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1 Introduction

This paper investigates the relationship between equity returns and short-
term interest rates. Often, this relationship is examined in the context of
one or other of two issues. First, the widespread theoretical and empirical
evidence that suggests the volatility of short-term interest rates peaks with
the level of the short-term rate; this is often referred to as the levels effect.
Second, an asymmetry in volatility, that is the revision to the expected condi-
tional volatility following a positive innovation does not equal the revision to
expected volatility that occurs after a negative innovation of equal absolute
magnitude. This asymmetry is associated in particular with equity returns;
equity volatility is highest as prices trend downwards. A similar asymmetry
is possible in interest rates. In this paper, however, we examine the impact of
interest rate innovations on equity returns in a multivariate framework that
allows for both levels effects and asymmetric responses to shocks.
There is a wide literature on the negative correlation between the nominal

excess return on equity and the nominal interest rate.1 Fama and Schwert
(1977), for example, examine whether this negative correlation can be used
to forecast periods where the expected excess return on equities is negative.
Schwert (1981), Geske and Roll (1983) and Stulz (1986), inter alia argue
that the negative correlation arises from the influence of inflation on equity
returns and that this is proxied by the bill rate. Fama (1976), on the other
hand, attributes changing risk premia in the term structure of bill rates to
changing uncertainty about nominal interest rates (which is a proxy for in-
flation uncertainty). Campbell (1987) argues that there is information in
shorter maturity debt instruments that is useful in predicting excess returns
on both bonds and equities. In the same vein, Breen, Glosten and Jagan-
nathan (1989) find that the one-month interest rate is useful in forecasting
the sign and the variance of the excess return on equities. Glosten, Ja-
gannathan and Runkle (1993) develop a GARCH-M model that allows the
conditional volatility to respond differently to positive and negative innova-
tions. Their model also includes the nominal short-term interest rate as a
variable to predict the conditional variance of equity returns.
Widespread evidence also exists that suggests the volatility of equity re-

turns is higher in a bear market than in a bull market. One potential ex-
planation for such asymmetry in variance is the so-called ‘leverage effect’ of
Black (1976) and Christie (1982). As equity values fall, the weight attached

1See, for instance, Fama and Schwert (1977), Breen, Glosten and Jagannathan (1989),
Keim and Stambaugh (1986), Ferson (1989), Campbell (1989), Campbell and Ammer
(1993), Fama (1990), Schwert (1990), Shiller and Beltratti (1992) and Boudoukh, Richard-
son and Whitelaw (1994), inter alia.
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to debt in a firm’s capital structure rises, ceteris paribus. This induces eq-
uity holders, who bear the residual risk of the firm, to perceive the stream of
future income accruing to their portfolios as being relatively more risky. An
alternative view is provided by the ‘volatility-feedback’ hypothesis of Camp-
bell and Hentschel (1992). Assuming constant dividends, if expected returns
increase when equity price volatility increases, then equity prices should fall
when volatility rises. Nelson (1991), Engle and Ng (1993), Glosten, Jagan-
nathan and Runkle (1993), Braun, Nelson and Sunnier (1995), Kroner and
Ng (1995), Henry (1998), Henry and Sharma (1999), Engle and Cho (1999),
and Brooks and Henry (2002), inter alia, provide evidence of time-variation
and asymmetry in the variance-covariance structure of asset returns.
There is a also a large theoretical and empirical literature arguing that the

volatility of short-term interest rates depends on the level of short-term in-
terest rates. Chan, Karolyi, Longstaff and Sanders (1992) estimate a general
non-linear short rate process which nests many of the short rate processes
currently assumed in the literature. Using US data Chan et al. provide
estimates of the level effect parameter that differs from the majority of the
theoretical literature. Brenner, Harjes and Kroner (1996) show that the
sensitivity of interest rate volatility to levels is substantially reduced when
volatility is a function of both levels and unexpected shocks.
Optimal inference about the conditional mean of a vector of returns re-

quires that the conditional second moments be correctly specified. Whether
neglected levels effects and/or asymmetries represents a specification error
depends on whether these non-linearities are features of the data. However, a
major difficulty in testing the null of no levels effect is the potential presence
of an unidentified parameter under the null which causes such tests to have
non-standard distributions. A contribution of this paper is to present, for
the first time, a joint test for a level effect and asymmetry in volatility that
is robust to the presence of the unidentified nuisance parameters under the
null hypothesis. We use the results of this test to inform our conditional
characterisation of the relationship between equity returns and short-term
interest rates.
Our focus in the empirical section of the paper is a model of the joint

distribution of US short-term interest rates and equity returns that allows
for linear and non-linear causality and admits interaction within and across
the conditional mean and conditional variance-covariance matrix. The bi-
variate GARCH-M models we propose allow us to test (i) the direction of
causality between equity returns and short rates, (ii) whether the conditional
variance of equity returns and short-term interest rates influence the condi-
tional means of the series, (iii) whether shocks to short-term interest rates
(equity returns) influence the conditional variance of equity returns (short
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term interest rates), (iv) whether positive and negative shocks to short-term
interest rates (equity returns) have the same impact on the elements of the
conditional variance-covariance matrix of equity returns and short-term in-
terest rates, and (v) whether volatilities of equity returns and short-term
interest rates are correlated with the level of the short-term interest rate.
This paper is organised as follows. The next section provides a brief survey

of the literature. Section 3 develops the joint test for asymmetry and a level
effect and reports the results of a Monte Carlo study of the small sample
performance of the test. Section 4 describes the data employed in our study.
The fifth section introduces the multivariate GARCH-M models with level
effects and reports the estimation, specification tests and hypothesis test
results. Section 6 summarizes and concludes.

2 Models of Short Term Interest Rates and
Equity Returns

2.1 Short term interest rates

Consider the general non-linear short rate process, {rt, t ≥ 0} proposed by
Chan et al (1992)

dr = (µ+ λr) dt+ φrδdW. (1)

Here r represents the level of the interest rate, W is a Brownian motion and
µ,λ and δ are parameters. The drift component of short term interest rates
is captured by µ + λr while the variance of unexpected changes in interest
rates equals φ2r2δ. While φ is a scale factor, the parameter δ controls the
degree to which the interest rate level influences the volatility of short term
interest rates.
The Chan et al (1992) model nests many of the existing interest rate

models. For example when δ = 0 then (1) reduces to the Vasicek (1977)
model, while δ = 1/2 yields the Cox, Ingersoll and Ross (1985) model, see
Chan et al (1992) inter alia for further details. Brenner, Harjes and Kroner
(1996) argue that by allowing φ2 to be a time varying function of the informa-
tion set, Ω, one obtains a superior conditional characterisation of short term
interest rate changes. Chan et al (1992), and Brenner, Harjes and Kroner
(1996) inter alia consider the Euler-Maruyama discrete time approximation
to (1) written as

∆rt = µ+ λrt−1 + εr,t. (2)

HereΩt−1 represents the information set available at time t−1 andE (εr,t|Ωt−1) =
0. Letting hr,t represent the conditional variance of the short-term interest
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rate then E
¡
ε2r,t|Ωt−1

¢ ≡ hr,t = φ2r2δt−1. The sole source of conditional het-
eroscedasticity in (2) is through the squared level of the interest rate and
thus excludes the information arrival process.
One common approach to capturing the effect of news is the GARCH(1,1)

model
hr,t = α0 + βhr,t−1 + α1ε

2
r,t−1. (3)

The innovation εr,t represents a change in the information set from time
t − 1 to t and can be treated as a collective measure of news. In (3) only
the magnitude of the innovation is important in determining hr,t. Brenner,
Harjes and Kroner (1996) extend (2) to allow for volatility clustering caused
by information arrival using

∆rt = µ+ λrt−1 + εr,t.

E (εr,t|Ωt−1) = 0, E
¡
ε2r,t|Ωt−1

¢ ≡ hr,t = φ2t r
2δ
t−1

φ2t = α0 + α1ε
2
r,t−1 + βφ2t−1 (4)

In high information periods when the magnitude of εr,t is largest then
the sensitivity of volatility to the level of short term interest rates is highest.
Under the restriction α1 = β = 0, (4) collapses to (2) and volatility depends
on levels alone. Furthermore when δ = 0 then there is no levels effect.
An alternative approach to modelling volatility clustering and levels ef-

fects is the extended GARCH model

hr,t = α0 + α1ε
2
r,t−1 + βhr,t−1 + brδt−1. (5)

Under the null hypothesis α1 = β = 0, volatility depends on interest rate
levels alone. If b = 0 then there is no levels effect, however under this null the
parameter δ is unidentified and so tests of the null hypothesis H0 : b = 0 will
have a non-standard distribution, see Davies (1987) for further details. Henry
and Suardi (2004b) present a test for the null of no levels effect which corrects
for the Davies problem. Other authors test the null H0 : b = 0 assuming δ is
known, for instance Longstaff and Schwartz (1992) and Brenner, Harjes and
Kroner (1996) assume δ = 1.0 while Bekaert, Hodrick and Marshall (1997)
assume δ = 0.5.

2.2 Equity returns

Black and Scholes (1973) assume that equity prices are generated according
to

ds = θdt+ σdW, (6)
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where θ and σ are parameters and W is a Weiner process. However, the
differential equation (6) cannot accomodate the usual volatility clustering
observed in financial time series. In addition to this volatility clustering phe-
nomenon, the Black Scholes model of equity price changes does not allow for
the fact that bear markets are more volatile than bull markets. Nelson (1990)
examines the use of ARCH models as diffusion approximations. Furthermore
equity returns are said to display own variance asymmetry if

V AR [∆st+1|Ωt] |εs,t<0 − hs,t > V AR [∆st+1|Ωt] |εs,t>0 − hs,t. (7)

Negative equity return innovations, εs,t < 0, lead to an upward revision of hs,t,
the conditional variance of returns. In the case of asymmetric volatility this
increase in the expected conditional variance exceeds that for a shock of equal
magnitude but opposite sign. Nelson (1991), Engle and Ng (1993), Glosten,
Jagannathan and Runkle (1993) inter alia propose models to capture this
asymmetry. The Glosten, Jagannathan and Runkle (1993) approach extends
(3) using

hs,t = α0 + α1ε
2
s,t−1 + βhs,t−1 + α2η

2
s,t−1. (8)

Here ηs,t−1 = min [0, εs,t−1]. For positive values of α2, negative innovations
to equity returns lead to higher levels of volatility than would occur for a
positive innovation of equal magnitude. The implication of (8) is that the
size and sign of the innovation matters; bad news has more pernicious effects
than good news if α2 > 0.
Engle and Ng (1993) present a test for size and sign bias in conditionally

heteroscedastic models. Define I−t−1 as an indicator dummy that takes the
value of 1 if εs,t−1 < 0 and the value zero otherwise. The test for sign bias is
based on the significance of φ1 in

υ2s,t = φ0 + φ1I
−
t−1 + et, (9)

where υs,t is the standardised residual of stock returns and et is a white
noise error term. If positive and negative innovations to εs,t impact on the
conditional variance of ∆st differently to the prediction of the model, then
φ1 will be statistically significant. It may also be the case that the source of
the bias is caused not only by the sign, but also the magnitude or size of the
shock. The negative size bias test is based on the significance of the slope
coefficient φ1 in

υ2s,t = φ0 + φ1I
−
t−1εs,t−1 + et. (10)

Likewise, defining I+t−1 = 1 − I−t−1, then the Engle and Ng (1993) joint test
for asymmetry in variance is based on the regression

υ2s,t = φ0 + φ1I
−
t−1 + φ2I

−
t−1εs,t−1 + φ3I

+
t−1εs,t−1 + et, (11)
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where et is a white noise disturbance term. Significance of the parameter φ1
indicates the presence of sign bias. That is, positive and negative realisations
of εs,t affect future volatility differently to the prediction of the model. Simi-
larly significance of φ2 or φ3 would suggest size bias, where not only the sign,
but also the magnitude of innovation in return is important. A joint test
for sign and size bias, based upon the Lagrange Multiplier Principle, may be
performed as T.R2 from the estimation of (11).
Glosten, Jagannathan and Runkle (1993) conclude that the level of the

short term interest rate contains information that is useful in predicting
future equity return volatility. Their full model may be written as

hs,t = α0 + α1ε
2
s,t−1 + βhs,t−1 + α2η

2
s,t−1 + br

δ
t−1. (12)

Glosten, Jagannathan and Runkle (1993) assume that δ = 1.0. If this as-
sumption is invalid then the evidence of non-linear causality from interest
rates to equity return volatility must be considered tenuous. Secondly, this
model imposes one-way non-linear causality from interest rates to equity
returns. Should a feedback relationship exist then (12) would represent a
misspecified model.
Henry and Suardi (2004a) discuss the problems associated with testing

for asymmetry in the face of a neglected levels effect. They present Monte-
Carlo evidence that the Engle and Ng (1993) tests for size and sign bias
are prone to spuriously reject the null of no asymmetry in the face of an
unparameterised levels effect. In the next section we develop a joint test for
the presence of asymmetry and levels effects.
In the event of non-linear causality more complex asymmetries may exist.

For example, if the revision of the expected conditional variance of ∆st+1
differs across positive and negative interest rate innovations then expected
conditional variance of ∆st is said to display cross variance asymmetry

V AR [∆st+1|Ωt] |εr,t>0 − hs,t > V AR [∆st+1|Ωt] |εr,t<0 − hs,t. (13)

Covariance asymmetry occurs if

COV [∆st+1,∆rt+1|Ωt] |εr,t<0 − hrs,t 6= COV [∆st+1,∆rt+1|Ωt] |εr,t>0 − hrs,t
(14)

or

COV [∆st+1,∆rt+1|Ωt] |εs,t<0 − hrs,t 6= COV [∆st+1,∆rt+1|Ωt] |εs,t>0 − hrs,t.
(15)

Brooks and Henry (2002), Brooks Henry and Persand (2003) and Henry,
Olekalns and Shields (2004) inter alia capture time variation and asymmet-
ric response to shocks in the variance covariance matrix using multivariate
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GARCH-M models. However the question of levels effects and asymmetric
responses is largely unexplored.

2.3 A Lagrange Multiplier Test for Level Effects and
Asymmetry

In developing a test for the joint null of asymmetry and levels effects an
asymmetric GARCH model with a level effect provides a natural starting
point.

∆rt = εt

εt|Ωt−1 v N(0, ht) (16)

ht = αo + α1ε
2
t−1 + βht−1 + brδt−1 + α2η

2
t−1

where β + α1 < 1, and β, αi, b > 0 for i = 0, 1 and 2. If ηt−1 = min(0, εt−1)
then negative innovations have a greater initial impact of magnitude α1+α2
on the volatility of the short rate change than a positive innovation of equal
magnitude which has initial impact of size α1. This model specification (16)
is commonly employed in the empirical short rate literature (see Brenner et
al., 1996; Christiansen, 2002; Ferreira, 2000; Bali, 1999). The asymmetric
component introduced in the conditional variance specification takes on the
Glosten, Jagannathan and Runkle (1993) asymmetric form. Despite the com-
monly observed asymmetric specification in (16), there is no reason why we
should not test for a model where the volatility asymmetry stems from a pos-
itive rather than a negative innovation, in which case, ηt−1 = max(0, εt−1).
In fact, the joint test for negative sign (and size) asymmetry and a level
effect is trivial to extend to the case of positive sign (and size) asymmetry.
Unlike equity returns, it is more likely that a positive innovation to the short
rate may bring about higher volatility than a negative innovation of equal
magnitude. Higher interest rates are often associated with higher costs of
borrowing funds in the credit market and may signal that the economy is
over heated. The level effect is captured by the dependence of the condi-
tional volatility of the short rate change on the lagged short rate level. Its
persistence is governed by the parameters b and δ.2

2Implicitly the conditional mean of (16) is equivalent to∆rt = µ+λrt−1+εr,t under the
restriction µ = λ = 0. This restriction is consistent with the evidence provided by Chan,
Karolyi, Longstaff and Saunders (1992), Longstaff and Schwartz (1992), and Brenner,
Harjes and Kroner (1996), inter alia. Allowing for mean reversion in the DGP requires
λ < 0. Further Monte Carlo simulations allowing for weak mean reversion λ = −0.01,−0.05
suggest that performance of the LM1 (δ

∗) and LM1 (δ
∗) is not significantly altered. These

results are available from the authors upon request.
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The null hypothesis we consider is that of a symmetric GARCH(1,1) while
the alternative is an asymmetric GARCH(1,1) with a level effect. This may
be formulated as follows

H0 : α2 = b = 0

H1 : Either α2 and/or b 6= 0.
Sequential substitution for ht−1 and a first order Taylor series expansion
about δ∗ to linearise the level effect term (16) yields

ht =
t−1X
i=1

βi−1αo +
t−1X
i=1

βi−1α1ε2t−i + βt−1h1 +
t−1X
i=1

βi−1brδ
∗
t−i (1− δ∗ ln rt−i)

+
t−1X
i=1

βi−1φrδ
∗
t−i ln rt−i +

t−1X
i=1

βi−1α2η2t−i (17)

The null hypothesis of no level effect and no asymmetry may be reformulated
as H0 : b = φ = α2 = 0 where φ = bδ. Under the assumption that the the
residual εt is conditionally normally distributed, the Lagrange Multiplier test
statistic under the null hypothesis is

1

2

(
TX
t=1

·
ε2t
h̃t
− 1
¸ ·
1

h̃t

∂ht
∂$

¸)0( TX
t=1

·
1

h̃t

∂ht
∂$

¸ ·
1

h̃t

∂ht
∂$

¸0)−1( TX
t=1

·
ε2t
h̃t
− 1
¸ ·
1

h̃t

∂ht
∂$

¸)
(18)

where

∂ht
∂$0 =



Pt−1
i=1 β̂

i−1Pt−1
i=1 β̂

i−1
ε2t−iPt−1

i=1 β̂
i−1
h̃t−iPt−1

i=1 β̂
i−1
rδ
∗
t−i(1− δ∗ ln rt−i)Pt−1

i=1 β̂
i−1
rδ
∗
t−i ln rt−iPt−1

i=1 β̂
i−1

η2t−i



0

;

h̃t is the conditional variance under the null of GARCH(1,1), $0 is the vector
of parameters (α0,α1,β, b,φ,α2), and β̂ is the estimated parameter β in the
GARCH(1,1) model. The LM test statistic (18) is asymptotically equivalent
to T ·R2 from the Outer Product Gradient auxiliary regression of·

ε2t
h̃t
− 1
¸
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on Xt where

X 0
t=
1

h̃t



Pt−1
i=1 β̂

i−1Pt−1
i=1 β̂

i−1
ε2t−iPt−1

i=1 β̂
i−1
h̃t−iPt−1

i=1 β̂
i−1
rδ
∗
t−i(1− δ∗ ln rt−i)Pt−1

i=1 β̂
i−1
rδ
∗
t−i ln rt−iPt−1

i=1 β̂
i−1

η2t−i


. (19)

Here T is the sample size and R2 is the coefficient of determination from
the regression (19). We refer to this test statistic as LM(δ∗) since it is
computed using a set of theoretical values for δ∗ = {0, 0.5, 1, 1.5}. The test
is approximately distributed as a Chi-square with three degrees of freedom,
however we provide simulated critical values to allow for the approximation
error.
Preliminary Monte Carlo experiments suggest that the empirical size of

LM(δ∗) is significantly larger than the nominal size. This size distortion may
result from a violation of the usual orthogonality conditions. The normalized
residuals, υ̃t ≡ εt/

√
ht should be orthogonal to

1

h̃t

"
t−1X
i=1

β̂
i−1
,
t−1X
i=1

β̂
i−1

ε2t−i,
t−1X
i=1

β̂
i−1
h̃t−i

#
, (20)

but in practice exact orthogonality may not always hold because of the highly
nonlinear structure of the model. In the event that these orthogonality condi-
tions fail to hold, the empirical size of the test statistic may be distorted (see
Engle and Ng , 1993, pp.1759). 3 To correct for the apparent upward bias
in the empirical size of the test statistic, we employ the method introduced
by Eitrheim and Teräsvirta (1996) and Engle and Ng (1993, pp. 1759). The
procedure involves ensuring υ̃t is orthogonal to (20). This is done by:

1. Regressing ·
ε2t
h̃t
− 1
¸

on (20). The residuals from this regression, {ẽt}Tt=1, will by construction
be orthogonal to (20).

3Another plausible reason for the observed upward bias in the test statistic’s empirical
size is due to the poor finite sample properties of the Outer Product Gradient regression
based tests (see Davidson and MacKinnon (1993, pp. 477)).
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2. Then regress ẽt on Xt specified in equation (19) and compute the re-
gression R2. The test statistic which is labelled LM1(δ

∗) is set equal
to T · R2 and again is approximately distributed as a Chi-square with
three degrees of freedom.

2.4 A Monte Carlo Experiment

2.4.1 The Simulated Size of the Test Statistics

To study the simulated size of the joint test statistic we generate data from
the simple GARCH(1,1) process

∆rt = εt , εt =
p
ht · vt where vt v i.i.d.N(0, 1) (21)

ht = α0 + α1ε
2
t−1 + βht−1

We examine the effect of increasing persistence in the conditional variance
on the simulated size of the LM(δ∗) and LM1(δ

∗) test statistics. Following
Engle and Ng’s (1993) Monte Carlo study, we employ three sets of parameter
values:

1. model H (for high persistence), where (α0,β,α1) = (0.01, 0.9, 0.09) and
α1 + β = 0.99

2. model M (for medium persistence), where (α0,β,α1) = (0.05, 0.9, 0.05)
and α1 + β = 0.95

3. model L (for low persistence), where (α0,β,α1) = (0.2, 0.75, 0.05) and
α1 + β = 0.80.

To mitigate the effect of start-up values in all the experiments, we discard
the first 500 observations yielding samples of 500, 1000 and 3000 observations,
drawn with 10,000 replications. Once the data have been generated, we esti-
mate a GARCH(1,1) specification by maximizing the log-likelihood function
using the Broyden, Fletcher, Goldfarb and Shanno (BFGS)4 algorithm. The
level effect test is then calculated on the resulting standardised residuals
using the test statistics LM(δ∗) and LM1(δ

∗) for δ∗ = {0, 0.5, 1.0, 1.5}. Be-
cause of the highly non-linear structure of the models, in a small fraction of
these replications, the convergence criterion is not satisfied. In such cases,
new replications are added to ensure that there are 10,000 converged repli-
cations. To conserve space we report the results for the LM1(δ

∗). We note
that there is some distortion in the empirical size of the uncorrected LM(δ∗)

4The BFGS algorithm with numerical derivatives is discussed in Judd (1988, pp. 114).
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test regardless of the degree of persistence in the GARCH or the strength of
the levels effect at all sample sizes. These results are available upon request
from the authors.

-Table 1 about here-

The Monte Carlo evidence presented in Table 1 suggests that the cor-
rected test, LM1(δ

∗), exhibits small size distortions for all data generating
processes considered. However, for a sample of 3000 observations the empir-
ical size of LM1(δ

∗) is close to the nominal size. The empirical size of the
joint test statistic also appears to be invariant to the parameter value of δ∗

used in the Taylor series approximation.

2.4.2 The Simulated Power of the Test Statistics

The next Monte Carlo experiment examines the simulated power of the
LM1(δ

∗) test. The data are generated according to

∆rt = εt

εt =
p
ht · vt where vt v i.i.d.N(0, 1) (22)

ht = 0.005 + 0.7 · ht−1 + 0.28 · [|εt−1|− 0.23 · εt−1]2 + brδt−1
A similar specification for the conditional variance equation was employed
by Engle and Ng (1993).
The simulated power is illustrated for differing degrees of persistence in

the level effect through changing the values of b and δ. The set of parameter
values are b = {0.01, 0.5, 0.99} and δ = {0, 0.5, 1, 1.5}. The results for a
sample of 3000 observations are reported in Tables 2a - 2c, respectively,
using the simulated critical values, reported in Table 3 for different degrees
of persistence in the GARCH structure.

-Tables 2a,2b and 2c about here-

Across the different combinations of b and δ values the test rejects the null
hypothesis of no asymmetry and no levels effect in at least 95% of simulations
for each data generating process. The joint test displays significant size
adjusted power across all δ∗ values considered.

-Table 3 about here-
Empirical critical values reported in Table 3 are obtained from the empirical
size of the corrected joint test statistic. It is worth noting that these values
are relatively close to the relevant χ2 (3) variate indicating that the χ2 (3)
may be a useful approximation to the true distribution of the test, especially
for relatively large samples.
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3 Data Description

Equity prices and short-term interest rates were sampled at a weekly fre-
quency over the period January 5, 1965 to November 04, 2003, yielding 2027
observations. The short term interest rate series is the U.S. three-month
Treasury bill rate taken from the Federal Reserve Bank of St. Louis Eco-
nomic Database. The Standard and Poor 500 (S&P 500) Composite equity
price index was obtained from Datastream. Figure 1 plots the level and
change in the U.S. three-month Treasury bill yield (∆rt). Visual inspection
of Figure 1 suggests that the short rate (i) is most volatile between 1979 and
1982 which includes the period of change in Federal Reserve monetary policy,
(ii) that the volatility of ∆rt increases with the level of the short rate and
(iii) that ∆rt displays volatility clustering.

-Figure 1 about here-

The equity return is constructed as ∆st = ln(Pt/Pt−1) × 100 where Pt
represents the level of the S&P500 index in period t. From Figure 2, it is
evident that equity return displays volatility clustering. The sharp increase
in volatility around the period of October 1987 coincides with the equity
market crash.

-Figure 2 about here-

Table 4 presents summary statistics for the data series. There is strong
evidence of a unit root in the levels Pt and rt. However, the S&P 500 eq-
uity return and the change in short rate appear stationary. Both ∆st and
∆rt display strong evidence of excess kurtosis. The Bera Jarque (1982) test
for the normality of ∆st and ∆rt is significant. Engle’s (1982) LM test for
ARCH, performed using the squared residuals from a fifth order autoregres-
sion provides strong evidence of conditional heteroscedasticity in ∆st and
∆rt.

-Table 4 about here-

Engle and Ng (1993) sign and size bias tests results are reported in Table
4. For equity returns, the tests for negative sign, negative size and positive
size biases are significant at the 10% level. The joint test for sign and size
biases further confirms that equity return volatility responds asymmetrically
to the sign and size of an innovation. In contrast, there is no statistical
evidence supporting asymmetric volatility in the short rate change. The test
for a level effect alone and the joint test for the null of no level effect and no
asymmetry suggest that there is strong evidence that the volatility of ∆rt
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is dependent on the lagged short rate level. On the other hand, the null
hypothesis of no level effect is satisfied for the equity returns data.

4 The Empirical Models

Given the evidence of conditional heteroscedasticity, asymmetry and level
effects reported in Table 4, we model the joint data generating process un-
derlying equity returns and changes in the short rate using a V AR(m) −
GARCH(p, q)−M model. The conditional mean of the model can be writ-
ten as

Yt = µ+
mX
i=1

ΓiYt−i +Ψvech(Ht) + εt (23)

Yt =

·
∆st
∆rt

¸
;µ =

·
µs
µr

¸
;Γi =

"
Γ
(s)
i,s Γ

(s)
i,r

Γ
(r)
i,s Γ

(r)
i,r

#
;

Ψ =

·
ψ1,s 0 ψ1,r
ψ2,s 0 ψ2,r

¸
; εt =

·
εs,t
εr,t

¸
where ‘vech’ is the column stacking operator of a lower triangular matrix.
The test for the absence of linear Granger causality from ∆rt to ∆st is just
a test of the restriction H0 : Γ

(s)
i,r = 0. Similarly, whether ∆st linearly causes

∆rt simplifies to a test of the restriction H0 : Γ
(r)
i,s = 0. The statistical

significance of the GARCH specification in the conditional mean equation
may also tested using the restrictions H0 : ψi,s = ψi,sr = ψi,r = 0 ∀ i = 1, 2.
Under the assumption εt|Ωt ∼ N(0,Ht), where

Ht =

·
hs,t hsr,t
hrs,t hr,t

¸
the model may be estimated using maximum likelihood methods subject
to the requirement that Ht be positive definite for all values of εt in the
sample. Bollerslev and Wooldridge (1992) argue that, in the case of univari-
ate GARCH models, asymptotically valid inference regarding normal QML
estimates may be based upon robustified versions of the standard test statis-
tics. The QML estimator for Multivariate GARCH models was shown to be
strongly consistent by Jeantheau (1998), while Comte and Lieberman (2000)
prove the asymptotic normality of the estimator.
To allow for the possibility of asymmetric responses to shocks we extend

14



the BEKK approach of Engle and Kroner (1995) yielding

Ht = C∗
0
o C

∗
o +A

∗0
11εt−1ε

0
t−1A

∗
11 +B

∗0
11Ht−1B

∗
11 +D

∗0
11ξt−1ξ

0
t−1D

∗
11

C∗o =

·
c∗11 c∗12
0 c∗22

¸
;A∗11 =

·
a∗11 a∗12
a∗21 a∗22

¸
;B∗11 =

·
b∗11 b∗12
b∗21 b∗22

¸
;

D∗11 =

·
d∗11 d∗12
d∗21 d∗22

¸
; ξt−1 =

·
ξs,t−1
ξr,t−1

¸
=

·
min{εs,t−1, 0}
max{εr,t−1, 0}

¸
. (24)

Following Kroner and Ng (1996) there are three possible forms of asym-
metric behaviour that the time-varying covariance matrix model can display.
Firstly, the covariance matrix exhibits own variance asymmetry if hs,t (hr,t),
the conditional variance of equity returns (short rate changes) is affected by
the sign of the innovation in equity returns (short rate changes). Secondly,
cross-variance asymmetry occurs when the sign of εs,t−1 (εr,t−1) impacts in a
statistically significat fashion on the magnitude of hr,t (hs,t). Thirdly, if the
covariance of equity returns and changes in the short rate is affected by the
sign either εs,t−1 or εr,t−1, then the model displays covariance asymmetry.
We further propose two extensions to (24) to allow for levels effects.

Firstly, consider the modified multivariate asymmetric GARCH-M model,

Ht = C∗
0
o C

∗
o +A

∗0
11εt−1ε

0
t−1A

∗
11 +B

∗0
11Ht−1B

∗
11 +D

∗0
11ξt−1ξ

0
t−1D

∗
11 +E

∗0
11E

∗
11r

δ
t−1

E∗11 =

·
e∗11 e∗12
e∗21 e∗22

¸
. (25)

Equation (25) captures an additive levels effect. However, a disadvantage
of this approach is that, under the null hypothesis of no levels effect, the
distribution of a test of H0 : e∗11 = e

∗
12 = e

∗
21 = e

∗
22 = 0 will be non-standard

because δ is unidentified under the null.
We may use (25) to test for non-linear Granger causality between equity

returns and changes in the short term interest rate. For instance a test of
the restriction a∗12 = a

∗
21 = b

∗
12 = b

∗
21 = d

∗
12 = d

∗
21 = 0 rules out spillovers in

variance. If this null is satisfied then the non-linear causality occurs through
the levels effect alone. The joint null of no non-linear causality and no levels
effect implies the restriction a∗12 = a

∗
21 = b

∗
12 = b

∗
21 = d

∗
12 = d

∗
21 = e

∗
11 = e

∗
21 =

0.We employ Davies’ (1987) upper bound approach to allow for the nuisance
parameter δ which is unidentified under this null. It is straightforward to
test for no variance and covariance asymmetry in ∆st and ∆rt using H0 :
d∗11 = d∗21 = 0 and H0 : d∗12 = d∗22 = 0, respectively. A joint test of the
restriction H0 : d∗11 = d∗21 = d∗12 = d∗22 = 0 examines whether Ht responds
asymmetrically to positive and negative shocks to ∆st and ∆rt.
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An alternative approach is the multiplicative levels effect model ,

Ht = Φt · rδt−1
Φt = C∗

0
o C

∗
o +A

∗0
11εt−1ε

0
t−1A

∗
11 +B

∗0
11Φt−1B

∗
11 +D

∗0
11ξt−1ξ

0
t−1D

∗
11. (26)

Under the null of no levels effects H0 : δ = 0 , Ht = Φt and (26) collapses to
the asymmetric BEKK model (24). Notice that the three types of asymmet-
ric response to shocks, namely own variance, cross variance and covariance
asymmetry, are preserved in the time-varying variance-covariance matrix.
In contrast to the additive level effects model, testing for no level effect in
the multiplicative model is straightforward since under the null hypothesis
H0 : δ = 0 there are no unidentified parameters.

5 Results

5.1 Additive Level Effects Model

Table 5 summarizes the quasi-maximum likelihood estimates of the multi-
variate asymmetric GARCH model with additive level effects. The lag order
of the VAR, m, is chosen using the Schwarz (1979) Information Criteria. A
VAR(5) was considered optimal.

-Table 5 about here-

The conditional variance-covariance structure displays strong evidence of
GARCH, asymmetry and a level effect. With the exception of â∗11 all esti-
mated elements of the A∗11 matrix are significant. Similarly all the elements
of B∗11 except b̂

∗
21 are significant. This, coupled with the significance of d̂

∗
11,

suggests that equity return volatility is driven by news about interest rates,
εr,t−1, bad news about equity returns, ηs ,t−1, and lagged past conditional
variances of ∆rt and ∆st. On the other hand hr,t appears to be determined
by εr,t−1, and εs,t−1. At the 5% level of significance there is no evidence of
asymmetry as neither d∗21 nor d

∗
22 are significant.

-Table 6 about here-

The multivariate asymmetric GARCH-M additive level effects model ap-
pears well specified. The residual diagnostic tests, reported in Table 6, show
that the standardised residuals, zi,t = εi,t/

p
hi,t where i = r, s, have a mean

that is not significantly different from zero. Their variances are also approxi-
mately equal to one. The standardised residuals and the squared standardised
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residuals are free from up to fifth order serial correlation. However, the dis-
tributions of both residuals show evidence of negative skewness, while the
distribution of the equity return residual is leptokurtic.5

-Table 7 about here-

Table 7 presents results from a series of hypothesis tests based on the
additive model. A test of the null hypothesis of no linear Granger causality
from ∆st to ∆rt is satisfied for the data. Similarly, the null hypothesis of
no reverse causuality is also satisfied at all usual levels of significance.
The conditional variance of stock returns, hs,t is individually significant

and impacts negatively on ∆rt. However this result should be viewed with
some caution as the null hypothesis of no GARCH -in-mean effects in the
model as a whole is satisfied at the 5% level. There is strong evidence of
non-linear Granger causality in the data. A Wald test for diagonality of the
A∗11, B

∗
11, D

∗
11, and E

∗
11 matrices is not satisfied for the data at any level of

significance. In addition, the null hypothesis of a symmetric GARCH BEKK
model is also rejected.
In testing the null of no level effects in the equity return conditional vari-

ance (that is H0 : e∗11 = e∗21 = 0), δ represents an unidentified nuisance
parameter. Our Likelihood Ratio test of this restriction employs the Davies
(1987) upper bound significance approach to allow for these unidentified nui-
sance parameters under the null. Defining L0 and L1 as the value of the
log-likelihood under the null and alternative respectively, LR = 2(L1 − L0).
Following Garcia and Perron (1996) if we assume that the likelihood ratio
has a single peak, the significance of LR possesses an upper bound that is
given by Pr(χ2v > LR) + 2

(1−υ/2)(LR)v/2 exp(−LR/2)/Γ(v/2) where v is the
number of identified parameters under the alternative hypothesis and Γ(.)
denotes the gamma function. The evidence suggests that the short rate level
influences the conditional variance of equity returns in a statistically signif-
icant fashion. Glosten, Jagannathan and Runkle (1993) set δ = 1 in their
model, this restriction is not satisfied at any usual level of confidence for our
data.
Using a similar approach, the null of no level effects is not satisfied for

hr,t at all usual significance levels. The null of no level effects in both equity
returns and short rate conditional variance and covariance is also rejected
at all standard levels of significance. The evidence suggests that the level of

5Newey (1985) and Nelson (1991) conditional moment tests were also used to examine
the orthogonality conditions implied by the model. The results, which are available upon
request, suggest that the model provides an adequate conditional characterisation of the
data.
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the short rate affects all elements of the variance-covariance matrix. When
short-term interest rates are high, the volatility of short term interest rates
and equity returns will be high, but hrs,t will also be high.
There is strong evidence of own variance and covariance asymmetry in

equity returns. The null hypotheses H0 : d∗11 = 0, and H0 : d
∗
11 = d

∗
21 = 0

are not satisfied for the data. A test of the hypothesis H0 : d∗21 = 0 provides
no evidence that the conditional variance of equity returns is sensitive to
the sign of the innovation in the short rate. The hypotheses H0 : d∗22 = 0,
and H0 : d∗12 = 0 are satisfied for the data implying that short rates do not
display own or cross variance asymmetry. The failure to reject the null of no
short rate variance and covariance asymmetry further confirms the absence
of asymmetric response to news in the conditional volatility of short rates.
Figure 3 presents the estimated elements of Ht for the additive model.

In October 1979 the US Federal Reserve switched policy from targetting the
level of interest rates to targetting the growth of the monetary base. The
impact of this policy switch is clear in Figure 1 and Figure 3; as the level
of rt increased, so did the volality of rt. This is clear in both the raw data
(Figure 1) and the estimated elements of the Ht. The impact of the 1987
equity market crash on the raw data (Figure 2) and on h11 and h12 (Figure
3) is also apparent. 6

Figure 4 displays the estimated conditional correlation between ∆rt and
∆st. The estimated correlation is calculated as ρ̂12 = ĥ12/

³p
ĥ11.

p
ĥ22
´
.

With the exception of the period surrounding the 1987 crash ρ̂12 < 0 for the
pre - 1999 period as discussed by Fama and Schwert (1977), Breen, Glosten
and Jagannathan (1989), Keim and Stambaugh (1986), Ferson (1989), Schw-
ert (1990) and Boudoukh, Richardson and Whitelaw (1994), inter alia. How-
ever since 1999 ρ̂12 > 0. This apparent change in the relationship is likely to
have implications for managing short-term interest rate risk. This is partic-
ularly true given the evidence of levels effects and asymmetric responses in
the estimated elements of Ht.

5.2 Multiplicative Level Effects Model

Table 8 presents the results for the multivariate asymmetric GARCH model
with multiplicative level effects. Again a fifth order VAR was deemed opti-

6Newey (1985) and Nelson (1991) conditional moment tests were also used to examine
the model for sensitivity to the change in Federal Reserve policy setting and the 1987
Crash. The results, which are available upon request, suggest that the model provides an
adequate conditional characterisation of the data.
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mal.
-Table 8 about here-

The estimated elements of A∗11, B
∗
11, and D

∗
11 suggest that hr,t depends on

εs,t and εr,t, but there is no real evidence of own or cross variance asymme-
try in hr,t. Conversely hs,t depends on bad news about equity returns, ξs,t.
There is no evidence that εr,t affects hs,t. However the estimated value of δ
suggests that all elements of the conditional variance-covariance matrix Ht
are significantly affected by the level of the short rate.

-Table 9 about here-

Table 9 presents diagnostic tests for the multiplicative model. The stan-
dardised residuals have zero mean and unit variance. Both zi,t and z2i,t for
i = r, s are free from up to fifth order serial correlation. Apart from some
evidence that the standardised residuals deviate from normality, the multi-
plicative model appears to provide an adequate conditional characterisation
of the data.

-Table 10 about here-

The test for no-causality between ∆st and ∆rt is satisfied at five per cent
significance level. The data also satisfies the null hypothesis of no-reverse
causality at the same level of significance. There is also evidence of GARCH-
in-mean, hs,t and hr,t are jointly significant. The evidence suggests that short
rate volatility exhibits significant explanatory power for equity returns.
The null hypothesis of a diagonal conditional variance model is strongly

rejected by the data. Similarly the null of no asymmetry is not satisfied
at all usual significance levels. The test for no GARCH also supports the
persistence in innovations in both the conditional variance of equity returns
and short rate. Again, hs,t displays own variance asymmetry but only exhibits
cross variance asymmetry at the ten per cent significance level. On the other
hand hr,t clearly does not display own and cross variance asymmetry. The
test for no short rate variance and covariance asymmetry further confirms
the absence of asymmetric volatility in the short rate.
The null of no level effect is rejected at the five per cent significance

level. The significance of the parameter δ suggests that the level of rt exerts
influence on the conditional variance and covariance of ∆st and ∆rt. The
Cox, Ingersoll and Ross (1985) single-factor model implies δ = 0.5, while
Dothan’s (1978) model, the Geometric Brownian Motion process of Black
and Scholes (1973), and Brennan and Schwartz (1980) model imply δ = 1.0.
The Cox, Ingersoll and Ross (1980) model used to study variable rate (VR)
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securities implies δ = 1.5. The evidence in Table 10 is inconsistent with each
of these values.
Figure 5 presents the estimated elements of Ht obtained from the multi-

picative model. The impact of the change in Monetary Policy over 1979-1982
and the 1987 crash on the elements of Ht are apparent.7 The conditional cor-
relation between∆rt and∆st, displayed in Figure 6, has been largely positive
and appears far more volatilie than the pre-1999 sample. Again this would
have implications for the ability of equity investors to cover their positions
against the effects of unexpected movements in short-term interest rates
Taken together, the results in tables 5-10 suggest strongly that a symmet-

ric multivariate GARCH model that does not allow for a level effect would
represent a misspecification of the data. In periods when interest rates were
high, such a model would tend to underforecast the levels of the elements of
Ht. Furthermore this model would produce biased forecasts in periods when
equity markets were trending downwards. Our results point towards the im-
portance of considering a levels effect and asymmetric volatility dynamics in
modelling the time series evolution of the joint variance-covariance of stock
returns and short-term interest rates. In particular, the potential biases aris-
ing from the use of a misspecified model could have serious implications for
risk management strategies. We leave further exploration of these issues on
the agenda for future research.

6 Conclusion

How do interest rate innovations impact on equity returns? At first glance
answering this question appears relatively straightforward. However, the-
ory backed up with widespread empirical evidence sugests that interest rate
volatility is positively correlated with the level of the short-term interest rate.
Similar support exists to suggest that equity volatility is highest when eq-
uity prices are trending downwards. Any adequate attempt to investigate
the relationship between interest rate fluctuations and equity returns should
address these complex non-linear dynamics. Failure to do so could represent
a mispecification of the conditional characterisation of the data, yielding un-
reliable inference.
Detecting a level effect is a non trivial task given the potential presence

of the unidentified exponent parameter under the null hypothesis. Similarly,

7Newey (1985) and Nelson (1991) conditional moment tests were also used to examine
the model for sensitivity to the change in Federal Reserve policy setting and the 1987
Crash. The results, which are available upon request, suggest that the model provides an
adequate conditional characterisation of the data.
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detecting a level effect in the presence of unparameterised asymmetry is not
straightforward. In this paper we develop an LM test for the joint null of
no levels effect and no asymmetry which accomodates the nuisance para-
meter problem. Monte-Carlo evidence suggests that the test has impressive
power for samples of 1000 observations or greater. However, there appear
to be some size distortions, particularly for the smaller samples considered
in our study. The tests provide evidence of a level effect in the sample of
three-month US Treasury Bills examined in this study, but little evidence of
asymmetry. Conversely there is strong evidence of asymmetry in the returns
to the Standard and Poors 500 Index examined but little evidence of a level
effect.
Two approaches are followed in this paper to parameterise the depen-

dence of the conditional variance-covariance matrix of equity returns and the
changes in the short term interest rate on the level of the short-term interest
rate. The evidence from asymmetric multivariate GARCH-M models, with
either additive or multiplicative level effects is consistent; a univariate model
would represent a misspecification of the data. There is strong evidence of
asymmetry to news about equities in equity volatility but no evidence that
interest rate volatility responds asymmetrically to shocks to either series.
There is strong evidence in support of a level effect in interest rate volatility,
and some evidence that equity return volatility peaks as short-term interest
rates peak. Furthermore the evidence suggests that the conditional covari-
ance of changes in the short-term interest rate and equity returns depends
on the level of the short rate and responds asymmetrically to news about
equity returns.
Our estimates of the conditional correlation between equity returns and

the short-term interest rate suggest that the sign of this correlation may have
changed in 1999. The usual negative correlation, often attributed to the
influence of inflation on equity returns is apparent until late 1998. However
since 1999 our results suggest that the correlation has been largely positive.
This change in sign may indicate an expectation of deflation, or that there
may have been a change in the underlying relationship between equity returns
and the short-term interest rate.
These results have implications for risk management. The ability to hedge

equity portfolios against interest rate movements, which depends upon the
conditional correlation between equity returns and short-term interest rate
innovations, may be reduced when short-term interest rates are high and/or
when equity prices are falling.
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Tables and Figures
Table 1: Simulated Size of the Corrected Joint Test Statistic: Actual

Rejection Frequencies When the Null is True

∆rt = εt , εt =
p
ht · vt

vt v i.i.d.N(0, 1)

ht = a0 + a1ε
2
t−1 + βht−1

Persistence H M L
(α0,β,α1) = (0.01, 0.9, 0.09) (α0,β,α1) = (0.05, 0.9, 0.05) (α0,β,α1) = (0.2, 0.75, 0.05)

Sample Size 500 1000 3000 500 1000 3000 500 1000 3000
Actual Rejection Frequencies (%)

δ∗ = 0.0 1% 0.04 2.94 0.95 0.00 2.52 1.07 0.00 1.33 0.89
5% 0.18 7.27 4.97 0.00 6.19 4.59 0.00 5.09 4.15
10% 0.46 13.87 9.56 0.00 11.15 8.35 0.00 10.51 8.23

δ∗ = 0.5 1% 39.77 2.77 2.93 0.00 2.35 1.72 0.00 1.54 0.96
5% 75.48 8.69 5.98 0.02 7.31 5.96 4.85 5.74 4.70
10% 83.34 14.75 11.38 0.54 13.15 10.64 11.02 10.75 10.02

δ∗ = 1.0 1% 0.02 2.36 2.58 6.76 1.76 1.31 0.00 1.47 0.99
5% 0.78 7.22 5.74 64.14 6.90 5.50 1.83 6.16 4.30
10% 2.84 13.45 11.61 84.61 12.81 9.50 6.55 11.19 9.55

δ∗ = 1.5 1% 0.07 2.48 3.15 0.00 1.99 1.51 0.00 0.76 1.17
5% 5.03 8.12 5.59 0.00 6.11 5.19 5.69 5.64 5.07
10% 14.94 15.90 11.75 0.00 13.89 9.28 15.66 11.56 9.97
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Table 2a: Simulated Power of the Corrected Joint Test Statistic for Sample
3000 with GJR Asymmetry: Actual Rejection Frequencies When the Null is

False

∆rt = εt

εt =
p
ht · vt vt v i.i.d.N(0, 1)

ht = 0.005 + 0.7 · ht−1 + 0.28 · [|εt−1|− 0.23 · εt−1]2 + brδt−1
Level Effect b = 0.01, δ = 0.5 b = 0.5, δ = 0.5 b = 0.99, δ = 0.5

H M L H M L H M L
Actual Rejection Frequencies (%)

δ∗ = 0.0 1% 99.26 98.29 99.00 99.49 99.24 99.50 99.36 99.14 99.39
5% 99.77 99.71 99.77 99.87 99.86 99.87 99.83 99.74 99.83
10% 99.84 99.82 99.84 99.96 99.93 99.96 99.87 99.85 99.87

δ∗ = 0.5 1% 99.17 99.17 99.26 99.92 99.92 99.93 99.89 99.89 99.89
5% 99.53 99.59 99.60 99.96 99.97 99.97 99.91 99.93 99.94
10% 99.64 99.71 99.71 99.97 99.98 99.98 99.95 99.95 99.95

δ∗ = 1.0 1% 99.61 99.46 99.61 99.83 99.70 99.81 99.96 99.94 99.96
5% 99.76 99.76 99.80 99.91 99.91 99.93 99.99 99.99 99.99
10% 99.83 99.82 99.85 99.95 99.95 99.96 100 99.99 100

δ∗ = 1.5 1% 99.31 99.31 99.31 99.84 99.84 99.84 99.94 99.94 99.94
5% 99.48 99.60 99.60 99.88 99.94 99.94 99.94 99.95 99.95
10% 99.64 99.72 99.72 99.96 99.97 99.97 99.95 99.97 99.97
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Table 2b: Simulated Power of the Corrected Joint Test Statistic for Sample
3000 with GJR Asymmetry: Actual Rejection Frequencies When the Null is

False

∆rt = εt

εt =
p
ht · vt vt v i.i.d.N(0, 1)

ht = 0.005 + 0.7 · ht−1 + 0.28 · [|εt−1|− 0.23 · εt−1]2 + brδt−1
Level Effect b = 0.01, δ = 1.0 b = 0.5, δ = 1.0 b = 0.99, δ = 1.0

H M L H M L H M L
Actual Rejection Frequencies (%)

δ∗ = 0.0 1% 98.61 98.49 98.93 99.64 9958 99.65 99.69 99.60 99.69
5% 99.69 99.60 99.69 99.92 99.88 99.91 99.94 99.92 99.94
10% 99.81 99.75 99.81 99.95 99.95 99.95 99.97 99.96 99.97

δ∗ = 0.5 1% 100 100 100 100 100 100 100 100 100
5% 100 100 100 100 100 100 100 100 100
10% 100 100 100 100 100 100 100 100 100

δ∗ = 1.0 1% 100 100 100 100 100 100 100 100 100
5% 99.99 100 100 100 100 100 100 100 100
10% 100 100 100 100 100 100 100 100 100

δ∗ = 1.5 1% 100 100 100 100 100 100 100 100 100
5% 100 100 100 100 100 100 100 100 100
10% 100 100 100 100 100 100 100 100 100
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Table 2c: Simulated Power of the Corrected Joint Test Statistic for Sample
3000 with GJR Asymmetry: Actual Rejection Frequencies When the Null is

False

∆rt = εt

εt =
p
ht · vt vt v i.i.d.N(0, 1)

ht = 0.005 + 0.7 · ht−1 + 0.28 · [|εt−1|− 0.23 · εt−1]2 + brδt−1
Level Effect b = 0.01, δ = 1.5 b = 0.5, δ = 1.5 b = 0.99, δ = 1.5

H M L H M L H M L
Actual Rejection Frequencies (%)

δ∗ = 0.0 1% 93.61 92.10 93.68 95.20 94.30 95.26 95.31 94.61 95.38
5% 97.18 96.61 97.11 97.56 97.21 97.51 97.82 97.47 97.78
10% 98.09 97.79 98.11 98.28 98.07 98.30 98.60 98.33 98.61

δ∗ = 0.5 1% 100 100 100 99.99 99.99 99.99 99.97 99.97 99.97
5% 100 100 100 100 100 100 99.97 99.97 99.97
10% 100 100 100 100 100 100 99.97 99.97 99.97

δ∗ = 1.0 1% 100 100 100 99.97 99.97 99.97 99.99 99.99 99.99
5% 100 100 100 99.99 99.99 99.99 100 100 100
10% 100 100 100 99.99 99.99 100 100 100 100

δ∗ = 1.5 1% 100 100 100 99.98 99.98 99.98 100 100 100
5% 100 100 100 99.99 99.99 99.99 100 100 100
10% 100 100 100 99.99 99.99 99.99 100 100 100
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Table 3: Empirical Critical Values for sample size 3000
Persistence H M L

(α0,β,α1) = (0.01, 0.9, 0.09) (α0,β,α1) = (0.05, 0.9, 0.05) (α0,β,α1) = (0.2, 0.75, 0.05)
δ∗ = 0.0 1% 10.876 12.022 10.789

5% 7.183 7.795 7.242
10% 5.649 6.234 5.630

δ∗ = 0.5 1% 11.328 11.338 10.825
5% 8.944 7.815 7.389
10% 6.946 6.251 6.209

δ∗ = 1.0 1% 11.317 12.993 11.343
5% 8.752 8.644 7.799
10% 6.727 7.165 6.027

δ∗ = 1.5 1% 11.337 11.327 11.322
5% 9.444 7.802 7.814
10% 7.149 6.2463 6.251

χ2 (3) 1% 11.3449
5% 7.81473
10% 6.25139

Note: The critical values for 1%, 5% and 10% significance levels based on a Chi-square distribution with

three degrees of freedom are 11.341, 7.815 and 6.251 respectively.
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Table 4: Summary Statistics
Data Series S&P 500 3-mth T-Bill

Return (∆s) Yield Change (∆r)

Mean 0.1244 -0.0014
Variance 5.1729 0.0665
Skewness -0.9522 -0.5434
Kurtosis 16.9413 20.9800
ADF(5) -18.0361 -17.2931
PP(5) -48.0795 -40.6889
KPSS(µ) 0.2046 0.1129
KPSS(τ) 0.0851 0.0224
Jarque-Berra ∼ χ2(2) 16713.39 27390.01

[0.0000] [0.0000]
ARCH(5)∗ 2.6558 61.0037

[0.0212] [0.0000]
Ljung-Box statistic Q(5)∗ 0.2848 0.5167

[0.9980] [0.9920]
Engle and Ng’s Asymmetry Tests

Negative Sign 2.4566 -0.5644
[0.014] [0.5725]

Negative Size -1.8355 -1.2734
[0.0666] [0.2030]

Positive Size -2.1377 -0.0356
[0.0327] [0.9716]

Joint Test 6.8273 4.4458
[0.0776] [0.2172]

Level Effect Test LM0(δ∗)

δ∗ = 0.0 0.0402 15.4085
[0.9801] [4.5090×10−4]

δ∗ = 0.5 0.5016 17.9886
[0.7782] [1.2411×10−4]

δ∗ = 1.0 0.5406 18.9526
[0.7632] [7.6648×10−5]

δ∗ = 1.5 0.5822 19.7303
[0.7474] [5.1953×10−5]

Joint Test for Asymmetry and Level Effects LM1(δ∗)

δ∗ = 0.0 7.4257 15.5410
[0.0595] [0.0014]

δ∗ = 0.5 7.7837 18.0890
[0.0507] [4.2164×10−4]

δ∗ = 1.0 7.8200 19.0395
[0.0501] [2.6830×10−4]

δ∗ = 1.5 7.8283 19.8071
[0.0490] [1.8611×10−4]

Note: ADF(5) and PP(5) include an intercept and trend in the regressions. Both tests

have 1%, 5% and 10% critical values of -3.9642, -3.4128 and -3.1284 respectively. KPSS(µ)
1%, 5% and 10% critical values are 0.739, 0.463 and 0.347 respectively. KPSS(τ ) 1%, 5%
and 10% critical values are 0.216, 0.146 and 0.119 respectively. The figures in parentheses

are p-values. In performing the ARCH tests are performed on the residuals from a fifth

order autoregression.
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Table 5: Estimates of the Multivariate Asymmetric GARCH Additive Level
Effects Model

Conditional Mean Equations
µs ∆st−1 ∆st−2 ∆st−3 ∆st−4 ∆st−5

∆st 0.1259*** -0.0413 0.0183 0.0393*** -0.0145 -0.0342
(0.0443) (0.0282) (0.0224) (0.0089) (0.0349) (0.0322)
∆rt−1 ∆rt−2 ∆rt−3 ∆rt−4 ∆rt−5 Hs,t Hr,t
-0.3694 -0.0388 0.0270 -0.5238 -0.1097 0.0060 -0.4543
(0.2595) (0.6465) (0.3150) (0.4832) (0.1628) (0.0131) (0.3101)

µr ∆st−1 ∆st−2 ∆st−3 ∆st−4 ∆st−5
∆rt 0.0078** 0.0004 -0.0007 -0.0003 0.0002 -0.0005

(0.0036) (0.0011) (0.0011) (0.0012) (0.0015) (0.0012)
∆rt−1 ∆rt−2 ∆rt−3 ∆rt−4 ∆rt−5 Hs,t Hr,t
0.0517** 0.0060 0.0197 0.0988*** 0.0455 -0.0009** -0.0623
(0.0250) (0.0494) (0.0354) (0.0237) (0.0318) (0.0005) (0.0800)

Conditional Variance-Covariance Structure

C∗o =


0.3604** -0.0033
(0.1228) (0.0086)

0 1.23× 10-7
(0.0050)

 A∗11 =


−0.0732 0.0020**
(0.0646) (0.0008)

-0.5110*** 0.3708***
(0.1454) (0.0502)

 B∗11 =


0.9495*** 0.0037
(0.0185) (0.0033)

2.6319*** −0.8937***
(0.3131) (0.0292)



D∗11 =


0.3327*** 0.0022*
(0.0388) (0.0012)

-0.4031 0.1874*
(0.3039) (0.0996)

 E∗11 =


−0.0099*** −0.0009***
(0.0014) (0.0002)

0.0046*** 0.0037***
(0.0014) (0.0002)

 δ =
2.9374***
(0.2665)

Note: Figures in parentheses ( ) are quasi maximimum likelihood robust standard errors. *, ** and ***

indicate statistical significance at the 10%, 5% and 1% level respectively.
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Table 6: Diagnostic Tests Results for Additive Level Effects Model
Standardized Residual Diagnostics

Mean Variance Skewness Kurtosis Q(5)
zs,t -0.0070 0.9992 -1.0274 11.1732 4.5450

[0.7517] [0.0000] [0.0000] [0.4739]
zr,t -0.0026 0.9947 -0.0268 3.2089 2.3656

[0.9603] [0.9103] [0.0000] [0.7966]
Mean Variance Q2(5)

z2s,t 0.9987 13.1429 1.2347
[0.0000] [0.9415]

z2r,t 0.9942 5.1409 2.8840
[0.0000] [0.7179]

Notes: Marginal significance levels displayed as [.].
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Table 7: Hypothesis Tests for the Multivariate Asymmetric GARCH
Additive Level Effects Model

Mean Hypothesis Tests
Test of linear Granger causality
H0 : ∆rt 9 ∆st χ2

(5)
= 1.7248 [0.8859] H0 : ∆st 9 ∆rt χ2

(5)
= 1.1727 [0.9475]

Test of GARCH-in-mean Specification
H0 : ψi,s = ψi,r = 0 for i = 1, 2 χ24 = 9.6248 [0.0472]

Conditional Variance-Covariance Hypothesis Tests
Diagonal Conditional Variance Model
H0 : a∗ij = b

∗
ij = d

∗
ij = e

∗
ij = 0 ∀ i 6= j where i, j = 1, 2 χ2

(8)
= 187.2548 [0.0000]

Symmetric GARCH (BEKK Model)
H0 : d∗ij = e

∗
ij = 0 ∀ i and j where i, j = 1, 2 χ2

(8)
= 6.16×1010 [0.0000]

No GARCH
H0 : a∗ij = b

∗
ij = d

∗
ij = e

∗
ij = 0 ∀ i and j where i, j = 1, 2 χ2

(16)
= 7.9996×1010 [0.0000]

Level Effects Tests
Test for No Level Effects in Ht
H0 : e∗ij = 0 ∀ i and j where i, j = 1, 2 P(χ2

(4)
>35.413) = 0.0000

Test for No Level Effects in hs,t and hrs,t
H0 : e∗21 = e

∗
11 = 0 P(χ2

(2)
>21.922) = 0.0000

Test for No Level Effects in hr,t and hrs,t
H0 : e∗12 = e

∗
22 = 0 P(χ2

(2)
>25.351) = 0.0000

Second Moment Asymmetry Tests
Test for no own variance and covariance asymmetry:∆st
H0 : d∗11 = d

∗
21 = 0 χ2

(2)
= 85.5529 [0.0000]

Test for no own variance and/or covariance asymmetry:∆rt
H0 : d∗12 = d

∗
22 = 0 χ2

(2)
= 7.4054 [0.0247]

Test for Own Variance Asymmetry
∆st : H0 : d∗11 = 0 χ2

(1)
= 73.5914 [0.0000]

∆rt H0 : d∗22 = 0 χ2
(1)

= 3.5429 [0.0598]

Test for Cross Variance Asymmetry
∆st : H0 : d∗21 = 0 χ2

(1)
= 1.7599 [0.1846]

∆rt H0 : d∗12 = 0 χ2
(1)

= 3.4684 [0.0626]

Note: Figures in parentheses [ ]are p-values. For 5% significance level, the critical value for Chi-square
distribution with 1, 2 and 4 degrees of freedom are 3.841, 5.991 and 9.488 respectively.
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Table 8: Estimates of the Multivariate Asymmetric GARCH Multiplicative
Level Effects Model

Conditional Mean Equations
µs ∆st−1 ∆st−2 ∆st−3 ∆st−4 ∆st−5

∆st 0.0935 -0.0420 0.0169 0.0453 -0.0104 -0.0301
(0.0619) (0.0281) (0.0220) (0.0320) (0.0305) (0.0205)
∆rt−1 ∆rt−2 ∆rt−3 ∆rt−4 ∆rt−5 Hs,t Hr,t
-0.3877* -0.0577 0.0080 -0.4687** -0.0946 0.0105 -0.3414**
(0.2034) (0.2214) (0.1592) (0.1977) (0.1625) (0.0104) (0.1731)

µr ∆st−1 ∆st−2 ∆st−3 ∆st−4 ∆st−5
∆rt 0.0061 0.0002 -0.0012 -0.0001 0.0008 -0.0002

(0.0032)* (0.0012) (0.0012) (0.0012) (0.0011) (0.0013)
∆rt−1 ∆rt−2 ∆rt−3 ∆rt−4 ∆rt−5 Hs,t Hr,t
0.0406* 0.0031 0.0212 0.0970*** 0.0458** -0.0008 -0.0807
(0.0236) (0.0237) (0.0207) (0.0244) (0.0225) (0.0005) (0.0548)

Conditional Variance-Covariance Structure

C∗o =


0.4357*** -0.0096**
(0.1233) (0.0038)

0 -0.0165***
(0.0041)

 A∗11 =


0.0059 0.0004
(0.0563) (0.0010)

-0.3772** 0.3612***
(0.1531) (0.0551)



B∗11 =


0.9128*** 0.0008
(0.0336) (0.0006)

-0.0008 0.8978***
(0.0431) (0.0206)

 D∗11 =


0.3787*** 0.0012
(0.0435) (0.0010)

0.3980* 0.0095
(0.2260) (0.1537)

 δ =
0.0375***
(0.0155)

Note: see note to table 5.
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Table 9: Diagnostic Tests Results for Multiplicative Level Effects Model

Standardized Residual Diagnostics
Mean Variance Skewness Kurtosis Q(5)

zs,t -0.0051 0.9965 -1.0422 11.3610 5.1064
[0.8184] [0.0000] [0.0000] [0.4030]

zr,t 0.0059 0.9926 0.0484 3.2599 2.8519
[0.7885] [0.3747] [0.0000] [0.7228]
Mean Variance Q2(5)

z2s,t 0.9960 13.2516 1.2135
[0.0000] [0.9436]

z2r,t 0.9921 5.1698 3.5286
[0.0000] [0.6191]

Notes: see note to table 6
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Table 10: Hypothesis Tests for the Multivariate Asymmetric GARCH
Multiplicative Level Effects Model

Mean Hypothesis Tests
Test of linear Granger
H0 : ∆rt 9 ∆st χ2

(5)
= 10.9973 [0.0514] H0 : ∆st 9 ∆rt χ2

(5)
= 1.8786 [0.8657]

Test of GARCH-in-mean Specification
H0 : ψi,s = ψi,r = 0 for i = 1, 2 χ24 = 14.4555 [0.0060]

Conditional Variance-Covariance Hypothesis Tests
Diagonal Conditional Variance Model
H0 : a∗ij = b

∗
ij = d

∗
ij = 0 ∀ i 6= j where i, j = 1, 2 χ2

(6)
=21.8287 [0.0013]

Symmetric GARCH (BEKK Model)
H0 : d∗ij = 0 ∀ i and j where i, j = 1, 2 χ2

(4)
= 78.1762 [0.0000]

No GARCH
H0 : a∗ij = b

∗
ij = d

∗
ij = 0 ∀ i and j where i, j = 1, 2 χ2

(12)
= 13399.9768 [0.0000]

Level Effects Tests
Test for No Level Effects
H0 : δ = 0 χ2

(1)
= 5.8634 [0.0155]

Level Effects Tests for Theoretical Values of δ
H0 : δ = 0.5 χ2

(1)
= 891.1654 [0.0000]

H0 : δ = 1.0 χ2
(1)

= 3859.6689 [0.0000]
H0 : δ = 1.5 χ2

(1)
= 8911.3740 [0.0000]

Second Moment Asymmetry Tests
Test for no own variance and covariance asymmetry:∆st
H0 : d∗11 = d

∗
21 = 0 χ2

(2)
= 76.1179 [0.0000]

Test for no own variance and covariance asymmetry:∆rt
H0 : d∗12 = d

∗
22 = 0 χ2

(2)
= 1.4004 [0.4965]

Test for own variance asymmetry
∆st : H0 : d∗11 = 0 χ2

(1)
= 75.7113 [0.0000]

∆rt : H0 : d∗22 = 0 χ2
(1)

= 0.0038 [0.9510]

Test for Cross Variance Asymmetry
∆st : H0 : d∗21 = 0 χ2

(1)
= 3.1013 [0.0782]

∆rt: H0 : d∗12 = 0 χ2
(1)

= 1.3173 [0.2511]

Note: see note to table 7.
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Three Month Treasury Bill Yield
1965 - 2003
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Figure 1: rt and ∆rt
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S&P 500 Index
1965 - 2003
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Figure 2: Pt and ∆st
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Conditional Variance: S&P500 Returns
Additive Model
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Figure 3: ĥ11, ĥ12 and ĥ22.
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Conditional Correlation
Additive Model
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Figure 4: ρ̂12
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Conditional Variance: S&P500 Returns
Multiplicative Model
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Figure 5: ĥ11, ĥ12 and ĥ22.
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Conditional Correlation
Multiplicative Model
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Figure 6: ρ̂12
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