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Abstract

The control function approach (Heckman and Robb (1985)) in a system of
linear simultaneous equations provides a convenient procedure to estimate
one of the functions in the system using reduced form residuals from the
other functions as additional regressors. The conditions on the structural
system under which this procedure can be used in nonlinear and nonpara-
metric simultaneous equations has thus far been unknown. In this note, we
de�ne a new property of functions called control function separability and
show it provides a complete characterization of the structural systems of
simultaneous equations in which the control function procedure is valid.
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1. Introduction

A standard situation in applied econometrics is where one is interested

in estimating a nonseparable model of the form

y1 = m
1 (y2; "1)

when it is suspected or known that y2 is itself a function of y1. Additionally

there is an observable variable x; which might be used as an instrument for

the estimation of m1: Speci�cally, one believes that for some function m2

and unobservable "2;

y2 = m
2 (y1; x; "2) :

The nonparametric identi�cation and estimation of m1 under di¤erent

assumptions on this model has been studied in Roehrig (1988), Newey and

Powell (1989, 2003), Brown and Matzkin (1998), Darrolles, Florens, and

Renault (2002), Ai and Chen (2003), Hall and Horowitz (2003), Benkard and

Berry (2004, 2006), Chernozhukov and Hansen (2005), and Matzkin (2005,

2008, 2009) among others (see Blundell and Powell (2003), Matzkin (2007),

and many others, for partial surveys).

If the model were linear and with additive unobservables, one could esti-

mate m1 by �rst estimating a reduced form function for y2; which would also

turn out to be linear,

y2 = h
2 (x; �) = 
x+ �;

and then using � as an additional conditioning variable in the estimation of

m1; an idea dating back to Telser (1964).2

2Heckman (1978) references this paper in his comprehensive discussion of estimating
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If the structural model were triangular, in the sense that y1 is not an

argument in m2; a generalized version of this procedure could be applied to

nonparametric, nonadditive versions of the model, as developed in Chesher

(2003) and Imbens and Newey (2009). Their control function methods can

be used in the triangular structural model

y1 = m1 (y2; "1)

y2 = s (x; �)

when x independent of ("1; �), m1 strictly increasing in "1; and s strictly

increasing in the unobservable �:

When the simultaneous model cannot be expressed in a triangular form,

one can consider alternative restrictions in the joint distribution of ("1; "2)

and use the estimation approach in Matzkin (2010), or one can assume that

"1 is independent of x and use the instrumental variable estimator, see Cher-

nozhukov, Imbens and Newey (2007).3

The question we aim to answer is the following: Suppose that we were

interested in estimating the function m1 when the structural model is of the

form

y1 = m1 (y2; "1)

y2 = m2 (y1; x; "2)

simultaneous models with discrete endogenous variables. Blundell and Powell (2003) note
that it is di¢ cult to locate a de�nitive early reference to the control function version of
2SLS. Dhrymes (1970, equation 4.3.57) shows that the 2SLS coe¢ cients can be obtained
by a least squares regression of y1 on by2 and b�, while Telser (1964) shows how the seemingly
unrelated regressions model can be estimated by using residuals from other equations as
regressors in a particular equation of interest.

3Unlike the control function approach and the Matzkin approach, the instrumental
variable estimator requires dealing with the ill-posed inverse problem.
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and x is independent of ("1; "2) : Under what conditions on m2 can we do

this by �rst estimating a function for y2 of the type

y2 = s (x; �)

and then using � as an additional conditioning variable in the estimation of

m1?

More speci�cally, we seek an answer to the question: Under what condi-

tions on m2 is it the case that the simultaneous equations Model (S)

y1 = m1 (y2; "1)

y2 = m2 (y1; x; "2)

with x independent of ("1; "2) ; is observationally equivalent to the triangular

Model (T)

y1 = m1 (y2; "1)

y2 = s (x; �)

with x independent of ("1; �)?

In what follows we �rst de�ne a new property of functions, control func-

tion separability. We then show, in Section 3, that this property completely

characterizes systems of simultaneous equations where a function of interest

can be estimated using a control function. An example of a utility function

whose system of demand functions satis�es control function separability is

presented in Section 4 and illustrates the restrictiveness of the CF assump-

tions.

Section 5 describes how to extend our results to Limited Dependent Vari-

able models with simultaneity in latent or observable continuous variables.
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The Appendix provides conditions in terms of the derivatives of the struc-

tural functions in the system and conditions in terms of restrictions on the

reduced form system. Section 6 concludes.

2. Assumptions and De�nitions

2.1. The structural model and control function separability

We will consider the structural model

Model (S) y1 = m1 (y2; "1)

y2 = m2 (y1; x; "2)

satisfying the following assumptions.

Assumption S.1 (di¤erentiability): For all values y1; y2; x; "1,"2 of Y1;Y2; X; "1; "2;

the functions m1 and m2 are continuously di¤erentiable.

Assumption S.2 (independence): ("1; "2) is distributed independently of

X.

Assumption S.3 (support): Conditional on any value x ofX; the densities

of ("1; "2) and of (Y1; Y2) are continuous and have convex support.

Assumption S.4 (monotonicity): For all values y2 of Y2; the function m1

is strictly monotone in "1; and for all values (y1; x) of (Y1; X) ; the function

m2 is strictly monotone in "2:
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Assumption S.5 (crossing): For all values (y1; y2; x; "1; "2) of (Y1; Y2; X; "1; "2),

(@m1 (y2; "1) =@y2) (@m
2 (y1; x; "2) =@y1) < 1:

The technical assumptions S.1-S.3 could be partially relaxed at the cost of

making the presentation more complex. Assumption S.4 guarantees that the

function m1 can be inverted in "1 and that the function m2 can be inverted

in "2: Hence, this assumptions allows us to express the direct system of

structural equations (S), de�ned by (m1;m2) ; in terms of a structural inverse

system (I) of functions (r1; r2) ; which map any vector of observable variables

(y1; y2; x) into the vector of unobservable variables ("1; "2) ;

Model (I) "1 = r1 (y1; y2)

"2 = r2 (y1; y2; x) :

Assumption S.5 is a weakening of the common situation where the value of

the endogenous variables is determined by the intersection of a downwards

and an upwards slopping function. Together with Assumption S.4, this

assumption guarantees the existence of a unique reduced form system (R) of

equations, de�ned by functions (h1; h2) ; which map the vector of exogenous

variables ("1; "2; x) into the vector of endogenous variables (y1; y2) ;

Model (R) y1 = h1 (x; "1; "2)

y2 = h2 (x; "1; "2) :

These assumptions also guarantee that the reduced form function h1 is

monotone increasing in "1 and the reduced form function h2 is monotone

increasing in "2: These results are established in the following Lemma.
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Lemma 1: Suppose that Model (S) satis�es Assumptions S.1�S.5. Then,

there exist unique functions h1 and h2 representing Model (S). Moreover, for

all x; "1; "2; h1 and h2 are continuously di¤erentiable, @h1 (x; "1; "2) =@"1 > 0

and @h2 (x; "1; "2) =@"2 > 0:

Proof of Lemma 1: Assumption S.4 guarantees the existence of the

structural inverse system (I) of di¤erentiable functions (r1; r2) satisfying

y1 = m1
�
y2; r

1 (y1; y2)
�

y2 = m2
�
y1; x; r

2 (y1; y2; x)
�

By Assumption S.1, we can di¤erentiate these equations with respect to y1

and y2; to get0@ 1 0

0 1

1A =

0B@ @m1

@"1
@r1

@y1
@m1

@y2
+ @m1

@"1
@r1

@y2

@m2

@y1
+ @m2

@"2
@r2

@y1
@m1

@"2
@r2

@y2

1CA
Hence, @r1=@y1 = (@m1=@"1)

�1
; @r2=@y2 = (@m

2=@"2)
�1
; @r1=@y2 = � (@m1=@"1)

�1
(@m1=@y2) ;

and @r2=@y1 = � (@m2=@"2)
�1
(@m2=@y1) : These expressions together with

Assumptions S.4 and S.5 imply that @r1=@y1 > 0; @r2=@y2 > 0; and (@r1=@y2) (@r2=@y1) <

0: Hence the determinants of all principal submatrices of the Jacobian matrix0B@
@r1(y1;y2)

@y1

@r1(y1;y2)
@y2

@r2(y1;y2;x)
@y1

@r2(y1;y2;x)
@y2

1CA
of (r1; r2) with respect to (y1; y2) are positive. It follows by Gale and Nikaido

(1965) that there exist unique functions (h1; h2) such that for all ("1; "2)

"1 = r1
�
h1 (x; "1; "2) ; h

2 (x; "1; "2)
�

"2 = r2
�
h1 (x; "1; "2) ; h

2 (x; "1; "2) ; x
�
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We have then established the existence of the reduced form system (R).

The Implicit Function Theorem implies by Assumption S.1 that h1 and h2

are continuously di¤erentiable. Moreover, the Jacobian matrix of (h1; h2)

with respect to ("1; "2) is the inverse of the Jacobian matrix of (r1; r2) with

respect to (y1; y2) : Assumptions S.4 and S.5 then imply that for all x; "1; "2;

@h2 (x; "1; "2) =@"2 > 0 and @h2 (x; "1; "2) =@"2 > 0: This completes the proof

of Lemma 1.//

We next de�ne a new property, which we call control function separability.

De�nition: A structural inverse system of equations (r1(y1; y2); r2(y1; y2; x))

satis�es control function separability if there exist functions v : R2 ! R and

q : R2 ! R such that

(a) for all (y1; y2; x) ;

r2 (y1; y2; x) = v
�
q (x; y2) ; r

1 (y1; y2)
�

(b) for any value of its second argument, v is strictly increasing in its �rst

argument, and

(c) for any value of its �rst argument, q is strictly increasing in its second

argument.

2.1. The triangular model and observational equivalence

We will consider triangular models of the form

Model (T) y1 = m1 (y2; "1)

y2 = s (x; �)
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satisfying the following assumptions.

Assumption T.1 (di¤erentiability): For all values of y1; y2; x; "1,� of

Y1; Y2; X; "1,� the functions m1 and s are continuously di¤erentiable.

Assumption T.2 (independence): ("1; �) is distributed independently of

X.

Assumption T.3 (support): Conditional on any value x ofX; the densities

of ("1; �) and of (Y1; Y2) are continuous and have convex support.

Assumption T.4 (monotonicity): For all values of y2; the function m1

is strictly monotone in "1; and for all values of x; the function s is strictly

monotone in �:

Using the standard de�nition of observational equivalence, we will say

that Model (S) is observationally equivalent to Model (T) if the distributions

of the observable variables generated by each of these models is the same:

De�nition: Model (S) is observationally equivalent to model (T) i¤ for all

y1; y2; x such that fX (x) > 0

fY1;Y2jX=x (y1; y2;S) = fY1;Y2jX=x (y1; y2;T ) :

In the next section, we establish that control function separability com-

pletely characterizes observational equivalence between Model (S) and Model

(T).
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3. Characterization of Observational Equivalence
and Control Function Separability

Our characterization theorem is the following:

Theorem 1: Suppose that Model (S) satis�es Assumptions S.1-S.5 and

Model (T) satis�es Assumptions T.1-T.4. Then, Model (S) is observation-

ally equivalent to Model (T) if and only if the inverse system of equations

(r1(y1; y2); r
2(y1; y2; x)) derived from (S) satis�es control function separabil-

ity.

Proof of Theorem 1: Suppose that Model (S) is observationally equivalent

to Model (T). Then, for all y1; y2; x such that fX (x) > 0

fY1;Y2jX=x (y1; y2;S) = fY1;Y2jX=x (y1; y2;T ) :

Consider the transformation

"1 = r1 (y1; y2)

y2 = y2

x = x

The inverse of this transformation is

y1 = m1 (y2; "1)

y2 = y2

x = x
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Hence, the conditional density of ("1; y2) given X = x; under Model T and

under Model S are, respectively

f"1;Y2jX=x ("1; y2;T ) = fY1;Y2jX=x
�
m1 (y2; "1) ; y2;T

� ����@m1 (y2; "1)

@"1

����
and

f"1;Y2jX=x ("1; y2;S) = fY1;Y2jX=x
�
m1 (y2; "1) ; y2;S

� ����@m1 (y2; "1)

@"1

���� :
In particular, for all y2; all x such that fX(x) > 0; and for "1 = r1 (y1; y2)

(T1:1) fY2j"1=r1(y1;y2);X=x (y2;T ) = fY2j"1=r1(y1;y2);X=x (y2;S) :

That is, the distribution of Y2 conditional on "1 = r1 (y1; y2) and X = x;

generated by either Model (S) or Model (T) must be the same. By Model

(T), the conditional distribution of Y2 conditional on ("1; X) = (r1 (y1; y2) ; x)

can be expressed as

Pr
�
Y2 � y2j"1 = r1 (y1; y2) ; X = x

�
= Pr

�
s (x; �) � y2j"1 = r1 (y1; y2) ; X = x

�
= Pr

�
� � es (x; y2) j"1 = r1 (y1; y2) ; X = x

�
= F�j"1=r1(y1;y2) (es (x; y2)) :

where es denotes the inverse of s with respect to �: The existence of es and its
strict monotonicity with respect to y2 is guaranteed by Assumption T.4. The

last equality follows because Assumption T.2 implies that conditional on "1;
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� is independent of X: On the other side, by Model (S), we have that

Pr
�
Y2 � y2j"1 = r1 (y1; y2) ; X = x

�
= Pr

�
h2 (x; "1; "2) � y2j"1 = r1 (y1; y2) ; X = x

�
= Pr

�
"2 � eh2 (x; "1; y2) j"1 = r1 (y1; y2) ; X = x

�
= Pr

�
"2 � r2

�
m1 (y2; "1) ; y2; x

�
j"1 = r1 (y1; y2) ; X = x

�
= F"2j"1=r1(y1;y2)

�
r2
�
m1 (y2; "1) ; y2; x

��
:

where eh2 denotes the inverse of h2 with respect to "2: The existence of eh2 and
its strict monotonicity with respect to y2 follows by Lemma 1. The third

equality follows because when "1 = r1 (y1; y2) ; the value of "2 such that

y2 = h
2 (x; "1; "2)

is

"2 = r
2 (y1; y2; x)

The last equality follows because Assumption S.2 implies that conditional on

"1; "2 is independent of X:

Equating the expressions that we got for Pr (Y2 � y2j"1 = r1 (y1; y2) ; X = x)

from Model (T) and from Model (S), we can conclude that for all y2; x; "1

(T1:2) F"2j"1=r1(y1;y2)
�
r2
�
m1 (y2; "1) ; y2; x

��
= F�j"1=r1(y1;y2) (es (x; y2))

Substituting m1 (y2; "1) by y1; we get that for all y1; y2; x

F"2j"1=r1(y1;y2)
�
r2 (y1; y2; x)

�
= F�j"1=r1(y1;y2) (es (x; y2))
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Note that the distribution of "2 conditional on "1 can be expressed as

an unknown function G ("2; "1) ; of two arguments. Analogously, the dis-

tribution of � conditional on "1 can be expressed as an unknown func-

tion H (�; "1) : Denote the (possibly in�nite) support of "2 conditional on

"1 = r1 (y1; y2) by ["2L; "
2
U ] ; and the (possibly in�nite) support of � condi-

tional on "1 = r1 (y1; y2) by [�L; �U ] : Our assumptions S.2 and S.3 imply

that the distribution F"2j"1=r1(y1;y2)(�) is strictly increasing on ["2L; "2U ] and
maps ["2L; "

2
U ] onto [0; 1] : Our Assumptions T.2 and T.3 imply that the dis-

tribution F�j"1=r1(y1;y2) (�) is strictly increasing in [�L; �U ] and maps [�L; �U ]
onto [0; 1] : Hence, (T1:1) and our assumptions imply that there exists a func-

tion es; strictly increasing in its second argument, and functions G ("2; "1) and
H (�; "1) ; such that for all y1; y2; x with fX(x) > 0 and fY1;Y2jX=x(y1; y2) > 0

G
�
r2 (y1; y2; x) ; r

1 (y1; y2)
�
= H

�es (x; y2) ; r1 (y1; y2)�
and G and H are both strictly increasing in their �rst arguments at, respec-

tively, "2 = r2 (y1; y2; x) and � = es (x; y2) : Let eG denote the inverse of G;

with respect to its �rst argument. Then, eG (�; r1 (y1; y2)) : [0; 1]! [r2L:r
2
U ] is

strictly increasing on (0; 1) and

r2 (y1; y2; x) = eG �H �es (x; y2) ; r1 (y1; y2)� ; r1 (y1; y2)�
This implies that r2 is weakly separable into r1 (y1; y2) and a function of

(x; y2) ; strictly increasing in y2: Moreover, since H and eG are both strictly

increasing with respect to their �rst argument on their respective relevant

domains, r2 must be strictly increasing in the value of es: Extending the func-
tion es to be strictly increasing at all y2 2 R and extending the function eG�H
to be strictly increasing on all values es 2 R; we can conclude that (T1:1); and
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hence also the observational equivalence between Model (T) and Model (S),

implies that (r1(y1; y2); r2(y1; y2; x)) satis�es control function separability.

To show that control function separability implies the observational equiv-

alence between Model (S) and Model (T), suppose that Model (S), satisfying

Assumptions S.1-S.5, is such that there exist continuously di¤erentiable func-

tions v : R2 ! R and q : R2 ! R such that for all (y1; y2; x) ;

r2 (y1; y2; x) = v
�
q (x; y2) ; r

1 (y1; y2)
�
;

where for any value of r1 (y1; y2) ; q is strictly increasing in y2 and v is strictly

increasing in its second argument. Let "1 = r1 (y1; y2) and � = q (x; y2) : Then

"2 = r
2 (y1; y2; x) = v (�; "1)

where v is strictly increasing in �: Letting ev denote the inverse of v with
respect to �; it follows that;

q (y2; x) = � = ev ("2; "1)
Since ev is strictly increasing in "2; Assumption S.3 implies that ("1; �) has a
continuous density on a convex support. Let eq denote the inverse of q with
respect to y2: The function eq exists because q is strictly increasing in y2:
Then,

y2 = eq (�; x) = eq (ev ("2; "1) ; x) :
Since � is a function of ("1; "2) ; Assumption S.2 implies Assumption T.2.

Since also

y2 = h
2 (x; "1; "2)

it follows that
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y2 = h
2 (x; "1; "2) = eq (ev ("2; "1) ; x)

where eq is strictly increasing with respect to its �rst argument: Hence,
y2 = h

2 (x; "1; "2) = eq (�; x)
where eq is strictly increasing in �: This implies that control function separa-
bility implies that the system composed of the structural form function for

y1 and the reduced form function for y2 is of the form

y1 = m1 (y2; "1)

y2 = h2 (x; "1; "2) = eq (ev ("2; "1) ; x) = eq (�; x)
where eq is strictly increasing in � and ("1; �) is independent of X: To show
that the model generated by (m1; h2) is observationally equivalent to the

model generated by (m1; eq) ; we note that the model generated by (m1; h2)

implies that for all x such that fX (x) > 0;

fY1;Y2jX=x (y1; y2;S)

= f"1;"2
�
r1 (y1; y2) ; r

2 (y1; y2; x)
� ��r1y1r2y2 � r1y2r2y1��

where r1y1 = r1y1 (y1; y2), r
2
y2
= r2y2 (y1; y2; x) ; r

1
y2
= r1y2 (y1; y2), and r

2
y1
=

r2y1 (y1; y2; x) : On the other side, for the model generated by (m
1; eq) ; we have

that,

fY1;Y2jX=x (y1; y2;T )

= f"1;�
�
r1 (y1; y2) ; ev �r2 (y1; y2; x) ; r1 (y1; y2)�� ��r1y1 �ev1r2y2 + ev2r1y2�� r1y2 �ev1r2y1 + ev2r1y1���

where ev1 denotes the derivative of ev with respect to its �rst coordinate andev2 denotes the derivative of ev with respect to its second coordinate. Since��r1y1 �ev1r2y2 + ev2r1y2�� r1y2 �ev1r2y1 + ev2r1y1��� = ev1 ��r1y1r2y2 � r1y2r2y1��
15



and

f"2j"1=r1(y1;y2)
�
r2 (y1; y2; x)

�
= f�j"1=r1(y1;y2)

�ev �r2 (y1; y2; x) ; r1 (y1; y2)�� ev1
it follows that for all x such that fX(x) > 0;

fY1;Y2jX=x (y1; y2;S) = fY1;Y2jX=x (y1; y2;T )

Hence, control function separability implies that Model (S) is observationally

equivalent to Model (T). This completes the proof of Theorem 1.//

Theorem 1 provides a characterization of two-equation systems with si-

multaneity where one of the functions can be estimated using the other to

derive a control function. One of the main conclusions of the theorem is

that to verify whether one of the equations can be used to derive a control

function, it must be that the inverse function of that equation, which maps

the observable endogenous and observable exogenous variables into the value

of the unobservable, must be separable into the inverse function of the �rst

equation and a function not involving the dependent variable of the �rst

equation. That is, the function

y2 = m
2 (y1; x; "2)

can be used to derive a control function to identify the function m1; where

y1 = m
1 (y2; "1)

if and only if the inverse function of m2 with respect to "2 is separable into

r1 and a function of y2 and x:
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In the Appendix we provide equivalent characterizations of these condi-

tions in terms of the derivatives of the structural functions and of the reduced

form system (R).

4. An example

We next provide an example of an optimization problem, for which

the �rst order conditions satisfy control function separability. Our results

then imply that one can estimate the structural equation using a control

function approach. The objective function in our example is speci�ed as

V (y1; y2; x1; x2; x3)

= ("1 + "2) u (y2) + "1 log (y1 � u (y2))� y1x1 � y2x2 + x3

This can be the objective function of a consumer choosing demand for

three products, (y1; y2; y3) subject to a linear budget constraint, x1y1+x2y2+

y3 � x3; with x1 and x2 denoting the prices of, respectively, y1 and y2 and

x3 denoting income.

The �rst order conditions with respect to y1 and y2 are

(5.1) @
@y1
: "1

(y1�u(y2)) � x1 = 0

17



(5.2) @
@y2
: ("1 + "2)u

0 (y2)� u0 (y2) "1
(y1�u(y2)) � x2 = 0

The Hessian of the objective function is

26664
� "1

(y1�u(y2))2
"1 u0(y2)

(y1�u(y2))2

"1 u0(y2)

(y1�u(y2))2

�
"1 + "2 � "1

(y1�u(y2))

�
u00 (y2)� (u0 (y2))2 "1

(y1�u(y2))2

37775

This Hessian is negative de�nite when "1 > 0; u0 (y2) > 0; u00 (y2) < 0 and

�
"1 + "2 �

"1
(y1 � u (y2))

�
> 0

Since at the values of (y1; y2) that satisfy the First Order conditions,

"1= (y1 � u (y2)) = x1 and ("1 + "2 � ("1= (y1 � u (y2))))u0 (y2) = x2; the ob-
jective function is strictly concave at values of (y1; y2) that satisfy the First

Order Conditions as long as x1 > 0 and x2 > 0:

To obtain the system of structural equations, note that from (5.1), we get

(5:3) "1 = [y1 � u (y2)] x1

And using (5.3) in (5.2), we get

(5:4) [("1 + "2)� x1]u0 (y2) = x2

18



Hence,

"2 =
x2

u0 (y2)
� y1x1 + u (y2)x1 + x1

=

�
x2

u0 (y2)
+ x1

�
� (y1 � u (y2))x1

We can then easily see that the resulting system of structural equations,

which is

"1 = [y1 � u (y2)] x1

"2 =

�
x2

u0 (y2)
+ x1

�
� (y1 � u (y2))x1

satisfy control function separability. The triangular system of equations,

which can then be estimated using a control function for nonseparable mod-

els, is

y1 = u (y2) +
"1
x1

y2 = (u0)
�1
�

x2
"1 + "2 � x1

�

The unobservable � = "1+"2 is the control function for y2 in the equation

for y1: Conditional on � = "1 + "2; y2 is a function of only (x1; x2) ; which is

independent of "1: Hence, conditional on � = "1 + "2; y2 is independent of

"1; exactly the conditions one needs to use � as the control function in the

estimation of the equation for y1:
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5. Simultaneity in Latent Variables

Our results can be applied to a wide range of Limited Dependent Variable

models with simultaneity in the latent variables, when additional exogenous

variables are observed and some separability conditions are satis�ed. In

particular, suppose that we were interested in estimating m1 in the model

y�1 = m1 (y�2; w1; w2; "1)

y�2 = m2 (y�1; w1; w2; x; "2)

where instead of observing (y�1; y
�
2) ; we observed a transformation, (y1; y2) ;

of (y�1; y
�
2) de�ned by a known vector function (T1; T2),

y1 = T1 (y
�
1; y

�
2)

y2 = T2 (y
�
1; y

�
2)

Assume that (w1; w2; x) is independent of ("1; "2) and that for known func-

tions b1 and b2 and unknown functionsm1 andm2 the system of simultaneous

equations can be written as

b1 (y
�
1; w1) = m1 (b2 (y

�
2; w2) ; "1)

b2 (y
�
2; w2) = m2 (b1 (y

�
1; w1) ; x; "2)

Then, under support conditions on (w1; w2; x) and on the range of (T1; T2),

and under invertibility conditions on (b1; b2) ; one can express this system as

b1 = m1
�
b2; "1

�
b2 = m2

�
b1; x; "1

�
20



where the distribution of
�
b1; b2; x

�
is known. (See Matzkin (2010) for formal

assumptions and arguments and more general models.) The identi�cation

and estimation of em1 can then proceed using a control function approach, as

developed in the previous sections, when this system satis�es control function

separability.

To provide a simple speci�c example of the arguments that are involved

in the above statements, we consider a special case of a binary threshold

crossing model analyzed in Briesch, Chintagunta and Matzkin (1997, 2009),

y�1 = m
1 (y2; "1) + w1

y1 = 0 if y�1 � 0

= 1 otherwise

Suppose that instead of assuming as they did, that (y2; w1) is independent

of "1; we assume that

y2 = m
2 (y�1 � w1; x; "2)

and that (x;w1) is independent of ("1; "2) : An example of such a model is

where y2 is discretionary expenditure by an individual in a store for which

expenditures are observable, w1 is an exogenous observable expenditure, and

y�1 � w1 is unobserved discretionary expenditure over the �xed amount w1:
Assuming thatm1 is invertible in "1 andm2 is invertible in "2; we can rewrite

the two equation system as

"1 = r1 (y�1 � w1; y2)

"2 = r2 (y�1 � w1; y2; x)
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If this system can be expressed as

"1 = r1 (y�1 � w1; y2)

"2 = v
�
r1 (y�1 � w1; y2) ; s (y2; x)

�
for some unknown functions r1; v and s, satisfying our regularity conditions,

then one can identify and estimate m1 using a control function approach. To

shed more light on this result, let b1 = y�1 � w1: Then, the model becomes

b1 = m1 (y2; "1)

y2 = m2
�
b1; x; "2

�
with a system of reduced form functions

b1 = h1 (x; "1; "2)

y2 = h2 (x; "1; "2)

Following Matzkin (2010), we extend arguments for identi�cation of semi-

parametric binary threshold crossing models using conditional independence

(Lewbel (2000)), and arguments for identi�cation of nonparametric and non-

additive binary threshold crossing models using independence (Matzkin (1992),

Briesch, Chintagunta, and Matzkin (1997, 2009)) to models with simultane-

ity. For this, we assume that (X;W ) has an everywhere positive density.

Our independence assumption implies that W is independent of ("1; "2) con-

ditional on X: Then, since conditional on X;
�
b1; y2

�
is only a function of

("1; "2), we have that for all w1; t1

Pr
��
B1; Y2

�
� (t1; y2)jX = x

�
= Pr

��
B1; Y2

�
� (t1; y2)jW1 = w1; X = x

�
= Pr ((Y �1 �W1; Y2) � (t1; y2)jW1 = w1; X = x)

= Pr ((Y �1 ; Y2) � (t1 + w1; y2)jW1 = w1; X = x)
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Letting w1 = �t1; we get that

Pr
��
B1; Y2

�
� (t1; y2)jX = x

�
= Pr ((Y1; Y2) � (0; y2)jW1 = �t1; X = x)

Hence, the distribution of
�
b1; y2

�
conditional onX is identi�ed. The analysis

of the system

b1 = m1 (y2; "1)

y2 = m2
�
b1; x; "2

�
when this identi�ed distribution is given is analogous to the analysis of the

system

y1 = m1 (y2; "1)

y2 = m2 (y1; x; "2)

with the distribution of (y1; y2) given X; considered in our previous sections.

In particular, if the system satis�es control function separability, we can �rst

estimate the model y2 = es (x; �) where es is an unknown function increasing
in �; and then use the estimated � as a control in the estimation of m1:

6. Conclusions

In this note we have provided a conclusive answer to the question of when

it is possible to use a control function approach to identify and estimate a

function in a simultaneous equations model. We de�ne a new property of

functions, called control function separability, which characterizes systems of
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simultaneous equations where a function of interest can be estimated using

a control function derived from the second equation. We show that this

condition is equivalent to requiring that the reduced form function for the

endogenous regressor in the function of interest is separable into a function

of all the unobservable variables. We also provide conditions in terms of the

derivatives of the two functions in the system.

An example a system of structural equations, which is generated by the

�rst order conditions of an optimization problem, and which satis�es control

function separability, was presented. We have also shown how our results

can be used to identify and estimate Limited Dependent Variable models

with simultaneity in the latent or observable continuous variables.

Appendix A

A1: Characterization in terms of Derivatives

Taking advantage of the assumed di¤erentiability, we can characterize

systems where one of the functions can be estimated using a control func-

tion approach using a condition in terms of the derivatives of the functions of

Models (T) and (S). The following result provides such a condition. Let r2x =

@r2 (y1; y2; x) =@x; r
2
y1
= @r2 (y1; y2; x) =@y1; and r2y2 = @r

2 (y1; y2; x) =@y2 de-

note the derivatives of r2, sx = @s (y2; x) =@x and sy2 = @s (y2; x) =@y2 denote

the derivatives of s; and let m1
y2
= @m1(y2; "1)=@y2 denote the derivative of

the function of interest m1 with respect to the endogenous variable y2:
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Theorem 2: Suppose that Model (S) satis�es Assumptions S.1-S.5 and that

Model (T) satis�es Assumptions T.1-T.4. Then, Model (S) is observationally

equivalent to Model (T) if and only if for all x; y1; y2;

r2x
r2y1 m

1
y2
+ r2y2

=
sx
sy2

Proof of Theorem 2: As in the proof of Theorem 1, observational equiva-

lence between Model (T) and Model (S) implies that for all y2; x; "1

(T1:2) F"2j"1=r1(y1;y2)
�
r2
�
m1 (y2; "1) ; y2; x

��
= F�j"1=r1(y1;y2) (s (y2; x))

Di¤erentiating both sides of (T1:2) with respect to y2 and x; we get that

f"2j"1
�
r2
�
m1 (y2; "1) ; y2; x

�� �
r2y1 m

1
y2
+ r2y2

�
= f�j"1 (s (y2; x)) sy2

f"2j"1
�
r2
�
m1 (y2; "1) ; y2; x

��
r2x = f�j"1 (s (y2; x)) sx

where, as de�ned above, r2y1 = @r
2 (m1 (y2; "1) ; y2; x) =@y1; r

2
y2
= @r2 (m1 (y2; "1) ; y2; x) =@y2;

r2x = @r
2 (m1 (y2; "1) ; y2; x) =@x; m

1
y2
= @m1 (y2; "1) =@y2; sy2 = @s (y2; x) =@y2;

and sx = @s (y2; x) =@x:

Taking ratios, we get that

r2x
r2y1 m

1
y2
+ r2y2

=
sx
sy2

Conversely, suppose that for all y2; x; "1;
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(T2:1)
r2x

r2y1 m
1
y2
+ r2y2

=
sx
sy2

De�ne

b (y2; x; "1) = r
2
�
m1 (y2; "1) ; y2; x

�

(T2:1) implies that, for any �xed value of "1; the function b (y2; x; "1) is a

transformation of s (y2; x) : Let t (�; �; "1) : R! R denote such a transforma-

tion. Then, for all y2; x;

b (y2; x; "1) = r
2
�
m1 (y2; "1) ; y2; x

�
= t (s (y2; x) ; "1) :

Substituting m1 (y2; "1) with y1 and "1 with r1 (y1; y2) ; it follows that

r2 (y1; y2; x) = t
�
s (y2; x) ; r

1 (y1; y2)
�

Hence, (T2:1) implies control function separability. This implies, by Theo-

rem 1, that Model (T) and Model (S) are observationally equivalent, and it

completes the proof of Theorem 2.//

Instead of characterizing observationally equivalence in terms of the deriv-

atives of the functions m1 and r2; we can express observational equivalence

in terms of the derivatives of the inverse reduced form functions. Di¤eren-

tiating with respect to y1 and y2 the identity

y1 = m
1
�
y2; r

1 (y1; y2)
�
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and solving for m1
y2
; we get that

m1
y2
=
� r1y2
r1y1

Hence, the condition that for all y1; y2; x

r2x
r2y1 m

1
y2
+ r2y2

=
sx
sy2

is equivalent to the condition that for all y1; y2; x

r1y1 (y1; y2) r
2
x (y1; y2; x)

r1y1 (y1; y2) r
2
y2
(y1; y2; x)� r1y2 (y1; y2) r2y1 (y1; y2; x)

=
sx(y2; x)

sy2(y2; x)

or
r1y1 (y1; y2) r

2
x (y1; y2; x)

jry (y1; y2; x)j
=
sx(y2; x)

sy2(y2; x)

where jry (y1; y2; x)j is the Jacobian determinant of the vector function r =
(r1; r2) with respect to (y1; y2) :

Note that di¤erentiating both sides of the above equation with respect

to y1; we get the following expression, only in terms of the derivatives of the

inverse system of structural equations of Model (S)

@ log

@y1

�
r1y1 (y1; y2) r

2
x (y1; y2; x)

jry (y1; y2; x)j

�
= 0

A2: Characterization in terms of the Reduced Form Functions

An alternative characterization, which follows from the proof of Theorem

1, is in terms of the reduced form functions. Suppose we ask when the

function

y2 = m
2 (y1; x; "2)
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can be used to derive a control function to identify the function m1; where

y1 = m
1 (y2; "1) :

Our arguments show that the control function approach can be used if and

only if the reduced form function, h2 (x; "1; "2) ; for y2 can be expressed as a

function of x and a function of ("1; "2) : That is the control function approach

can be used if and only if, for some functions s and ev
h2 (x; "1; "2) = s (x; ev ("1; "2))

Note that while the su¢ ciency of such a condition is obvious, the necessity,

which follows from Theorem 1, had not been previously known.4

4Kasy (2010) also highlights the one-dimensional distribution condition on the reduced
form h2 but does not relate this to restrictions on the structure of the simultaneous equa-
tion system (S) which is our primary objective.
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