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Abstract

In the presence of market power in oligopolistic environment, price discrimination is a natural
phenomenon. Surprisingly this setting has not been analyzed in depth in the literature. In
contrast with existing literature, e.g., Hazledine (2006) and Kutlu (2009), we consider quantity
setting games where �rms compete in two stages. In the �rst stage �rms decide on the choice
of capacity and in the second stage they decide on the structure of price discrimination where
the level of price discrimination is exogenous. In contrast to Hazledine (2006) we �nd that
in the Cournot framework the quantity-weighted average price depends on the level of price
discrimination. We also �nd that in the Stackelberg framework both the leader and the follower
price discriminate as opposed to Kutlu (2009) which concludes that the leader doesn�t price
discriminate. Moreover, it is discovered that both the players (even the follower) prefer to be in
the Stackelberg framework rather than the Cournot framework when price discrimination exists.
Comparing welfare under various settings, it is found that competition is not always good for
the total welfare if price discrimination exists.

1 Introduction

The strategic interactions of the �rms in industries have been analyzed in many set-
tings. The literature essentially has many strands originating from Cournot, Bertrand
and Stackelberg. On the one hand, the outcome of the Cournot is more realistic, but
on the other hand, the setup of price competition in Bertrand is more close to reality.
The extremes of Cournot and Bertrand has been put together in the seminal paper by
Kreps & Scheinkman [16] where capacity competition followed by price competition jus-
ti�es the Cournot outcome. In many industries the existence of leaders and followers is a
natural phenomenon. This is the source of another strand originating from Stackelberg
[23]. Yet another dimension of �rms�behavior when they have market power is that of
price discrimination. Various kinds of price discrimination in monopoly and their e¤ect
on social welfare have interested economists from as early as Robinson [20] who considers
third degree price discrimination. This question has been reexamined by Schmalensee [22]
and Varian [27] where they �nd that increase in output is necessary for price discrimina-
tion to be welfare increasing. Formby and Millner [9] consider the relationship between
price discrimination and competition.1 More precisely, they compare the social welfare
of price discrimination (in Varian�s framework) and Cournot competition; and they �nd
out that when the demand curve2 is concave (convex, linear), price discrimination with n

1Formby and Millner [9] call it Stackelberg price discrimination.
2Whenever we mention �demand curve�we mean �inverse demand curve.�
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prices produces greater (lesser, equal) output and welfare than a Cournot oligopoly with
n competitors.
Next natural setup to analyze is the coexistence of price discrimination and oligopolis-

tic competition. This happens invariably in all industries with airline industry being a
good example. There is a class of recent literature focussing on this aspect [15, 13, 12, 14,
17].3 Hazledine [13] analyzes the Cournot competition with Varian�s framework of price
discrimination. He �nds out that the contrast from the single-price standard Cournot
model is in the quantity produced in the market. He also �nds out that the average
price in the market is independent of the degree of price discrimination and thus the
standard models�prediction is not misleading in terms of the average price. Hazledine
[12] considers his earlier model of Cournot competition in the limiting case of in�nitely
many prices. He demonstrates that the total surplus is maximized. However, there is a
di¤erence from the monopoly case as the consumer surplus is non-zero.4 Finally, Kutlu
[17] incorporates price discrimination in the Stackelberg model and �nds a counterintutive
result that leader does not price-discriminate.
Our paper di¤ers from the earlier works in that we analyze this situation as a two stage

game. In the �rst stage, the �rms compete on quantities that they put in the market and
in the second stage they decide what fraction of the quantity they sell to di¤erent group
of buyers. In other words, in the second stage of competition for price discrimination
there is a capacity constraint. The mode of price discrimination based on the valuation
of consumers is standard in the literature. Firms may have many instruments at their
disposal for discrimination between buyers. As Varian [27] considers the valuation of
consumers to be a function of age, �rms may have discounts for senior citizens and
students. We consider the example of airline industry where the valuation of the buyers
is a function of the time when they are buying the tickets. The business travellers whose
plans are generally last moment have less elastic demand whereas the tourists whose
plans are almost always �exible have relatively more elastic demand. Thus di¤erent bins
(groups) of buyers can be grouped based on the day they want to buy a particular airline
seat. For example, higher bins consists of the likes of business travellers. The airline
example also a good motivation for our two stage setting. In the �rst stage, when the
�rms enter the market, they buy certain number of planes; thus the total number of seats
are decided for the second stage of the game. They cannot buy planes everyday but they
can decide how to allocate the total number of tickets during a time frame. This critical
assumption of the stages is missing in the literature that we just reviewed and we hope
that this will explain the missing results.
In contrast to most of the other works, e.g., [15, 13, 12, 17], we �nd results for a

general demand function rather than linear demand. We consider two �rms in most of
the paper (except in section 3.1) for simplicity. One of the main �ndings of our paper is
that in the second stage both �rms are active in the higher bins. If there are K bins, the
�rm with higher capacity is active in all the K bins. The smaller �rm is active in the
top t bins. Moreover, in the bins 1; 2; :::; t� 1 it matches the quantity sold by the bigger
�rm. We characterize the behavior of the �rms up to �nding {̂ = t+ 1, i.e., the �rst bin
where the smaller �rm is not active. Although the value of {̂ is not explicitly provided for
a given demand function, we describe a recursive algorithm for �nding the unique {̂. In
section 3, we consider linear demand for expositional simplicity. We show �rms�behavior
in the benchmark Cournot case with n �rms and Stackelberg case with 2 �rms - the leader
and the follower. The total quantities sold by the Cournot oligopolist increase with the

3See Stole [24] and Armstrong [1] for two comprehensive surveys about price discrimination.
4Note that in the Varian�s price discrimination model when the number of prices goes to in�nity, it

is equivalent to �rst degree price discrimination. Thus, the total surplus is maximized and goes to the
monopolist.
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level of price discrimination and decrease with the number of �rms as expected. While
in the Cournot competition all the �rms are active in all the bins (due to the symmetry
of �rms), in the Stackelberg competition this is not the case. For the Stackelberg case,
we calculate the bin number {̂ for various levels of price discrimination. In section 4,
as a function of the level of price discrimination, we compare various aspects of the
competition in our two stage model with that of the single stage models of Kutlu [17] and
Hazledine [13]. In our framework, among other results, we present two interesting results.
First, the Stackelberg leader�s pro�t is greater than the pro�t of the Stackelberg follower
which in turn is greater than the pro�t of a Cournot duopolist for high levels of price
discrimination. This contrasts with the well-known result without price discrimination
where follower�s pro�t is lower than that of a Cournot duopolist. Second, for higher levels
of price discrimination the monopoly welfare beats the welfare of Cournot duopoly (with
price discrimination). Hence, although both price discrimination and competition have
positive e¤ects on the total welfare, it is possible that their combination has a negative
e¤ect on total welfare. This negative e¤ect disappears as the number of �rms grows,
since for high number of �rms the full e¢ ciency is reached. This negative e¤ect adds
one more possible reason for why mergers of duopolies might be bene�cial (especially for
the airlines) for social welfare. Of course, in practice the merger analysis is much more
complicated than it is mentioned here. A better model for analyzing the e¤ects of mergers
would also incorporate many other factors such as the dynamic factors and e¢ ciency.5

Section 5 (the appendix) gathers all the major proofs.

2 The Model and Results

Assume for simplicity that there are only two �rms, A and B, in the market. We normalize
the marginal costs of these �rms to zero. Each consumer buys at most one unit of the
good. The �rms know valuations of the consumers and can prevent resale of the good.
They divide the consumers into bins according to their reservation prices. The total
capacities of the �rms are exogenously given by QA and QB where QA � QB . Given these
capacities �rms are competing on the shares that they assign to each bin. Hence, �rms
choose sA = (s1A; s

2
A; :::; s

K�1
A ; sKA ) and sB = (s

1
B ; s

2
B ; :::; s

K�1
B ; sKB ) with

PK
i=1 s

i
A = 1 andPK

i=1 s
i
B = 1 where q

i
A = QAs

i
A and q

i
B = QBs

i
B . Going back to our example of airline

seats o¤ered for a speci�c route, from now on we can think of the product �an airline seat�
and a seller �an airline�. Total number of seats of the airlines are exogenously given. The
airlines simultaneously decide how many of these seats they sell to which customers.
The price of the good for the kth bin is given by:

P k = P (Qk) (1)

where qiA and q
i
B are the quantities sold in bin i by A and B; Q

k �
Pk

i=1(q
i
A+ q

i
B) is the

total quantity sold in all bins from 1 to k; and P is a twice continuously di¤erentiable,
strictly decreasing demand function that represents consumers�valuations. Moreover, for
a given combination of QA and QB , we assume that the revenue function (which also is
the pro�t function in our case given zero costs) of �rm A and B are strictly concave in
sA and sB , respectively.6

5See Kutlu and Sickles [18] for a dynamic model considering the e¢ ciencies of the �rms when measuring
market powers of �rms.

6The demand curve not being too convex is one of the requirements. Notice for example, in the
monopoly case with no price discrimination we require the inverse demand function to be �less convex�
than 1

x
. See ([19, 21, 25, 26, 28]) for conditions on existence in setups without price discrimination.
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The optimization problem of the �rm A is given by:7

max�A = QA
KP
i=1

P isiA (2)

st siA � 0 and
KP
i=1

siA = 1

The Lagrangian for the optimization problem (2) is given by:

LA = �A + �A(
KP
j=1

sjA � 1) (3)

Let ~�A =
�A
QA
.8 For any i = 1; 2; :::;K the Kuhn-Tucker conditions are given by:9

P i +Ai + ~�A � 0 (4)

(P i +Ai + ~�A)s
k
A = 0 (5)

KP
k=1

skA = 1 (6)

siA � 0 (7)

where Ai =
PK

k=i
@Pk

@Q
@Qk

@skA
skA.

In what follows we assume that Ai =
PK

k=i
@Pk

@Q
@Qk

@skA
skA and Bi =

PK
k=i

@Pk

@Q
@Qk

@skB
skB for

the sake of notational simplicity.

In the following proposition we show that both of the �rms are active in the top bin.
Moreover, the bins where a �rm sells are consecutive.

Proposition 1Assume that for some bin i 2 f1; 2; :::;Kg we have siA = 0, then si+1A = 0.

Proof. Assume to get a contradiction that siA = 0 and si+1A > 0 for some i 2
f1; 2; :::;K � 1g. Then we have:

P i � �Ai � ~�A = �Ai+1 � ~�A = P i+1

Here the inequality comes from the Kuhn-Tucker conditions; the �rst equality follows
from our assumption that siA = 0; and the second equality follows from the Kuhn-Tucker
conditions given that si+1A > 0. Hence, P i � P i+1. But by the monotonicity of the

7Note that the optimization problem for �rm B is exactly the same.
8Note that we are solving the problem of an active �rm. Therefore it is assumed that QA > 0.
9For notational simplicity we represent @P (Qj)

@Q
by @P j

@Q
.
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demand P i � P i+1 implying that P i = P i+1. This in turn implies that there are K � 1
bins which is a contradiction.
�

The following lemma states that the bigger �rm will be active in all bins.

Lemma 1sjB > 0 for all j 2 f1; 2; :::;Kg.

The following lemma states that in top bin(s), except the last bin where the smaller
�rm is active, �rms match their quantities. By top bins we mean the bins with lower
indices which represent the higher valuation customers.

Lemma 2Let {̂ 2 f3; :::;K;K + 1g be such that s{̂A = s{̂+1A ::: = sK+1A = 0 and sjA > 0 for
all j < {̂. Then for j < {̂� 1 we have:

qjA = q
j
B (8)

Now we provide a proposition which describes behavior of the �rms in all the bins
for a general demand function. Even though we don�t have a closed form solution, this
proposition gives a recursive way to get an explicit solution for a speci�c demand function
up to �nding {̂. After the proposition we describe an algorithm to �nd such a solution.
Later in this paper, in corollaries 1 and 2, we give an explicit solution for the linear
demand case as an example.

Proposition 2Assume that QA � QB. Let {̂ 2 f2; 3; :::;K;K + 1g be such that s{̂A =
s{̂+1A ::: = sKA = s

K+1
A = 0 and sjA > 0 for all j < {̂.

10 The optimal shares for A and B are
described as follows:
Case I (j < {̂� 2):

P (2QA

jX
k=1

skA)� P (2QA
j+1X
k=1

skA) = �@P
j

@Q
QAs

j
A (9)

P (2QB

jX
k=1

skB)� P (2QB
j+1X
k=1

skB) = �@P
j

@Q
QBs

j
B (10)

Case II (j = {̂� 2):

P (2QA

{̂�2X
k=1

skA)� P (QA(1 +
{̂�2X
k=1

skA) +QBs
{̂�1
B ) = �@P

{̂�2

@Q
QAs

{̂�2
A (11)

P (2QB

{̂�2X
k=1

skB)� P (QA +QB
{̂�1X
k=1

skB) = �@P
{̂�2

@Q
QBs

{̂�2
B (12)

10Even though there are K bins, we are using the index up to K+1 in order to include the case where
QA = QB or they are so close that A is active in all the bins. Hence, {̂ = K + 1 means that siA > 0 in
all bins i = 1; 2; :::;K.
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Case III (j > {̂� 2):

sjA = 0 for j > {̂� 1 (13)

s{̂�1A = 1�
{̂�2X
k=1

skA (14)

P (QA +QB

jX
k=1

skB)� P (QA +QB
j+1X
k=1

skB) = �@P
j

@Q
QBs

j
B for j < K (15)

sKB = 1�
K�1X
k=1

skB (16)

The solution algorithm is as follows. From the cases above, we can recursively solve
sjB in terms of s

1
B for j � K. Moreover, since we have

PK
k=1 s

k
B = 1, we can solve for s

1
B .

Once we have the solution for sB�s we can solve for sA�s as follows. From Case I, we can
recursively solve sjA in terms of s

1
A for j < {̂� 1. Since we have s{̂�1A = 1�

P{̂�2
k=1 s

k
A, we

can solve for s{̂�1A in terms of s1A as well. In order to solve for s
1
A, we use Lemma 2. That

is, given s1B the solution for s
1
A is given by:

11

s1A =
QB
QA

s1B (17)

Note that depending on the value of {̂ some of the cases disappear. Hence, the sequence
of shares might start from Case II or Case III rather than Case I. Whenever {̂ > 3 the
solution algorithm starts from Case I; if {̂ = 3, the the solution algorithm starts from
Case II; and if {̂ = 2, the the solution algorithm starts from Case III.

In Proposition 2 we described the conditions for equilibrium shares for a general
demand function. In the following proposition, we give more conditions which will help
identifying {̂. The �rst statement of the proposition along with Lemma 2 shows that there
is no bin where the smaller �rm puts more quantity than the bigger �rm.

Proposition 3 The shares of the �rms in the last bin where A is active i.e., the bin {̂�1,
must satisfy:

QAs
{̂�1
A � QBs

{̂�1
B for any {̂ = 2; 3; :::;K + 1 (18)

P (2QA

{̂�2X
k=1

skA)� P (2QA
{̂�1X
k=1

skA) � �@P
{̂�2

@Q
QAs

{̂�2
A for any {̂ = 3; 4; :::;K + 1(19)

While the following proposition is not a part of the solution algorithm of the equi-
librium, it is useful in describing the behavior of the equilibrium for a general demand
function. The proposition states that whenever the demand function is concave, the size
of a bin is directly related to the valuation of the customer. In other words, the �rms
assign the larger bins to the higher valuation customers. In the bins up to {̂ � 2 the
quantity decreases by less than half with the increase in the index of the bin. Notice

11Note that this statement holds for {̂ > 2 case. The {̂ = 2 case is trivial as s1A = 1.
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that this is a contrast to the monopoly case where the quantity will decrease but not
as much as half. Due to this reason we see in the second statement of the proposition,
where we discuss the convex demand, that even when the demand function is convex the
quantity in the bins may be decreasing with the increase of the index of the bin.12 This
is because the condition only requires the bin size to be less than twice of the next bin�s
size. In the bins {̂� 1; {̂; :::;K where the �rm B�s behavior mimics that of a monopoly, we
have the shares decreasing (increasing) for concave (convex) demand function. Hence, for
the linear case those bins will have equal shares. This result illustrates that competition
between �rms carries the prisioners-dilemma-symptom of Cournot. In Cournot (without
price discrimination) there is overproduction compared to collusion (monopoly) whereas
in this share game there is overproduction in higher bins as compared to that in monopoly
with price discrimination. As it turns out, in the linear demand case there is in fact under
production of total quantity in the share game as compared to the monopoly.

Proposition 4If the demand function, P , is concave, then the shares of the �rms are
monotonically decreasing sequences. More precisely:

sjA � 2sj+1A for j < {̂� 2 (20)

QAs
{̂�2
A � QAs

{̂�1
A +QBs

{̂�1
B (21)

sjB � 2sj+1B for j < {̂� 2 (22)

QBs
{̂�2
B � QAs

{̂�1
A +QBs

{̂�1
B (23)

sjB � sj+1B for j > {̂� 2 (24)

If the demand function is convex, then we have:

sjA � 2sj+1A for j < {̂� 2 (25)

QAs
{̂�2
A � QAs

{̂�1
A +QBs

{̂�1
B (26)

sjB � 2sj+1B for j < {̂� 2 (27)

QBs
{̂�2
B � QAs

{̂�1
A +QBs

{̂�1
B (28)

sjB � sj+1B for j > {̂� 2 (29)

At this point we would like to mention that the shares decided by the above results
are invariant to any a¢ ne transformation of the demand function. In other words two
demand functions P and ~P where ~P = � + �P would lead to the same solution for the
shares. In what follows we consider the linear demand case for expositional simplicity. For
a general demand function the equilibrium can be calculated in a similar fashion. Once
we �nish the full characterization of the linear demand case in this section, we provide
Cournot and Stackelberg version of the our model.

12Note that we should be careful when we talk about convex demand. Recall that if the inverse demand
function is too convex, then the pro�t function may not be concave.
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3 The Linear Demand Case

We consider the linear demand given by P j = a � Qj and using the above propositions
solve completely for the equilibrium which turns out to be unique.13 As expected, in the
equilibrium both �rms are active in the top bin(s). The bigger �rm is active in all the K
bins. The �rms match the quantities in the top bins till the bin {̂� 2. Also, as it can be
concluded from Proposition 4, in each bin till the bin {̂� 2, the �rms put exactly half of
the quantity that they put in the previous bin. Starting from the bin {̂�1 the bigger �rm
splits the quantity equally in all the bins. Recall that this behavior of the bigger �rm is
like a monopolist in those bins.

Corollary 1Let {̂ 2 f2; :::;K;K + 1g be such that s{̂A = s{̂+1A ::: = sKA = 0 and s
j
A > 0 for

all j < {̂. Moreover, assume that the demand is linear given by:

P j = a�Qj (30)

The optimal shares for A and B are described as follows:
Case 1 ({̂ = 2):

s1A = 1 (31)

sjA = 0 if j > 1 (32)

sjB =
1

K
for j = 1; 2; :::;K (33)

Case 2 ({̂ � 3):
Case I (j < {̂� 1):

sjA =
1

2j�1
s1A (34)

sjB =
1

2j�1
s1B (35)

Case II (j = {̂� 1):

sjA = 1� (2� 1

2{̂�3
)s1A (36)

sjB = 2s1B �
QA
QB

(37)

Case III (j > {̂� 1):

sjA = 0 (38)

sjB = 2s1B �
QA
QB

(39)

The following corollary states the behavior of the �rm A in the last bins. In the bin
{̂ � 1 it just puts the remainder which is no more than half of what he puts in the bin
{̂� 2.
13Note that any linear inverse demand function will lead to exactly the same solution as we have

mentioned in the last paragraph.
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Corollary 2 For any {̂ = 3; :::;K + 1 we have:

2s{̂�1A � s{̂�2A (40)

The following corollary together with Corollary 1 characterizes the solution for general
{̂ � 2 . For a given QA=QB ratio, the {̂ is unique and therefore so is the equilibrium.

Corollary 3The shares for the �rst bins are given as follows:

s1A =

8<: QB

QA

1+
QA
QB

K{̂

H{̂
2{̂�3

+2K{̂

if {̂ > 2

1 if {̂ = 2
(41)

s1B =

8<:
1+

QA
QB

K{̂

H{̂
2{̂�3

+2K{̂

if {̂ > 2

1=K if {̂ = 2
(42)

where the unique {̂ is characterized by

1 + 2H
{̂

K{̂ + 2H{̂

� QA
QB

>
H

{̂

K{̂ +H{̂

(43)

H{̂ = 2{̂�2 � 1 (44)

K{̂ = K � {̂+ 2 (45)

Now that we have completely identi�ed the unique equilibrium of the share allocation
game with exogenously given capacities, we explore the equilibria in the games where
the capacities themselves are endogenous. Two such natural settings are Cournot and
Stackelberg where we assume that the �rms involve in multi-stage games. In the beginning
stages they compete in the quantities that they plan to put in the market. These quantities
will serve as the capacity for the �nal stage of the game where they simultaneously
decide the distribution of shares for the bins. In the following sections we show the
equilibrium behavior of �rms in such setups where the equilibrium concept is that of
subgame perfection. We use backward induction where the �nal stage shares are borrowed
from the previous results.

3.1 Cournot Competition with Price Discrimination

In this section we provide a generalization of the benchmark Cournot competition model.
In this model, we assume that there are n �rms in the market. We normalize the costs
of the �rms to zero. The �rms divide the consumers into K bins according to their
reservation prices. The demand is assumed to be linear and given by equation (30). We
assume that �rms are playing a two-stage game where in the �rst stage they choose the
capacities and in the second stage they simultaneously choose the shares that they assign
to each bin.
First, we solve the second stage of the game. The symmetric solution implies that

{̂ = K + 1. The shares are given by:

9



sjf =
1

nj�1
s1f (46)

Now, we solve for the �rst stage of the game to get the equilibrium capacities. Let Q =Pn
f=1Qf . The following proposition provides the equilibrium quantities and equilibrium

pro�ts of the �rms.

Proposition 5The equilibrium pro�ts of �rm f is given by

�f = (a�Q)Qf + gn;KQ2 (47)

the equilibrium quantities and output weighted price are given by:

Qf =
1

n+ 1� 2ngn;K
a (48)

�P =

Pn
i=1 �iPn
i=1Qi

=
1 + (n2 � 2n)gn;K
n+ 1� 2ngn;K

(49)

where gn;K = 1
n(n+1)

nK�n
nK�1 for n > 1.

For a given n > 1 (K), gn;K is an increasing (decreasing) function of K (n) which
implies that Qf is increasing (decreasing) in K (n) as well. The only exception to this
monotonicity is observed when we compare the quantities for monopoly and oligopoly.
This result has important welfare implications that we examine later. For a given K,
switching from monopoly to oligopoly leads to a decrease in quantity. From the pro�t
function we can see that, for a �xed n, gn;KQ2 term re�ects the upwards pressure of price
discrimination on the reaction functions of the �rms. This leads to higher total capacity
choice in equilibrium. Thus, the equilibrium pro�ts are also growing in K. For a given n,
while the average price14 is invariant to K in Hazledine [13], it is an increasing function
of K in our setup.

3.2 Stackelberg Competition with Price Discrimination

In this section we provide a generalization of the benchmark Stackelberg competition
model. In this model, as in the former section, we assume that there are two �rms, the
leader (B) and the follower (A), in the market. We normalize the costs of the �rms to
zero. The �rms divide the consumers into K bins according to their reservation prices.
The demand is assumed to be linear and given by equation (30). We assume that �rms
are playing a three-stage game where in the �rst stage B chooses its capacity; in the
second stage A chooses its capacity; and in the �nal stage they simultaneously choose the
shares that they assign to each bin. Unlike the Cournot case where symmetric quantities
in the symmetric solution implies {̂ = K+1, here the {̂ must be endogenously determined
in the equilibrium. In the following proposition we provide the pro�ts of the �rms as
functions of {̂, K and the quantities.

14By average price we mean output weighted average price.
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Proposition 6The pro�t function of A and B is given by:

�A =

�
(a� f{̂Q{̂)QA + g{̂Q2{̂ if {̂ > 2
(a�QA � 1

KQB)QA if {̂ = 2

�B =

�
aQB � h{̂Q2{̂ +K{̂Q{̂QA � (K{̂�1)K{̂

2 Q2A if {̂ > 2
(a�QA)QB � K+1

2K Q2B if {̂ = 2

where

f{̂ =
2(1� 2x{̂)
1� 4x{̂ +K{̂

g{̂ =
2

3

8x2{̂ � 6x{̂ + 1
(1� 4x{̂ +K{̂)2

h{̂ =
8(8x2{̂ � 6x{̂ + 1) + 12K{̂(1� 2x{̂) + 3K{̂(K{̂ � 1)

6(1� 4x{̂ +K{̂)2

Q{̂ = QB +K{̂QA

x{̂ =
1

2{̂

The following proposition provides a simultaneous system which characterizes the
equilibrium quantities and the equilibrium {̂.

Proposition 7The equilibrium quantities are given by:

QA =
a� (f{̂ � 2g{̂K{̂)QB
2K{̂(f{̂ � g{̂K{̂)

(50)

QB =
K{̂(4(f{̂ � g{̂K{̂)

2 � f{̂(2h{̂ � 1) + 2g{̂)� f{̂
K{̂(4(f{̂ � g{̂K{̂)2 + f2{̂ (2h{̂ � 1))� (f{̂ � 2g{̂K{̂)2

a (51)

where {̂ is characterized by:

1 + 2H
{̂

K{̂ + 2H{̂

� f{̂(2h{̂ + 1)� 2(f{̂ � g{̂K{̂)(f{̂ � 2g{̂K{̂)� 2g{̂K{̂

K{̂(4(f{̂ � g{̂K{̂)2 � f{̂(2h{̂ � 1) + 2g{̂)� f{̂
>

H
{̂

K{̂ +H{̂

(52)

By utilizing the Propositions 6 and 7 we solve the equilibrium values up to K = 100.
We proceed as follows: For all {̂ = 2; 3; :::;K + 1 we calculate the corresponding optimal
quantities and check the inequality (52). Except theK = 3 case we get a unique consistent
(QA; QB) pair. For K = 3 case, we eliminate the equilibrium candidate {̂ = 3 by utilizing
the fact that {̂ = 4 case gives more pro�t to the �rm B. Hence, in the �rst stage B picks
its capacity in such a way as to maximize his equilibrium pro�t i.e. {̂ must be 4 for K = 3.
In Table 1 below, we provide the equilibrium values of individual quantities, individ-

ual pro�ts, and total joint pro�ts for selected values of K. Apart from the results for
K = 2; 3; :::; 10, we provide the values for critical K�s, i.e., the K�s where the value of {̂
changes.15 . Even though the total quantity, average price, and pro�ts are monotonically
increasing in K for both the leader and the follower, the individual quantities do not
follow the pattern.

15Note that {̂ is non-decreasing in K.
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K î QA QB ^A ^B ^T

2 3 0.3519 0.4815 0.1358 0.1574 0.2932

3 3,4 0.3702 0.5227 0.1535 0.1721 0.3256

4 4 0.3784 0.5231 0.1650 0.1842 0.3492

5 4 0.3782 0.5455 0.1695 0.1910 0.3605

6 4 0.3785 0.5593 0.1727 0.1953 0.3680

7 5 0.3794 0.5586 0.1756 0.1988 0.3744

8 5 0.3787 0.5685 0.1772 0.2015 0.3787

9 5 0.3783 0.5757 0.1784 0.2036 0.3820

10 5 0.3780 0.5813 0.1794 0.2052 0.3846

13 6 0.3776 0.5888 0.1815 0.2084 0.3900

24 7 0.3764 0.6069 0.1845 0.2135 0.3979

47 8 0.3757 0.6156 0.1860 0.2162 0.4022

89 9 0.3754 0.6203 0.1868 0.2174 0.4042

Table 1

4 Model Comparisons

In this section we compare the equilibrium properties of a variety of models: Kutlu�s
Stackelberg competition model (Stackelberg K); Hazledine�s Cournot competition model
(Cournot H); Stackelberg competition with share allocation model (Stackelberg KK); and
Cournot competition with share allocation model (Cournot KK). Since the framework of
Stackelberg K and Cournot H are essentially the same, we call it the HK framework and
analogously we call our framework as the KK framework.
In Figure 1 we compare equilibrium quantities for our models as a function of the

degree of price discrimination, K. A remarkable observation is that while in the HK
framework the quantity choices of the leader, the follower, and a Cournot �rm are con-
verging to a uni�ed quantity of 0:5, this is not the case for the KK framework. In the
earlier levels of price discrimination, the price discrimination helps the follower to gain a
considerable amount of market share. For both of the Cournot and Stackelberg cases the
total quantity is higher relative to the uniform price case. While for the Cournot case the
overproduction is higher for the HK framework, it is lower for the Stackelberg case.
In Figure 3 we compare equilibrium pro�ts for our models as a function of the degree

of price discrimination. The pro�t of the leader of KK is lower than that of the leader of
HK; and the pro�t of the follower of KK is higher than that of the follower of HK. This
is because of the third stage of the game which decreased the competitive advantage of
the leader. Typically, in quantity competitions �traditional Stackelberg and Cournot �
the leader position is preferred to the follower position; and simultaneous move results in
an intermediate payo¤. Whereas price competition contrasts with quantity competition
in that the follower position is preferred to the leader position which is preferred to the
simultaneous move competition. For example, Gal-Or (1985) shows that for identical
�rms if the follower�s reaction function is upwards (downwards) sloping, then the �rms
would like to be the follower (the leader). In the case of upwards sloping reaction func-
tions, the follower copies or undercuts the leader. Hence, this makes moving �rst less

12



attractive.16 Gal-Or gives a simple sequential quantity (price) choice game where the
leader (the follower) position is preferred.17 Gal-Or�s example is in line with the intuition
that quantity (price) reaction functions are expected to slope downward (upward).18 The
Stackelberg competition in HK framework contrasts with the standard Stackelberg dy-
namics where the follower�s output is inversely related to the leader�s output. In order
to see the contrast, consider the two bin case. If the leader expands output in bin 2, the
follower reduces its output in bin 2 and expands it in bin 1. Hence, this framework has an
essence of both downwards and upwards sloped reaction functions. The net outcome for
the preference of timing is still in line with the standard Stackelberg competition, i.e., the
�rms�preference ordering is given by: The leader � simultaneous move � the follower.
On the contrary, while the KK framework accords with the typical quantity results (in
terms of �rms timing preferences) for lower degrees of price discrimination, as the degree
of price discrimination becomes large �rms prefer being a leader to being a follower; and
prefer being a follower to �ghting simultaneously.19 In this game as the leader expands
its capacity, the follower reduces it capacity. This reduction rate is a decreasing function
of the degree of price discrimination.20 Hence, for high degrees of price discrimination
the follower is less sensitive to the changes in the leader�s capacity.
As pointed out by Corts (1998), note that while in the monopoly case price discrimina-

tion certainly increases the pro�t, it might not be the case for an oligopoly environment.
The reason is that �rms might use their increased power for �ghting each other rather
than extracting more pro�ts from the customers. In such cases �rms would like to commit
themselves to uniform pricing. Hence, in order to examine whether the �rms are using
this price discrimination power against each other or not, we use a simple market power
index as a function of K. Our measure of market power is de�ned as the ratio of pro�ts
of �rms to the monopoly pro�ts as a function of K. Hence, if this index is increasing
as K increases, this would be a sign of increase in coordination among �rms. In Figures
4 and 5 we plot both �rm speci�c and market speci�c market power measures. From
Figure 5 we deduce that the third stage of the KK framework enables a higher degree of
coordination among �rms. Finally, we consider the relationship between market power
and price discrimination. From Figure 5 we observe that for the Cournot of HK setting,
the competition increases as the price discrimination increases. This is in line with Boren-
stein (1985), Holmes (1989), Stole (1995), Valetti (2000), and Valetti (2002). In contrast
to this, the market power of Stackelberg of HK is invariant to the degree of price discrimi-
nation meaning that price discrimination does not e¤ect the aggregate market power. For
the KK setting, initially the aggregate market power indices for both the Cournot and
Stackelberg show some tendency to increase; but for higher levels of price discrimination,
as the degree of price discrimination increases the aggregate market power decreases.
In Figure 6 we compare the equilibrium welfares. It turns out that the welfare always

converges to full e¢ ciency except for the Cournot duopoly case where the �rms move
simultaneously in the �rst stage. Therefore, in contrast to the conventional wisdom
where competition is almost always supposed to increase the social welfare, this is not
the case when there is price discrimination. However, as we see in Figure 7, the full
welfare is again achieved when the number of �rms grows. For the monopoly case the
total welfare increases as the number of bins increases; and for the single price case the
total welfare increases as the number of �rms increases. Although the outcomes, in terms

16The preferences of the �rms are a¤ected by asymmetries in the cost function or capacity. For example,
a limited capacity would reduce the incentive of the follower to undercut the price of the leader. For
more details see Deneckere and Kovenock (1992), Furth and Kovenock (1993), and Canoy (1996).
17See also Boyer and Moreaux (1987) and Dowrick (1986).
18See Dowrick (1986) for more details.
19See Von Stengel [29] for su¢ cient conditions for non-existence of such examples.
20This is veri�ed by numerically evaluating the symbolic solution of the reaction functions.
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of total welfare, are similar for price discrimination levels and number of �rms21 , the
e¤ects of these factors are in opposite direction in terms of the distribution of the total
welfare. That is, while an increase in the price discrimination level favors the producer,
an increase in the number of �rms favors the consumers. Hence, increase in the number of
�rms decreases the producers�ability to bene�t the price discrimination fully. Finally, in
Figure 8 we provide the consumer surplus as a function of K and n. Except the relative
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Figure 1: Quantity

21Remember that for n = K and linear demand, Formby and Millner (1989) showed that the outcomes
for n �rm single price and K bin monopoly are the same in terms of total welfare.
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Figure 5: Ratio of industry pro�t to monopoly pro�t
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5 Appendix: Proofs

5.1 Proof of Lemma 1

Let {̂ 2 f2; :::;K;K + 1g be such that s{̂A = s{̂+1A ::: = sK+1A = 0 and sjA > 0 for all j < {̂.
In order to prove the lemma, we consider two cases.

Case 1 (̂{ � K): If {̂ � K, then sKB > 0. Otherwise, there will not be K bins which is
a contradiction.

Case 2 (̂{ = K + 1): From Proposition 1 it follows that s1B > 0. Let�s assume that
sjB > 0 for all j < t. We will show that s

t
B > 0. Assume not, i.e. s

t
B = s

t+1
B = ::: = sKB = 0.

From the Kuhn-Tucker conditions we know that:

P j +Aj + ~�A = 0 (53)

P j +Bj + ~�B = 0 (54)

P t +At + ~�A = 0 (55)

P t +Bt + ~�B � 0 (56)

Subtracting the equality (55) from the inequality (56) gives:

Bt �At + ~�B � ~�A � 0 (57)

From (53) and (54), we know that:
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~�B � ~�A = Aj �Bj (58)

Therefore, we have:

Bt �At +Aj �Bj � 0 (59)

Bj �Aj +Aj�1 �Bj�1 = 0 (60)

From equations (59) and (60), we have:

�QB
@P t�1

@Q
st�1B +QA

@P t�1

@Q
st�1A � 0 (61)

�QB
@P t�2

@Q
st�2B +QA

@P t�2

@Q
st�2A = 0

...

�QB
@P 1

@Q
s1B +QA

@P 1

@Q
s1A = 0 (62)

From monotonicity of demand, we have @P j

@Q < 0. Therefore:

QBs
t�1
B � QAst�1A (63)

Summing over bins 1; 2; :::; t� 1 we get:

QB

t�1X
k=1

skB � QA
t�1X
k=1

skA (64)

or

QB � QA
t�1X
k=1

skA < QA (65)

The strict inequality follows from the fact that A is active in all bins until bin K. This
is a contradiction.
�

5.2 Proof of Lemma 2

Note that by Lemma 1 we have sjB > 0 for j 2 f1; 2; :::;Kg. Hence, for all j < {̂ we have
P j = �Aj � ~�A = �Bj � ~�B . Hence, P j � P j+1 = q

j
A = q

j
B .

�
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5.3 Proof of Proposition 2

Note that for j < {̂� 1 we have :

P (Qj)� P (Qj+1) = (�Aj � ~�A)� (�Aj+1 � ~�A) (66)

= �@P
j

@Q
QAs

j
A (67)

Also, by Lemma 1 using the similar steps as above we get:

P (Qj)� P (Qj+1) = �@P
j

@Q
QBs

j
B (68)

For case I, we have j < {̂� 2. Therefore Qj = QA
Pj

k=1 s
k
A+QB

Pj
k=1 s

k
B . Since, j <

{̂ � 2 by Lemma 2 we have QAsjA = QBs
j
B . Hence, Q

j = 2QA
Pj

k=1 s
k
A = 2QB

Pj
k=1 s

k
B

and Qj+1 = 2QA
Pj+1

k=1 s
k
A = 2QB

Pj+1
k=1 s

k
B .

For case II, we have j = {̂ � 2. Therefore Qj = 2QA
P{̂�2

k=1 s
k
A = 2QB

P{̂�2
k=1 s

k
B and

Qj+1 = QA(1 +
P{̂�2

k=1 s
k
A) +QBs

{̂�1
B = QA +QB

P{̂�1
k=1 s

k
B .

For case III, notice that QA is exhausted after bin {̂ � 1. For bin {̂ � 1, s{̂�1A is the
residual share for A. By Lemma 1, B is active in bins {̂; {̂+1; :::;K, i.e. s{̂B ; s

{̂+1
B ; :::; sKB > 0.

Therefore from the Kuhn-Tucker conditions for all j = {̂; {̂+ 1; :::;K � 1 we have:

P j +Bj + ~�B = 0 (69)

P j+1 +Bj+1 + ~�B = 0 (70)

Hence, we have:

P j � P j+1 = �@P
j

@Q
QBs

j
B (71)

or

P (QB

jX
k=1

skB +QA)� P (QB
j+1X
k=1

skB +QA) = �
@P j

@Q
QBs

j
B (72)

�
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5.4 Proof of Proposition 3

First, we prove the inequality (18). From the Kuhn-Tucker conditions we know that:

P {̂ +A{̂ + ~�A � 0 (73)

P {̂ +B{̂ + ~�B = 0 (74)

P {̂�1 +A{̂�1 + ~�A = 0 (75)

P {̂�1 +B{̂�1 + ~�B = 0 (76)

Then we have:

P {̂ � P {̂�1 +A{̂ �A{̂�1 � 0 (77)

P {̂ � P {̂�1 +B{̂ �B{̂�1 = 0 (78)

Hence:

A{̂ �A{̂�1 � B{̂ �B{̂�1 (79)

or

�@P
{̂�1

@Q
QAs

{̂�1
A � �@P

{̂�1

@Q
QBs

{̂�1
B (80)

By monotonicity of the demand we know that @P
{̂�1

@Q < 0. Therefore we have:

QAs
{̂�1
A � QBs{̂�1B (81)

Now, we prove the inequality (19). From Proposition 2 we know that:

P (2QA

{̂�2X
k=1

skA)� P (QA(1 +
{̂�2X
k=1

skA) +QBs
{̂�1
B ) = �@P

{̂�2

@Q
QAs

{̂�2
A (82)

or

P (2QA

{̂�2X
k=1

skA)� P (2QA
{̂�2X
k=1

skA +QAs
{̂�1
A +QBs

{̂�1
B ) = �@P

{̂�2

@Q
QAs

{̂�2
A (83)

Since QAs
{̂�1
A � QBs{̂�1B by monotonicity of the demand we have:
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P (2QA

{̂�2X
k=1

skA +QAs
{̂�1
A +QBs

{̂�1
B ) � P (2QA

{̂�1X
k=1

skA) (84)

Therefore:

P (2QA

{̂�2X
k=1

skA)� P (2QA
{̂�1X
k=1

skA) � �
@P {̂�2

@Q
QAs

{̂�2
A (85)

�

5.5 Proof of Proposition 4

First assume that the demand function is concave. Note that since the demand function
is concave we have:

P (x)� P (x+ y) � �@P (x)
@x

y for any x; y (86)

Let j < {̂� 2. By case I of Proposition 2 and inequality (86) we have:

P (2QA

jX
k=1

skA)� P (2QA
j+1X
k=1

skA) = �@P
j

@Q
QAs

j
A (87)

P (2QA

jX
k=1

skA)� P (2QA
j+1X
k=1

skA) � �@P
j

@Q
2QAs

j+1
A (88)

Thus:

�@P
j

@Q
QAs

j
A � �@P

j

@Q
2QAs

j+1
A (89)

sjA � 2sj+1A (90)

Proof of sjB � 2s
j+1
B is the same.

Now, let j = {̂� 2. By case II of Proposition 2 and inequality (86) we have:

P (2QA

{̂�2X
k=1

skA)� P (2QA
{̂�2X
k=1

skA +QAs
{̂�1
A +QBs

{̂�1
B ) = �@P

{̂�2

@Q
QAs

{̂�2
A (91)

P (2QA

{̂�2X
k=1

skA)� P (2QA
{̂�2X
k=1

skA +QAs
{̂�1
A +QBs

{̂�1
B ) � �@P

{̂�2

@Q
(QAs

{̂�1
A +QBs

{̂�1
B )(92)
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Thus:

�@P
j

@Q
QAs

{̂�2
A � �@P

j

@Q
(QAs

{̂�1
A +QBs

{̂�1
B ) (93)

QAs
{̂�2
A � QAs

{̂�1
A +QBs

{̂�1
B (94)

Similarly, we have QBs
j
B � QAs

{̂�1
A +QBs

{̂�1
B .

Finally, assume that j > {̂ � 2. By case III of Proposition 2 and inequality (86) we
have:

P (QA +QB

jX
k=1

skB)� P (QA +QB
j+1X
k=1

skB) = �@P
j

@Q
QBs

j
B (95)

P (QA +QB

jX
k=1

skB)� P (QA +QB
j+1X
k=1

skB) � �@P
j

@Q
QBs

j+1
B (96)

Hence:

sjB � s
j+1
B (97)

The proof of convex demand function is similar.
�

5.6 Proof of Corollary 1

For Case 1, note that by de�nition of {̂ and Lemma 1 we have s1A = 1. From equations
(15) and (16) we have:

(a�QA �QB
jX

k=1

skB)� (a�QA �QB
j+1X
k=1

skB) = QBs
j
B for j < K (98)

sKB = 1�
K�1X
k=1

skB (99)

Hence:
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sj+1B = sjB for j < K (100)

sKB = 1�
K�1X
k=1

skB (101)

This implies that:

sjB =
1

K
(102)

For Case 2, we only prove the {̂ > 3 case. The {̂ = 3 is case is similar. For Case I, by
equations (9) and (10) for any j < {̂� 2 we have:

(a� 2QA
jX

k=1

skA)� (a� 2QA
j+1X
k=1

skA) = QAs
j
A (103)

(a� 2QB
jX

k=1

skB)� (a� 2QB
j+1X
k=1

skB) = QBs
j
B (104)

Hence:

2sj+1A = sjA (105)

2sj+1B = sjB (106)

Hence, for any j < {̂� 1 we have:

sjA =
1

2j�1
s1A (107)

sjB =
1

2j�1
s1B (108)

Equation (36) follows from equation (34) and the fact that s{̂�1A = 1�
P{̂�2

k=1 s
k
A. Now,

we derive equation (37). From equation (12) we know that:

(a� 2QB
{̂�2X
k=1

skB)� (a�QA �QB
{̂�1X
k=1

skB) = QBs
{̂�2
B (109)

sKB = 1�
K�1X
k=1

skB (110)
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Hence:

(�2QB
{̂�2X
k=1

skB)� (a�QA �QB
{̂�1X
k=1

skB) = QBs
{̂�2
B (111)

Hence, we have:

QA +QBs
{̂�1
B = QBs

{̂�2
B +QB

{̂�2X
k=1

skB (112)

QA +QBs
{̂�1
B = QBs

{̂�3
B +QB

{̂�3X
k=1

skB

...

QA +QBs
{̂�1
B = 2QBs

1
B

This implies that:

s{̂�1B = 2s1B �
QA
QB

(113)

Case III directly follows from equations (13), (15), and (113).
�

5.7 Proof of Corollary 2

By Proposition 3 we know that:

(a� 2QA
{̂�2X
k=1

skA)� (a� 2QA
{̂�1X
k=1

skA) � QAs{̂�2A (114)

Hence:

2s{̂�1A � s{̂�2A (115)

�
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5.8 Proof of Corollary 3

First, assume that {̂ > 2. Using Case II in Proposition 2 we have:

QAs
{̂�1
A +QBs

{̂�1
B = QAs

{̂�2
A (116)

Also from Corollary 2 we have:

s{̂�1A � 1

2
s{̂�2A (117)

Assume that the quantities that �rm A puts in the bins {̂ � 1 and {̂ � 2 are y and x
respectively. Then, from equation (116), Corollary 1, and Corollary 2 we get the following
system which will characterize {̂:

y + x+ 2x+ 4x+ :::+ 2{̂�3x = QA (118)

(K � {̂+ 2)(x� y) + x+ 2x+ 4x+ :::+ 2{̂�3x = QB (119)

0 � y � x

2
(120)

QA � QB (121)

Letting H{̂ = 2{̂�2 � 1 and K{̂ = K � {̂+ 2 we have:

y +H{̂x = QA (122)

�K{̂y + (K{̂ +H{̂)x = QB (123)

0 < y � x

2
(124)

QA � QB (125)

Solving for x and y we have:

x =
K{̂QA +QB

K{̂H{̂ +K{̂ +H{̂
(126)

y =
K{̂QA +H{̂

(QA �QB)
K{̂H{̂ +K{̂ +H{̂

(127)

From the inequality (124) we have:

1 + 2H
{̂

K{̂ + 2H{̂

� QA
QB

>
H

{̂

K{̂ +H{̂

(128)
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Now, assume that {̂ = 2. Then, by Proposition 3 and Corollary 1 we have:

QA �
1

K
QB (129)

Note that H2 = 0 and K{̂ = K. Hence, the system (128) holds for {̂ = 2 as well.

Let �
{̂
=

1+2H
{̂

K{̂+2H{̂
and �

{̂
=

H
{̂

K{̂+H{̂
. Now, we show the uniqueness of the equilibrium.

Note that it is enough to show that f(�{̂; �{̂]g{̂ partitions (0; 1]. This simply means that
for any given QA

QB
value, there will be one and only one corresponding set (�{̂; �{̂]. This

set identi�es the {̂ that gives the equilibrium. First, note that @�{̂
@{̂ � 0 and @�{̂

@{̂ � 0.
Moreover, we know that �K+1 = 1 and �2 = 0. Hence, if �{̂ = �{̂�1 for any {̂ = 3; :::;K,
then f(�{̂; �{̂]g{̂ partitions [0; 1]. We want to show that:

�{̂�1 =
1 + 2H

{̂�1

K{̂�1 + 2H{̂�1

=
H

{̂

K{̂ +H{̂

= �{̂ (130)

or

(1 + 2H
{̂�1)(K{̂ +H{̂

)� (K{̂�1 + 2H{̂�1)H{̂ = 0 (131)

K{̂ + 2K{̂H{̂�1 +H{̂
+ 2H

{̂
H

{̂�1 �K{̂�1H{̂
� 2H

{̂
H

{̂�1 = 0

K{̂ + 2K{̂H{̂�1 +H{̂
�K{̂�1H{̂

= 0

K{̂ + (H{̂
� 1)K{̂ +H{̂

�K{̂�1H{̂
= 0

H
{̂
(K{̂ + 1)�K{̂�1H{̂

= 0

H
{̂
(K � {̂+ 2 + 1)� (K � (̂{� 1) + 2)H

{̂
= 0

0 = 0

We conclude that for any given QA

QB
there exists a unique equilibrium for the quantity

choices of A and B. The equilibrium is determined by the conditions from Corollary 1
and inequality system (128). Finally, the shares for the �rst bins are given as follows:

s1A =
QB
QA

1 + QA

QB
K{̂

H{̂

2{̂�3
+ 2K{̂

(132)

s1B =
1 + QA

QB
K{̂

H{̂

2{̂�3
+ 2K{̂

(133)

�
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5.9 Proof of Proposition 5

Let Qf and skf denote the total quantity and share for the k
th bin for �rm f , respectively.

As in the proof of Proposition 2, the �rst order conditions for �rm f are given by:

P (nQf

jX
k=1

skf )� P (nQi
j+1X
k=1

skf ) = �
@P j

@Q
Qis

j
f for j < K (134)

Hence, we have:

(a� nQf
jX

k=1

skf )� (a� nQf
j+1X
k=1

skf ) = Qis
j
f for any j < K (135)

or:

sj+1f =
1

n
sjf for any j < K (136)

Similar to the proof of Corollary 3, we have to solve the following system:

(1 + n+ n2 + :::+ nK�1)x = Qf (137)

Qf = Qj for any j � K (138)

Then, x = n�1
n

1
nK�1Q and s1fQf = nK�1x = n�1

n
nK�1

nK�1Q implying that s1f =
n�1
n2

nK

nK�1
Q
Qf
. Therefore, the the pro�t function of �rm f in the �rst stage is given

by:
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�f = Qf

"
K�1P
i=1

(a� nQf
iX

k=1

skf )s
i
f ) + (a�Q)sKf

#
(139)

= Qf

"
a� nQf

K�1P
i=1

(
iX

k=1

skf )s
i
f )�Q(1�

K�1X
k=1

skf )

#

= Qf

"
a� nQf

K�1P
i=1

(
iX

k=1

1

nk�1
s1f )

1

ni�1
s1f )�Q(1� s1f

K�1X
k=1

1

nk�1
)

#

= Qf

�
a� n3

n� 1Qf [s
1
f ]
2
K�1P
i=1

(
1

ni
� 1

n2i
)�Q(1� s1f

n

n� 1(1� n
1

nK
))

�
= Qf

�
a� n3

n� 1Qf [s
1
f ]
2
K�1P
i=1

(
1

ni
� 1

n2i
)�Q(1� s1f

n

n� 1(1� n
1

nK
))

�
= aQf �

n4

(n+ 1)(n� 1)2 (1� n
1

nK
)(1� 1

nK
)Q2f [s

1
f ]
2 �Q(Qf �Qfs1f

n

n� 1(1� n
1

nK
))

= (a�Q)Qf �
n4

(n+ 1)(n� 1)2 (1� n
1

nK
)(1� 1

nK
)Q2f [s

1
f ]
2 +QQfs

1
f

n

n� 1(1� n
1

nK
)

= (a�Q)Qf + (
1

n

nK � n
nK � 1 �

1

(n+ 1)

nK � n
nK � 1 )Q

2

= (a�Q)Qf +
1

n(n+ 1)

nK � n
nK � 1Q

2

= (a�Q)Qf + gn;KQ2

where gn;K = 1
n(n+1)

nK�n
nK�1 for n > 1.

The �rst order condition for f is given by:

@�f
@Qf

= a�Q�Qf + 2gn;KQ (140)

= a�Qf + (2gn;K � 1)(Qf +
X
i 6=f

Qi)

= 0

From symmetry we get:

Qf =
1

n+ 1� 2ngn;K
a (141)

Now, we calculate the output weighted price �P .

29



�P =

Pn
i=1 �iPn
i=1Qi

=
�f
Qf

(142)

=
(a�Q)Qf + gn;KQ2

Qf

= (a�Q) + gn;KQ
2

Qf

= (a� nQf ) + n2gn;KQf
= a� (n� n2gn;K)Qf

= a� n� n2gn;K
n+ 1� 2ngn;K

a

= a(1� n� n2gn;K
n+ 1� 2ngn;K

)

= a
1 + (n2 � 2n)gn;K
n+ 1� 2ngn;K

�

5.10 Proof of Proposition 6

Derivation of {̂ = 2 case is transparent and we leave it to the reader. Assume that {̂ > 2
and let x{̂ = 1

2{̂
. Before deriving the pro�t functions, we present some expressions that

will be useful for deriving the pro�t functions:

QAs
1
A = QBs

1
B =

QB +K{̂QA
2(1� 4x{̂ +K{̂)

(143)

2Q2A
{̂�2P
i=1

(
iP

k=1

skA)s
i
A =

16

3
(8x2{̂ � 6x{̂ + 1)[QAs1A]2 (144)

2Q2B
{̂�2P
i=1

(
iP

k=1

skB)s
i
B =

16

3
(8x2{̂ � 6x{̂ + 1)[QBs1B ]2 (145)

(2Q2A
{̂�2P
k=1

skA +Q
2
As

{̂�2
A )s{̂�1A = �8(8x2{̂ � 6x{̂ + 1)[QAs1A]2 + 4(1� 2x{̂)[QAs1A]QA (146)

(2Q2B
{̂�2P
k=1

skB +Q
2
Bs

{̂�2
B )s{̂�1B = 8(1� 2x{̂)[QBs1B ]2 � 4(1� 2x{̂)[QBs1B ]QA (147)

KP
i={̂

(2Q
2
B

{̂�2P
k=1

skB+Q
2
Bs

{̂�2
B +Q2B

iP
k={̂

skB)s
i
B (148)

= (K {̂�1)
�
4(1� 2x{̂)[QBs

1
B ]QBs

{̂�1
B +

K{̂

2
[Q

B
s{̂�1B ]

2

�
= (K {̂�1)

�
4(1� 2x{̂)[QBs

1
B ](2[QBs

1
B ]�QA)+

K{̂

2
[2[QBs

1
B ]�QA]

2

�
= (K {̂�1)

�
(8(1� 2x{̂) + 2K {̂)[QBs

1
B ]
2�(4(1� 2x{̂) + 2K {̂)[QBs

1
B ]QA+

K{̂

2
Q2A

�
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Let Q{̂ = QB +K{̂QA. Now, using the above equalities we derive the pro�t function
for A. The pro�t function of A is given by:

�A = QA(
{̂�2P
i=1

(a� 2QA
iX

k=1

skA)s
i
A + (a� 2QA

{̂�2X
k=1

skA �QAs{̂�2A )s{̂�1A ) (149)

= aQA �
�
�8
3
(8x2{̂ � 6x{̂ + 1)[QAs1A]2 + 4(1� 2x{̂)[QAs1A]QA

�
= aQA �

�
�2
3

8x2{̂ � 6x{̂ + 1
(1� 4x{̂ +K{̂)2

Q2{̂ +
2(1� 2x{̂)
1� 4x{̂ +K{̂

Q{̂QA

�
= (a� f{̂Q{̂)QA + g{̂Q2{̂

where

f{̂ =
2(1� 2x{̂)
1� 4x{̂ +K{̂

g{̂ =
2

3

8x2{̂ � 6x{̂ + 1
(1� 4x{̂ +K{̂)2

The pro�t function of B is given by:

�B = QB(
{̂�2P
i=1

(a� 2QB
iP

k=1

skB)s
i
B + (a� 2QB

{̂�2X
k=1

skB �QBs{̂�2B )s{̂�1B (150)

+
KP
i={̂

(a� 2QB
{̂�2X
k=1

skB �QBs{̂�2B �QB
iP

k={̂

skB)s
i
B)

= aQB � (
16

3
(8x2{̂ � 6x{̂ + 1)[QBs1B ]2 + 8(1� 2x{̂)[QBs1B ]2 � 4(1� 2x{̂)[QBs1B ]QA

+(K{̂ � 1)
�
(8(1� 2x{̂) + 2K{̂)[QBs

1
B ]
2 � (4(1� 2x{̂) + 2K{̂)[QBs

1
B ]QA +

K{̂

2
Q2A

�
)

= aQB � (
16

3
(8x2{̂ � 6x{̂ + 1) + 8K{̂(1� 2x{̂) + 2(K{̂ � 1)K{̂))[QBs

1
B ]
2

+2K{̂(1� 4x{̂ +K{̂)[QBs
1
B ]QA �

(K{̂ � 1)K{̂

2
Q2A

= aQB � h{̂Q2{̂ +K{̂Q{̂QA �
(K{̂ � 1)K{̂

2
Q2A

where

h{̂ =
8(8x2{̂ � 6x{̂ + 1) + 12K{̂(1� 2x{̂) + 3K{̂(K{̂ � 1)

6(1� 4x{̂ +K{̂)2

�

31



5.11 Proof of Proposition 7

The best response capacity of A and corresponding Q{̂ is given by:

QA =
a� (f{̂ � 2g{̂K{̂)QB
2K{̂(f{̂ � g{̂K{̂)

(151)

Q{̂ =
a+ f{̂QB
2(f{̂ � g{̂K{̂)

(152)

By plugging equations (151) and (152) into the pro�t function of B, we calculate the
optimal capacity choices of A and B as follows:

QA =
a� (f{̂ � 2g{̂K{̂)QB
2K{̂(f{̂ � g{̂K{̂)

(153)

QB =
K{̂(4(f{̂ � g{̂K{̂)

2 � f{̂(2h{̂ � 1) + 2g{̂)� f{̂
K{̂(4(f{̂ � g{̂K{̂)2 + f2{̂ (2h{̂ � 1))� (f{̂ � 2g{̂K{̂)2

a (154)

The ratio of QA and QB is given by:

QA
QB

=
f{̂(2h{̂ + 1)� 2(f{̂ � g{̂K{̂)(f{̂ � 2g{̂K{̂)� 2g{̂K{̂

K{̂(4(f{̂ � g{̂K{̂)2 � f{̂(2h{̂ � 1) + 2g{̂)� f{̂
(155)

Equations (128) and (155) help us to identify the equilibrium. If QA and QB are on
the equilibrium, then their ratio should be consistent with the equilibrium value of {̂ in
the �nal stage. Hence, on the equilibrium {̂ should satisfy the following condition:

1 + 2H
{̂

K{̂ + 2H{̂

� f{̂(2h{̂ + 1)� 2(f{̂ � g{̂K{̂)(f{̂ � 2g{̂K{̂)� 2g{̂K{̂

K{̂(4(f{̂ � g{̂K{̂)2 � f{̂(2h{̂ � 1) + 2g{̂)� f{̂
>

H
{̂

K{̂ +H{̂

(156)

�
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