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Abstract

We consider the problem of sharing the cost of a network that meets
the connection demands of a set of agents. The agents simultaneously
choose paths in the network connecting their demand nodes. A mechanism
splits the total cost of the network formed among the participants.

We introduce two new properties of implementation. The first prop-
erty, Pareto Nash Implementation (PNI), requires that the efficient out-
come is always implemented in a Nash equilibrium, and that the efficient
outcome Pareto dominates any other Nash equilibrium. The average cost
mechanism (AC) and other assymetric variations, are the only rules that
meet PNI. These mechanisms are also characterized under Strong Nash
Implementation.

The second property, Weakly Pareto Nash Implementation (WPNI),
requires that the least inefficient equilibrium Pareto dominate any other
equilibrium. The egalitarian mechanism (EG), a variation of AC that
meets individual rationality, and other assymetric mechanisms are the
only rules that meet WPNI and Individual Rationality.

PNI and WPNI provide the first economic justification of the Price
of Stability (PoS), a seemingly natural measure in the computer science
literature but not easily embraced in economics. EG minimizes the PoS
across all individually rational mechanisms.
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1 Introduction

1.1 Network cost-sharing

We consider the problem of sharing the cost of a congestion-free network that
meets the connection demands of a set of agents. The agents simultaneously
choose paths in the network connecting the demand nodes, and a mechanism
splits the total cost of the network formed among the participants. This type
of problem arises in many contexts ranging from water distribution systems,
road networks, telecommunications services and multicast transmission to large
computer networks such as the Internet.

The Shapley mechanism (Sh, [4]), which divides the cost of every edge
equally among its users, has become focal in this setup. Even though Shap-
ley looks like a natural mechanism in this setting, there are serious problems
associated with it. First, this method may provide wrong incentives to the
players and they may end up choosing an inefficient graph in equilibrium. In-
deed, consider the network in figure 1 right. The equilibrium under the Shapley
mechanism is (st1, st2), which has a total cost equal to 2, whereas the efficient
connection network has a cost equal to 3

2 + ε. Even the best equilibrium can be
as costly as H(k) = 1 + 1

2 + · · ·+ 1
k times the cost of the optimal graph, where k

is the number of users ([3]). The next issue with the Shapley mechanism is its
asymmetry at equilibrium. Even though the mechanism is symmetric, at equi-
librium it may charge different amounts to agents who are in exactly symmetric
situations before the choice of paths by the agents. To see this problem, con-
sider the symmetric network for two agents with common sources and two sinks
depicted in the left panel of figure 1. Here, the Nash equilibria of the Shapley
mechanism are (st1, st1t2) or (st2t1, st2). Thus agents pay either ( 1

2 , 1 − ε) or
(1 − ε, 1

2 ) depending on the equilibrium. Hence, even though the network is
symmetric, agents pay different costs at equilibrium under the Shapley mech-
anism. This example also points to the multiplicity of equilibria and thus the
problem of equilibrium selection. The next major concern with this mechanism
is that it is not continuous in the network structure. The mechanism is very
discontinuous and hence unstable: the two networks in figure 1 can be arbitrar-
ily close under any measure, whereas the equilibria will be arbitrarily different
under the Shapley mechanism. Continuity is also desirable since unavoidable
measurement errors in practical life may lead to very unfair outcomes.

Finally, we notice that the amount of information needed for the Shapley
mechanism may not be practical in many settings. The Shapley mechanism
needs as input the paths chosen by each agent. This information can be out of
reach in many settings. Consider for instance the network of roads in a state,
district or country to be financed by the users of the roads. The procurement
of information on the exact paths used by the drivers needs the compulsory
installment of GPS (global positioning system) in all the vehicles and the data
to be stored and updated by a central taxing authority. Because of privacy issues
this may not be possible politically (see, for example, [14]). However, a tax based
on the number of miles driven can be implemented without raising such privacy

2



Figure 1: Symmetric networks with a common source and two sinks

concerns. Road maintenance taxes based on the miles driven by every user have
been used in pilot programs in Oregon since January 2009, and other states such
as Ohio, Pennsylvania, Colorado, Florida, Rhode Island, Minnesota and Texas,
are considering them (see [9, 10, 11, 12, 13, 14]). This kind of environment
requires mechanisms where the input is the total cost of the paths used by the
agents rather than the paths themselves. Moreover, in spite of the information
on the paths being available, it may sometimes be desirable to use just the total
costs of the paths rather than the paths themselves. Consider, for instance a big
or highly dynamic network structure, where agents join and leave the network
continuously. It may be impractical to change the formulae of our mechanism
every time the network changes. One such example is sharing the cost of a
telephone network or the Internet where the agreement is generally monthly
but there are agents entering and leaving the network continuously. Notice that
charging the same amount for long distance calls makes sense irrespective of the
number of users who share the edges.1 There are normative concerns too for
charging agents who may not be responsible for the fact that their links are not
shared by a lot users. Examples are electricity/water supply or postal service
to remote villages.

This type of setting demands a new framework that is easy to implement
in settings where the inputs of the mechanism are only the total cost of the
agents’ demands and the total cost of the network formed. This type of problem
resembles the classic bankruptcy problem (also referred to in the literature as a
rationing or taxation problem), where a given amount of resource (e.g., money)
must be divided among beneficiaries with unequal claims on the resource (see
[28] [33] for detailed surveys about the problem).

1The choice of path is not a strategy for the telephone user and thus the setting is not
exactly the same. But the cost-sharing method has a similar motivation, namely it is simpler
than charging every caller differently based on the path used.
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1.2 Robust efficient implementation

The celebrated literature on full implementation has more often than not hit
impossibilities (see [21] for a comprehensive survey). In the growing literature in
computer science (and more recently in economics2), two measures of efficiency
loss have been very fruitfully studied. On the one hand, there is the traditional
price of anarchy (PoA [17]), which computes the ratio of the worst equilibrium
over the efficient outcome. On the other hand, there is the price of stability
(PoS [3]) which computes the ratio of the best equilibrium over the efficient
outcome. Both of these measures have been very effective in selecting second-
best mechanisms. However, these approaches lack economic justification and
thus seem to be quite arbitrary in the absence of a compelling equilibrium
selection rule. Why is a mechanism going to perform in the worst case scenario?
Why not the best case scenario?

In this paper, we fill this gap by providing new equilibrium selection rules.
We introduce two new properties of implementation.3 The first property, Pareto
Nash Implementation (PNI), requires that the efficient outcome always be
implemented in a Nash equilibrium, and that the efficient outcome Pareto dom-
inates any other Nash equilibrium. Contrary to the traditional literature on
full implementation, PNI may implement multiple inefficient equilibria, how-
ever the efficient equilibrium is always implemented and Pareto dominates any
other equilibrium.

The second property, Weakly Pareto Nash Implementation (WPNI)
requires that the least inefficient equilibrium Pareto dominate any other equi-
librium. That is, WPNI might implement several equilibria (and all of them
might be inefficient), but the least inefficient equilibrium should be preferred
by all the agents to any other equilibrium. Thus, if the Nash equilibrium is a
good predictor of the outcome implemented by the mechanism, then the least
inefficient equilibrium will be implemented since all the agents prefer it.

PNI and WPNI rule out problems of equilibrium selection, since either the
efficient equilibrium is implemented under PNI, or the least inefficient is im-
plemented under WPNI. Therefore the price of stability, which uses the best
equilibrium as a benchmark is very well justified under PNI and WPNI.

1.3 Overview of the results

Theorem 1 characterizes the class of mechanisms that satisfy PNI. The mech-
anisms are monotonic in the total cost and do not depend on the demands of
the agents. The average cost mechanism (AC) ([27] [16]) which divides the to-

2See for instance [25] for a comparison of three cost-sharing mechanisms using the price of
anarchy. See [16] for a comparison of two mechanisms in the problem of commons using the
worst-absolute surplus loss.

3Notice that the problem of implementation we consider here differs from the one consid-
ered in the traditional literature since there is no private information on the part of agents.
However, it is the same problem in the sense that the planner has an objective function (here
efficiency) and the cost-sharing mechanism induces a game whose equilibrium is the outcome
obtained.
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tal cost of the network equally among its participants (Theorem 2) is the only
symmetric mechanisms in this class. These mechanisms are also characterized
under Strong Nash Implementability, which requires the efficient equilibrium to
be a Strong Nash.

The main downside of AC and the above variations is that they do not meet
individual rationality (IR, also referred to in the literature as voluntary partic-
ipation): agents demanding cheap links may pay more than the cost of their
demands, thus they may subsidize agents who demand expensive links. We
provide a class of mechanisms that meet IR and meet WPNI. The egalitarian
mechanisms (EG), a rule reminiscent to AC that meets IR, meets WPNI. Theo-
rem 3 characterizes non-symmetric variations of EG as the only rules that meet
WPNI.

EG is no more wasteful than the Shapley mechanism. It has a PoS equal
to H(k) = 1 + 1

2 + · · · + 1
k , where k is the number of agents in the network.

EG is also an optimum across all rules meeting IR under the PoS measure.
This is remarkable since, as we have discussed above, EG requires much less
information than Sh. Finally, the proportional method, a seemingly natural
method in this framework, also admits a pure strategy Nash equilibrium but is
far more inefficient than the egalitarian rule.

1.4 Related literature

The performance of Sh has been widely studied in the recent literature. For
example, [4] studies the equilibrium behavior of separable mechanisms, a class
of decentralized mechanisms that divides the cost of each edge among its users.
The PoS of separable mechanisms with a linear cost-sharing function is at least
H(k) (which is O(log k)), where k is the number of agents [4]. H(k) is the
upper bound on PoS(Sh) in general graphs, [3]. This upper bound is achieved
in directed graphs. If the graph is undirected, PoS(Sh) is lower than H(k). [1]
finds a new upper bound of O(log log k) when the graph is single source and
there are no steiner nodes. [19] finds a new upper bound of O(log k/ log log k)
for single source networks when steiner nodes are allowed. [4] shows that the
upper bound in two player case with single source is 4

3 . [18] finds out that
4
3 is also the upper bound in general multi commodity case. [6] investigates
the conditions on network topologies that admit strong equilibrium under Sh
and finds the upper bound on Strong Price of Anarchy ([2]) under Sh to be
H(k). [8] considers a similar problem as ours where the designer’s objective
is to implement the minimum cost spanning tree but the private information
about the link costs are not known to the designer. They characterize the set
of cost-sharing rules under which true revelation of link costs is a NE.

2 The Model

We fix the number of agents K̄ = {1, 2, . . . , k}. A network cost-sharing problem
is a tuple N =< G,K >, where G = (V,E) is a network that is directed
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or undirected such that each edge e ∈ E has a non-negative cost ce. K =
{{s1, t1}, {s2, t2}, . . . , {sk, tk}}, where {si, ti} ∈ 2V for all i ∈ K̄, is the set of
sources and sinks that agents want to connect. When there is no confusion, we
also denote K = K̄ the set of agents. Let the set of all graphs be G, and the
set of all network cost-sharing problems be denoted by N.

Given a problem N ∈ N, a strategy for agent i is a path Pi ⊆ E that connects
si to ti. Let the set of paths connecting si to ti be Πi(N). Let Π(N) ≡ ×

i∈K
Πi(N)

be the set of strategy profiles of all agents in network N. P = {Pi}ki=1 ∈ Π(N)
will be used to denote a strategy profile of the agents. When there is no confusion
we denote Πi(N) and Π(N) simply as Πi and Π respectively. Let GP = ∪

i∈K̄
Pi

be the network formed by the choice of paths by different agents. Let C(P ) =∑
e∈GP ce be the cost of the graph formed by strategies P.
Let N = ∪N∈NP (N) × N the union of all problems with their respective

strategies.

Definition 1 A cost-sharing mechanism is a mapping ϕ : N → Rk+ such that∑
i∈K

ϕi(P,N) = C(P ) for all (P,N) ∈ N .

A cost-sharing mechanism assigns non-negative cost-shares to the users of
the network based on their demands such that the total cost of the network
formed is exactly collected.

Example 1 • The Shapley mechanism, Sh, divides the cost of every link
equally across it users, that is, Shi(P,N) =

∑
e∈Pi

ce
U(e,P ) for all i ∈ K̄,

where U(e, P ) is the number of users of link e in the strategy profile P.

• The proportional to stand-alone mechanism, ηpr, divides the cost of the
network in proportion to every user’s stand-alone cost. That is, ηpri (P,N) =

SAi(N)
SA1(N)+···+SAk(N)C(P ) for all i ∈ K̄, where SAi(N) = minPi∈Π(N) C(Pi)
is the stand-alone of agent i in network N.

• The Average Cost mechanism AC divides the cost of the network formed
equally across all users. That is ACi(P,N) = C(P )

k for all i ∈ K̄.

The Shapley mechanism is a separable mechanism; that is, it divides the cost
of every link only across its users and adds those costs for all links in the network
formed. Alternative separable mechanisms can be constructed by considering
different cost-sharing rules for the links, for instance, by giving priority across
all users. Nevertheless, Sh is the optimal mechanism (using the price of stability
measure; see below) across all separable mechanism ([4]). Sh can be computed
in polynomial time.

On the other hand, ηpr divides the cost of the network in proportion to
the stand-alone of the agents. Since the stand-alone of every agent has to be
computed for every network, this mechanism uses the full information of the
network.
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AC divides the cost of the network formed equally across the users of the
network. It is the most egalitarian rule, reminiscent of the classic head tax rule
where the size of agents’ demands is not relevant, only the size of the total
cost of the network formed. AC uses less information than Sh or ηpr, since
only the total cost of the network formed and the number of agents is needed
to compute the cost-sharing allocation. There is no need to know the stand-
alone of the agents, or the users of certain links. As a result, its computation
complexity is minimal.

Definition 2 A cost-sharing mechanism ϕ is network independent if for any
two problems N =< G,K > and N ′ =< G′,K ′ > and strategies P ∈ P (N)
and P ′ ∈ P (N ′) such that C(Pi) = C(P ′i ) for all i ∈ K̄ and C(P ) = C(P ′):
ϕ(P,N) = ϕ(P ′, N ′).

Network independence captures those mechanisms that depend only on the
cost of the network formed and the cost of the agents’ demands. Neither Sh nor
ηpr are network independent. On the other hand, AC uses only the total cost
of the network formed and the number of users, thus it is network independent.
More complex network independent mechanisms are discussed below.

Let Sk = {(c; y) ∈ R+ × Rk+|maxi yi ≤ c ≤
∑
i yi}.

Lemma 1 A cost-sharing mechanism ϕ is network independent if and only if
there is a unique function ξ : Sk → Rk+ such that

∑
i ξi(c; y) = c for all (c; y) ∈

Sk, and
ϕ(P,N) = ξ(C(P );C(P1), . . . , C(Pk))

for all problems (P,N) ∈ N .

Proof. The sufficiency part is obvious. We prove the necessity only.
First, for any (c; y) ∈ Sk we construct the network Ñ(c; y) as follows. As-

sume without loss of generality that y1 ≥ y2 ≥ · · · ≥ yk. Choose i, i ∈ {1, . . . k}
such that:

y1 + y2 + · · ·+ yi ≤ c < y1 + y2 + · · ·+ yi+1.

Let Ñ(c; y) be a linear network such that every agent has a unique strategy
(see figure 2). All agents 1 to i have demand yi that do not intersect. Agent
i + 1 has demand yi+1 such that a segment of length c − (y1 + y2 + · · · + yi)
does not intersect the other agents, and y1 + y2 + · · · + yi+1 − c intersects the
demand of agent i. Agent j, j > i+ 1 has demand ỹj contained in the demand
of the agent 1.

Clearly, the unique strategy of agent k in Ñ(c; y) is yk, and the network
formed by all strategies has cost c. Define ξ : Sk → Rk+ as ξ(c; y) = ϕ(Ñ(c; y)).

Second, consider any arbitrary network N =< G,K > and a set of demands
P. On the one hand, notice that C(P ) ≥ C(Pi) for every agent i, since Pi ⊆ P.
On the other hand, notice that C(P ) ≤ C(P1) + · · · + C(Pk), since P ⊆ P1 ∪
P2 ∪ · · · ∪ Pk.
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Figure 2: Linear network with all the agents going in the same direction.

Let yi = C(Pi) and c = C(P ). Then (c; y) ∈ Sk. By network independence:
ϕ(P,N) = ϕ(Ñ(c; y)) = ξ(c; y). The uniqueness of ξ follows because it is well
defined on Sk.

Notice that a network-independent mechanism is reduced to the function ξ
that is similar to a taxation (rationing, bankruptcy) solution ([33, 28]). Since
we work only on mechanisms that are network independent, we refer without
loss of generality to the function ξ as a mechanism. When there is no confusion,
the total cost of a path demanded by an agent will be referred to as his demand.
We describe below some desirable properties of the function ξ.

Definition 3 A mechanism is continuous if the function ξ : Sk → Rk+ is a
continuous function with the Euclidean distance.

Continuous mechanisms capture the fact that small perturbations on the
demand or cost of the network should not change the total allocation of the
cost. All the network-independent mechanisms described in this paper meet
continuity. Continuity is used in all the results without referring to it.

Given a problem N =< G,K >, we say P ∗ is an efficient graph if P ∗ ∈
arg min
P∈Π(N)

C(P ). That is, P ∗ is a graph that connects all the agents at a minimal

cost. Let Eff(N) be the set of efficient graphs in the network N .
Given the problem N =< G,K >, the mechanism ξ induces the following

non-cooperative game Γξ(N) ≡< K̄, {Πi(N)}i∈K̄ , {ξi}i∈K̄ >, where the rep-
resentation of the game is the standard representation of the game in normal
form. Namely, K̄ = {1, . . . , k} is the set of players, Πi(N) is the strategy space
of player i, and ξi is the (negative of) payoff function of player i that maps a
strategy profile to real numbers.

P is a Nash Equilibrium (NE) of Γξ(N), if Pi ∈ arg min
Ṕi∈Πi(N)

ξi(Ṕi, P−i) for all i.
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Let
NE(Γξ(N)) ≡ {P ∈ Π(N)|P is a Nash Equilibrium of Γξ(N)}

be the set of Nash equilibria of the game Γξ(N).
Since every agent in the game Γξ(N) has a finite number of strategies, then

it has a finite number of equilibria.
We say that ξ (weakly) implements P , if P ∈ NE(Γξ(N)).

Definition 4 The mechanism ξ is efficient (EFF) if it implements an efficient
graph for any problem N , that is P ∗ ∈ NE(Γξ(N)) for some efficient graph P ∗.

The definition of efficiency just requires an efficient graph to be selected as a
Nash equilibrium. This does not preclude other equilibria from being selected.

Definition 5 The price of stability of the mechanism ξ equals:

max
N∈N ,P∗∈Eff(N)

{minP∈NE(Γξ(N)) C(P )
C(P ∗)

}
A mechanism is efficient if it has a price of stability equal to one.
Notice that AC is efficient, therefore it has a price of stability equal to one.

Indeed, at any efficient strategy profile P ∗, every agent is paying C(P∗)
k . If an

agent i deviates from P ∗ to P̃i, then he will pay C(Pi,P
∗
−i)

k . Clearly, C(Pi,P
∗
−i)

k ≥
C(P∗)
k by the optimality of P ∗.
Section 4 discusses a variety of inefficient mechanisms, i.e., with a price of

stability greater than one.

Definition 6 The mechanism ξ Pareto Nash Implements (PNI) an efficient
graph if for any problem N, it implements an efficient graph and that graph
Pareto dominates any other equilibrium. That is, for any problem N :

• There is an efficient graph P ∗ such that P ∗ ∈ NE(Γξ(N)), and

• For any other P ∈ NE(Γξ(N)) : ξ(P ∗) ≤ ξ(P ).

PNI is a very robust property that guarantees that the efficient allocation is
selected even when multiplicity of equilibria arise. In the case of a multiplicity
of equilibria, PNI guarantees that all agents would prefer the efficient graph to
any other equilibrium. Hence, a multiplicity of equilibria is not an issue.

In particular, this guarantees that whenever there is a multiplicity of equilib-
ria such that agent i prefers equilibrium P i to P j , and agent j prefers equilibrium
P j to P i, there should exist another equilibrium P ∗ (the efficient equilibrium)
such that agent i prefers equilibrium P ∗ to P i and agent j also prefers equilib-
rium P ∗ to P j .

The AC mechanism is also PNI. Indeed, at the efficient graph P ∗, this equi-
librium would Pareto dominate any other equilibrium P̃ since C(P∗)

k ≤ C(P̃ )
k .
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Another point in favor of AC (and its assymetric variations discussed below)
is that it generates an ordinal potential game on the set of players where the po-
tential function is equal to the total cost. Since the vast family of decentralized
learning/tatonnement mechanisms converge to a Nash equilibrium in a poten-
tial game,4 then so will in the AC mechanism. Moreover, with the presence of a
non-binding coordinator (who knows the optimal path in advance), the agents
can easily converge to the BEST Nash equilibrium.

Definition 7 The mechanism ξ Strongly Nash Implements (SNI) an efficient
graph if for any problem N it implements an efficient graph in strong Nash
equilibrium. That is, for any problem N ,

• There is an efficient graph P ∗ such that P ∗ ∈ NE(Γξ(N)), and

• For any group of agents S ⊂ {1, . . . , k}, and P ∈ Π(N) such that P−S =
P ∗−S , if ξi(P ) < ξi(P ∗) for some i ∈ S, then ξj(P ) > ξj(P ∗) for some
j ∈ S.

Under SNI there is no group of agents that can coordinate paths and weakly
improve all of them, and at least one agent in the group strictly improve. In
particular, this is similar to the strong Nash equilibrium and to the literature
on group strategyproofness ([15, 24]).

The AC mechanism is also SNI. Indeed, at any deviation P̃S of the group of

agent S from the efficient graph P ∗, it should be that C(P∗)
k ≤ C(P̃S ,P

∗
N\S)

k for
all i ∈ S. Hence no agent in S would strictly improve by deviating.

Definition 8 • The mechanism is demand monotonic (DM) if for all fea-
sible problems (c; y), (c; ỹ) ∈ Sk such that y−i = ỹ−i and yi < ỹi :
ξi(c; y) ≤ ξi(c; ỹ).

• The mechanism is strongly demand monotonic (SDM) if for all feasible
problems (c; y), (c; ỹ) ∈ Sk such that y−i = ỹ−i and yi < ỹi : ξ−i(c; y) ≥
ξ−i(c; ỹ).

Demand monotonicity is a weak property that requires that whenever the
demand of an agent increases, everything else fixed, his payment should not
decrease. Notice that does not preclude the possibility that the payment of
other agents would change. Under SDM, the increase in the demand of one
agent does not increase the payment of other agents. In particular, notice that
SDM implies DM since all of the agents’ payments have to add up to a constant.

AC is clearly strongly demand monotonic since AC(c; y) = AC(c; ỹ). Thus
the increase of the demand of one agent does not change the payments of the
other agents.

4See [22, 23] for convergence of fictitious play and best reply dynamics. See [31] for more
general dynamics.
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3 Implementing the Efficient Equilibrium

We now turn to the first main result of the paper. We characterize the mecha-
nisms that meet the efficiency properties discussed above.

Theorem 1 Assume there are three or more agents, then the following state-
ments are equivalent for the mechanism ξ :

1. ξ is EFF and SDM.

2. ξ PNI the efficient graph.

3. ξ SNI the efficient graph.

4. There is a monotonic function f : R+ → Rk+ such that
∑
i fi(c) = c and

for all feasible problems (c; y), ξ(c; y) = f(c).

The mechanisms characterized by theorem 1 are demand independent; that
is, the cost-share of every agent does not depend on whether the agents are
demanding cheap or expensive links. Instead, they depend only on the total
cost of the network formed. The average cost mechanism, generated by f(c) =
( ck , . . . ,

c
k ), is the only mechanism in this class that treats equal agents equally.

Notice efficiency alone is not sufficient to characterize the above mechanisms.
Indeed, consider the mechanism

ξ̃(c; y) = (min{y3,
c

k
}, 2c
k
−min{y3,

c

k
}, c
k
, . . . ,

c

k
).

First, notice that ξ̃ implements the efficient graph because at the efficient
graph agents {3, . . . , k} do not have the incentive to deviate since by doing so
their payment is going to increase. On the other hand, agents {1, 2} do not
have any incentive to deviate from the efficient equilibrium since the functions
min{y3,

c
k} and 2c

k −min{y3,
c
k} are weakly monotonic in the total cost of the

network and do not depend on their report.
ξ̃ is also an example of a mechanism that is not SNI, but agents cannot

strictly improve by coordinating.

3.1 Efficient mechanisms for two agents

The example above shows that for three or more agents, EFF is not enough to
characterize the demand-independent rules. On the other hand, this property is
enough when there are two agents. The property is an immediate consequence
of a separability lemma described below.

Proposition 1 Assume there are two agents, K = {1, 2}. A mechanism is
efficient if and only if there is a monotonic function f : R+ → R2

+ such that
f1(c) + f2(c) = c and for all feasible problems (c; y), ξ(c; y) = f(c).
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3.2 Equal treatment of equals

Definition 9 The mechanism satisfies equal treatment of equals (ETE) if for
all agents i, j and (c; y) ∈ N k such that yi = yj : ξi(c; y) = ξj(c; y).

ETE is the standard property of equal responsibility for the cost of the good.
Equal agents with the same demand should be allocated the same cost. There
is a large class of solutions that meet ETE. We describe in section 4 alternative
rules that meet ETE, such as the Proportional and Egalitarian solution.

Theorem 2 A mechanism is EFF and ETE if and only if it is AC.

Notice that this statement is not directly implied by Theorem 1, since we
do not need SDM.

Alternatively, Theorem 2 implies that AC is the only ETE mechanism with
a PoS equal to one.

4 Individually Rational Mechanisms

Definition 10 A mechanism ξ is individually rational (IR) if for all (c; y) ∈
Sk : ξi(c; y) ≤ yi for all i.

Individually rational mechanisms rule out cross-subsidies; that is, no agent
pays more than the cost of their demand.

Notice that neither AC nor any mechanism discussed in Theorem 1 meet
individual rationality. Therefore, a reminiscent incompatibility of strategy-
proofness, efficiency, budget-balance and individual rationality ([7]) also holds
in this problem.

This incompatibility holds only because we consider network-independent
mechanisms. If we remove network-independence, there is a large class of mech-
anisms that always implement the efficient network and at the same time meet
individual rationality. For instance, consider the proportional to stand-alone
mechanism ηpr discussed above. ηpr is individually rational because no agent
pays more than his stand-alone, which in turn is less than his demand. On
the other hand, ηpr implements the efficient allocation because the cost-share
of every agent is in proportion to the cost of the network; therefore, any devia-
tion from the efficient graph that increases the total cost of the network formed
would increase the cost-share of all the agents.

On the other hand, there is a large class of individually rational mecha-
nisms that are network independent: most of the mechanisms discussed in the
rationing/bankruptcy literature meet IR; see, for instance, [33, 28].

A class of rationing mechanisms that is especially compelling is the class of
asymmetric parametric methods.

Definition 11 For every agent i, consider Fi : [0,Λ] × R+ → R+, continuous
in both variables, non-decreasing in the first variable and such that Fi(λ, 0) = 0
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and Fi(Λ, z) = z for all λ and z. A parametric rationing mechanism is defined
as

ϕi(c, y) = Fi(λ, yi) where λ solves
∑
i∈K̄

Fi(λ, yi) = c.

The class of asymmetric parametric methods is very rich; it contains almost
any rationing method discussed in the literature.5 In particular, it contains
the two basic rationing methods: the proportional and egalitarian mechanisms.
The proportional mechanism, PR, divides the cost of the agents in proportion
to their demands:

PRi(c; y) =
yi

y1 + · · ·+ yk
c.

On the other hand, the egalitarian mechanism, EG, divides the cost equally
across the agents subject to no agent paying more than their demand:

EGi(c; y) = min{yi, λ} where λ solves
∑
i min{yi, λ} = c.

The parametric description of these two methods is given by:

Proportional: Fi(λ,z) = λz,Λ = 1;
Egalitarian: Fi(λ, z) = min{λ, z},Λ =∞;

We now introduce a class of mechanisms that generalize the egalitarian mech-
anism. These mechanisms, which resembles a fixed path method, are briefly
introduced and discussed in section 1.8 of [28]. To illustrate the class of rules,
consider a non-decreasing function fi : [0,Λ] → R+ such that fi(0) = 0 and
fi(Λ) = ∞, for every agent i ∈ {1, . . . , k}. Given the demands of the agents
(y1, . . . , yk) and a cost of the network c, the cost-share of agent i is given by:

EGf1,f2,...,fki (c; y1, y2, . . . , yk) = min{fi(λ), yi},

where λ solves
∑k
i=1 min{fi(λ), yi} = c.

Notice the mechanism EGf1,f2,...,fki clearly meets IR since

EGf1,f2,...,fki (c; y1, y2, . . . , yk) ≤ yi.

The mechanism EGf1,f2,...,fki will be called an asymmetric egalitarian mech-
anism (AEM).

The egalitarian mechanism is constructed by picking functions f1 = f2 =
· · · = fk.

On the other hand, the weighted egalitarian methods are constructed when
fi(λ) = wiλ for all i, for a given set of constants w1, . . . , wk.

Contrary to the traditional analysis of this problem, the games induced by
the asymmetric egalitarian mechanisms are not potential games, see section 10.2

5The class of symmetric parametric methods is characterized by consistency, continuity
and symmetry; see [34] for the characterization and [28] for a more detailed description of the
methods.
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for an example illustrating that. Therefore, the previous potential techniques
used in the analysis of this problem do not work anymore. We do not know
whether any mechanism (induced by a rationing method) always has a pure
strategy Nash equilibrium. Nevertheless, we show below that AEM and pro-
portional always have pure strategy Nash equilibria and provide algorithms to
compute them.

Lemma 2 The proportional and the asymmetric egalitarian mechanisms always
have a pure strategy Nash equilibrium.

Proof. We prove the lemma for an ASM mechanism. The proof for the pro-
portional mechanism is written in the appendix.

Consider the asymmetric egalitarian mechanism ϕ generated by the functions
f1, . . . , fk. Let Si be the stand-alone of agent i, and let si = C(Si) be its cost.

We show the best reply tattonment starting from the profile of demands
(S1, S2, . . . , Sk) converges to a Nash equilibrium.

Let gi(x) = (f i)−1(x) the inverse of f i. Asumme without loss of generality
that g1(s1) ≤ g2(s2) ≤ · · · ≤ gk(sk).

Let C(S1, . . . , Sk), and let λ∗ such that
∑
i min{f i(λ∗), si} = C(S1, . . . , Sk).

Let m such that:

g1(s1) ≤ · · · ≤ gm−1(sm−1) ≤ λ∗ < gm(sm) ≤ · · · ≤ gk(sk).

First, notice that ϕi(s1, . . . , sk) = si if i < m, and ϕi(s1, . . . , sk) = f i(λ∗) if
i ≥ m.

Second, notice that at the best reply of any agent, the variable λ∗ should
decrease.

To see this, consider agent j and assume that his best reply is the path Y j

with cost C(Y j) = yj .
Case 1. If j < m, then his cost-share is ϕj(s1, . . . , sk) = sj . At his best

reply Y j , yj ≥ sj . The only way to decrease his cost-share is by moving to λ̃
such that f j(λ̃) < sj . Since gj(sj) ≤ λ∗, then sj ≤ f j(λ∗). Hence λ̃ < λ∗.

Case 2. f j ≥ m then ϕj(s1, . . . , sk) = f j(λ∗) < sj . At his best reply Y j ,
C(Y j) ≥ sj . Therefore, the only way to decrease his payment is by decreasing
λ∗, since he cannot decrease his demand below sj .

Finally, notice we can replicate cases 1 and 2 above for the new profile
(Yj , S−j). Indeed, notice ϕi(yj , s−j) = si, or ϕi(yj , s−j) = f i(λ̃). Similar to case
1, an agent paying his stand-alone, that is ϕi(yj , s−j) = si, will be demanding
his stand-alone. Thus, his only profitable deviation will be to decrease λ̃ to λ̄,
λ̄ < λ̃, such that f i(λ̄) < si. Thus, decreasing the total cost of the network.

On the other hand, if ϕi(yj , s−j) = f i(λ̃) then f i(λ̃) ≤ si. Similar to case
2, an increase in their demand is only profitable if λ̃ decreases, and so does the
total cost of the network.

Since at any step the value λ∗ decreases, it is bounded and there is a finite
number of strategies, then λ∗ converges in a finite number of iterations. The
limit profile is a Nash equilibrium.
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4.1 Weak Pareto Nash Implementation

There is no individually rational mechanisms that meet PNI. Weakly Pareto
Nash Implementation (WPNI) requires that the least inefficient equilib-
rium Pareto dominate any other equilibrium. That is, WPNI might implement
several equilibria (and all of them might be inefficient), but the least inefficient
equilibrium should be preferred by all the agents to any other equilibrium.

Definition 12 A mechanisms is WPNI if:

• It always has at least one Nash equilibrium

• Among the different equilibriums with cost c1 ≤ c2 ≤ · · · ≤ cl, the cost-
share of every agent at equilibrium c1 is not larger than than his cost-share
at equilibrium ch for h = 2, . . . , l. That is, the equilibrium with cost c1
Pareto dominates other equilibria.

WPNI serves an an equilibrium selection rule. If the Nash equilibrium is a
good predictor of the outcome implemented by the mechanism, then the least
inefficient equilibrium will be implemented since all the agents prefer it.

Theorem 3 An asymmetric parametric mechanism meets WPNI if and only if
it is an asymmetric egalitarian mechanism.

The price of stability (PoS), which computes the ratio between the best
efficient equilibrium and the efficient outcome, is a compelling measure of the
inefficiency generated by WPNI mechanisms since the agents’ incentives are
aligned to pick the BEST Nash equilibrium.

Corollary 4 i. EG has the smallest price of stability across all asymmetric
parametric mechanisms meeting WPNI. It has a price of stability equal to
H(k) = 1 + 1

2 + · · ·+ 1
k .

ii. EG is an optimum across all individually rational mechanisms.

iii. The price of stability of PR is of order k.

Since the Shapley mechanism has a PoS equal to H(k), EG is no more inef-
ficient than the Shapley mechanism. No other individually rational mechanism
can be more efficient than EG and Shapley. On the other hand, the traditional
proportional mechanism is extremely inefficient; since its price of stability is
bounded by k, its maximal loss approaches that in the limit.

4.2 Strong Nash Implementation

Definition 13 A mechanism strongly Nash implements the network with the
minimal cost (SNIMC) if

• It always has at least one Nash equilibrium

15



• The equilibrium with a minimal cost is a strong Nash equilibrium.

Proposition 2 The asymmetric egalitarian mechanisms SNIMC.

Notice that together with the WPNI property of AEG, this proposition
implies that there is one and only one strong Nash equilibrium under AEG.
This comes from the fact that the Nash equilibria are Pareto ranked and thus
under any NE other than the cheapest NE, the grand coalition has a profitable
deviation. This means that the strong price of anarchy (SPoA) of the EG equals
the strong price of stability of EG, and they equal H(k). This earmarks another
advantage of EG over Sh, since we know that Sh does not always admit Strong
NE [3, 4] and therefore, SPoA does not exist for Sh.

We conjecture that the only mechanisms that SNIMC are the asymmetric
egalitarian mechanisms.

5 Conclusions

This paper provides a new perspective to the problem of cost-sharing in net-
works. In particular, it provides new concepts of implementation and charac-
terize the classes of mechanisms that meet them. The average cost mechanism
and reminiscent variations are characterized using those properties.

It also provides the first economic justification for the price of stability, a
seemingly natural measure in the computer science literature but not easily em-
braced in economics. It illustrates the environments where PoS is the correct
measure to use. The egalitarian mechanism, an optimal mechanism using this
measure, is singled out in the class of WPNI mechanisms. Moreover, EG outper-
forms the Shapley mechanism on several grounds including efficiency, stability,
and fairness.

Several questions remain open, including a characterization of the continuous
mechanisms, the full characterization of the class of SNIMC mechanisms, and
the introduction of compelling behavioral properties that justify the price of
anarchy.
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6 Proof of Theorems 1 and 2

6.1 Preliminary Lemmas

Figure 3: EFF implies cost monotonicity (case 1).

Figure 4: EFF implies cost monotonicity (case 2).

Definition 14 The mechanism is monotonic in cost if for all feasible problems
(c; y), (c′; y) ∈ NK such that c < c′: ξ(c; y) ≤ ξ(c′; y).

Lemma 3 If the mechanism ξ is efficient then it is monotonic in total cost.
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Proof.
Consider two feasible problems (c; y) and (c′; y), where c′ > c and (c′ −

c) < min
i∈K
{yi}. Suppose there exists an agent i and an efficient ξ such that

ξi(c′; y) < ξi(c; y).
We construct a network that have the two potential profiles (c; y) and (c′; y).
Indeed, consider a network where agents j 6= i have just one strategy each,

Pj , which costs yj . Agent i has two strategies Pi and P ′i both of which cost yi
but Pi makes the total cost of the network c, and P ′i makes the total cost go up
to c′.

Case 1: c ≤
∑
j 6=i yj .

In this case we can have a configuration as shown in figure 3. Here, the
demands of agents in K\{i} is contained in the interval a → b, which costs c.
This is possible since when c =

∑
j 6=i yj , we can have a→ b as the concatenation

of the demand links of the agents j 6= i .When c <
∑
j 6=i yj , we can have

the demand links overlapping, e.g., when max
j 6=i
{yj} = c, then a → b is the

demand link of the biggest demander and all other demands overlap with his.
Pi = si → v1 → v2 → v3 → ti and P ′i = si → v2 → v3 → ti. All the costly links
of Pi are contained in { ∪

j 6=i
Pj} whereas there are links of cost c′− c that are not

contained in { ∪
j 6=i
Pj} under P ′i . Again, this is possible since c′ and c are close

enough to guarantee that for all i we can have such paths.
Case 2:

∑
j∈K yj > c >

∑
j 6=i yj .

In this case we can have a configuration as shown in figure 4. Here, the
interval a → b is the concatenation of the demand links of agents in K\{i} .
Thus |a → b| =

∑
j 6=i yj , |si → a| = c −

∑
j 6=i yj , |a → d| = c′ − c. |si →

a → d| = |si → a′ → d| = c′ −
∑
j 6=i yj . Pi = si → a → d → ti and

P ′i = si → a′ → d→ ti. Notice that it may be the case that ti = b.
Now clearly in both cases, i will have a profitable deviation from the efficient

graph of cost c, thus contradicting the efficiency of ξ. Thus we have shown that
efficient ξ must be monotonic in total cost in some open neighborhood of c,
for all c. Therefore, we can extend the argument to conclude that ξ must be
monotonic in total cost in general.

Lemma 4 (Separability Lemma) If the mechanism ξ is efficient then =⇒
ξ(C; y) = (ξ1(C; y−1), ξ2(C; y−2), ....., ξk(C; y−k)). That is, any efficient mech-
anism is separable and assigns the costs-shares to the agents independently of
their demand.

Proof. If we prove that for any feasible problems (c; y) and (c; ỹi, y−i), any
continuous and efficient ξ must have ξi(c; y) = ξi(c; ỹi, y−i), then we are done.
Consider a feasible problem (c; y). Consider a graph as shown in Figure 5, which
generates this problem. The sources and sinks of agents j 6= i lie on the ray a→ b
according to the demand profile; i.e., the agent with the highest demand covers
most of the span on a → b and so on. Thus, an agent j 6= i has one strategy
that generates the demand yj . Agent i has two strategies– either connect si− ti
through v1 or through v2. The demands of agent i when connecting through
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Figure 5: EFF implies separability.

v1 and v2 are ỹi and yi respectively. Now, the total cost when i uses v1 and
v2 are respectively c + ε and c. Notice that by moving the position of v2 and
arranging the demand links of the agents j 6= i, we can generate all the feasible
problems (c; yi, y−i). Also, by moving the position of v1 and arranging the
demand links of the agents j 6= i, we can generate all the feasible problems
(c + ε; yi, y−i). Consider an efficient ξ that is continuous. The efficiency of ξ
requires the following inequality

ξi(c; yi, y−i) ≤ ξi(c+ ε; ỹi, y−i) (1)

Using continuity we get

ξi(c; yi, y−i) ≤ ξi(c; ỹi, y−i) (2)

Similarly, switching the position of v1 and v2 and using continuity again we
get

ξi(c; yi, y−i) ≥ ξi(c; ỹi, y−i) (3)

Thus, we conclude that ξi(c; yi, y−i) = ξi(c; ỹi, y−i) for all feasible problems
(c; yi, y−i) and (c; ỹi, y−i).

6.2 Proof of Proposition 1

Consider a problem (c; y1, y2) ∈ S2.
By separability lemma: ξ1(c; y1, y2) = ξ1(c; c, y2).
By budget balance: ξ2(c; y1, y2) = ξ2(c; c, y2). Thus, ξ(c; y1, y2) = ξ(c; c, y2).
By separability lemma: ξ2(c; c, y2) = ξ2(c; c, c).
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By budget balance: ξ1(c; c, y2) = ξ1(c; c, c). Thus, ξ(c; c, y2) = ξ(c; c, c).
Therefore ξ(c; y1, y2) = ξ(c; c, c).
Let f(c) = ξ(c; c, c). Since the mechanism is monotonic in the total cost

(lemma 3), f(c) is monotonic in the total cost.

6.3 Proof of Theorem 1

6.3.1 1. =⇒ 4.

Proof.
Consider a continuous ξ that is efficient and strongly monotonic. Consider

two arbitrary feasible problems (c; y) and (c; ỹ). We will prove that ξ(c; y) =
ξ(c; ỹ) = f(c). The monotonicity of f comes from lemma 1. Let a = 1

k

∑
i∈K yi

and ã = 1
k

∑
i∈K ỹi. Assume without loss of generality that y1 ≤ y2 ≤ y3 ≤

...... ≤ yk and ỹ1 ≤ ỹ2 ≤ ỹ3 ≤ ...... ≤ ỹk.
Step 1: ξ(c; y) = ξ(c; a, a, ..., a) and ξ(c; ỹ) = ξ(c; ã, ã, ...., ã)
Proof:
Consider the following problems: P0 = (c; y), P1 = (c; a, y2, y3, ...yk), P2 =

(c; a, a, y3, y4, ..., yk), ........,Pk = (c; a, a, ......, a). Notice first that the feasi-
bility of P0 implies the feasibility of P1, P2, ..., Pk. This is true because the
maximum of the demand profile does not go above yk in all these problems
and the sum of the individual demands is always at least k ∗ a =

∑
i∈K yi.

Similarly, if we define the counterpart problems P̃0, P̃1, P̃2, ..., P̃k where P̃i =
(c; ã, ã, ..., ã, ỹi+1, ỹi+2, ..., ỹk−1, ỹk), then again all of them will be feasible.

Now, due to the separability lemma, we must have ξ1(P0) = ξ1(P1). But then
strong monotonicity and budget balancedness imply ξ−1(P0) = ξ−1(P1). Thus,
we have ξ(P0) = ξ(P1). Using the same argument, we have ξ(Pi) = ξ(Pi+1)
and ξ(P̃i) = ξ(P̃i+1) for all 0 ≤ i ≤ k − 1. Thus, we have ξ(P0) = ξ(Pk) and
ξ(P̃0) = ξ(P̃k) as desired.

Step 2: ξ(c; a, a, ..., a) = ξ(c; ã, ã, ...., ã)
Proof:
Notice first that the feasibility of (c; a, a, ..., a) & ξ(c; ã, ã, ...., ã) implies that

any problem (c; â) where some of the âi = a and other âi = ã is also feasible.
Now, lemma 2 implies ξ1(c; a, ã, ..., ã) = ξ1(c; ã, ã, ...., ã). Now, there can be
three cases–a < ã, a > ã or a = ã. In the first two cases strong monotonicity
and budget-balancedness imply ξ−1(c; a, ã, ..., ã) = ξ−1(c; ã, ã, ...., ã) and we get
ξ(c; a, ã, ..., ã) = ξ(c; ã, ã, ...., ã). The third case trivially implies ξ(c; a, ã, ..., ã) =
ξ(c; ã, ã, ...., ã) since it is the same problem so the solution must be the same.
Similarly, we get ξ(c; ã, ã, ...., ã) = ξ(c; a, ã, ..., ã) = ξ(c; a, a, ã, ..., ã) = ....... =
ξ(c; a, a, ..., a).

�

6.3.2 2. =⇒ 1.

Proof.
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We know that ξ PNI efficient graph implies that ξ is efficient. We will prove
that if ξ PNI the efficient graph then ξ is strongly monotonic. Consider a ξ that
PNI the efficient graph and a feasible problem (c; y) and assume without loss of
generality that y1 < y2 < ..... < yk

6. Now, consider a graph as shown in figure
6 below.

Figure 6: PNI implies SM.

Here every agent has two strategies– either use the path in the solid graph
or use that in the dotted graph. Let’s call the solid graph ** and the dotted
graph *. Let * be a small perturbation of ** as following. The cost of path
of an agent j 6= i in both graphs is yj . The cost of paths of agent i in ”**”
and ”*” are yi and ỹi where ỹi is in a neighborhood of yi and ỹi > yi and
|ỹi − yi| < min

j,k∈K
|yj − yk|. This restriction guarantees that the ranking will be

preserved in the perturbed problem. Let the total cost of ** and * be c−ε and c
respectively. First, we will show that this graph generates all feasible problems
(c; y). This happens if and only if the following system has a solution:

6The case of weak inequality will follow from the assumption of continuity on our method
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x1 + a1 = y1

x2 + a2 + a1 = y2

x3 + a3 + a2 + a1 = y3

:
:

xk + ak + ak−1 + ...+ a1 = yk
k∑
i=1

xi +
k∑
i=1

ai = c

∀i ∈ K; xi, ai ≥ 0

We use Farka’s Lemma to prove that this system indeed has a solution:
From Farka’s lemma we know that Ax = b; x ≥ 0 has a solution if and only

if AT z ≥ 0; bT z < 0 doesn’t have a solution.
Here, the (k+1)×(2k) matrix A, vector x and vector b are defined as follows:

A =


1 0 0 .... 1 0 0 ....
0 1 0 .... 1 1 0 ....
.... .... .... .... .... .... .... ....
1 1 1 .... 1 1 1 ....


x =

[
x1 x2 .... xk a1 a2 .... ak

]T
b =

[
y1 y2 .... yk c

]T
AT z ≥ 0; bT z < 0 gives the following (2k + 1) inequalities;

z1 + z2 + ....+ zk+1 ≥ 0 (1)

z2 + z3 + ...+ zk+1 ≥ 0 (2)

: (:)

zk + zk+1 ≥ 0 (k)

z1 + zk+1 ≥ 0 (k+1)

z2 + zk+1 ≥ 0 (k+2)

: (:)

zk + zk+1 ≥ 0 (2k)
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y1z1 + y2z2 + .....+ ykzk + czk+1 < 0 (2k+1)

Now, do the following operation on the first k inequalities: y1 × (1) + (y2 −
y1)× (2) + ......+ (yk − yk−1)× (k), to get,

y1z1 + y2z2 + .....+ ykzk + ykzk+1 ≥ 0 (2k+2)

Now, for the inequalities (2k+1) and (2k+2) to be compatible, it must be
the case that zk+1 < 0. Let this be the case and let (2k+2) and (2k+1) hold.
Then, (2k+1) implies:

y1z1 + y2z2 + .....+ ykzk + (
∑
i∈K

yi)zk+1 < 0 (2k+3)

This is true because feasibility requires
∑
i∈K yi ≥ c. Now, if we do the

following operation on inequalities (k+ 1) through (2k): y1× (k+ 1) +y2× (k+
2) + ....+ yn × (2k), then we get,

y1z1 + y2z2 + .....+ ykzk + (
∑
i∈K

yi)zk+1 ≥ 0 (2k+4)

which contradicts (2k+3) to give us the desired result.
We now prove the strong monotonicity of ξ. Clearly, the efficiency of ξ

implies that ** is a NE but since * is a perturbation of **, we will have * as
a NE for a perturbation small enough. The fact that ξ PNI the efficient graph
implies the following inequality

ξ(c− ε; yi, y−i) ≤ ξ(c; ỹi, y−i)

Using continuity we get,

ξ(c; yi, y−i) ≤ ξ(c; ỹi, y−i)

Now consider a perturbation where every thing is exactly the same except
** costs c + ε. Using the same argument of Pareto Nash implementability and
continuity we get that

ξ(c; yi, y−i) ≥ ξ(c; ỹi, y−i)

Thus we conclude that ξ(c; yi, y−i) = ξ(c; ỹi, y−i) for ỹi in an open neighbor-
hood of yi. But repeatedly using the open neighborhood argument, show that
this is true for any arbitrary yi and ỹi as long as (c; yi, y−i) and (c; ỹi, y−i) are
both feasible.
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6.3.3 3. =⇒ 4.

Consider a continuous ξ that implements the efficient graph in strong NE.
Consider two arbitrary feasible problems (c; y) and (c; ỹ). We will prove that
ξ(c; y) = ξ(c; ỹ) = f(c). The monotonicity of f comes from lemma 1. Let
a = 1

k

∑
i∈K yi and ã = 1

k

∑
i∈K ỹi. Assume without loss of generality that

y1 ≤ y2 ≤ y3 ≤ ...... ≤ yk and ỹ1 ≤ ỹ2 ≤ ỹ3 ≤ ...... ≤ ỹk.

Step 1: ξ(c; y) = ξ(c; a, a, ..., a) and ξ(c; ỹ) = ξ(c; ã, ã, ...., ã)
Proof:
Consider the following problems: P0 = (c; y), P1 = (c; a, y2, y3, ...yk), P2 =

(c; a, a, y3, y4, ..., yk), ........,Pk = (c; a, a, ......, a). Notice first that the feasi-
bility of P0 implies the feasibility of P1, P2, ..., Pk. This is true because the
maximum of the demand profile doesn’t go above yk in all these problems
and the sum of the individual demands is always at least k ∗ a =

∑
i∈K yi.

Similarly, if we define the counterpart problems P̃0, P̃1, P̃2, ..., P̃k where P̃i =
(c; ã, ã, ..., ã, ỹi+1, ỹi+2, ..., ỹk−1, ỹk), then again all of them will be feasible.

Now, due to the separability lemma, we must have ξ1(P0) = ξ1(P1). Also,
strong Nash implementability implies that ξ−1(P0) = ξ−1(P1). To see this,
suppose that it is not the case and for some agent j 6= 1, we have ξj(P0) 6=
ξj(P1). Assume without loss of generality that ξj(P0) < ξj(P1). This means
∃j̀ ∈ K\{1, j} s.t., ξj̀(P0) > ξj̀(P1), because of budget balancedness. Consider
a network where all the agents 2, 3, ..., k have just one strategy which costs
y2, y3, ..., yk and agent 1 has two strategies, where one of them costs y1 and the
other costs a. In both the cases, the total cost of the network is c. Thus one
of the configurations generates the problem P0 and the other P1. Now both
the configurations of the network are efficient and therefore at least one of them
must be a strong NE under ξ. But clearly none of them is a strong NE. From P1

the group {1, j} has a profitable deviation and from P0 the group {1, j̀}. Thus,
we have ξ(P0) = ξ(P1). Using the same argument we have ξ(Pi) = ξ(Pi+1)
and ξ(P̃i) = ξ(P̃i+1) for all 0 ≤ i ≤ k − 1. Thus, we have ξ(P0) = ξ(Pk) and
ξ(P̃0) = ξ(P̃k) as desired.

Step 2: ξ(c; a, a, ..., a) = ξ(c; ã, ã, ...., ã)
Proof:
Notice first that the feasibility of (c; a, a, ..., a) & ξ(c; ã, ã, ...., ã) implies that

any problem (c; â) where some of the âi = a and other âi = ã is also feasible.
Now, lemma 2 implies ξ1(c; a, ã, ..., ã) = ξ1(c; ã, ã, ...., ã). And again, the strong
Nash implementability implies ξ−1(c; a, ã, ..., ã) = ξ−1(c; ã, ã, ...., ã). The proof
of this statement is analogous to the one in step 1. Thus we have ξ(c; a, ã, ..., ã) =
ξ(c; ã, ã, ...., ã). Similarly, we get

ξ(c; ã, ã, ...., ã) = ξ(c; a, ã, ..., ã) = ξ(c; a, a, ã, ..., ã) = ....... = ξ(c; a, a, ..., a).

The results “4. =⇒ 1.,” “4. =⇒ 2” and “4. =⇒ 3” are straightforward
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and the proof is omitted.

6.4 Proof of Theorem 2

Proof. The “if” part is clear. For, “only if” consider an arbitrary feasible
problem (c; y). Assume without loss of generality that y1 ≥ y2 ≥ y3 ≥ .... ≥ yk.
Let a = 1

k

∑k
i=1 yi. Consider a problem (c; a, a, ...., a) and suppose that ξ is

continuous, efficient and satisfies ETE. Notice that the feasibility of (c; y) implies
the feasibility of (c; a, a, ...., a) and any other problem (c; ŷ) where ŷi = yi for
all i ∈ {1, 2, ..., l} and ŷi = a for all i ∈ {l, l + 1, ..., k − 1, k}. Now, the ETE
property of ξ implies

ξ(c; a, a, ...., a) = (c/k, c/k, ...., c/k) (4)

Using lemma 2 and applying ETE again we get,

ξ(c; y1, a, ...., a) = (c/k, c/k, ...., c/k) (5)

Now again applying lemma 2 and ETE we have,

ξ(c; y1, y2, a, a, ...., a) = (x1, c/k, x, x, ...., x) (6)

But if we change the ordering of 1 & 2 while arriving at the above profile
then we should have,

ξ(c; y1, y2, a, a, ...., a) = (c/k, x2, x, x, ...., x) (7)

But, since the ordering is immaterial, we must have that x1, x2, x = c/k.
And thus we have,

ξ(c; y1, y2, a, a, ...., a) = (c/k, c/k, ...., c/k) (8)

Repeating the same argument, we conclude that ξ(c; y) = (c/k, c/k, ..., c/k)

7 Proof of Lemma 2

We show the existence of equilibrium for PR.
Proof. We prove a stronger property, which is that the best response (br) dy-
namics (one agent at a time) of any arbitrary fixed ordering of agents converges
to a NE, no matter where we start the br dynamics from. Suppose, on the con-
trary, that for some fixed ordering of agents the br dynamics from some point
”s” does not converge. This means that there is a cycle of a finite length l –
s(1)→ s(2)→ s(3)→ ........→ s(l)→ s(1). Say, without loss of generality, that
this cycle includes deviations by the set of agents M = {1, 2, ...,m} ⊆ K . The
strategy of agents in K/M is fixed at s−M . Notice that l is at least as big as 2m.
This is so because after the l best responses, we arrive at the original strategy
profile i.e., s(1). Every agent in M is a part of the cycle, which in turn means
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that they change their strategy at least once. Therefore, it must be the case
that every agent in M takes its turn at least twice so that they reach the original
profile, i.e., s(1). Let’s assume that agent i ∈M takes its turn in the br dynam-
ics ni > 1 number of times so that

∑
i∈M ni = l. Let the strategies played by

the agent i in the cycle be si;1, si;2, ..., si;ni , si;1 and so on. Let’s call the agent
who takes his turn of br in the movement from st to st+1 agent at. Therefore,
s(1) = (s1;1, s2;1, ..., sm;1, s−M ) , s(2) = (sa1;2, s−a1(1)), s(3) = (sa2;2, s−a2(2)),
.........,s(l − 1) = (sal−1;nal−1 , s−al−1(l − 2)), s(l) = (sal;nal , s−al(l − 1)). Here,
we use the standard notation where s−i(t) represents the strategy profile of
K\{i} fixed at that in s(t). We abuse the notation and say that the cost of
sp;i is equal to sp;i. Here the cost of the network formed by the strategy profile
s(i) = C(Gs(i)). Now, ξprj (C(Gs(i)); s(i)) = sj;pAi where Ai is fixed for any
particular s(i) and sj;p represents the strategy of agent j in s(i) . The fixed Ai
for an s(i) is the ratio of C(Gs(i)) to the sum of the costs of individual paths in
s(i).

Now every step of the cycle corresponds to an inequality which we will
present as follows:

Step 1: s(1)→ s(2) =⇒

sa1;2 ×A2 < sa1;1 ×A1 (1)

Step 2: s(2)→ s(3) =⇒

sa2;2 ×A3 < sa2;1 ×A2 (2)

Step 3: s(3)→ s(4) =⇒

sa3;t ×A4 < sa3;t−1 ×A3; t =
{

3 if a3 = a1

2 otherwise

}
(3)

|
|

Step p: s(p)→ s(p+ 1) =⇒

sap;t ×Ap+1 < sap;t−1 ×Ap; t ∈ {1, 2, ..., nap} (p)

|
|
Step l: sl → s1 =⇒

sal;nal ×A1 < sal;nal−1 ×Al (l)

If we multiply the systems (2), (3), ..., (l) together7, then everything else
cancels out and we are left with sa1;2 × A2 > sa1;1 × A1, which contradicts the

7Notice, we can do that since everything here is positive
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inequality (1). Therefore, we conclude that there cannot be any cycle regardless
what ordering of agents and what initial point we follow for the best response
dynamics.

8 Proof of Theorem 3

8.1 Any AEM meets WPNI

We start from an AEM ϕ determined by the functions f1, . . . , fk.
Let gi = (f i)( − 1) the inverse of f i. Without loss of generality, we assume

g1(s1) ≤ · · · ≤ gk(sk), where si is the cost of the stand-alone Si of agent i.
Step 1. For any Nash equilibrium there is an index m and λ∗ such that

i. ϕi = si for i = 1, . . . ,m

ii. ϕh = f i(λ∗) for h > m.

iii. gm(sm) < λ∗ ≤ gm+1(sm+1)

Proof. Consider an equilibrium X = (X1, . . . , Xk) and let λ∗ such that∑
i min{C(Xi), f i(λ∗)} = C(X1, . . . , Xk).
If agent j is such that ϕj < f j(λ∗), then ϕj = sj . To see this, since ϕj =

min{C(Xj), f i(λ∗)} < λ∗, then ϕj = C(Xj). Since C(Xj)) ≥ sj , then agent
j can deviate to his stand-alone Sj whenever C(Xj)) > sj , and guarantee a
cost-share not larger than sj . Therefore at equilibrium ϕj = sj .

Since g1(s1) ≤ · · · ≤ gk(sk), then there is m such that i and ii is satisfied.
We now show that iii must be satisfied.

Assume that λ∗ > gm+1(sm+1) then fm+1(λ∗) > sm+1, thus ϕm+1 >
fm+1(sm+1). Thus agent m + 1 can profit by deviating from X by selecting
Sm+1.

Finally, since C(Xi) = si for i = 1, . . . ,m, and ϕi = si, then si < f i(λ∗)
thus gi(si) < λ∗.

Step 2. ϕ Pareto ranks the equilibriums.
Proof.

Consider any two equilibriums X = (X1, . . . , Xk) and X̃ = (X̃1, . . . , X̃k).
Let (m,λ) and (m̃, λ̃) the values given by step 1 for equilibrium X and X̃
respectively.

If m < m̃, then λ < λ̃, since gm(sm) < λ ≤ gm+1(sm+1) ≤ gm̃+1(sm̃+1) < λ̃.
Hence, by step 1, agents {1, . . . ,m} are indifferent between both equilibriums

and agents {m+ 1, . . . k} prefer equilibrium X to X̃.
On the other hand, if m = m̃, then agents {1, . . . ,m} are indifferent between

both equilibriums, and agents {m+ 1, . . . k} rank the equilibrium depending on
whether λ < λ̃ or vice versa.
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8.2 WPNI implies AEG

We start the proof for two agents.

8.2.1 Proof for two agents

Step 1. The mechanisms satisfy truncation, that is ϕ[c; y1, y2] = ϕ[c; ỹ1, ỹ2] for
any (ỹ1, ỹ2) ≥ ϕ[c; y1, y2].
Proof.

Consider a feasible profile (c; y1, y2) such that y1 + y2 > c. Let (p1, p2) such
that ϕ(c; y1, y2) = (p1, p2) and assume without loss of generality that p1 < y1.
Consider p1 < ỹ1 < y1.

Construct networks depicted in figure 7 such that agent 1 has two strategies
with costs y1 and ỹ1, agent 2 also has two strategies with the same cost y2, and
the cost of the networks are (c+ ε; y1, y2) and (c; ỹ1, y2).

Figure 7: WPNI implies AEG (part 1).

Clearly the graphs that generate (c + ε; y1, y2) and (c; ỹ1, y2) are a Nash
equilibrium for small ε.

By WPNI: ϕ(c+ ε; y1, y2) ≥ (c; ỹ1, y2).
As ε tends to zero, and using continuity:

ϕ(c; y1, y2) ≥ ϕ(c; ỹ1, y2). (9)
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Similarly, consider the network in figure 8 such that agents 1 has two strate-
gies with costs y1 and ỹ1, agent 2 also has two strategies with the same cost y2,
and the cost of the networks are (c; y1, y2) and (c+ ε; ỹ1, y2).

Figure 8: WPNI implies AEG (part 2).

Clearly those two graphs are Nash equilibriums for small ε.
By WPNI: ϕ(c+ ε; ỹ1, y2) ≥ ϕ(c; y1, y2).
As ε tends to zero, and using continuity:

ϕ(c; ỹ1, y2) ≥ ϕ(c; y1, y2). (10)

by equations 9 and 10:

ϕ(c; ỹ1, y2) = ϕ(c; y1, y2).

For any c > 0, let g(c) = ϕ[c; c, c].
Step 2. ϕ[c; y1, y2] = g(c) if (y1, y2) ≥ g(c); = (y1, c − y1) if y1 < g1(c);

= (c− y2, y2) if y2 < g2(c).
Proof.

By step 1 and continuity, ϕ[c; y1, y2] = g(c) if (y1, y2) ≥ g(c).
Consider y = (y1, c) such that y1 < g1(c); and let (p1, p2) = ϕ[c; y1, c].

Assume that p1 < y1.
By continuity, ϕ1(y1 + ε, c) → p1 as ε tends to zero. Let ε̃ by such that

p̃1 = ϕ1(y1 + ε̃, c) < y1.
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Consider the demand ( p̃1+y1
2 , c), by truncation ϕ(c; p̃1+y1

2 , ỹ2) = (p̃1, c− p̃1),
for any y2 > c− p1.

Similarly, ϕ(c; p̃1+y1
2 , ỹ2) = (p1, c− p1), which is a contradiction.

By truncation, ϕ1(y1 + ε̃, c) < y1.

Step 3. The mechanism should be weakly monotonic at the truncation point.
That is g(c) < g(c̃) for c < c̃.
Proof.

Suppose that the mechanism is not weakly monotonic at the truncation
point. Then, for any small ε we can find c and c+ ε such that g2(c) > g2(c+ ε)
and g1(c) > g1(c+ ε) (or vice versa).

Pick small ε and b >> max{g(c), g(c+ ε)} and c > b1 + b2.

Figure 9: Monotonicy at truncation point.

Consider the network depicted in figure 9 such that every agent has two
strategies, of equal cost b1 and b2, and generate problems (c; b1, b2) and (c +
ε; b1, b2). Clearly there are only two equilibria with costs c and c + ε but they
are not Pareto ranked since ϕ(c; b1, b2) = g(c) and ϕ(c+ ε; b1, b2) = g(c+ ε).

Step 4. The mechanism can be represented by the above functions.
Proof. Consider the AEM represented by the functions gi(c) as above. It is
easy to show that this mechanism generates the mechanism as above.

Indeed, consider (c; y) feasible. Then If (y1, y2) ≥ g(c), then ϕ(c; y) = g(c).
If y1 < g1(c), then by truncation ϕ1(c; y) = g1(c) and ϕ2(c; y) = c− g1(c).
If y2 < g2(c), then by truncation ϕ2(c; y) = g2(c) and ϕ1(c; y) = c− g2(c).
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8.2.2 Extension to more than two agents

Proof. Consider any Parametric solution with k agents, k > 2. We can replicate
the above arguments for a network of any two agents {i, j} by setting yl = 0 for
l 6= i, j (demanding independent demands with cost zero). Thus, by the previous
case, Fi(λ, yi) = min{yi, gi(λ)} for some non-decreasing function gi(λ).

9 Proof of Corollary 4

9.1 POS(EG) = H(k)

Consider the efficient profile P = (P 1, . . . , P k) with cost c∗. Assume without
loss of generality that C(P 1) ≥ C(P 2) ≥ · · · ≥ C(P k). Let Si the stand-alone
path of agent i with cost si.

Let p = EG(c∗;C(P 1), C(P 2), . . . , C(P k)). Clearly p1 ≥ p2 ≥ · · · ≥ pk, and
pi ≤ c∗

i for i = 1, . . . , k.
Let λ∗ and m be such that pk ≤ pk−1 ≤ · · · ≤ pm+1 < λ∗ = pm · · · = p1.
Let K̃ = {i|si < λ∗}. That is, K̃ is the set of agents with stand-alone less

than λ∗. Consider the profile Q = (P(K̃)c , SK̃), that is the strategy from each
agents in K̃ is replaced by his stand-alone path.

Clearly, if i > m then i ∈ K̃, since si ≤ pi < λ∗. Therefore Q contains at
least all the agents who are paying their demand at P , but might include others.

Let k̃ = |K̃| the cardinality of K̃. First, notice that

C(SK̃) ≤ (k̃ −m)λ∗ + sm+1 + · · ·+ sk ≤ (k̃ −m)
c∗

m
+

c∗

m+ 1
+ · · ·+ c∗

k
.

Therefore C(S(K̃)) ≤
c∗

k−k̃+1
+ · · ·+ c∗

k .

Hence C(Q) ≤ c∗ + C(S(K̃)) ≤ c∗ + c∗

k−k̃+1
+ · · ·+ c∗

k .

We repeat the above algorithm consecutively to the profile Q. That is, we
find λ and move all the agent with stand-alone cost less than λ to their stand-
alone path. Since there is at most k agents, this algorithm finishes in at most k
steps. Let R the final profile of this algorithm.

From the above arguments, C(R) ≤ H(k)c∗.
Let λ̃ the solution to the problem EG(C(R);C(R1), . . . , C(Rk)).
If EGi(C(R);C(R1), . . . , C(Rk)) = λ̃ then si ≥ λ̃.
On the other hand, if EGi(C(R);C(R1), . . . , C(Rk)) < λ̃ then Ri = Si.
Similarly to the existence of equilibrium for AEM, the best reply tattonment

would converge to an equilibrium starting from the profile R, since λ and the
cost would decrease at every step.

Indeed, if an agent is paying his stand alone, the only way to decrease his
payment is by increasing his demand, and thus decreasing his cost. Therefore
λ̃ should decrease. At his best reply, his stand-alone should be larger than the
new λ.
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On the contrary, if an agent is paying λ̃, then his best reply should decrease
λ̃ because his stand-alone is larger than λ̃.

9.2 For any AEM ξ, ξ 6= EG, PoS(ξ) > H(k)

Proof. Consider the AEM mechanism ξ generated by the functions f1, . . . , fk.
Since ξ 6= EG, then there is i, j such that f i 6= f j .

Let λ∗ be such that f i(λ∗) 6= f j(λ∗), and c∗ such that c∗ = f1(λ∗) + · · · +
fk(λ∗).

There is an agent l such that f l(λ∗) > c∗

k , without loss of generality, assume
such agent is agent k. That is, fk(λ∗) > c∗

k . Let ϕ∗k = ϕk[c∗; c∗, . . . , c∗] =
fk(λ∗) > c∗

k .
Consider the problem [c∗ + fk(λ∗); c∗, c∗, . . . , fk(λ∗)]. Since

ϕk[c∗ + fk(λ∗); c∗, c∗, . . . , fk(λ∗)] ≤ fk(λ∗),

then there is an agent l, l 6= k, such that

ϕl[c∗ + fk(λ∗); c∗, c∗, . . . , fk(λ∗)] ≥ c∗

k − 1
.

Without loss of generality, assume such agent is agent k − 1. Let

ϕ∗k−1 = ϕk−1[c∗ + fk(λ∗); c∗, c∗, . . . , fk(λ∗)],

thus ϕ∗k−1 ≥ c∗

k−1 .
Consider the problem

[c∗ + ϕ∗k−1 + fk(λ∗); c∗, c∗, . . . , c∗, ϕ∗k−1, f
k(λ∗)].

Since

ϕk[c∗ + ϕ∗k−1 + fk(λ∗); c∗, c∗, . . . , c∗, ϕ∗k−1, f
k(λ∗)] ≤ fk(λ∗)

and
ϕk−1[c∗ + ϕ∗k−1 + fk(λ∗); c∗, c∗, . . . , c∗, ϕ∗k−1, f

k(λ∗)] ≤ ϕ∗k−1.

Then there is an agent l such that

ϕl[c∗ + ϕ∗k−1 + fk(λ∗); c∗, c∗, . . . , c∗, ϕ∗k−1, f
k(λ∗)] ≥ c∗

k − 2
.

Without loss of generality, assume such agent is agent k − 2. Let

ϕ∗k−2 = ϕk−2[c∗ + ϕ∗k−1 + fk(λ∗); c∗, c∗, . . . , c∗, ϕ∗k−1, f
k(λ∗)],

thus ϕ∗k−2 ≥ c∗

k−2 .
Continuing the same way, at step i, consider the problem

[c∗ + ϕ∗i+1 + · · ·+ ϕ∗k−1 + fk(λ∗); c∗, c∗, . . . , c∗, ϕ∗i+1, . . . , ϕ
∗
k−1, f

k(λ∗)].
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Since

ϕk[c∗+ϕ∗i+1+· · ·+ϕ∗k−1+fk(λ∗); c∗, c∗, . . . , c∗, ϕ∗i+1, . . . , ϕ
∗
k−1, f

k(λ∗)] ≤ fk(λ∗)

and

ϕj [c∗ + ϕ∗i+1 + · · ·+ ϕ∗k−1 + fk(λ∗); c∗, c∗, . . . , c∗, ϕ∗i+1, . . . , ϕ
∗
k−1, f

k(λ∗)] ≤ ϕ∗j ,

for j = k − 1, . . . i+ 1. Then there is an agent l such that

ϕl[c∗ + ϕ∗i+1 + · · ·+ ϕ∗k−1 + fk(λ∗); c∗, c∗, . . . , c∗, ϕ∗i+1, . . . , ϕ
∗
k−1, f

k(λ∗)] ≥ c∗

i
.

Without loss of generality, assume such agent is agent i. Let

ϕ∗i = ϕi[c∗ + ϕ∗i+1 + · · ·+ ϕ∗k−1 + fk(λ∗); c∗, c∗, . . . , c∗, ϕ∗i+1, . . . , ϕ
∗
k−1, f

k(λ∗)].

Thus, ϕ∗i ≥ c∗

i .
Consider the network in figure 10.

Figure 10: Optimality of the EG mechanism.

Since ϕ∗i ≥ c∗

i for i = 1, . . . , k− 1 and ϕ∗k >
c∗

k , then the only equilibrium is
where agent i demands the link (si, t) with cost ϕ∗i . This equilibriumis inefficient
and has a cost equal to

∑k
i=1 ϕ

∗
i > H(k)(c∗ + ε), for small ε.
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Figure 11: Incompatibility of EFF and IR

9.3 Any IR mechanism has a PoS at least H(k)

Proof.
We show by an example that any individually rational cost-sharing rule must

have a PoS of at least H(k). Consider a situation as shown in figure 11. Here,
every agent i has two strategies– either connect its demand nodes directly where
the cost of the path is 1/i or connect through the path where link costs are 0
and 1+ε. Consider any arbitrary cost-sharing method ξ that satisfies individual
rationality. We will show that if there exist an equilibrium, then this is where
every agent is using its direct path to t. We prove this by contradiction.

Case 1. Assume all the agents use a free link to v and then the common link
of cost 1 + ε to t. But then at least one of the agents must be paying more than
1/k. Let’s assume that this agent is the k-th agent in some configuration8 of
the graph. Then he will have a profitable deviation to go to the direct link of
cost 1/k under any individually rational rule.

Case 2. Assume s agents are using their direct link and k − s agents are
sharing the common link to v. Then it follows from the individual rationality of
the s agents that at least one of the remaining k−s agents must be paying more
than 1/(k − s). Notice that in this case there exists an unused direct link, say,
sj → t, of cost 1/sj which is at most 1/(k − s). Now in some configuration of
the graph, agent j will be the agent who is paying the above mentioned amount
of more than 1/(k − s) and thus he would like to deviate.

We have just shown that no configuration different than the direct connection
8It is important to note that just one such configuration is enough, since PoS is a measure

of the performance of the best NE in the worst case example.
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is a Nash equilibrium. If the equilibrium exists, then it must be the direct
connection and has a cost equal to H(k), whereas the efficient graph has a cost
equal to 1 + ε (everyone uses a costless link to node v and then the common
link to t). As ε goes to zero, the price of stability approaches to H(k).

Finally, if there is no equilibrium then the price of stability equals to infinity.

9.4 Lower bound for PoS(PR)

Proof. Consider the network as shown in figure 12. We show that the unique
equilibrium of the proportional method is of order k. Let the costs of links
si → t be xi. Straightforward computations show that the k − th agent will

deviate from the efficient graph of cost 1 + ε if xk ≤
1−k+

√
(k−1)2+4k(k−1)

2k .
As k grows, xk converges to the golden number

√
5−1
2 in contrast to 1/k for

the uniform method, which goes to zero. Also xt−1 > xt for all t = 2, 3, .., k
and x1 = 1. Thus the lower bound on the PoS of the proportional method is∑k
i=1 xi, which is of order k.

Figure 12: PoS(PR) is of order k.

10 Other proofs

10.1 Proof of Proposition 2

Proof.
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The proof is very similar to the existence of Nash equilibrium for AEG in
lemma 2 and details are omitted to avoid repetition.

By step 1 in section 8.1, there exist an index m and λ such that

i. ϕi = si for i = 1, . . . ,m

ii. ϕh = fh(λ) for h > m.

iii. gm(sm) < λ ≤ gm+1(sm+1)

Assume there are deviations by a group of agent from the equilibrium with
the minimal cost c1. Then λ will decrease at every step. If we continue iterating
until there is no deviations, then in a finite number of iterations we converge to
a profile Y such that agents either pay a common value λ̃ or their stand-alone
cost f i(si). Since no group of agents can deviate, then Y is a Nash equilibrium
of cost smaller than c1, which is a contradiction.

10.2 The game generated by EG does not admit an ordinal
potential

Consider a network shown in figure 13 below. Here there are two agents- agent
1 and agent 2 with their demand nodes being {s1, t} and {s2, t} respectively.
Both the agents have two strategies each. One of the strategies of the agent i
(i = 1, 2) is to connect through the direct link, i.e si → t and her other strategy
is to connect indirectly through the node v, i.e., si → v → t. Let’s denote the
two strategies of agent 1 as a & b and the two strategies of agent 2 as c & d
where a := s1 → v → t, b := s1 → t, c := s2 → t and d := s2 → v → t. Given
the EG mechanism, the game induced by the network on the set of agents can
be represented in normal form by the following matrix, where the agent 1 is the
row player and agent 2 is the column player. The first numbers in each cell of
the matrix correspond to the cost share (negative of payoff) of agent 1 and the
second to that of the agent 2.

c d
a 3, 1.5 1.5, 1.5
b 2, 1.5 2, 1.5

Suppose, that this is an ordinal potential game. Then, there must exist an
ordinal potential function P : {a, b} × {c, d} → R satisfying P (a, c) > P (b, c) =
P (b, d) > P (a, d) = P (a, c) which is impossible.
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Figure 13: Network illustrating EG does not admit a potential.
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