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Abstract

In this paper we propose an LM-Type statistic to test the null hypothesis of cointegration

allowing for the possibility of a structural break, in both the deterministic and the cointe-

gration vector. Our proposal focuses on the presence of endogenous regressors and analyses

which estimation method provides better results. The test has been designed to be used

as a complement to the usual non-cointegration tests in order to obtain stronger evidence

of cointegration. We consider the cases of known and unknown break date. In the latter

case, we show that minimizing the SSR results in a super-consistent estimator of the break

fraction. Finally, the behaviour of the tests is studied through Monte Carlo experiments.

JEL classi�cation: C12, C22

Keywords: cointegration, structural break, KPSS test

1 Introduction

Cointegration has made a great contribution in the �eld of economics and has given rise to a huge

amount of theoretical and applied research. Since Granger (1981) and Engle and Granger (1987)
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de�ned the concept, several methods have been proposed in the econometric literature to test

the stationarity of a linear combination of non-stationary time series. Most of these procedures

specify the null hypothesis of no cointegration against the alternative hypothesis of cointegration.

However, this speci�cation has been criticised in Engle and Granger (1987), Phillips and Ouliaris

(1990) and Engle and Yoo (1991), where it is argued that the natural speci�cation to test should

be the null hypothesis of cointegration rather than the null hypothesis of lack of cointegration.

Papers such as Hansen (1992b), Leybourne and McCabe (1993), Harris and Inder (1994), Shin

(1994) and McCabe, Leybourne and Shin (1997) have addressed this question, reversing these

hypotheses and designing tests for the null hypothesis of cointegration.

In fact, the de�nition of cointegration cannot be disassociated from the long-run. The prop-

erty of cointegration implies that a set of variables moves jointly de�ning an equilibrium relation-

ship, which means that it has to be tested using time series covering long periods. Practitioners

have to bear in mind that the larger the sample period covering the time series, more likely it

is that there will be a structural change. As shown by Perron (1989), this possibility changes

the distribution of the standard unit root tests since the speci�cation for the deterministic com-

ponent of the time series needs to be modi�ed. In these terms, the de�nition of cointegration

under consideration falls into the classi�cation of deterministic and stochastic cointegration of

Park (1990). Perron�s proposal was generalized to the cointegration tests of Engle and Granger

(1987) and Phillips and Ouliaris (1990) by Gregory and Hansen (1996a, 1996b). They modify

the usual procedures specifying a regime and trend shift model as the most general formulation.

Departing from this general speci�cation it is possible to obtain other simpli�ed models that

account for a level shift, with and without a time trend. One important thing to bear in mind is

that the Gregory-Hansen tests detect regime-shift as well as stable cointegration relationships.

Thus, the rejection of the null hypothesis of these tests does not entangle the instability of the

cointegration relationship. In order to discern between these situations they suggest applying

instability tests such as the ones in Hansen (1992b). However, this concern can be also addressed

through the application of stationarity tests including structural breaks.

There have been some approximations in the literature to analyse cointegration with struc-

tural breaks. To this end, Hao (1996) generalizes the test of Kwiatkowski, Phillips, Schmidt and

Shin (1992) to allow for a structural break that shifts the independent term of the cointegrating
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vector. In a recent paper, Bartley, Lee and Strazicich (2001) also deal with the KPSS cointegra-

tion test but include a shift in the mean and in the trend of the deterministic elements of the

cointegrating relationship. Finally, Busetti (2002) adopts a multivariate framework when testing

the stationarity of a set of variables allowing for one structural break. In brief, he extends the

multivariate Nyblom and Harvey (2000) and Kwiatkowski et al. (1992) test statistic for those

situations in which the time trend is a¤ected by a structural break that shifts the level and/or

the slope of the variables. Hence, assuming the date of the break to be known, his proposal

is designed to test the breaking-stationarity hypothesis for a set of variables at once, although

avoiding the presence of endogenous regressors. Moreover, the test can also be used to determine

the dimension of the cointegration space, i.e. the number of cointegrating relationships among

the variables.

In the present paper we extend the test of the null hypothesis of cointegration to allow for

a structural break in both the parameters of the deterministic component and the parameters

of the stochastic component. Our proposal generalizes the previous contributions and develops

a test for cointegration around a break-cointegrating relationship. For instance, this approach

is di¤erent from the one in Busetti (2002) since, �rstly, we are primarily interested on the

estimation of the cointegration relationship under structural breaks as in Gregory and Hansen

(1996a) and, secondly, we account for the presence of endogenous regressors. Throughout the

paper we highlight the di¤erences that can be established between these above contributions and

the ones proposed here. The break point is estimated through the minimisation of the sum of

squared residuals, for which the rates of convergence of the estimated break fraction parameter

are derived.

In section 2 we present the models and test statistics and derive their asymptotic distribution

under two assumptions: (i) that the stochastic regressors are strictly exogenous and (ii) that the

break point is assumed to be known. In section 3 we relax the �rst assumption and consider

e¢ cient estimators of the cointegrating vector. Section 4 deals with the estimation of the break

point. Section 5 shows the consistency of the test statistics proposed in section 2. Section 6

analyses the performance of the tests in �nite samples. Finally, section 7 concludes. All the

proofs of the Theorems are presented together in the Appendix.
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2 The models and tests

The model we deal with is a multivariate extension of the one speci�ed by Kwiatkowski et al.

(1992) where deterministic and/or stochastic components are allowed to change at a point of

time (Tb). The data generating process (DGP) is of the form:

yt = �t + �t+ x
0
t�1 + "t; (1)

xt = xt�1 + &t; (2)

�t = f (t) + �t�1 + �t; (3)

where �t � iid
�
0; �2�

�
; xt is a k-vector of I(1) processes and �0 = �, a constant. We de�ne f (t) as

a function collecting the set of deterministic and/or stochastic components. The di¤erent models

under consideration are speci�ed through the de�nition of the function f (t). Thus, following

Perron (1989, 1990), the models that a¤ect the deterministic component are:

� Model An, where � = 0 and f (t) = �D (Tb)t ;

� Model A, where � 6= 0 and f (t) = �D (Tb)t ;

� Model B, where � 6= 0 and f (t) = DUt;

� Model C, where � 6= 0 and f (t) = �D (Tb)t + DUt.

where D (Tb)t = 1 for t = Tb + 1 and 0 otherwise, DUt = 1 for t > Tb and 0 otherwise, with

Tb = �T , 0 < � < 1, indicating the date of the break. Notice that the null hypothesis of

cointegration is equivalent to �2� = 0, under which the model given by (1), (2) and (3) turns out

to be:

yt = gi (t) + x
0
t� + "t; (4)

where gi (t) ; i = fAn;A;B;Cg ; denotes the deterministic function under the null hypothesis.

To be exact, gAn (t) = �+ �DUt for model An, gA (t) = �+ �DUt + �t, gB (t) = �+ �t+ DT �t

and gC (t) = � + �DUt + �t + DT
�
t , where DT

�
t = (t� Tb) for t > Tb and 0 otherwise. The

speci�cation given by the model An was proposed �rst in Hao (1996) whereas the one given

by model C can be found in Bartley et al. (2001). These models account for the structural
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break e¤ect shifting the deterministic part of the long-run relationship, although they assume

that the cointegrating vector remains unchanged �see Gabriel, Da Silva and Nunes (2003) for an

application to the long-run money demand for Portugal. The speci�cation given for Model An

accounts for a level shift without a time trend, while Model A contains a trend and allows for

a break in level. Model B captures a change in the slope of the time trend but not in the level,

whereas Model C accounts for both level and slope shifts.

It is possible to introduce the dummy variables in a way that a¤ect the cointegrating vector.

In this case, we have allowed for two di¤erent e¤ects:

� Model D, where � = 0 and f (t) = �D (Tb)t + x0t�2D (Tb)t;

� Model E, where � 6= 0 and f (t) = �D (Tb)t + DUt + x0t�2D (Tb)t.

Hence, under the null hypothesis, the model described by (1), (2) and (3) reduces to:

yt = gi (t) + x
0
t�1 + x

0
t�2DUt + "t; (5)

i = fD;Eg with gD (t) = �+ �DUt for model D and gE (t) = �+ �t+ �DUt + DT �t for model

E. Now, the speci�cation allows for a structural break that not only shifts the deterministic

component but also changes the cointegrating vector. Thus, in some situations, practitioners

would be interested in modelling a cointegration relationship that at a point in time might

has shifted from one long-run path to another one �see, for instance, the modellisation of the

aggregate consumption function in Hansen (1992b) and the estimation of the long-run money

demand for the US in Gregory and Hansen (1996a). The di¤erence between Models D and E is

the time trend �Model D does not consider a time trend while Model E does. Notice that under

the alternative hypothesis that �2� > 0; (yt; x
0
t)
0 will not be cointegrated.

As for the disturbance terms of the model, let us assume that the long-run variance matrix

of #t = ("t; & 0t; �t)
0 is given by:


a =

266664
!21 0


22

0 �2�

377775 ;
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a block diagonal matrix which ensures, on the one hand, that "t and �t, and, on the other

hand, that "t and & 0t, are mutually uncorrelated. The assumption of no correlation between the

disturbance terms of (1) and (2) introduces the restriction that xt is strictly exogenous �see

Gonzalo (1994). Section 3 shows how to proceed when this is not the case.

The (LM-type) statistic to test the null hypothesis of cointegration against the alternative of

no cointegration is given by:

SCi (�) = T
�2!̂�21

TX
t=1

S2i;t; (6)

where � = Tb=T , Si;t =
Pt

j=1 êi;j , fêi;tg
T
t=1, are the OLS estimated residuals driven from (4) or

(5), depending on the model, and !̂21 denotes a consistent estimator of the long-run variance of

f"i;tgTt=1 ; i = fAn;A;B;C;D;Eg. The long-run variance can be estimated in a non-parametric

way using the Bartlett Kernel. However, it should be noticed that the use of the standard

automatic bandwidth selection methods leads to an inconsistent test. In order to avoid the in-

consistency Kurozumi (2002) suggest to apply a modi�ed version of the Andrews�data dependent

procedure, which can be also applied in this framework. The asymptotic distribution of (6) is

stated in the following Theorem.

Theorem 1 Let fytgTt=1 be generated by (1), (2) and (3), and let �t =
Pt

i=1 ("i; &
0
i)
0 satisfy the

multivariate invariance principle of Phillips and Durlauf (1986). If Tb = �T (0 < � < 1) and as

T !1; Tb !1, so � remains constant, under the null hypothesis of cointegration
�
�2� = 0

�
:

SCi (�)) �2
Z 1

0

V 2k;i (b1) db1 + (1� �)
2
Z 1

0

V 2k;i (b2) db2;

for i = fAn;A;B;C;D;Eg ; where ) denotes weak convergence and Vk;i (�) are functions of

Wiener process shown in the Appendix.

The proof of Theorem 1 and the expressions for Vk;E (b1) and Vk;E (b2) can be found in the

Appendix. The expressions for Vk;i (b1) and Vk;i (b1) ; fi = An, A, B, C, Dg are omitted although

they are particular cases of the latter. Notice that the test is performed using the upper tail of

the distribution so that the null hypothesis of cointegration is rejected when SCi (�) > critical

value, i = fAn;A;B;C;D;Eg. Two remarks are in order. First, the asymptotic distribution

of Theorem 1 can be expressed as a weighted sum of two independent functionals of Wiener
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processes. As pointed out in Lee and Strazicich (2001) and Kurozumi (2002) for the univariate

KPSS test with one structural break, the symmetry of the distribution around � = 0:5 is given

by the fact that we can interchange � and (1� �) in the asymptotic distribution and obtain the

same result. Second, notice that the asymptotic distributions of Theorem 1 depend both on k;

the number of elements of xt that involves the speci�cation, and on � = Tb/T; the break fraction

parameter. Therefore, they depend on the nuisance parameter �. The econometric literature has

addressed this concern in two di¤erent ways. First, in some cases, the date of the break can be

assumed to be known and, hence, exogenous with respect to the model, so the break fraction does

not need to be estimated �see Busetti (2002). This situation might be suitable, for instance, for

many German macroeconomic time series for which the reuni�cation process of 1990 had caused

a shift in the deterministic part of the time series �see Lütkepohl, Muller and Saikkonen (1999).

Hence, it seems desirable to have a set of critical values that assumes the date of the break to be

exogenous. Critical values computed using 20,000 replications through direct simulation of the

Wiener processes for up to �ve values of the break fraction, � = f0:1; 0:2; : : : ; 0:5g, and for up to

four stochastic regressors, k = f1; 2; 3; 4g, are shown in Tables 1 and 2.1

Up to now we have focused on those situations for which the date of the break is presumed to

be known. Notwithstanding, sometimes the information about an event that might have caused a

break is not su¢ ciently clear. In this situation, a second approach to deal with the dependency of

the asymptotic distributions on the nuisance parameter � is required and this parameter requires

to be estimated. The procedures that can be applied to do so are considered in Section 4.

3 Non strictly exogenous regressors

The previous analysis has been based on the assumption that xt is strictly exogenous, although

this assumption may be very restrictive in practice. When this is the case, the asymptotic results

1As mentioned above, Bartley et al. (2001) analyse the speci�cations that correspond to models A and C, for
which they compute the corresponding critical value sets. However, there is no mention anywhere of the fact
that the asymptotic distribution of the test depends on k, as it does �see Theorem 1. Actually, if we compare
their critical values sets with ours we see that theirs are almost equivalent to the ones computed here for k = 1.
Practitioners should be aware that a size distortion problem (underrejection of the null hypothesis) is expected
when using their critical values for those models with k > 1.
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Table 1: Asymptotic critical values for the models An, A, B and C
Model An Model A

� = 0:1 � = 0:2 � = 0:3 � = 0:4 � = 0:5 � = 0:1 � = 0:2 � = 0:3 � = 0:4 � = 0:5
k = 1 k = 1

90% 0.1932 0.1583 0.1395 0.1281 0.1256 0.0827 0.0736 0.0747 0.0821 0.0840
95% 0.2582 0.2087 0.1855 0.1632 0.1553 0.1028 0.0885 0.0907 0.1021 0.1060
97.5% 0.3367 0.2676 0.2341 0.1991 0.1855 0.1228 0.1054 0.1062 0.1229 0.1315
99% 0.4546 0.3543 0.2948 0.2503 0.2287 0.1537 0.1305 0.1251 0.1508 0.1642

k = 2 k = 2
90% 0.1336 0.1157 0.1079 0.1020 0.1029 0.0700 0.0630 0.0650 0.0690 0.0693
95% 0.1796 0.1557 0.1400 0.1306 0.1292 0.0865 0.0759 0.0774 0.0852 0.0858
97.5% 0.2325 0.2007 0.1759 0.1622 0.1557 0.1033 0.0891 0.0909 0.1023 0.1037
99% 0.3116 0.2631 0.2259 0.2035 0.1903 0.1273 0.1095 0.1083 0.1254 0.1348

k = 3 k = 3
90% 0.1007 0.0907 0.0856 0.0847 0.0840 0.0594 0.0554 0.0571 0.0581 0.0584
95% 0.1319 0.1179 0.1094 0.1063 0.1051 0.0728 0.0670 0.0692 0.0712 0.0725
97.5% 0.1670 0.1490 0.1338 0.1276 0.1271 0.0871 0.0784 0.0803 0.0843 0.0877
99% 0.2238 0.1989 0.1773 0.1602 0.1594 0.1064 0.0941 0.0971 0.1035 0.1103

k = 4 k = 4
90% 0.0799 0.0738 0.0712 0.0704 0.0706 0.0507 0.0490 0.0501 0.0509 0.0510
95% 0.1037 0.0924 0.0873 0.0878 0.0874 0.0616 0.0588 0.0606 0.0617 0.0621
97.5% 0.1304 0.1151 0.1091 0.1073 0.1056 0.0729 0.0691 0.0724 0.0728 0.0741
99% 0.1754 0.1502 0.1385 0.1365 0.1350 0.0898 0.0846 0.0864 0.0886 0.0938

Model B Model C
� = 0:1 � = 0:2 � = 0:3 � = 0:4 � = 0:5 � = 0:1 � = 0:2 � = 0:3 � = 0:4 � = 0:5

k = 1 k = 1
90% 0.0842 0.0747 0.0663 0.0614 0.0604 0.0802 0.0661 0.0559 0.0493 0.0484
95% 0.1059 0.0919 0.0809 0.0730 0.0729 0.1000 0.0813 0.0673 0.0579 0.0562
97.5% 0.1280 0.1102 0.0973 0.0863 0.0844 0.1200 0.0973 0.0802 0.0669 0.0645
99% 0.1578 0.1313 0.1197 0.1039 0.1013 0.1470 0.1208 0.0967 0.0799 0.0746

k = 2 k = 2
90% 0.0723 0.0632 0.0579 0.0542 0.0533 0.0667 0.0567 0.0487 0.0450 0.0430
95% 0.0892 0.0775 0.0694 0.0651 0.0639 0.0828 0.0696 0.0583 0.0530 0.0498
97.5% 0.1069 0.0925 0.0825 0.0761 0.0752 0.0998 0.0824 0.0687 0.0614 0.0574
99% 0.1314 0.1161 0.1019 0.0940 0.0903 0.1235 0.1010 0.0843 0.0731 0.0680

k = 3 k = 3
90% 0.0602 0.0536 0.0507 0.0475 0.0470 0.0563 0.0493 0.0430 0.0403 0.0393
95% 0.0740 0.0657 0.0613 0.0575 0.0561 0.0688 0.0602 0.0518 0.0476 0.0463
97.5% 0.0884 0.0784 0.0724 0.0675 0.0663 0.0819 0.0716 0.0616 0.0551 0.0527
99% 0.1106 0.0969 0.0888 0.0805 0.0788 0.1023 0.0887 0.0754 0.0657 0.0618

k = 4 k = 4
90% 0.0523 0.0472 0.0443 0.0429 0.0421 0.0491 0.0428 0.0389 0.0368 0.0359
95% 0.0638 0.0574 0.0529 0.0511 0.0498 0.0603 0.0510 0.0464 0.0431 0.0415
97.5% 0.0757 0.0684 0.0626 0.0596 0.0578 0.0714 0.0614 0.0544 0.0495 0.0474
99% 0.0921 0.0834 0.0756 0.0711 0.0699 0.0871 0.0748 0.0659 0.0592 0.0559
Note: Percentage points of the asymptotic distribution are based on n = 20; 000 replications using partial sums of
" � iidN (0; 1) random variables of T = 2; 000 observations to approximate the Wiener process. � denotes the break
fraction and k is the number of stochastic regressors in the model.
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Table 2: Asymptotic critical values for the models D and E
Model D Model E

� = 0:1 � = 0:2 � = 0:3 � = 0:4 � = 0:5 � = 0:1 � = 0:2 � = 0:3 � = 0:4 � = 0:5
k = 1 k = 1

90% 0.1908 0.1547 0.1265 0.1098 0.1044 0.0808 0.0654 0.0538 0.0463 0.0436
95% 0.2560 0.2067 0.1670 0.1395 0.1309 0.1004 0.0804 0.0659 0.0552 0.0512
97.5% 0.3295 0.2631 0.2098 0.1729 0.1603 0.1205 0.0974 0.0784 0.0645 0.0587
99% 0.4463 0.3449 0.2699 0.2224 0.1941 0.1480 0.1223 0.0960 0.0763 0.0681

k = 2 k = 2
90% 0.1319 0.1087 0.0885 0.0760 0.0735 0.0671 0.0540 0.0448 0.0387 0.0363
95% 0.1759 0.1459 0.1163 0.0969 0.0922 0.0832 0.0661 0.0544 0.0462 0.0423
97.5% 0.2288 0.1873 0.1485 0.1198 0.1123 0.0994 0.0790 0.0639 0.0534 0.0488
99% 0.3068 0.2510 0.1942 0.1578 0.1419 0.1218 0.0980 0.0795 0.0641 0.0574

k = 3 k = 3
90% 0.0983 0.0803 0.0664 0.0572 0.0542 0.0561 0.0457 0.0375 0.0323 0.0309
95% 0.1286 0.1049 0.0851 0.0721 0.0672 0.0696 0.0559 0.0454 0.0379 0.0360
97.5% 0.1638 0.1363 0.1079 0.0883 0.0819 0.0828 0.0658 0.0542 0.0444 0.0406
99% 0.2307 0.1816 0.1425 0.1145 0.1039 0.1040 0.0821 0.0660 0.0529 0.0474

k = 4 k = 4
90% 0.0772 0.0616 0.0512 0.0451 0.0423 0.0484 0.0391 0.0326 0.0282 0.0266
95% 0.0981 0.0791 0.0648 0.0548 0.0514 0.0597 0.0476 0.0393 0.0329 0.0308
97.5% 0.1225 0.1002 0.0806 0.0658 0.0613 0.0719 0.0572 0.0463 0.0379 0.0353
99% 0.1579 0.1312 0.1048 0.0852 0.0766 0.0899 0.0703 0.0570 0.0454 0.0411
Note: Percentage points of the asymptotic distribution are based on n = 20; 000 replications using partial sums of
" � iidN (0; 1) random variables of T = 2; 000 observations to approximate the Wiener process. � denotes the break
fraction and k is the number of stochastic regressors in the model.
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obtained in the previous section no longer hold, because the estimation of the vector of cointe-

gration is not e¢ cient and the limiting distribution depends on nuisance parameters. However,

several methods such as those of Phillips and Hansen (1990), Saikkonen (1991) and Stock and

Watson (1993), which are asymptotically equivalent, can be applied to obtain an e¢ cient esti-

mation of the vector of cointegration. In this paper we use the Dynamic OLS estimator of Stock

and Watson (1993).2 The steps that have to be taken to test the null hypothesis of cointegration

in this framework are:

1. Estimate

yt = gi (t) + x
0
t� +

kX
j=�k

�x0tj + "t (7)

if i = fAn;A;B;Cg ; or

yt = gi (t) + x
0
t�1 + x

0
t�2DUt +

kX
j=�k

�x0tj + "t; (8)

when i = fD;Eg and store the estimated residuals fêi;tg ; i = fAn;A;B;C;D;Eg ;

2. Compute the test statistic as:

SC+i (�) = T
�2!̂�21

TX
t=1

�
S+i;t
�2
;

where !̂21 is a consistent estimation of the long-run variance of f"tg using êi;t and S+i;t =Pt
j=1 êi;t; i = fAn;A;B;C;D;Eg.

The asymptotics concerning the test statistics are given in the following Theorem.

Theorem 2 Let fytgTt=1 be generated by (1), (2) and (3), and let �t =
Pt

i=1 ("i; &
0
i)
0 satisfy the

multivariate invariance principle of Phillips and Durlauf (1986) with log-run variance matrix


. If Tb = �T (0 < � < 1) and as T ! 1; Tb ! 1, so � remains constant, under the null

hypothesis of cointegration:

SC+i (�)) �2
Z 1

0

V 2k;i (b1) db1 + (1� �)
2
Z 1

0

V 2k;i (b2) db2;

2We also tried the Fully Modi�ed estimator of Phillips and Hansen (1990) but yielded poor results in simulation
experiments.
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i = fAn;A;B;C;D;Eg ; being Vk;i (�) the same functions de�ned in Theorem 1.

The proof can be found in Carrion-i-Silvestre and Sansó (2001). Theorem 2 states that, after

endogeneity is accounted for the asymptotic distributions of the test statistics are the same as

those assuming that xt is strictly exogenous and, hence, the critical values presented in Tables 1

and 2 can be used.

4 Unknown date of the break

In previous sections we have implicitly assumed that the date of the break was known a priori.

However, the break point often has to be estimated in empirical applications. The approach

followed in this paper is based on the analysis in Bai (1994, 1997) and Kurozumi (2002), and

estimates the break point as the date that minimises the sequence of the sum of squared residuals.

In fact, this is also the approach in Bartley et al. (2001), since they select the break point as

the argument that minimizes the sequence of the Bayesian Information Criterion (BIC) that

is obtained when computing the test for all possible break points. Furthermore, the dynamic

optimization algorithm in Bai and Perron (1998, 2003) can also be applied to minimise the sum

of squared residuals. After the break point is estimated, we can proceed to the computation of

the test assuming it as if it were known. Formally speaking,

~Tb = argmin
�2�

[SSR (�)] ; (9)

where SSR (�) is the sum of the squared residuals of (4) or (5), depending on the model, and �

denotes a closed subset of the interval (0; 1), that, in order to minimise the lost of information,

we de�ne it as � = [2=T; (T � 1) =T ]. We denote the tests that are computed using this strategy

as SCi
�
~�
�
and SC+i

�
~�
�
, i = fAn;A;B;C;D;Eg. As shown in the following Theorem, the

application of this approach leads to a consistent estimate of the break fraction parameter.

Theorem 3 Let fytgTt=1 be generated by (1), (2) and (3) with �2� = 0 and either � 6= 0 or  6= 0

depending on the model, where f�tg
T
t=1 satis�es the multivariate invariance principle of Phillips

11



and Durlauf (1986). If ~Tb = argmint2(1;T ) [SSR (�)] then, as T !1,

~�
p! �;

and

P
�
T
���~�� � ��� � C� � �;

for arbitrary � > 0 and C > 0;where
p! denotes convergence in probability.

The proof is shown in the Appendix. Note that the result in Theorem 3 holds irrespective

of the magnitude of the shifts. More interestingly, the estimation of the break fraction is T -

consistent. Then, we can proceed to perform the hypothesis testing assuming the estimated

break fraction as if it were known and, hence, using the critical values reported in Tables 1 and

2.

5 Consistency

The consistency of the test statistics against the alternative hypothesis of no cointegration is

shown by deriving their asymptotic distribution under the alternative, and showing that the test

statistics diverges. In the following theorem we state the limiting distribution of the tests under

the alternative hypothesis.

Theorem 4 Let fytg be generated by 1, 2 and 3 with �2� > 0; and where f�tg
T
t=1 satis�es the

multivariate invariance principle of Phillips and Durlauf (1986). If Tb = �T (0 < � < 1) and as

T !1; Tb !1, so � remains constant:

SCi (�) = Op (T=l) ;

i = fAn;A;B;C;D;Eg ; where l is the bandwidth of the spectral window used to estimate the

long run variance of "t.

The proof follows from Kwiatkowski et al. (1992) and is omitted in order to save space,

although it can be found in Carrion-i-Silvestre and Sansó (2001). Theorem 4 shows that under

12



the alternative hypothesis the tests diverge at rate Op (T=l). This conclusion has also been

reached in Harris and Inder (1994) and Shin (1994) for cointegration test without structural

breaks. Two remarks are in order. First, the results given in theorem 4 are valid regardless of

the assumption of strictly exogenous stochastic regressors. Second, the rate of divergence of the

statistics depends on the spectral bandwidth that is used, so we expect lag parameter selection

to in�uence the power of the test statistics. Therefore, we conclude that the test is consistent

when there is no cointegration.

6 Finite sample performance

The DGP that is used in this Section to assess the �nite sample performance of the test statistic

is similar to the ones speci�ed by Banerjee, Dolado, Hendry and Smith (1986), Gonzalo (1994),

Gregory and Hansen (1996a) and McCabe et al. (1997), among others, and is given by the

triangular system representation of the CI(1, 1) process:

yt � g (t)� �txt = zt; zt = �zt�1 + �t + ezt ;

a1yt � a2xt = wt; wt = wt�1 + ewt ;

�t = �t�1 + �t ;0BBBB@
ezt

ewt

�
t

1CCCCA � iid N

266664
0BBBB@
0

0

0

1CCCCA ;
0BBBB@
1 �� 0

�� �2 0

0 0 �2�

1CCCCA
377775 ;

with j�j < 1. This DGP allows us to analyse how the test statistics behave under di¤erent

situations. First, under the null hypothesis of cointegration, �2� = 0, � accounts for the presence

of correlation in the error of the cointegrating regression. Second, the DGP will be under the

alternative of no cointegration when �2� > 0. Third, � denotes the correlation between fewtg

and feztg. Fourth, g (t) represents the deterministic component of the long-run equilibrium

relationship. In this simulation experiment we have considered the model D so that gD (t) =

�+�DUt. Finally, when a1 = 0; xt will be strictly exogenous. On the other hand, when a1 6= 0; xt

is no longer strictly exogenous. It should also be noticed that the vector of parameter associated
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to stochastic regressors depends on time, so �t = �1 for t � Tb and �t = �2 for t > Tb.

We consider the parameter space (a1, a2, �, �, �t, �, �, �, �; �
2
�) where a1 ={0, 1}, a2 = �1,

� = 1, � = {0.5, 1}, �t = (�1; �2) = {(2, 1), (2, 4)}, � ={0.25, 0.5, 0.75}, � ={0, 0.5}, � ={0.25,

0.33, 0.5, 1, 2}, � ={-0.5, 0, 0.5} and �2� ={0, 0.001, 0.01, 0.1}. The sample size is set to T = 200

and an amount of n = 1; 000 replications of the DGP are carried out for each parameterisation.

Using this speci�cation we have analysed the �nite sample performance of our proposal in two

stages. First, we focus on the situation that the break point is assumed to be known. Second,

we address the estimation of the date of the break shading light on the ability of the procedure

for dating the structural break. This is of special interest, because the cointegration testing

requires a consistent estimate of the break point. At this point, we proceed to the analysis of

the empirical size and power of the test using the estimation method of the date of the break

that o¤ers better results. That is the reason why we decided to carry out the simulations using

the parametric correction instead of the non-parametric one. The number of leads and lags has

been selected using the BIC information criterion with an initial value of 4 leads and lags. In

addition, to avoid the inconsistency on the estimation of the long-run covariance matrix we have

followed Kurozumi (2002), and estimate it using the Bartlett kernel with the modi�ed automatic

lag length selection Andrews� procedure. In brief, Kurozumi (2002) proposes estimating the

bandwidth for the Bartlett kernel as:

l̂ = min

8<:1:1447
 

4â2T

(1 + â)
2
(1� â)2

!1=3
; 1:1447

 
4k2T

(1 + k)
2
(1� k)2

!1=39=; ;
where â is the estimate of the autoregressive parameter that produces Andrews method. The

simulations that he carries out suggest to use k = 0:7 or k = 0:8 as values that keep a compromise

between the empirical size and power of the test �here we use k = 0:8. The GAUSS codes that

have been used in the simulations are available upon request.

6.1 The break point is assumed to be known

The simulation results for � = 0:5; strictly exogenous regressor (a1 = 0), � = 0:5 and �t = (2; 1)

are summarized in Table 3. Qualitatively similar results are obtained for the other values of �;

for �t = (2; 4) and � = 1, so they are omitted in order to save space, although the complete set of
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results is available from the authors upon request. Also, the rejections frequencies for � = �0:5

are similar to those of � = 0:5, so we only report the last ones.

When xt is strictly exogenous (a1 = 0) and there is no serial correlation of the error in

the cointegrating regression (� = 0) there are no serious problems of size distortion, regardless

of the break point position, the magnitude of the structural break and the covariance between

disturbance terms of the model. When there is autocorrelation (� = 0:5) the tests su¤ers certain

size distortion problems. Note also, that the oversize of SC+D (�) is lower than that of SCD (�).

As can be seen in Table 3, if xt is no longer strictly exogenous (a1 6= 0) the discrepancy between

empirical and nominal size increases, though as the signal-to-noise ratio grows the size distortion

tends to decrease. As expected, in this situation the SC+D (�) test generally outperforms SCD (�).

Hence, the SC+D (�) statistic has better size than SCD (�) in all the scenarios considered.

Table 3: Empirical size for test SCD with known break date
Panel A: strictly exog. reg. Panel B: non strictly exog. reg.

(a1 = 0) (a1 = 1)
SCD (�) SC+D (�) SCD (�) SC+D (�)

� �n � 0 0:5 0 0:5 0 0:5 0 0:5
0 0:25 0.054 0.087 0.052 0.082 0.965 0.783 0.137 0.191

0:33 0.058 0.103 0.056 0.100 0.963 0.752 0.130 0.168
0:5 0.048 0.086 0.045 0.081 0.935 0.676 0.121 0.155
1 0.058 0.088 0.051 0.087 0.768 0.451 0.102 0.139
2 0.072 0.095 0.066 0.094 0.493 0.270 0.077 0.104

0:5 0:25 0.086 0.138 0.056 0.100 0.965 0.759 0.124 0.139
0:33 0.082 0.142 0.050 0.097 0.957 0.662 0.131 0.134
0:5 0.090 0.154 0.058 0.092 0.895 0.502 0.099 0.100
1 0.076 0.140 0.052 0.084 0.561 0.238 0.068 0.087
2 0.086 0.146 0.048 0.097 0.214 0.127 0.073 0.082

DGP: yt � gD (t)� �txt = zt; zt = �zt�1 + ezt ; a1yt � a2xt = wt;wt = wt�1 + ewt ; gD (t) =
� + �DUt; � = 0:5;�t = (2; 1); ezt � iidN (0; 1) ; ewt � iidN

�
0; �2

�
;E (eztewt) = ��;T =

200; Tb = [�T ] ;� = 0:5;n = 1; 000 replications; 5% nominal size

Next, we consider the power of the statistics when the break date is known. The DGP is as

the previous one, but with �2� ={0.001, 0.01, 0.1}. This set of values is the same as in McCabe

et al. (1997). Table 4 reports the rejection frequencies for � = 0:5. Similar results were obtained

for other break fractions and values of the rest of the parameters. The SCD (�) statistic has a

very high power when a1 = 1 which can be explained by the size distortion that shows in this

situation. Except for this case, the power attained by the tests is slightly smaller than the one
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obtained by McCabe et al. (1997), were they assume that there is no break in the cointegration

relationship, weak exogeneity and used a parametric approach to deal with the serial correlation.

Table 4: Empirical power for test SCD with known break date
Panel A: strictly exogenous regressors (a1 = 0)

� = 0:5;�t = (2; 1) � = 1;�t = (2; 4)
�2� SCD (�) SC+D (�) SCD (�) SC+D (�)
0:001 0.169 0.162 0.161 0.153
0:01 0.600 0.588 0.612 0.595
0:1 0.830 0.82 0.788 0.773
Panel B: non strictly exogenous regressors (a1 = 1)

� = 0:5;�t = (2; 1) � = 1;�t = (2; 4)
�2� SCD (�) SC+D (�) SCD (�) SC+D (�)
0:001 0.778 0.178 0.794 0.323
0:01 0.858 0.506 0.886 0.625
0:1 0.828 0.619 0.821 0.652

DGP: yt � gD (t) � �txt = zt; zt = �t + ezt ; a1yt � a2xt = wt;wt = wt�1 + ewt ;�t =

�t�1 + �t; gD (t) = �+ �DUt; � = 0:5;�t = (2; 1); ezt � iidN (0; 1) ; ewt � iidN
�
0; �2

�
; �t �

iidN
�
0; �2�

�
;E (eztewt) = ��;�

2 = 1; � = 1;T = 200; Tb = [�T ] ;� = 0:5;n = 1; 000 replica-
tions; 5% nominal size

6.2 The break point is estimated

In this subsection we analyse the �nite sample performance of the test statistic when the break

point is estimated using the procedure described in Section 4, see expression (9). We use the

notation ~T+b when the estimator is based on (8). We start considering the estimation of the

break date. As shown in Table 5, the estimators based on the minimization of the sum of the

squared residuals, ~Tb and ~T+b ; usually locate correctly the break fraction and the error, if any,

tends to be small. A similar picture was obtained for other values of the parameters of the DGP.

Let us consider the size of the statistics. Panel A in Table 6 reports the results assuming

strictly exogenous regressors, while panel B presents the empirical size when the stochastic

regressors are not strictly exogenous. These rejection frequencies are very similar to those of

Table 3 were the break fraction were known. Even the slight size distortion observed for the

SC+ statistic seems to be smaller in Table 6. Hence, we may conclude that estimation the break

date with (9) and then using this break date to compute the test statistic has a very little impact

on the size of the test. As in the case of known break date, the statistic SC+D outperforms SCD

in all the scenarios.
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Table 5: Frequencies of correct detection of the unknown break date
Panel A: strictly exogenous regressors (a1 = 0)

� = 0:5;�t = (2; 1) � = 1;�t = (2; 4)

� ~Tb ~T+b
~Tb ~T+b

0.1 0.78 (0.03) 0.78 (0.04) 0.95 (0.00) 0.95 (0.00)
0.25 0.85 (0.02) 0.85 (0.02) 0.96 (0.00) 0.95 (0.00)
0.5 0.87 (0.02) 0.87 (0.02) 0.98 (0.00) 0.98 (0.00)
0.75 0.91 (0.01) 0.92 (0.01) 0.97 (0.00) 0.97 (0.00)
0.9 0.90 (0.01) 0.89 (0.01) 0.98 (0.00) 0.98 (0.00)
Panel B: non strictly exogenous regressors (a1 = 1)

� = 0:5;�t = (2; 1) � = 1;�t = (2; 4)

� ~Tb ~T+b
~Tb ~T+b

0.1 0.26 (0.53) 0.24 (0.32) 0.55 (0.28) 0.33 (0.09)
0.25 0.42 (0.34) 0.30 (0.24) 0.69 (0.16) 0.49 (0.07)
0.5 0.52 (0.26) 0.44 (0.15) 0.80 (0.09) 0.72 (0.04)
0.75 0.57 (0.27) 0.54 (0.16) 0.82 (0.10) 0.78 (0.05)
0.9 0.43 (0.44) 0.48 (0.18) 0.72 (0.19) 0.62 (0.07)

NOTE: Frequencies of correct location of the date break and frecuencies of location errors bigger than 5 between brackets.
DGP: yt�gD (t)��txt = zt; zt = �zt�1+ezt ; a1yt�a2xt = wt;wt = wt�1+ewt ; gD (t) = �+�DUt; � = 0:5;�t = (2; 1); ezt �
iidN (0; 1) ; ewt � iidN

�
0; �2

�
;E (eztewt) = ��;T = 200; Tb = [�T ] ;n = 1; 000 replications;

Table 6: Empirical size for test SCD with unknown break date
Panel A: strictly exog. reg. Panel B: non strictly exog. reg.

(a1 = 0) (a1 = 1)

SCD

�e�� SC+D

�e�� SCD

�e�� SC+D

�e��
� �n � 0 0:5 0 0:5 0 0:5 0 0:5
0 0:25 0.051 0.088 0.053 0.085 0.812 0.262 0.115 0.136

0:33 0.056 0.082 0.053 0.078 0.855 0.624 0.115 0.123
0:5 0.061 0.093 0.056 0.084 0.827 0.606 0.091 0.119
1 0.063 0.079 0.056 0.077 0.737 0.557 0.101 0.097
2 0.034 0.109 0.039 0.112 0.476 0.395 0.085 0.097

0:5 0:25 0.075 0.144 0.050 0.095 0.836 0.575 0.110 0.120
0:33 0.085 0.135 0.044 0.085 0.849 0.576 0.106 0.128
0:5 0.085 0.143 0.055 0.094 0.784 0.436 0.093 0.107
1 0.106 0.122 0.059 0.072 0.507 0.238 0.065 0.078
2 0.097 0.145 0.062 0.091 0.212 0.133 0.064 0.082

DGP: yt � gD (t)� �txt = zt; zt = �zt�1 + ezt ; a1yt � a2xt = wt;wt = wt�1 + ewt ; gD (t) =
� + �DUt; � = 0:5;�t = (2; 1); ezt � iidN (0; 1) ; ewt � iidN

�
0; �2

�
;E (eztewt) = ��;T =

200; Tb = [�T ] ;� = 0:5;n = 1; 000 replications; 5% nominal size

17



Regarding the empirical power of the test, Table 7 shows the rejection frequencies in di¤erent

situations. Comparing these results with those of Table 4, when the regressors are strictly

exogenous (a1 = 0, Panel A), the �gures are very similar, whereas for non strictly exogenous

regressors, the statistics based on the estimation of the break fraction has a slight reduction in

power.

Table 7: Empirical power for test SCD with unknown break date
Panel A: strictly exogenous regressors (a1 = 0)

� = 0:5;�t = (2; 1) � = 1;�t = (2; 4)

�2� SCD

�e�� SC+D

�e�� SCD

�e�� SC+D

�e��
0:001 0.156 0.150 0.162 0.160
0:01 0.591 0.586 0.599 0.583
0:1 0.791 0.762 0.821 0.808
Panel B: non strictly exogenous regressors (a1 = 1)

� = 0:5;�t = (2; 1) � = 1;�t = (2; 4)

�2� SCD

�e�� SC+D

�e�� SCD

�e�� SC+D

�e��
0:001 0.740 0.235 0.783 0.199
0:01 0.761 0.578 0.849 0.582
0:1 0.673 0.651 0.740 0.724

DGP: yt � gD (t) � �txt = zt; zt = �t + ezt ; a1yt � a2xt = wt;wt = wt�1 + ewt ;�t =

�t�1 + �t; gD (t) = �+ �DUt; � = 0:5;�t = (2; 1); ezt � iidN (0; 1) ; ewt � iidN
�
0; �2

�
; �t �

iidN
�
0; �2�

�
;E (eztewt) = ��;�

2 = 1; � = 1;T = 200; Tb = [�T ] ;� = 0:5;n = 1; 000 replica-
tions; 5% nominal size

Finally, in simulations not reported here, we �nd that the size and the power of SCD
�e��

and SC+D
�e�� were similar to those of the previous tables when there were no structural break,

that is � = 0 and � constant for all the sample.

To sum up, the main conclusion that arises from these simulation experiments is that the

estimation of the break date minimising the SSR has little e¤ect on the performance of the

test statistics. The statistics SC+ have, in general, a correct size with small size distortions for

correlated errors, which is a common feature of all the statistics of this class. In terms of size, this

statistic outperforms SC in all the scenarios considered, especially when the regressors are not

strictly exogenous. So, we recommend using the SC+ statistic. The test has also an adequate

power, which is only slightly reduced when the break date has to be estimated. Hence, the test

statistics presented in this paper can be seen as complementary tools for no cointegration tests

with structural breaks and their use is recommended in empirical research.
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7 Conclusions

This paper has focused on testing the null hypothesis of cointegration allowing for one structural

break. Our approach can be understood as a complementary method to ensure the presence of

cointegration around a break-cointegrating relationship. The test statistic used in the paper is a

multivariate extension of the KPSS test, which was �rst proposed in Harris and Inder (1994) and

Shin (1994) to test the null hypothesis of cointegration. We considered six di¤erent possibilities of

structural break and two di¤erent situations depending on the properties of the set of stochastic

regressors: when they are strictly exogenous they are not. In this last case, we suggest using the

DOLS estimation of Stock and Watson (1993).

The paper has distinguished two di¤erent situations depending on whether the break point is

known or unknown. The estimation of the break point bases on the minimisation of the sum of

the squared residuals, which provides T -consistent estimates of the break fraction. Monte Carlo

experiments show that the statistics that correct for the presence of endogenous regressors has

good size and power properties irrespective of whether they are strictly or non-strictly exogenous

regressors. Hence, we recommend using this test in empirical applications as a complement of

non-cointegration tests with structural breaks.
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A Mathematical Appendix

In this Appendix we outline the proof of the Theorems that have been proposed during the

paper, although a more detailed exposition can be found in the working paper of this article �see

Carrion-i-Silvestre and Sansó (2001). Some intermediate results are required beforehand. We

use the following lemmas throughout.

Lemma 1 The assumption of multivariate invariance principle of Phillips and Durlauf (1986)

states that in the limit f�tg
T
t=1, �t =

Pt
i=1 ("i; &

0
i)
0, converges to:

264 T�1=2!�11
Pt

i=1 "i

T
�1=2
22 


�1=2
22

Pt
i=1 &i

375)
264 W11 (r)

W2k (r)

375 =W (r) ; t=T � r < (t+ 1)/T

t = 1; :::; T , where ) denotes weak convergence of the associated probability measures and W (r)

is the (k + 1)-vector of standard Wiener processes de�ned on C [0; 1]k+1 with


 = lim
T!1

T�1E
�
�T �

0
T

�
=

264 !21 !12

!21 
22

375
as the covariance matrix.

Proof: see Phillips and Durlauf (1986).

Lemma 2 Let fxtgTt=1 be generated by (2) and f�tg
T
t=1 a (k + 1)-vector of stochastic processes

that satis�es the multivariate invariance principle of Phillips and Durlauf (1986). Therefore, it

can be shown that T�3=2
PT

t=1 xt ) 

1=2
22

R 1
0
W2k (r) dr; T�3=2

PT
t=1 xtDUt ) 


1=2
22

R 1
�
W2k (r) dr;

T�1
PT

t=1 xt"t ) !1

1=2
22

R 1
0
W2k (r) dW11 (r)+�21; T�2

PT
t=1 xtx

0
t ) 


�1=2
22

R 1
0
W2k (r)W

0
2k (r) dr 


�1=2
22

where W (r) is the (k + 1)-vector of unit Wiener processes de�ned in lemma 1 and �21 denotes

the correlation between the components of �t.

Proof: see Perron (1989), Park and Phillips (1988), Phillips (1988) and Hansen (1992a).

For short we denote the integrals involving Brownian motions such as
R 1
�
W2k (r) dr by

R 1
�
W2k,

and the stochastic integrals such as
R 1
0
W2k (r) dW11 (r) by

R 1
0
W2kdW11.
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A.1 Proof of Theorem 1

Here we only sketch the proof of Theorem 1 for model E �the most general model considered in

the paper�since the proof for the other models follows the same reasoning and are particular

cases for it. The OLS estimated residuals of (5) can be computed as êt = "t�zt (z0z)�1 z0", where

zt = [1, DUt, t, DT �t , x
0
t, x

0
tDUt] is the (T � (2k + 4))-matrix of regressors. Let P = diag(T�1=2,

T�1=2, T�3=2, T�3=2, T�1, ..., T�1) and A = diag(1, 1, 1, 1, 
�1=222 , 
�1=222 ) be scaling ((2k+4)

� (2k+4))-matrices. Hence, the partial sum processes Ŝt =
Pt

j=1 êj can be computed from:

T�1=2!�11 Ŝt = T
�1=2!�11

tX
j=1

"j � T�1=2!�11
tX

j=1

zjPA (A
0Pz0zPA)

�1
A0Pz0":

It is straightforward to see that, at the limit, the cross-product matrix A0Pz0zPA converges in

distribution to a (6� 6)-symmetric matrix, A0Pz0zPA ) H, with elements given by: h11 = 1,

h12 = h22 = (1� �), h13 = 1=2, h14 = h24 = (1� �)2 =2, h15 =
R 1
0
W 0
2k, h16 = h25 = h26 =R 1

�
W 0
2k, h23 =

�
1� �2

�
=2, h33 = 1=3, h34 =

�
2� 3�+ �3

�
=6, h35 =

R 1
0
rW 0

2k, h36 =
R 1
�
rW 0

2k,

h44 = (1� �)3 =3, h45 = h46 =
R 1
�
(r � �)W 0

2k, h55 =
R 1
0
W2kW

0
2k, h56 = h66 =

R 1
�
W2kW

0
2k.

Moreover, the product between matrix regressors and disturbance term " converges to the (6� 1)-

vector J , Pz0" ) J , with elements given by: J1 = !1W11 (1), J2 = !1 (W11 (1)�W11 (�)),

J3 = !1

�R 1
0
rdW11

�
, J4 = !1

�R 1
�
rdW11 � � (W11 (1)�W11 (�))

�
, J5 = !1


1=2
22

R 1
0
W2kdW11,

J6 = !1

1=2
22

R 1
�
W2kdW11. The partial sum process of matrix regressors converges to:

T�1=2
tX

j=1

zjPA )

8><>: K1 for t � Tb

K2 for t > Tb
;

whereK1 = [r 0 r2

2 0
R r
0
W 0
2k 0] andK2 = [r (r � �) r2

2
(r��)2

2

R r
0
W 0
2k

R r
�
W 0
2k].

Using these results, for t � Tb we have that at the limit the partial sum process converges to:

T�1=2!�11 Ŝt )

8><>: Lk;E1 (r; �) for t � Tb

Lk;E2 (r; �) for t > Tb
;
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where Lk;E1 (r; �) =W11 (r)�K1H
�1J and Lk;E2 (r; �) =W11 (r)�K2H

�1J . Appealing to the

Continuous Mapping Theorem (CMT), we obtain:

SCE (�) = T�2!̂�21

264 TbX
t=1

0@ tX
j=1

êj

1A2

+

TX
t=Tb+1

0@ tX
j=1

êj

1A2
375

)
Z �

0

Lk;E1 (r; �)
2
dr +

Z 1

�

Lk;E2 (r; �)
2
dr;

where !̂21 is a consistent estimate of the long-run variance of fetg : The symmetry of the as-

ymptotic distribution is shown in the companion working paper in Carrion-i-Silvestre and Sansó

(2001). Thus, after some algebra manipulations the limiting distribution can be equivalently

expressed as

�2
Z 1

0

V 2k;E (b1) db1 + (1� �)
2
Z 1

0

V 2k;E (b2) db2;

where Vk;E (�) are the residuals from the projection of a standard Wiener process onto the sub-

space generated by the deterministic regressors (properly rescaled) and theW2k (�), and Vk;E (b1)

and Vk;E (b2) are independent.

A.2 Proof of Theorem 3

This proof follows similar arguments in Bai (1997), Bai and Perron (1998) and Perron and Zhu

(2004). The OLS residuals can be written as:

êt = "t � zt (�) �̂ + zt (�)�

= "t � zt (�) (z0 (�) z (�))�1 z0 (�) "

�
�
zt (�) (z

0 (�) z (�))
�1
z0 (�) z (�)� zt (�)

�
�;

where � 2 (0; 1) denotes the true break fraction and � 2 (0; 1). We can write
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SSR (�)� SSR (�) = ��0d0 (�) z (�)P (Pz0 (�) z (�)P )�1 Pz0 (�) d (�)�

+�0d0 (�) d (�)�

+2"0z (�)P (Pz0 (�) z (�)P )
�1
Pz0 (�) d (�)� 2"0d (�)

= �0d0 (�)Md (�)� � 2"0Md (�) (A.1)

� Q (�)� 2G (�)

where d (�) = z (�)� z (�) and M = I � z (�)P (Pz0 (�) z (�)P )�1 Pz0 (�) :

Lemma 3 Given that M is a idempotent matrix we have

0 � Q (�) � �0d0 (�) d (�)�

=

8>>>><>>>>:
j�� � jO (T ) for models An and A

j�� � jO
�
T 3
�
for models B,C and E

Op
�
T 2
�

for model D

and that the probability orders of Q (�) and �0d0 (�) d (�)� are the same. Morevover, for large

samples

G (�) =

8>>>><>>>>:
Op
�
T 1=2

�
for models An and A

Op
�
T 3=2

�
for models B, C and E

Op (T ) for model D

:

Proof. The probability orders are obtained by direct calculations and presented in a summarised

way as:

�0d0 (�) d (�)� =

8>>>><>>>>:
�2 j�� � jT for models An and A

2 13T
3 j�� � j

�
�� + �2 + �2

�
+Op

�
T 2
�
for models B, C and E

�22
P[�T ]

[�T ] x
2
t + op

�
T 2
�

for model D

:
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Now we have the elements to proof Theorem 3. From (A.1) and Lemma 3

T�j (SSR (�)� SSR (�)) = T�jQ (�) + op (1) : (A.2)

where j = 1 for models An and A, j = 3 for models B, C and E and, j = 2 for model D. Next,

given the properties of projections,

T�jSSR
�
~�
�
� T�jSSR (�) (A.3)

Let us suppose that ~�9p � . Then, according to (A.2) for large T we need

T�jQ
�
~�
�
� 0

but, T�jQ
�
~�
�
> 0 when ~� 6= � . Hence, there is a contradiction with inequality (A.3) so that

the only way in which it can be satis�ed is ~�!p � .

To establish the convergence rate we �rst de�ne the sets

V� = fTk : jTk � Tbj < �Tg

for � 2 (0; 1) and

V� (C) = fTk : jTk � Tbj < �T; jTk � Tbj > Cg

for C > 0; so V� (C) � V�. Note that SSR
�
~�
�
� SSR (�) with probability 1. Next, note that

given results of Lemma

P

�
min

�T2V�(C)

SSR (�)� SSR (�)
j�� � jT � 0

�
< �

for small � > 0 provided that
SSR (�)� SSR (�)

j�� � jT > 0

on V� (C) with large probability and that the term Q (�) in (A.1) dominates G (�) for large

samples. This proves the Theorem.
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