut,

where Φ(L) = (1− φ1L− φ2L
2 − · · · − φpL

p), such that yt follows an ARFIMA(p,d,q) model.
If d = 0, yt is short memory. This type of specification was advocated in Andersen, Bollerslev,
Diebold, and Labys (2003) to model daily realized volatility.

1We employ the kernel-based realized volatility estimator of Barndorff-Nielsen, Hansen, Lunde, and Shephard
(2008). Note that our model is specified for realized volatility (observed) and not for integrated or conditional
volatility (unobserved).
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EXAMPLE 2 (ARFIMA with smoothly changing parameters). Set st = t. Consider the fol-
lowing choice for the function φi(·), i = 0, . . . , p:

φi(st; ξi) = φi0 + φi1f [γ(t− c)],

where f(y) = (1 + e−y)
−1 is the logistic function. Equation (1) becomes

vt = φ00 + φ01f [γ(t− c)] +

p∑
i=1

φi0vt−i +

p∑
i=1

φi1f [γ(t− c)]vt−i + Θ(L)ut.

The parameter γ controls the smoothness of the transition. In the limit γ −→ ∞, the model
becomes an ARFIMA model with a structural break at t = c. In the regression framework,
this type of specification has been considered in Lin and Teräsvirta (1994). The model can be
generalized to M transitions following Medeiros and Veiga (2003):

vt = φ00 +
M∑

m=1

φ0mf [γm(t−cm)]+

p∑
i=1

φi0vt−i +

p∑
i=1

[
M∑

m=1

φimf [γm(t− cm)]

]
vt−i +Θ(L)ut.

EXAMPLE 3 (ARFIMA with asymmetry). Now let st = rt−1, where rt−1 is a pre-determined
variable, such as past daily returns. One possibility to incorporate asymmetric effects in the
model is to choose φi(·), i = 0, . . . , p, as

φi(st; ξi) = φi0 + φi1f [γ(rt−1 − c)],

with f(·) being again the logistic function. In the case γ −→∞ the logistic function becomes
a step function and the resulting model is related to the GJR-GARCH specification of Glosten,
Jagannathan, and Runkle (1993). See van Dijk, Franses, and Paap (2002) for a related spec-
ification for macroeconomic time series, and Hagerud (1997), Gonzalez-Rivera (1998), and
Lundbergh and Teräsvirta (1998) for similar ideas in latent volatility models. Another possible
generalization is to consider multiple regimes as in Medeiros and Veiga (2009):

φi(st; ξi) = φi0 +
M∑

m=1

φimf [γm (rt−1 − cm)] .

The number of regimes is defined by the parameter M . For example, suppose that M = 2,
c1 is highly negative, and c2 is large and positive. Then the resulting model will have three
regimes that can be interpreted as responding to highly negative shocks, tranquil periods, and
highly positive shocks, respectively.

EXAMPLE 4 (General Nonlinear ARFIMA). Another alternative is to leave the type of non-
linearity partially unspecified. This can be done by specifying the function φi(·), i = 0, . . . , p,
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as a single hidden layer neural network (NN) of the following form

φi(st; ξi) = φi0 +
M∑

m=1

φimf [γm (ω′
mst − ηm)] , (2)

where f(·) is the logistic function, γm > 0, and ‖ωm‖ = 1, with

ωm1 =

√√√√1−
q∑

j=2

ω2
mj, m = 1, . . . , M.

This is a long-memory version of the model discussed in Medeiros and Veiga (2005).

In a related paper, Martens, van Dijk, and de Pooter (2009) suggested a model to describe
jointly long-range dependence, nonlinearity, structural breaks, and the effects of days of the
week. The model considered in their paper is nested in specification (1).

2.3. Parameter Estimation.

2.3.1. Time Transformation. In this paper, we employ a simple time transformation to analyze
model (1). Let T0 be the size of a given data sample. Set V t−1 = (vt−1, . . . , vt−p)

′ and, for
any sequence {xt}, t = 1, . . . , T , define xtT := (T0/T )xt. Then, model (1) is embedded in a
sequence of models:

ΦtT (L)vtT = φ0,tT + Θ(L)ut, (3)

where φ0,tT ≡ φ0(stT , ξ0) and

ΦtT (L) = 1− φ1(stT ; ξ1)L− . . .− φp(stT ; ξp)L
p.

Without this transformation, parameter regimes of finite length become unidentified as T →
∞. The transformation allows for a proper scaling of the logistic function such that all regimes
remain identified. Consider the logistic function under the transformation:

f

[
γ

(
T0

T
t− c

)]
= f

[
T−1γ (T0t− Tc)

]
.

Here, the slope of the logistic function is decreasing with T while the locus of the transition
is increasing with T , whereas the scaling of the time counter, T0, remains constant. Thus, the
proportions of observations in the first regime, during the transition, and in the last regime
remain the same. The parameters in these groups of observations remain identified. In this
sense, the time transformation is the smooth equivalent of the assumption of constant break
fractions in the change-point literature, e.g. Perron (1989). Similar transformations are used
in Saikkonen and Choi (2004) and Andrews and McDermott (1995).
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2.3.2. Assumptions. We denote the data-generating parameter vector as

ψ∗ =
(
d∗, ξ

′
∗,θ

′
∗, σ

2
u,∗

)′
.

Define ut(ψ) = Θ−1(L) [ΦtT (L)vtT − φ0,tT ]. We use the shorthand notation ut,∗ := ut(ψ∗)

for the data-generating errors and ut for ut(ψ). Note that the fractional integration parameter,
d, is an element of ψ and is estimated jointly with the other parameters. Maximum likelihood
estimation of d is addressed in Sowell (1992) and Chung and Baillie (1993).

ASSUMPTION 1 (Parameter Space). The parameter vector ψ∗ ∈ Rkψ is an interior point of
Ψ ⊂ Rkψ , a compact parameter space.

ASSUMPTION 2 (Errors).

(1) ut,∗ is a martingale difference sequence with mean zero and constant unconditional
variance σ2

u,∗ > 0.
(2) E|ut,∗|q < ∞ for q = 1, . . . , 4.
(3) E [exp(ut,∗)q] < ∞ for q = 1, . . . , 4.

ASSUMPTION 3 (Stationarity and Moments).

(1) E|ztT |q < ∞, q = 1, . . . , 4, where ztT = (vtT , s′tT )′.
(2) d∗ ∈ (−1/2, 1/2).
(3) Θ(L) is invertible.

ASSUMPTION 4 (Autoregressive Transition Function).

(1) The transition functions are parameterized such that they are well defined.
(2) E|φ0,tT |q < ∞, q = 1, . . . , 4.
(3) For all st, ξ, the roots of ΦtT,∗(st; ξ) are outside the unit circle and the inverse lag

polynomial Φ−1
tT,∗(st; ξ) exists.

(4) E|Φ−1
tT,∗(L)Θ∗(L)ut,∗|q < ∞, q = 1, . . . , 4.

(5) E
∣∣∣ ∂
∂ξ

ΦtT (L)vtT

∣∣∣
q

< ∞, q = 1, . . . , 4.

(6) E
∣∣∣ ∂2

∂ξ∂ξ′ΦtT (L)vtT

∣∣∣
q

< ∞, q = 1, . . . , 4.

(7) E
∣∣∣ ∂
∂ξ

φ0,tT

∣∣∣
q

< ∞, q = 1, . . . , 4.

(8) E
∣∣∣ ∂2

∂ξ∂ξ′φ0,tT

∣∣∣
q

< ∞, q = 1, . . . , 4.

EXAMPLE 5 (for Assumption 4 (1): Logistic Transition). If there are M +1 different regimes
of volatility depending on a state variable st (for example past returns rt−1 or time t), with
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transitions governed by logistic functions, then the transition parameters cm and γm, m =

1, . . . , M , are such that

(1) −∞ < −C < c1 < . . . < cM < C < ∞.
(2) γm > 0 for all m.
(3) f [γ1(st − c1)] ≥ f [γ2(st − c2)] ≥ . . . ≥ f [γM(st − cM)].

2.3.3. Quasi-Maximum Likelihood Estimator. The martingale difference sequence assump-
tion on the errors ut,∗ implies that the quasi-log-likelihood function is given by

LT (ψ) =
1

T

T∑
t=1

`t(ψ),

where

`t(ψ) = −1

2

(
log 2π + log σ2

u +
u2

t (ψ)

σ2
u

)
.

The parameter vector is estimated by quasi-maximum likelihood as

ψ̂T = argmax
ψ∈Ψ

LT (ψ),

where Ψ is the parameter space.

THEOREM 1 (Consistency). Under Assumptions 1 through 4, the quasi-maximum likelihood
estimator ψ̂T is consistent:

ψ̂T

p→ ψ∗.

The proof is provided in the Appendix.

THEOREM 2 (Asymptotic Normality). Under Assumptions 1 through 4, the quasi-maximum
likelihood estimator ψ̂T is asymptotically normally distributed:

√
T

(
ψ̂T −ψ∗

)
d→ N [

0, A(ψ∗)
−1B(ψ∗)A(ψ∗)

−1
]
,

where

A(ψ∗) = −E

 ∂2`t

∂ψ∂ψ′

∣∣∣∣∣
ψ∗


 ,

B(ψ∗) = E


∂`t

∂ψ

∣∣∣∣∣
ψ∗

∂`t

∂ψ′

∣∣∣∣∣
ψ∗


 .

The proof is provided in the Appendix.



ASYMMETRIES, BREAKS, AND LONG-RANGE DEPENDENCE IN REALIZED VOLATILITY 11

PROPOSITION 1 (Covariance Matrix Estimation). Under Assumptions 1 through 4,

AT

(
ψ̂T

)
p→ A(ψ∗), BT

(
ψ̂T

)
p→ B(ψ∗),

where

AT (ψ) = − 1

T

T∑
t=1

∂2`t

∂ψ∂ψ′ ,

and

BT (ψ) =
1

T

T∑
t=1

∂`t

∂ψ

∂`t

∂ψ′ .

The proof is provided in the Appendix.

3. MODEL SPECIFICATION

3.1. Test Statistic. In this section, we propose a sequence of tests for misspecification in the
sense of remaining nonlinearity. We advocate the use of a multiple regime specification, as
in Section 2 Examples 2–4. The testing procedure will be partially based on the results of
Medeiros and Veiga (2005) and Baillie and Kapetanios (2007). To simplify the exposition we
consider the case where there is no moving average term (q = 0). However, it is not difficult
to extend our results to the case with q > 0. Consider the following model.

vt = φ′
0V t−1 +

M∑
m=1

φ′
mV t−1f [γm (st − cm)] + ut

= φ′
0V t−1 +

M∗∑
m=1

φ′
mV t−1f [γm (st − cm)]

+
M∑

m=M∗+1

φ′
mV t−1f [γm (st − cm)] + ut,

(4)

where V t−1 = (1, vt−1, . . . , vt−p) .

Consider the case where we want to test M = M∗ against M > M∗. The appropriate null
hypothesis is

H0 : γM∗+1 = γM∗+2 = · · · = γM = 0. (5)

Model (4) is only identified under the alternative, which means that standard asymptotic
inference is not available. This problem is circumvented, as in Teräsvirta (1994), by expanding
f [γm (st − cm)], m = M∗+1, . . . , M , into a Taylor series around the null hypothesis (5). The
order of the expansion is a compromise between a small approximation error (high order) and
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availability of data (as short time series necessarily imply a relatively low order). Using a
third-order Taylor expansion and rearranging terms results in the following model:

vt = φ̃
′
0V t−1 +

M∗∑
m=1

φ̃
′
mV t−1f [γm (st − cm)]+ρ′1V t−1st +ρ′2V t−1s

2
t +ρ′3V t−1s

3
t +u∗t , (6)

where u∗t = ut + R3 and R3 is the remainder in the Taylor expansion.
The null hypothesis (5) is then approximated by

H0 : ρ1 = ρ2 = ρ3 = 0.

Under the null, R3(zt; ξ) = 0. We can use (6) to test for absence of remaining nonlinearity.
The local approximation of the log-density for observation t takes the form

`t(ψ) =− 1

2
log(2π)− 1

2
log(σ2

u)

− 1

2σ2
u

×
{

vt − φ̃
′
0V t−1 −

M∗∑
m=1

φ′
mV t−1f [γm (st − cm)]

− ρ′1V t−1st − ρ′2V t−1s
2
t − ρ′3V t−1s

3
t

}2

.

(7)

Since the information matrix is block diagonal, the error variance σ2
u can be treated as

fixed. The partial derivatives of (7) evaluated at the estimated parameter vector under the null
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hypothesis are:

∂`t(ψ)

∂d

∣∣∣∣∣
H0,ψ̂

= − ût

σ2
u

∂

∂d

{
v̂t − φ̂

′
0V̂ t−1 −

M∗∑
m=1

φ̂
′
mV̂ t−1f [γm (st − cm)]

}

∂`t(ψ)

∂φ̃0

∣∣∣∣∣
H0,ψ̂

= − ût

σ̂2
u

V̂ t−1;

∂`t(ψ)

∂φm

∣∣∣∣∣
H0,ψ̂

= − ût

σ̂2
u

V̂ t−1f [γ̂m (st − ĉm)] ;

∂`t(ψ)

∂γm

∣∣∣∣∣
H0,ψ̂

= − ût

σ̂2
u

φ̂
′
mV̂ t−1f [γ̂m (st − ĉm)] {1− f [γ̂m (st − ĉm)]} (st − ĉm) ;

∂`t(ψ)

∂cm

∣∣∣∣∣
H0,ψ̂

=
ût

σ̂2
u

φ̂
′
mV̂ t−1f [γ̂m (st − ĉm)] {1− f [γ̂m (st − ĉm)]} ;

∂`t(ψ)

∂ρj

∣∣∣∣∣
H0,ψ̂

= − ût

σ̂2
u

V̂ t−1s
j
t , j = 1, 2, 3;

where ût is the residual estimated under the null, V̂ t−1 = (1, v̂t−1, . . . , v̂t−p)
′, v̂t−i = (1 −

L)d̂yt−i, i = 1, . . . , p, and

∂

∂d
(1− L)d =

∞∑
j=0

(−1)j

j!

(
j−1∑
i=0

1

d− i

)
j−1∏
i=0

(d− i)Lj.

Under the information matrix equality, the Lagrange Multiplier (LM) statistic is given by

LM =
T∑

t=1

q̂′t

(
T∑

t=1

q̂tq̂
′
t

)−1 T∑
t=1

q̂t, (8)

where q̂t =
(
q̂0,t, q̂a,t

)′, with

q̂0,t =

[
1,

∂`t(ψ)

∂d

∣∣∣∣∣
H0

]′

and
q̂a,t =

[
V̂
′
t−1st, V̂

′
t−1s

2
t , V̂

′
t−1s

3
t

]′
.

Under standard regularity conditions and the additional assumption E|st|δ < ∞, for some
δ > 6, (8) has an asymptotic χ2 distribution with m = 3(p + 1) degrees of freedom. Defining
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ι = (1, 1, . . . , 1)′ ∈ RT and

Q̂ =




q̂′1
q̂′2
...

q̂′T




,

the LM statistic can be written as

LM = ι′Q̂
(
Q̂
′
Q̂

)−1

Q̂
′
ι

and the test can be carried out in stages as follows:

(1) Estimate the parameters under the null and compute the residuals ût. If the sample size
is small, usually the fractional difference parameter, d, is difficult to estimate, such that
the first order condition:

∂L(ψ)

∂ψ

∣∣∣∣∣
H0

= 0

is not met. This has an adverse effect on the empirical size of the test. To circum-
vent this problem, we regress the residuals ût on q̂0,t (Eitrheim and Teräsvirta 1996).
Finally, we compute a new sequence of residuals ũt from this regression.

(2) Regress ι on Q and compute the sum of squared residuals (SSR) from this regression.
(3) Compute the χ2 statistic

LMχ = T − SSR.

We now combine the procedure above into a coherent modeling strategy that involves a
sequence of LM tests. The idea is to test a linear model against an alternative model with one
nonlinear term at a λ1-level of significance. In the event that the null hypothesis is rejected,
one logistic term is added, the nonlinear model is re-estimated, and then tested against an
alternative with more than one nonlinear term. The procedure continues testing J logistic
terms against alternative models with J∗ ≥ J + 1 terms at significance level λJ = λ1 CJ−1

for some arbitrary constant 0 < C < 1. The testing sequence is terminated at the first non-
rejection outcome. The number of nonlinear terms, M , is estimated by M̂ = J̄ − 1, where
J̄ is the number of rejections prior to the first non-rejection. By reducing the significance
level at each step of the sequence, it is possible to control the overall level of significance,
and hence to avoid excessively large models. The Bonferroni procedure ensures that such a
sequence of LM tests is consistent, and that

∑J̄
J=1 λJ acts as an upper bound on the overall

level of significance. As for the determination of the arbitrary constant C, it is good practice to
perform the sequential testing procedure with different values of C to avoid selecting models
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that are too parsimonious. Finally, equation (6) combined with the use of some information
criterium, such as the AIC or BIC, can be used to determine the lag structure of the model.

4. MONTE-CARLO EVIDENCE

The purpose of this section is to evaluate the performance of the modeling cycle strategy
described in the previous section. We simulate 1000 replications of the models below with
T = 500, 1000, and 5000 observations. We report both descriptive statistics for the parameter
estimates under correct specification, assuming that M and p are known, as well as the fre-
quency of correct specification in the case where both M and p are endogenously determined
from the simulated data. The DGPs considered are as follows:

(1) Model 1: Short-memory linear model

yt = 0.8yt−1 + ut, (9)

where ut ∼ NID(0, 0.5).
(2) Model 2: Short-memory nonlinear model I

yt = 0.8yt−1 − 0.4yt−1f [30(t/T − 0.35)] + 0.4yt−1f [30(t/T − 0.65)] + ut, (10)

where ut ∼ NID(0, 0.5).
(3) Model 3: Short-memory nonlinear model II

yt = 0.8yt−1 − 0.4yt−1f [5(rt−1 + 1)] + 0.4yt−1f [5(rt−1 − 1)] + ut,

rt = [exp(yt) + νt] εt

(11)

where ut ∼ NID(0, 0.1), εt ∼ NID(0, 1), and νt ∼ NID(0, 0.0001).
(4) Model 4: Long-memory linear model

vt = 0.8vt−1 + ut,

yt = (1− L)−0.4vt,
(12)

where ut ∼ NID(0, 0.5).
(5) Model 5: Long-memory nonlinear model I

vt = 0.8vt−1 − 0.4vt−1f [30(t/T − 0.35)] + 0.4vt−1f [30(t/T − 0.65)] + ut,

yt = (1− L)−0.4vt,
(13)

where ut ∼ NID(0, 0.5).
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(6) Model 6: Long-memory nonlinear model II

vt = 0.8vt−1 − 0.4vt−1f [5(rt−1 + 1)] + 0.4vt−1f [5(rt−1 − 1)] + ut,

rt = [exp(yt) + νt] εt,

yt = (1− L)−0.4vt,

(14)

where ut ∼ NID(0, 0.1), εt ∼ NID(0, 1), and νt ∼ NID(0, 0.0001).

Model 1 is a simple short-memory autoregressive model and is important to check if our
procedure is able to detect very parsimonious specifications. Models 2 and 3 are both nonlinear
short-memory processes, while Models 4–6 are all long-memory specifications. Models 5
and 6 are the two most general specifications, with both long-memory and nonlinearity. The
specification and estimation results are reported in Tables 1 and 2. Table 1 shows the average
bias and the mean squared error (MSE) of the parameter estimates under the assumption of
correct model specification, i.e., correct number of regimes (M ) and autoregressive order (p).
Apart from the γ parameter, all estimates are reasonable. We only report results for T = 500

and T = 1000 in Table 1, since the results for T = 5000 are only marginally different from
those for T = 1000. In order to evaluate the performance of the modeling strategy proposed
in this paper, we also check the frequency of correct specification when the lag and regime
structures are unknown. The number of regimes is determined by the sequence of LM tests
described earlier, while the autoregressive order is determined by the BIC. The results are
reported in Table 2. The proposed procedure always finds the correct number of lags and
the performance concerning the choice of the number of regimes improves as the sample size
increases.

5. EMPIRICAL APPLICATION

5.1. Data. We use high frequency tick-by-tick quotes on 23 Dow Jones Industrial Average
Index stocks: Alcoa (aa), American International Group (aig), American Express (axp), Boe-
ing (ba), Caterpillar (cat), Du Pont (dd), Walt Disney (dis), General Electric (ge), General
Motors (gm), Home Depot (hd), Honeywell (hon), International Business Machines (ibm),
Johnson and Johnson (jnj), JP Morgan Chase (jpm), Coca Cola (ko), McDonald’s (mcd), 3M
Company (mmm), Altria Group (mo), Merck (mrk), Pfizer Inc. (pfe), Procter and Gamble
(pg), United Tech (utx), and Wal-Mart Stores (wmt). The data were obtained from the NYSE
TAQ database and they cover the period January 3, 1995 up to December 31,2005.

In calculating daily realized volatility, we employ the realized kernel estimator with modi-
fied generalized Tukey-Hanning weights of order two according to Barndorff-Nielsen, Hansen,
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Lunde, and Shephard (2008). We clean the data for outliers. We discard transactions out-
side trading hours, considering transactions between 9.30am through 4.00pm. Following
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) we use a 60-second activity fixed
tick time sampling scheme such that we obtain the same number of observations each day.

5.2. Model Specification and Estimation. For each stock return time series, we use the first
2170 observations to estimate the model and leave the remaining 600 observations for out-of-
sample forecasting. We consider the following alternative specifications:

(1) linear ARFIMA;
(2) nonlinear ARFIMA with time as transition variable;
(3) nonlinear ARFIMA with past daily return as transition variable;
(4) nonlinear ARFIMA with past cumulated return over five days as transition variable;
(5) nonlinear ARFIMA with past cumulated return over ten days as transition variable;
(6) nonlinear ARFIMA with past cumulated return over 22 days as transition variable;
(7) nonlinear ARFIMA with past cumulated return over 66 days as transition variable;
(8) nonlinear ARFIMA with past cumulated return over 252 days as transition variable;
(9) nonlinear ARFIMA with past average volatility over one day as transition variable;

(10) nonlinear ARFIMA with past average volatility over five days as transition variable;
(11) nonlinear ARFIMA with past average volatility over 22 days as transition variable;
(12) the heterogeneous autoregressive (HAR-RV) model of Corsi (2009).

Table 3 displays estimation results. The table reports the estimated fractional difference pa-
rameter d, the estimated autoregressive order p, and the number of regimes M determined by
the sequence of LM tests. As an example, Figure 1 shows the estimated transition functions for
three stocks (AIG, GM, and IBM), where lagged daily returns are used as transition variable.
In each case, we observe a different pattern. For AIG, there are two regimes and, surprisingly,
the transition is not around zero. For GM there are two sharp transitions. The first one occurs
at past returns around -2 and the other one at small positive returns. On the other hand, the two
transitions that we observe in the case of IBM are quite smooth, especially the one associated
with positive returns.

5.3. Forecasting Exercise. Table 4 presents results for one-day-ahead forecasts for the last
600 observations of each time series of realized volatility. The table shows the ratio of the
mean squared one-step-ahead forecast error (MSFE) from the different linear and nonlinear
specifications (numerator) and the benchmark HAR-RV model (denominator). Numbers be-
low one indicate that the HAR-RV model is outperformed by the competing specification.



18 E. HILLEBRAND AND M. C. MEDEIROS

The stars indicate that the considered model significantly improves over the HAR-RV model
according to the Diebold-Mariano test (one star represents 10%, two stars 5%, and three stars
1% significance level). Since the linear and nonlinear ARFIMA models are not nested in the
HAR-RV model, the Diebold-Mariano test is valid. From Table 4 it is clear that the non-
linear model (3) with past daily returns as transition variable is the one that systematically
outperforms the benchmark HAR-RV specification.

6. CONCLUSION

In financial volatility, nonlinearities such as structural breaks are difficult to tell apart from
long memory. In this paper, we propose an estimation framework for nonlinear effects such as
structural breaks and leverage in the presence of long memory. The framework accommodates
long memory and a general non-linear function that may include transitions between parameter
regimes and asymmetry effects.

We show consistency and asymptotic normality of the quasi-maximum likelihood estimator.
Asymptotic theory requires a time transformation that ensures that regimes of finite length
remain identified as the sample size grows to infinity.

We propose a test statistic that allows to test for nonlinear terms in the volatility equation in
the presence of long memory. The test evaluates the significance of second and higher order
terms in a Taylor expansion of the nonlinear function in the volatility equation.

Once the type of nonlinearity and the relevant variables are identified, the full specification
is estimated using realized volatility of stocks in the Dow Jones Industrial Average. We find
strong evidence for nonlinear effects driven by time and past returns in all time series. The
results indicate that long memory and leverage effects in a wide sense, i.e. dependence on
linear combinations of past returns, coexist in realized volatility data. A forecast horse race
indicates that a specification with long memory and asymmetry can outperform the standard
HAR-RV model.
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APPENDIX A. PROOF OF CONSISTENCY

Proof of Theorem 1. Following Theorem 4.1.1 of Amemiya (1985), ψ̂T

p→ ψ∗ if the following
conditions hold:

(1) Ψ is a compact parameter set.
(2) LT (ψ) is continuous in ψ and measurable in ut.
(3) As T → ∞, LT (ψ) converges in probability to a deterministic function L(ψ) uni-

formly on Ψ.
(4) L(ψ) attains a unique global maximum at ψ0.

Item (1) is given by assumption. Item (2) holds by definition of the quasi-likelihood function
and the construction of ut. Item (3) holds by the Ergodic Theorem if E [sup |`t(ψ)|] < ∞.
The latter holds by the Jensen´s inequality and E [sup |g(·,ψ)|] < ∞, where g denotes the
normal density function. The finiteness of the last expression follows from the definition of
the normal density as long as σ2

u > 0.
Consider Item (4). By the Ergodic Theorem, L(ψ) = E [`t(ψ)]. Rewrite the maximization

problem as
max
ψ∈Ψ

E [`t(ψ)− `t(ψ∗)] .

Now,

E [`t(ψ)− `t(ψ∗)] = E

{
log

[
g(ut,ψ)

g(ut,ψ∗)

]}
,

= E

[
−1

2
log

σ2
u

σ2
u,∗
− 1

2

(
u2

t

σ2
u

− u2
t,∗

σ2
u,∗

)]
,

= −1

2
log

σ2
u

σ2
u,∗
− 1

2

[
E(u2

t σ
−2
u )− 1

]
.

Next, we show thatE [u2
t (ψ)] ≥ E (

u2
t,∗

)
= σ2

u,∗ and that the expressions attain their respec-
tive lower bounds at ψ = ψ∗ uniquely. Consider

E
[
u2

t (ψ)
]

= E
{
Θ−1(L) [ΦtT (L)vtT − φ0,tT ]

}2
,

= E
(
Θ−1(L)

{
ΦtT (L)Φ−1

tT,∗(L) [φ0,tT,∗ + Θ∗(L)ut,∗]− φ0,tT

})2

≥ E (
u2

t,∗
)

= σ2
u,∗,

and therefore, E [u2
t (ψ)] attains its minimum of σ2

u,∗ uniquely at ψ = ψ∗ under Assumption
2.
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So far, we have established that for any given σ2
u, the objective function E [`t(ψ)− `t(ψ∗)]

attains its maximum of

−1

2

[
log

σ2
u

σ2
u,∗

+
σ2

u,∗
σ2

u

− 1

]

at d = d∗, Θ(L) = Θ∗(L), ξ = ξ∗. Finding the value of σ2
u that maximizes the expression is

tantamount to finding the minimum of f(x) = log x+1/x at x = 1 and thus the optimal value
is σ2

u = σ2
u,∗. This shows that E [`t(ψ)− `t(ψ∗)] is uniquely maximized at ψ = ψ∗. ¤

APPENDIX B. PROOF OF ASYMPTOTIC NORMALITY

REMARK 1.

(1) In this section, terms will sometimes involve expectations of cross-products of the type
E(XY ), where X and Y are correlated random variables. Note that by the Cauchy-
Schwarz inequality, we have

E (XY ) ≤ [
E

(
X2

)] 1
2

[
E

(
Y 2

)] 1
2 ,

and thus in order to show that the cross-product has finite expectation, it suffices to
show that both random variables have finite second moments.

(2) By the same token, if both X and Y have finite second moments,

E
[
(X + Y )2

] ≤ E (
X2

)
+ E

(
Y 2

)
+ 2

[
E

(
X2

)] 1
2

[
E

(
Y 2

)] 1
2 ,

≤ K
[
E

(
X2

)
+ E

(
Y 2

)]

for some K < ∞.

LEMMA 1. Under Assumptions 2-4, the sequence
{

∂`t

∂ψ

∣∣∣
ψ∗

,Ft

}

t=1,...,T

is a stationary mar-

tingale difference sequence.

Proof. In this proof, all derivatives are evaluated at ψ = ψ∗. The asterisk-subscript is sup-
pressed to reduce notational clutter.

E

(
∂`t

∂d

∣∣∣∣∣Ft−1

)
= E

[
− ut

σ2
u

Θ−1(L)ΦtT (L)
∂

∂d
(1− L)dytT

∣∣∣∣∣Ft−1

]
= 0,

since ut has mean zero, and ∂
∂d

(1− L)dytT does not contain ut.

E

(
∂`t

∂ξ

∣∣∣∣∣Ft−1

)
= E

{
− ut

σ2
u

Θ−1(L)

[
∂

∂ξ
ΦtT (L)vtT +

∂

∂ξ
φ0,tT

] ∣∣∣∣∣Ft−1

}
= 0,
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since ΦtT (L)vtT and φ0,tT are uncorrelated with ut.

E

(
∂`t

∂θ

∣∣∣∣∣Ft−1

)
= E

{
− ut

σ2
u

∂

∂θ
Θ−1(L) [ΦtT (L)vtT + φ0,tT ]

∣∣∣∣∣Ft−1

}
= 0,

since ∂
∂θ

Θ−1(L) [ΦtT (L)vtT + φ0,tT ] does not contain ut.

E

(
∂`t

∂σ2
u

∣∣∣∣Ft−1

)
= E

(
− 1

2σ2
u

+
1

2

u2
t

σ4
u

∣∣∣∣Ft−1

)
= 0,

since ut has mean zero and variance σ2
u. ¤

LEMMA 2. Under Assumptions 2-4,

sup
ψ∈Ψ

E

∣∣∣∣
∂`t

∂ψ

∣∣∣∣ < ∞, and sup
ψ∈Ψ

E

∣∣∣∣
∂`t

∂ψ

∂`t

∂ψ′

∣∣∣∣ < ∞.

Proof. In this proof, the expressions are evaluated at any ψ ∈ Ψ if not otherwise stated. The
data-generating parameters will be explicitly subscribed by an asterisk.

We will consider the gradient vector element by element:

sup
ψ∈Ψ

E

∣∣∣∣
∂`t

∂d

∣∣∣∣ = sup
ψ∈Ψ

E

∣∣∣∣−
ut

σ2
u

Θ−1(L)ΦtT (L)
∂

∂d
(1− L)dytT

∣∣∣∣ .

Using the Cauchy-Schwarz inequality, we need to find upper bounds for the following objects
supψ∈ΨE

∣∣ ∂
∂d

(1− L)dytT

∣∣p and supψ∈ΨE |ut(ψ)|p, p = 1, 2.
First, note that

E
∣∣(1− L)dytT

∣∣q = E
∣∣(1− L)d

{
(1− L)−d∗Φ−1

tT,∗(L) [φ0,tT,∗ + Θ∗(L)ut,∗]
}∣∣q

= E
∣∣(1− L)d−d∗Φ−1

tT,∗(L) [φ0,tT,∗ + Θ∗(L)ut,∗]
∣∣q < ∞,

by Assumptions 4, 2 (2), and 3.
Then,

E

∣∣∣∣
∂

∂d
(1− L)dytT

∣∣∣∣
q

= E

∣∣∣∣∣
∞∑

j=0

(−1)j

j!

(
j−1∑
i=0

1

d− i

)
j−1∏
i=0

(d− i)LjytT

∣∣∣∣∣

q

,

= E

∣∣∣∣∣
∞∑

j=0

(−1)j

j!

(
j−1∑
i=0

1

d− i

)
j−1∏
i=0

(d− i)Lj(1− L)−d∗Φ−1
tT,∗(L) [φ0,tT,∗ + Θ∗(L)ut,∗]

∣∣∣∣∣

q

< ∞,
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from the same set of assumptions and recognizing that ∂
∂d

(1 − L)dytT is stationary if d ∈
(−1/2, 1/2).

Now, note that

E |ut(ψ)|p = E
∣∣Θ−1(L)

[
ΦtT (L)(1− L)dytT − φ0,tT

]∣∣p ,

= E
∣∣Θ−1(L)

[
ΦtT (L)(1− L)d−d∗Φ−1

tT,∗(L) [Θ∗(L)ut,∗ + φ0,tT,∗]− φ0,tT

]∣∣p < ∞
by Assumptions 4, 2 (2), and 3.

All other elements of the gradient vector are bounded by the same arguments and assump-
tions:

E

∣∣∣∣
∂`t

∂ξ

∣∣∣∣ = E

∣∣∣∣−
ut

σ2
u

Θ−1(L)

[
∂

∂ξ
ΦtT (L)vtT +

∂

∂ξ
φ0,tT

]∣∣∣∣

≤
(
E

∣∣∣∣−
ut

σ2
u

∣∣∣∣
p) 1

p
{
E

∣∣∣∣Θ−1(L)

[
∂

∂ξ
ΦtT (L)vtT +

∂

∂ξ
φ0,tT

]∣∣∣∣
p} 1

p

< ∞

by Assumption 4.

E

∣∣∣∣
∂`t

∂θi

∣∣∣∣ = E

∣∣∣∣
ut

σ2
u

∂Θ−1(L)

∂θi

[ΦtT (L)vtT − φ0,tT ]

∣∣∣∣ ,

= E

∣∣∣∣
ut

σ2
u

[
− Li

Θ2(L)

]
[ΦtT (L)vtT − φ0,tT ]

∣∣∣∣ ,

≤
(
E

∣∣∣∣
ut

σ2
u

∣∣∣∣
p) 1

p
{
E

∣∣∣∣
[
− Li

Θ2(L)

]
[ΦtT (L)vtT − φ0,tT ]

∣∣∣∣
p} 1

p

< ∞

by Assumptions 4, 2 (2), and 3.

E

∣∣∣∣
∂`t

∂σ2
u

∣∣∣∣ = E

∣∣∣∣
1

2σ2
u

+
1

2

u2
t

σ4
u

∣∣∣∣ ,

≤ 1

2σ2
u

+
1

2
E

∣∣∣∣
u2

t

σ4
u

∣∣∣∣ < ∞.

This shows statement (1) of Lemma 2. Statement (2) of Lemma 2 follows the same argu-
ments, except that for part (1), the exponents in the Hölder inequalities are at most equal to
two, whereas for statement (2), we need q = 4. We omit the details of (2) for the sake of
brevity; they can be obtained from the authors. ¤

LEMMA 3. The function

ht(ψ) := − ∂2`t

∂ψ∂ψ′ −A(ψ)
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where

A(ψ) = −E
(

∂2`t

∂ψ∂ψ′

)

is absolutely uniformly integrable:

E sup
ψ∈Ψ

|ht(ψ)| < ∞;

it is continuous in ψ and has zero mean: E [ht(ψ)] = 0.

Proof. By the Ergodic Theorem, we have pointwise convergence of −1/T
∑T

t=1 ∂2`t/∂ψ∂ψ′

to A. By the triangular inequality, showing absolute uniform integrability reduces to showing
that

E

(
sup
ψ∈Ψ

∣∣∣∣
∂2`t

∂ψ∂ψ′

∣∣∣∣
)

< ∞.

We will show the statement for the second derivative of `t with respect to d, which requires
most work and assumptions. There are 21 distinct second derivatives in A(·); proving finite-
ness of the expected value of the supremum consists of repeated application of the Lebesgue
Dominated Convergence Theorem (Shiryaev (1996, p. 187), Ling and McAleer (2003), Lem-
mata 5.3 and 5.4).

First, note that

∂2

∂d2
(1− L)d =

∞∑
j=0

(−1)j

j!




(
j−1∑
i=0

1

d− i

)2

−
j−1∑
i=0

(
1

d− i

)2



j−1∏
i=0

(d− i)Lj, (15)

=
∞∑

j=0

(−1)j

j!




j−1∑

i,k=0
i 6=k

1

(d− i)(d− k)




j−1∏
i=0

(d− i)Lj.

Then, we have

∂2`t

∂d2
=− 1

σ2
u

[
Θ−1(L)ΦtT (L)

∂

∂d
(1− L)dytT

]2

− ut

σ2
u

Θ−1(L)ΦtT (L)
∂2

∂d2
(1− L)dytT

=: R1 + R2.

We first show that E sup |Ri| < ∞ for i = 1, 2.

|R1| =
∣∣∣∣∣

1

σ2
u

[
Θ−1(L)ΦtT (L)

∂

∂d
(1− L)dytT

]2
∣∣∣∣∣ ,
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and

|R2| =
∣∣∣∣
ut

σ2
u

Θ−1(L)

[
ΦtT (L)

∂2

∂d2
(1− L)dytT

]∣∣∣∣ .

The expected value of the terms on the right-hand side is finite, as shown in the proof of
Lemma 2. Therefore, the supremum of the left-hand side is dominated by the right-hand side
and E sup |Ri| < ∞, i = 1, 2, by the Lebesgue Dominated Convergence Theorem. Thus,

E sup
ψ∈Ψ

|ht(ψ)| < ∞.

¤

Proof of Theorem 2. The proof follows Theorem 4.1.3 of Amemiya (1985). First, we have to
establish that ψ̂T is consistent (Theorem 1). Then,

B(ψ∗)
− 1

2
1√
T

[rT ]∑
t=1

∂`t

∂ψ

∣∣∣∣∣
ψ∗

⇒ W (r), r ∈ [0, 1],

where W (r) is (kψ)-dimensional standard Brownian motion on the unit interval. This con-

vergence follows from Theorem 18.3 in Billingsley (1999) if (a)
{

∂`t

∂ψ

∣∣∣
ψ∗

,Ft

}
is a stationary

martingale difference sequence (Lemma 1), and (b) B(ψ∗) exists (Lemma 2). Further, we
have to show that

AT (ψ̂T )
p→ A(ψ∗)

for any sequence ψ̂T

p→ ψ∗,

AT (ψ̂T ) = − 1

T

T∑
t=1

∂2`t

∂ψ∂ψ′

∣∣∣∣∣
ψ̂T

,

and

A(ψ∗) = −E ∂2`t

∂ψ∂ψ′

∣∣∣∣
ψ∗

is non-singular. Conditions for this double stochastic convergence can be found, for example,
in Theorem 21.6 of Davidson (1994). We need to have (a) consistency of ψ̂T for ψ∗ and (b)
uniform convergence of AT to A in probability, i.e.

sup
ψ∈Ψ

|AT (ψ)−A(ψ)| p→ 0.

To show uniform convergence, often a stochastic version of the Arzelà-Ascoli theorem (e.g.
Theorem 21.9 in Davidson (1994)) is employed, which in a simple version shows the equiv-
alence of uniform convergence and equicontinuity. By proving stochastic equicontinuity, for
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example by checking the conditions of Theorem 2 of Andrews (1992), which involves showing
the finiteness of the third derivatives of the likelihood function, uniform convergence is estab-
lished. In this proof, we follow Berkes, Horváth, and Kokoszka (2003) and Ling and McAleer
(2003, Theorem 3.1) in particular, who employ the Ergodic Theorem to obtain uniform con-
vergence directly by modifying Theorem 4.2.1 of Amemiya (1985). To employ Theorem 3.1
of Ling and McAleer (2003), we have to show that

ht(ψ) = − ∂2`t

∂ψ∂ψ′ −A(ψ)

is continuous in ψ, has expected value Eht(ψ) = 0 and is absolutely uniformly integrable:

E sup
ψ∈Ψ

|ht(ψ)| < ∞

(Lemma 3). Thus, we have established all conditions for asymptotic normality according to
Theorem 4.1.3 of Amemiya (1985). ¤

Proof of Proposition 1. We established uniform convergence in probability of AT to A in
Lemma 3 and Theorem 2. It remains to show uniform convergence of BT to B. We follow
Theorem 3.1 of Ling and McAleer (2003) again. Define

mt(ψ) :=
∂`t

∂ψ

∂`t

∂ψ′ −B(ψ).

As we did for A in Lemma 3, we have to show that ht is absolutely uniformly integrable,
continuous in ψ, and has expected value Emt(ψ) = 0. By the triangular inequality, showing
absolute uniform integrability reduces to showing that

E sup
ψ∈Ψ

∂`t

∂ψ

∂`t

∂ψ′ < ∞.

This can be shown using Lebesgue Dominated Convergence arguments very similar to those
employed in the proof of Lemma 3. We omit the details for brevity. The function mt is
continuous in ψ by the Continuous Mapping Theorem and has zero-mean by construction. ¤
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TABLE 2. FREQUENCY OF CORRECT SPECIFICATION.

.
500 observations

Model Number of regimes (M ) Lag length (p) Both (M and p)
1 0.97 1 0.97
2 0.41 1 0.41
3 0.23 1 0.23
4 0.97 1 0.97
5 0.26 1 0.26
6 0.19 1 0.19

1000 observations
Model Number of regimes (M ) Lag length (p) Both (M and p)

1 0.98 1 0.98
2 0.94 1 0.94
3 0.59 1 0.59
4 0.95 1 0.95
5 0.73 1 0.73
6 0.55 1 0.55

5000 observations
Model Number of regimes (M ) Lag length (p) Both (M and p)

1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1
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TABLE 4. FORECASTING RESULTS.

The table shows the ratio of mean squared errors (MSE) from different competing specifications and the hetero-
geneous autoregressive (HAR-RV) model. Numbers below one indicate that the competing model outperforms
the HAR-RV benchmark. The HAR-RV model is estimated with averages over one, five, and 22 days. The
competing specifications are as follows: (1) linear ARFIMA; (2) nonlinear ARFIMA with time as transition
variable; (3) nonlinear ARFIMA with past daily returns as transition variable; (4) nonlinear ARFIMA with past
cumulated returns over five days as transition variable; (5) nonlinear ARFIMA with past cumulated returns over
ten days as transition variable; (6) nonlinear ARFIMA with past cumulated returns over 22 days as transition
variable; (7) nonlinear ARFIMA with past cumulated returns over 66 days as transition variable; (8) nonlinear
ARFIMA with past cumulated returns over 252 days as transition variable; (9) nonlinear ARFIMA with past
average volatility over one day as transition variable; (10) nonlinear ARFIMA with past average volatility over
five days as transition variable; (11) nonlinear ARFIMA with past average volatility over 22 days as transition
variable.

Series (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
AA 0.99 1.09 0.99 0.99 1.00 0.99 1.03 1.02 0.98* 0.99 0.99
AIG 0.99 1.01 0.97** 0.98 0.96* 0.98* 0.98** 0.99 0.98* 0.98* 0.99
AXP 1.01 1.05 0.96** 0.98 1.00 1.00 1.00 1.01 0.97* 0.98* 0.98
BA 1.00 1.06 0.99** 0.98 0.99 0.99 0.97 1.00 0.98* 1.00 1.00

CAT 1.01 1.02 0.98** 0.98 1.00 1.01 0.99 1.01 0.98* 0.99 0.98
DD 1.04 1.08 1.01 1.02 1.02 1.03 1.04 1.04 1.00 0.99 1.00
DIS 1.01 1.07 0.98* 1.00 1.03 1.00 1.02 1.01 0.98* 0.99 0.99
GE 0.99 1.00 0.95* 0.97 0.96 0.98 0.99* 0.99 0.99 0.98 0.98
GM 1.01 1.02 0.99* 0.98 1.00 1.00 0.97* 1.01 1.00 1.00 1.00
HD 1.01 1.04 0.98* 0.98 0.99 1.00 1.00* 1.01 0.99 0.99 0.99

HON 0.95* 1.52 0.93** 0.93* 0.94 0.93 0.94** 0.93* 0.94 0.94 0.98
IBM 0.99 0.99*** 0.93** 0.95* 0.96 0.98 0.98* 0.99 1.02 0.99 0.99
JNJ 0.99 0.99*** 0.94** 0.98* 0.96* 0.97 0.99* 1.01 0.99 0.98 0.99
JPM 1.00 1.20 0.97** 0.98* 0.98* 0.98 0.99* 1.00 0.98 0.98 0.99
KO 1.01 1.03 0.99** 0.99* 1.00 1.03 1.01 1.01 1.00 1.00 1.01

MCD 1.00 1.03 0.99** 1.00* 1.00 0.99 1.01 1.00 0.99 1.00 1.00
MMM 0.99 1.01 0.96** 0.97* 0.98 0.97 0.98* 0.97 0.97 0.97 0.97

MO 1.00 1.01 0.97** 0.98* 0.98 0.98 1.00 0.98 0.99 1.00 0.98
MRK 0.99 1.01 0.99** 1.00* 1.00 0.99 1.00 0.99 0.99 0.99 0.99
PFE 1.00 1.00 0.99** 1.00* 1.01 1.00 1.03 1.00 0.99 1.00 1.00
PG 1.03 1.04 1.02 1.03 1.03 1.03 1.03 1.03 1.04 1.02 1.04

UTX 0.99 1.17 0.97** 0.97* 0.98 0.98 0.99 0.99 0.99 0.97 1.02
WMT 1.03 0.91*** 0.99* 1.03 1.03 1.06 1.05 1.03 0.99 1.02 1.01
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FIGURE 1. Transition functions and transition variables. The panels report,
top to bottom, the time evolution of the transition function, the transition vari-
able, and the scatter plot of the transition function versus the transition variable.
Plot (a): AIG. Plot (b): GM. Plot (c): IBM.
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