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Abstract

We provide existence results in a game with local spillovers where the payoff function

satisfies both convexity and the strategic substitutes property. We show that there always

exists a stable pairwise network in this game, and provide a condition which ensures the

existence of pairwise equilibrium networks. Moreover, our existence proof allows us to

characterize a pairwise equilibrium of these networks.
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1 Introduction

The role of networks in determining the outcome of many important social and economic rela-

tionships is now well documented. In many situations, spillovers or externalities created by links

are crucial in the sense that a link between two individuals i and j has an effect on the return

from the other links of i and j as well as on the return from links between other individuals.

Market sharing agreements and the provision of public good are illustrative examples.

Market sharing agreements situations have been studied by Bloch and Belleflamme (2004).

The authors pointed out that the European Commission has been particularly aware of the po-

tential risk of market sharing, as firms enjoying monopoly power in certain areas seem reluctant

to compete on the overall European market. In particular, it was found that for many years all

producers of soda ash in Europe accepted and acted on the home market principle that each

producer limited its sales to the country or countries in which it has established facilities.1 A

market sharing agreement between two producers who refrain from entering each other’s market

leads to lower competition and is interpreted by Bloch and Belleflamme (2004) as the existence

of a link between these producers. Hence the number of competitors in each national market is

decreasing in the number of links formed by the national firm. It follows that the incentive of a

firm to form a market sharing agreement with another firm j, i.e. the marginal returns of firm i

from a link with firm j, depends both on the number of links of i and the number of links of j

in the network.

Similarly, in the context of the provision of a public good where a collaborative link between two

players is an agreement to share knowledge about the production of the public good, the payoffs

obtained by a player i depend on the number of links of player i and on the number of links of

her neighbors (see Goyal and Joshi, 2006).2

1See Official Journal L 152, June 15, 1991, pp. 1-15.
2Other examples of this type can also be found in the network formation literature, see for instance Furusawa

and Konishi (2002).
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All these situations in which the aggregate payoff of an individual depends on the distribu-

tion of links of all the players and on the identity of neighbors in the network are referred by

Goyal and Joshi (2006) as games with local spillovers. They assume that the payoff function of

a player i is the sum of three functions which depend respectively on the number of i’s links, the

number of links of i’s neighbors and the number of links of the remaining players.

The authors use the notion of pairwise equilibrium network as the equilibrium concept, to de-

termine what network will emerge. This concept requires players using their Nash equilibrium

strategy with the additional restriction that no pair of players has an incentive to add a link. It

is worth noting that Goyal and Joshi (2006) deal with existence and characterization of pairwise

equilibrium networks under different combinations of spillovers that arise from the formation of

links in games with local spillovers. However it is not easy to obtain results when the payoff of

player i satisfies convexity in own links and the strategic substitutes property with regard to links

of neighbors. Convexity (Conv) means that marginal return of player i from a link is increasing

in the number of collaborative links she has formed. The strategic substitutes property (SSP)

means that the marginal return of a player i from a link with a player j is decreasing in the

number of links formed by j.

It is striking that Goyal and Joshi do not find existence for games satisfying these properties. It

follows that we do not know whether a game with these properties is consistent with a steady

state solution.

Our paper provides existence results for a game with local spillovers where the payoff function

satisfies both convexity and the strategic substitutes property. It fills an interesting gap in the lit-

erature since there exist several situations which can be modelled as a game with local spillovers,

with a gross payoff function that simultaneously satisfies Conv and SSP. For instance, the market

sharing agreements game between homogeneous firms with linear cost and linear demand in each

market, which compete à la Cournot in national markets satisfies these properties.3 Indeed, it

3Later we also consider another example based on Billand, Bravard and Sarangi (2010) in which Conv and

SSP are also satisfied. This example inspired by the strategic management literature deals with firms which

collaborate in benchmarking activities.
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is easy to check that in this game the fewer competitors a firm has (the more numerous its links

are), the greater is its incentive to have fewer competitors on its market (to form an additional

link). So the game satisfies Conv. Likewise, the fewer competitors on a foreign market are, the

lower is the incentive to form a market sharing agreement (a link) with the national firm. It

follows that the game also satisfies SSP.

In this paper, we have two contributions which fill the gap in the literature.

1. Our main contribution consists in providing existence results when the payoff function

satisfies Conv and SSP. We use two equilibrium notions: pairwise equilibrium network and

pairwise stable network. The notion of pairwise equilibrium network is a refinement of

the notion of pairwise stable network, due to Jackson and Wolinsky (1996). The main

difference between the two notions is the fact that in the Jackson and Wolinsky framework

(1996) players can only delete one link at a time. In this paper, we show that pairwise

stable networks always exist under Conv and SSP. Then, we investigate the existence of

pairwise equilibrium networks. We show through an example that there does not always

exist a pairwise equilibrium network when the payoff function satisfies Conv and SSP. Then,

we provide a condition on the payoff function which allows for the existence of pairwise

equilibrium networks.

2. Our second contribution concerns the characterization of the architecture of a pairwise

stable network and the architecture of a pairwise equilibrium network. Indeed, our exis-

tence proof is based on a process which allows us to give the architecture of a pairwise

stable network and the architecture of a pairwise equilibrium network when our sufficient

condition is satisfied.

The paper is organized as follows. In section 2 we present the model setup. In section 3 we

study pairwise stable networks when the payoff function satisfies Conv and SSP. In section 4 we

examine pairwise equilibrium networks when the payoff function satisfies Conv and SSP.
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2 Model setup

Our model setup uses the same notation as in Goyal and Joshi (2006).

Link formation game. Let N = {1, 2, . . . , n} denote a finite set of ex-ante identical

players. We assume that n ≥ 3. Every player makes an announcement of intended links. We

define si,j ∈ {0, 1} as follows: si,j = 1 means that player i intends to form a link with player j,

while si,j = 0 means that player i does not intend to form such a link. Thus a strategy of player

i is given by si = {(si,j)j∈N\{i}}. Let Si denote the strategy set of player i. We will frequently

refer to all players other than some given subset of players X as “player X ’s opponents” and

denote them by “−X”. Thus S−X =
∏

j∈N\X Sj denotes the space of strategies of player X ’s

opponents, and s−X is an element of S−X . A link between two players i and j is formed if and

only if si,j = sj,i = 1. We denote this link by gi,j = 1 and the absence of this link by gi,j = 0.

A strategy profile s = {s1, . . . , sn} therefore induces a network g(s). For expositional simplicity

we often omit the dependence of the network on the underlying strategy profile. A network

g = {(gi,j)i∈N,j∈N\{i}} is a formal description of the pairwise links that exist between the players.

We let G denote the set of all networks, i.e. the set of all undirected networks with n vertices.

Given a network g ∈ G, g+gi,j denotes the network obtained by replacing gi,j = 0 in network

g with gi,j = 1. Let Ni(g) = {j ∈ N \ {i}|gi,j = 1} be the set of players with whom player i

has formed a link in the network g, and let ηi(g) = |Ni(g)| be the cardinality of this set. The

empty network ge is the network where no player has formed links. A complete component , Cg′,

of a network g′ consists in a subset of players N ′ ⊂ N such that for all i ∈ N ′, g′i,j = 1 for all

j ∈ N ′ \ {i} and g′i,j = 0 for all j 6∈ N ′. The complete network gN is the network where there is

a link between all players in N . In this paper, we construct complete networks with subsets of

N . We denote by gX the complete network associated with the set of players X ⊆ N .

Payoff function. Define Ψ1 : {0, . . . , n − 1} → R, Ψ2 : {1, . . . , n − 1} → R and Ψ3 :

{0, . . . , n− 2} → R as functions. Let πi : G → R be the gross payoff function of player i. Using
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the gross payoff function defined by Goyal and Joshi (2006, pg.331), we have for all g ∈ G:

πi(g) = Ψ1(ηi(g)) +
∑

j∈Ni(g)
Ψ2(ηj(g)) +

∑

j 6∈Ni(g)
Ψ3(ηj(g)). (1)

In this class of games the payoff of each player i ∈ N is the sum of three additive effects (i)

the payoff that player i obtains due to the number of direct links she has formed, (ii) the payoff

that player i obtains due to the number of links formed by players with whom i has formed

a link, and (iii) the payoff that player i obtains from the number of links formed by players

with whom i has not formed any link. It is worth noting that the spillovers result from the

two last effects. Moreover, let ∆Ψ1(x) = Ψ1(x) − Ψ1(x − 1), ϕ(x) = Ψ2(x) − Ψ3(x − 1), and

∆ϕ(x) = ϕ(x)− ϕ(x− 1). The marginal gross profits to player i from a link with player j in g

are given by:

πi(g + gi,j)− πi(g) = ∆Ψ1(ηi(g) + 1) + ϕ(ηj(g) + 1)

Therefore, in this class of games, the marginal return to player i from a link with player j depends

only on the number of links of i and j, and is independent of the number of links of k 6= i, j.

The (net) payoff function of player i is given by:

Πi(g) = Πi(g(s)) = πi(g(s))− cηi(g(s)), (2)

where c is the unit cost of forming a link.

We now provide an example where the payoff function satisfies Equation 2.

Example 1 (Market Sharing, Belleflamme and Bloch, 2005)4 Consider n ex-ante symmetric

firms and associate with each firm i the market i. Prior to competing in these markets, firms

can form collaborative links. A link between two firms i and j is a reciprocal market sharing

agreement whereby each firm refrains from entering the other firm’s market. The Cournot profit

earned by a firm i is given by:

πi(g) = Ψ1(ηi(g)) +
∑

j 6∈Ni(g)

Ψ3(ηj(g)).

4This example is taken from Goyal and Joshi (2006, Example 4.2, pg.332).
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The first term Ψ1(ηi(g)) is the profit earned by firm i on market i when i forms ηi(g) links, that

is there are n−ηi(g) competitors on this market. The second term Ψ3(ηj(g)) is the profit earned

by firm i on market j when i does not form a link with firm j and j has formed ηj(g) links, that

is there are n − ηj(g) competitors on market j. Note that if a firm i forms a link with a firm

j, then she does not compete on market j, so she obtains no profit from this market. Therefore

Ψ2(x) = 0 for all x ∈ {1, . . . , n− 1}.

The marginal gross payoff to firm i from forming a link with firm j is given by:

πi(g + gi,j)− πi(g) = Ψ1(ηi(g) + 1)−Ψ1(ηi(g))−Ψ3(ηj(g)).

Next, we assume that the payoff function satisfies the following two properties.

1. Convexity (Conv): ∆Ψ1(x) is strictly increasing.

2. Strategic Substitutes Property (SSP): ∆ϕ(x) < 0.

Goyal and Joshi (2006) also use the notion of strong monotonicity given below. For all x, y ∈

{0, . . . , n− 2}:

∆Ψ1(x+ 1) + ϕ(y + 1) > ∆Ψ1(x) + ϕ(y).

We now show that there exist conditions such that Example 1 satisfies Conv and SSP.

Example 1 revisited. It can be checked that if Ψ1 is convex5 and Ψ3 is increasing in the

number of links of other firms6, then the aggregate gross payoff function satisfies Conv and SSP.

Next we borrow an example from Billand, Bravard and Sarangi (2010) of a local spillover game

that satisfies both Conv and SSP.

5This property is satisfied in a linear Cournot oligopoly.
6This property is also satisfied in a linear Cournot oligopoly: the profits of firm i on market j decreases with

the number of competitors on this market.
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Example 2 (Learning from others, Billand, Bravard and Sarangi, 2010) This example specifi-

cally focuses on the strategic management notion of “benchmarking” (Camp, 1989). Consider n

firms. For simplicity assume that each firm i faces unit price and aims to produce a given quan-

tity Q̄i at the lowest total production cost. We assume that firms i and j can share information

about their business processes if they set a partnership (in our context a link). Moreover, the

more partnerships firm j has, the less firm j can spend time with firm i and so the less this

partnership is valuable for firm i.

The production cost of each firm i is given by:

Ci = αi + β0ηi(g) + γ0ηi(g)
2 +

∑

j∈Ni(g)

β1

ηj(g)2
,

with αi > 0 for all i ∈ N , and β0, β1 < 0, γ > 0. In order to ensure that the cost is positive, we

will assume that αi + (n− 1)β0 + (n− 1)β1 > 0. We can now write the payoff function as:

πi(g) = Q̄i −



αi + β0ηi(g) + γ0ηi(g)
2 +

∑

j∈Ni(g)

β1

ηj(g)2
.



 .

Then the marginal gross profit to firm i from forming a link with firm j is:

πi(g + gi,j)− πi(g) =
−β1

ηj(g)2
− β0 − γ0(2ηi(g) + 1),

The returns from a link with a firm j depends on the time firm j can spend with firm i. More

precisely, the larger the number of links firm j has formed, the smaller is the payoff of forming

a link with this firm (β1 < 0). Finally, for firm i the returns from a link with a firm j depends

on the number of links formed by i. In a context where more players form links, the more they

become efficient in making good use of additional links, we have γ0 < 0.

To sum up, we have Ψ1(ηi(g)) = −β0ηi(g)−γ0ηi(g)
2 and Ψ2(ηj(g)) = −β1/ηj(g)

2 with γ0, β1 < 0.

It can be easily verified that the aggregate gross payoff function satisfies Conv and SSP. Note

that unlike Example 1, this example uses only the first two terms of equation 2.

We now state two definitions of network pairwise stability that will be used in the paper.
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Definition 1 Pairwise stable network (Jackson and Wolinsky, 1996). A network g is pairwise

stable if (i) for all gi,j = 1, Πi(g) ≥ Πi(g − gi,j) and Πj(g) ≥ Πj(g − gi,j), (ii) for all gi,j = 0, if

Πi(g) < Πi(g + gi,j), then Πj(g) > Πj(g + gi,j).

Definition 2 Pairwise equilibrium network (Goyal and Joshi, 2006). A strategy profile s∗ =

{s∗1, s
∗
2, . . . , s

∗
n} is said to be a Nash equilibrium if Πi(g(s

∗
i , s

∗
−i)) ≥ Πi(g(si, s

∗
−i)), for all si ∈ Si,

and all i ∈ N . A network g is a pairwise equilibrium network if: (i) There is a Nash equilibrium

strategy profile which supports g, and (ii) for all gi,j = 0, if Πi(g) < Πi(g + gi,j), then Πj(g) >

Πj(g + gi,j).

It is clear that a pairwise equilibrium network is a pairwise stable network.

3 Pairwise stable networks

In the following example we illustrate the process we use in Proposition 1 to show existence of

pairwise stable networks under Conv and SSP.

Example 3 Suppose N = {1, . . . , 8} and the payoff function is given by:

πi(g) = (ηi(g))
2 −

1

3

∑

j∈Ni(g)

ηj(g)
3. (3)

For simplicity let c = 0.

First, we construct the complete network and let players i ∈ {1, . . . , 8} in turn delete one by one

the links they do not wish to preserve. We call g0,1 the network obtained at the end of this step.

Clearly, in g0,1, players j ∈ {1, . . . , 5} have no links, and players j′ ∈ {6, 7, 8} form a complete

component. Second, note that 8 = 3 × 2 + 2. We label as g0,2 the network which contains 2

complete components with 3 players and 2 isolated players. Let players 1 and 2 be the isolated

players. Third, we construct the complete network, that we call g1, with the set of isolated

players {1, 2} = N1: g1 = gN1
. Then we repeat the process, that is we let players i ∈ {1, 2}

in turn delete the links they do not want. Clearly, no player has any incentive to remove links
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in g1. We now construct a network called ĝ1 which contains the 2 complete components with 3

players of g0,2 and the previous complete component with two players. It is easy to check that

this network g is pairwise stable.

We begin with a lemma which is useful for proving Proposition 1.

Lemma 1 Suppose the payoff function of each player i satisfies (2) and Conv. Suppose a network

g on the player set N ′ = {1, . . . , n′}, n′ ≤ n, which contains a complete component Cg, with x+1

players, x + 1 ≤ n′. If ∆Ψ1(x) + ϕ(x) < c, then a player i ∈ Cg has an incentive to delete all

her links.

Proof Suppose player i belongs to a complete component, Cg with x + 1 players in g and

∆Ψ1(x) + ϕ(x) < c. We must show that player i has an incentive to delete all her links, that is

∆Ψ1(k) − ϕ(x) < c for all k ∈ {1, . . . , x}. By convexity, we have: ∆Ψ1(1) < ∆Ψ1(2) < . . . <

∆Ψ1(x) for all x > 2. It follows that ∆Ψ1(1)−ϕ(x) < ∆Ψ1(2)−ϕ(x) < . . .< ∆Ψ1(x)−ϕ(x) < c,

for all x > 2. The result follows. �

Proposition 1 Suppose the payoff function of each player i satisfies (2), Conv and SSP. A

pairwise stable network always exists.

Proof In order to prove the proposition, we build an iterative process. To simplify the presen-

tation of this process we set N = N0. We start with the complete network g0 = gN0
and we

build a process in three steps.

Step 1. We order players in a prespecified manner: i = 1, 2, . . . , |N0|. In this step if a player,

say i, has an option to revise her strategy, then we let her delete one by one the links she does not

wish to preserve. Consequently, either no player has an incentive to delete links in g0, or there

is a player i ∈ N who has an incentive to delete a link in g0. In the former case, the complete

network g0 is a pairwise stable network, and the process stops. In the latter case, we give player

1 the option to revise her strategy. We know that players have the same payoff function and
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they are in a symmetric position in g0. It follows that player 1 has an incentive to delete links in

g0. By Lemma 1 player 1 has an incentive to delete all her links in g0. Then we let successively

players i ∈ {2, 3 . . . , |N0| − 1} revise their strategy. Again, if player i has an incentive to delete

a link, then she has an incentive to delete all her links by Lemma 1. At the end of this step,

we obtain a network that we call g0,1, where x ∈ {0, . . . , |N0|} players have formed no links and

|N0| − x players have formed a complete component. We set x0 = x. •

If x0 6= 0, then x0 players, x0 ∈ {1, . . . |N0| − 2}, have no links in g0,1: they are isolated

players, and |N0| − x0 players have formed a complete component. Recall that if x0 = 0, then

the complete network is pairwise stable.

Step 2. In this step, we divide |N0| by (|N0| − x0). Let q0 be the quotient and r0 be the

remainder. We now construct the network g0,2. If x0 = |N0| − 1, then g0,2 is the empty network.

Otherwise, g0,2 contains q0 ≥ 1 complete components with |N0| − x0 players and r0 isolated

players, with r0 < |N0|−x0. In that case, we let the r0 first players of N0 be the isolated players.

Let N1 be the set of these players: N1 = {1, . . . , r0}. We denote by N ′
0 the set of players who are

not isolated: N ′
0 = {r0 + 1, . . . , |N0|}. Note that if x0 = |N0| − 1, then the remainder r0 is null.•

Step 3. We now construct the network g1 = gN1
, that is the complete network constructed from

the set of vertices in N1. •

Then we repeat Steps 1, 2, and 3 with networks g1 = gN1
, g2 = gN2

, g3 = gN3
, . . . till we

obtain a network gT such that rT = 0.

First we show that network gT exists. To introduce a contradiction suppose that gT does not

exist. Then for all t ∈ N, we have rt 6= 0. Moreover we have rt < rt−1 − xt < rt−1. The last

inequality follows from xt 6= 0 (otherwise rt is null) and the first inequality comes from the fact

that the remainder is always strictly smaller than the divisor. Since rt < rt−1 and r0 is a finite

number, it is not possible to obtain the property rt 6= 0 for all t ∈ N. Hence gT exists.

We now construct the network ĝT as follows: (1) if two players i and j are such that i ∈ N ′
t and

j ∈ N ′
t′ , with t, t′ ∈ {0, . . . , T} and t 6= t′, then there is no link between i and j in ĝT , (2) if
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players i and j belong to N ′
t , t ∈ {0, . . . , T}, then there is a link between i and j in ĝT if and

only if there is a link between i and j in gt,2. Note that by construction, if player i ∈ N ′
t , t ≤ T ,

then i belongs to a complete component with rt−1 − xt players in ĝT .

Finally, we show that ĝT is a pairwise stable network.

We first check that no player has any incentive to delete a link in ĝT . More precisely, we show

that each player i ∈ N ′
t , t ∈ {1, . . . , T}, has no incentive to delete a link in ĝT . We know that at

period t player xt + 1 did not remove her first link with a player j ∈ {xt + 2, . . . , rt−1} when she

was given the opportunity to do so. This implies that ∆Ψ1(rt−1 − xt − 1)+ϕ(rt−1 − xt − 1) > c.

By construction of ĝT player xt +1 belongs to the same complete component in ĝT as she did at

the time she had the opportunity to delete a link. Therefore, the marginal payoff of player xt+1

associated with the deletion of a link in ĝT is c− (∆Ψ1(rt−1 − xt − 1) +ϕ(rt−1 − xt − 1)) < 0. It

follows that player xt+1 has no incentive to delete a link in ĝT . Since players i ∈ N ′
t \ {xt + 1}

and player xt + 1 are in a symmetric position in ĝT , it follows that these other players also have

no incentive to delete a link in ĝT . Thus no player i ∈ N has an incentive to delete a link in ĝT .

We now show that pairs of players who are not linked in ĝT have no incentive to form a link.

The proof is in two parts.

First we show that this is true for players, i ∈ N ′
t and j ∈ N ′

t , who are not linked in ĝT . By

construction of ĝT , we know that this network contains a complete component with the players

{xt + 1, . . . , rt−1}. Moreover, we know that during the process player xt removed a (first) link

with a player who belongs to this component. This implies that we have c > ∆Ψ1(rt−1 − xt) +

ϕ(rt−1 − xt). It follows that in ĝT , no player i ∈ N , who belongs to a complete component with

rt−1 − xt players, has an incentive to form an additional link with a player j who belongs to

another complete component with the same number of players.

Second, by convexity we have ∆Ψ1(rt−1 − xt) + ϕ(rt−1 − xt) > ∆Ψ1(k) + ϕ(rt−1 − xt), for all

k < rt−1 − xt. Since c > ∆Ψ1(rt−1 − xt) + ϕ(rt−1 − xt), it follows that for each t ∈ {1, . . . , T},

no player who belongs to a complete component with k players, k < rt−1 − xt, has an incentive

to form an additional link with a player who belongs to a complete component with rt−1 − xt

12



players.

To conclude, since no player in ĝT has any incentive to accept a link from a player who has

formed more links or as many links as she herself has formed, no additional links will be formed

between a pair of players in this network if we let players revise her strategy. Since the two

conditions of pairwise stability are satisfied by ĝT , this network is pairwise stable. �

Clearly, if the profit function given in Example 1 is such that Ψ1 is convex and Ψ3 is increasing,

then there always exists a pairwise stable network in the market sharing game. Similarly, there

always exists a pairwise stable network in Example 2.

4 Pairwise equilibrium networks

We now study the existence of pairwise equilibrium networks. Recall that the main difference

between pairwise stable networks and pairwise equilibrium networks is that the latter gives

players the possibility of deleting more than one link at a time.

Note that Goyal and Joshi (2006) do not find general results for pairwise equilibrium net-

works when the payoff function satisfies Conv and SSP. Hence the authors introduce an additional

assumption: strong monotonicity of the payoff function. This assumption allows them to char-

acterize pairwise equilibrium networks. However even with this assumption, the authors argue

that it is not possible to obtain existence results. Indeed this is not a trivial problem. In fact

as shown in the following example, a pairwise equilibrium network may fail to exist when the

payoff function satisfies Conv, SSP, and strong monotonicity. It follows that a pairwise equilib-

rium network does not always exist when the payoff function satisfies Conv and SSP. Recall that

∆ϕ(x) < 0 by SSP.

Example 4 Let N = {1, 2, 3, 4} and assume the following parameters for the payoff function.

Ψ1(1) = 10 Ψ1(2) = 21 Ψ1(3) = 33

Ψ2(1) = −9.9 Ψ2(2) = −10.7 Ψ2(3) = −11.1

13



Moreover suppose Ψ1(0) = Ψ3(x) = 0 for x ∈ {0, 1, 2}. Clearly, the payoff function satisfies

Conv, SSP and strong monotonicity. It is easy to check that given these parameters no network

can be a pairwise equilibrium network.

This non-existence result motivates the introduction of a stronger condition on gross payoffs

which ensures that there always exists a pairwise equilibrium network. This condition can be

stated as

Condition 1: (∆Ψ1(x)− c+ ϕ(x)) 6∈ [0,−(x− 1)∆ϕ(x)],

for all x ∈ {2, . . . , n−2}. Recall that the marginal payoff that each player i obtains from forming

an additional link with a player j, when both players have formed x−1 links, is ∆Ψ1(x)+ϕ(x)−c.

Moreover, −(x − 1)∆ϕ(x) captures the difference in the payoff due to the spillover effect of an

isolated player (i) when she forms x− 1 links with players who have formed x− 1 links, and (ii)

when she forms x− 1 links with players who have formed x links.

Note that Condition 1 can also be rewritten as follows: ∆Ψ1(x) − ∆Ψ1(x − 1) 6∈ [c − ϕ(x) −

∆Ψ1(x − 1), c − ϕ(x) − (x − 1)∆ϕ(x) − ∆Ψ1(x − 1)]. Hence, the higher SSP (∆ϕ(x)) is, the

higher the convexity (∆Ψ1(x)−∆Ψ1(x− 1)) must be in order to have ∆Ψ1(x)−∆Ψ1(x− 1) >

c−ϕ(x)−(x−1)∆ϕ(x)−∆Ψ1(x−1). To sum up for Condition 1 to be satisfied, either convexity

has to be low enough or convexity has to be high enough relative to SSP.

We now use the market sharing game to provide some economic intuition for Condition 1.

Recall that in the market sharing game, Ψ2(x) = 0, for all x ∈ {0, . . . , n − 1}. To simplify the

interpretation we assume that c = 0. It follows that Condition 1 can be rewritten as:

Condition 1’:(∆Ψ1(x)−Ψ3(x− 1)) 6∈ [0, (x− 1)(Ψ3(x− 1)−Ψ3(x− 2))].

Clearly, ∆Ψ1(x) − Ψ3(x − 1) is the marginal payoff that firm i obtains from forming a market

sharing agreement with a competitor j which has the same number of competitors on its market

as i. Consequently, Condition 1 means that for x ≥ 2,

1. either this marginal payoff is negative, that is the payoff that firm i obtains on a market

with n − (x − 1) competitors is higher than the additional payoff it obtains on its own
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market when the number of competitors goes from n− (x− 1) to n− x;

2. or this marginal payoff is higher than (x− 1)(Ψ3(x− 1)−Ψ3(x− 2)), that is the marginal

payoff of firm i is greater than the difference between (i) the payoff i obtains if it enters in

x− 1 markets with n− (x− 1) competitors and (ii) the payoff i obtains if it enters in x− 1

markets with n− x competitors.

Proposition 2 Suppose the payoff function of each player satisfies equation (2), Conv and SSP.

Moreover, suppose Condition 1 is satisfied. Then a pairwise equilibrium network always exists.

Proof In this proof, we use the same process and the same notation as in the proof of Proposition

1. More precisely, we use Step 1, Step 2 and Step 3 given in Proposition 1 and we repeat these

steps with networks g1 = gN1
, g2 = gN2

, g3 = gN3
, . . . till we obtain a network gT such that

rT = 0. By the same arguments used in the proof of Proposition 1 we can show that network gT

exists in the process. Then we construct the network ĝT as in the proof of Proposition 1.

We now show that ĝT is a pairwise equilibrium network.

First by the same reasoning as in the proof of Proposition 1, it is easy to show that no player

has any incentive to delete links in ĝT . We now show that no pair of players, i ∈ N ′
t and j ∈ N ′

t ,

who are not linked in ĝT have an incentive to form a link. By construction of the process a

player who has formed no link in ĝT has no incentive to form a link with another player in ĝT .

Moreover, by construction of ĝT we know that this network contains a complete component with

the players {xt +1, . . . , rt−1}. Moreover, we know that during the process player xt removed her

links with players i ∈ {xt + 1, . . . , rt−1}, while player xt + 1 maintained her links with players

i ∈ {xt + 2, . . . , rt−1}. It follows that we have both:

Ψ1(rt−1 − xt) + (rt−1 − xt)ϕ(rt−1 − xt) < (rt−1 − xt)c+Ψ1(0),

and

Ψ1(rt−1 − xt − 1) + (rt−1 − xt − 1)ϕ(rt−1 − xt − 1) > (rt−1 − xt − 1)c+Ψ1(0).
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Clearly, the two inequalities above are simultaneously satisfied only if ∆Ψ1 (rt−1 − xt) < c −

ϕ(rt−1−xt)−(rt−1−xt−1)∆ϕ(rt−1−xt). By Condition 1 we have ∆Ψ1(rt−1−xt) < c−ϕ(rt−1−xt),

for all rt−1 − xt ∈ {2, . . . , n− 2}. Consequently, suppose that player xt belongs to a component

with rt−1 − xt players in ĝT . In that case, since ∆Ψ1(rt−1 − xt) < c− ϕ(rt−1 − xt), player xt has

no incentive to form a link with a player i ∈ {xt + 1, . . . , rt−1} in ĝT . It follows that in ĝT no

pair of players who belong to two distinct components with the same number of players, have

an incentive to form a link. Using convexity, it is straightforward that for each t ≤ T no player

who belongs to a complete component with k players, k < rt−1 − xt, has an incentive to form

an additional link with a player who belongs to a complete component with rt−1 − xt players.

It follows that in ĝT no additional links will be formed if we let players revise their strategy.

Since the two conditions for pairwise equilibrium are satisfied by ĝT , this network is a pairwise

equilibrium network. �

We now use the above result in a market sharing game example. In this example, (i) each

firm obtains a higher profit on its own market than on the market of another firm when the

number of competitors is the same, and (ii) the profit obtained by a firm i on each market k is

increasing and convex with the number of agreements made by firm k. It follows that the gross

profit function in this example satisfies Conv and SSP.

Example 1 revisited. Suppose N = {1, . . . , 7} and ε ∈]0, 1/10[. To simplify, let the cost

of setting links be null. Let Ψ1 and Ψ3 in the profit function given in Example 1 be such that

Ψ1(x) Ψ3(x)

x = 0 1 2/5

x = 1 3/2 3/5

x = 2 5/2 + ε 3/2

x = 3 7/2 + 3ε 5/2 + 3ε,

and for x ∈ {3, . . . , 6}, Ψ1(x + 1) = 2Ψ1(x) −Ψ1(x − 1) + ε, and for x ∈ {3, 4, 5}, Ψ3(x + 1) =

2Ψ3(x)−Ψ3(x− 1) + ε. Clearly, we have for all x > 2, ∆Ψ1(x)−Ψ3(x− 1) < 0 and for x = 2,
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∆Ψ1(x)−Ψ3(x− 1) > Ψ3(x− 1)−Ψ3(x− 2). Consequently, there exists a pairwise equilibrium

network. Moreover, by using the process given in the proof of Proposition 2, we can check that

the network with two complete components with three players and an isolated player is a pair-

wise equilibrium network.

Example 2 revisited. If c, γ0, β0 and β1 in this example are such that c > −β0 − γ0(1 −

2x)−β1/x
2 or c < −β0−γ0(1−2x)+β1/x(x−1), for x ∈ {2, ..., n−1}, then there always exists

a pairwise equilibrium network.

5 Conclusion

In this paper, we show that there always exists a pairwise stable network in a game with local

spillovers where the payoff function satisfies convexity and the strategic substitutes property.

Through an example we show that pairwise equilibrium networks however do not always exist.

Finally, we establish that under a stronger condition on the payoff function provided in the

paper, a pairwise equilibrium network always exists. Thus, in this paper, we show that there are

at least two ways in which a local spillovers game that satisfies both Conv and SSP is consistent

with a steady state solution. Additionally, our existence proof also allows us to characterize the

set of stable network allowing us to obtain both existence and characterization simultaneously.
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