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OPTIMAL GROWTH AND LAND PRESERVATION 

Santiago J. Rubio and Renan-U. Goetz 

ABSTRACT 

A model of optimal economic growth with a constant population subject to a constraint 

on the availability of land is presented. It takes account of the dual character of land as a 

production factor and as a consumption good (environmental amenities) by determining the 

optimal intertemporal allocation ofland between productive and recreational uses. An extension 

of the analysis for the case of a growing population with endogeneous growth based on human 

capital accumulation shows that if the rate of discount is not very low then there exists a set of 

balanced growth paths compatible with a constant allocation ofland. 

KEY WORDS: Optimal growth, intertemporalland allocation, environmental preservation, 

population growth, endogenous growth, human capital. 

RESUMEN 

En este trabajo se presenta un modelo de crecimiento económico óptimo con una 

población constante sujeto a una restricción sobre la disponibilidad de tierra. En el modelo se tiene 

en cuenta el carácter dual de la tierra como factor productivo y como bien de consumo para usos 

recreacionales y se determina cual es la asignación intertemporal óptima de la tierra entre estos 

dos usos. En la segunda parte del trabajo, se presenta una extensión del análisis para el caso de 

una población creciente con crecimiento endógeno basado en la acumulación de capital humano 

y se demuestra que si la tasa de descuento no es muy pequeña existe un conjunto de sendas de 

crecimiento equilibrado compatibles con una asignación constante de la tierra. 

P ALABRAS CLAVE: Crecimiento óptimo, asignación intertemporal de la tierra, preservación 

medioambiental, crecimiento de la población, crecimiento endógeno, 

capital humano. 
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1 Introduction 

Traditional1y, economic analysis has focused on land as a factor of production. 
Yet everyday experience shows that land is equally importantas a consumption 
good. This fact has been recognized by economists applying location theory to 
the organization of a city, where land serves exclusively as a terrain for urban 
purposes ( see Solow and Vickery (1971) and Riley (1973)). Likewise, the dual 
purpose of land is considered in the economics of land development and wilder­
ness protection where the issues of uncertainty and irreversibility are incorporated 
(see Arrow and Fisher (1974), Henry (1974), Hodge (1984), Kennedy (1987), and 
more recently Clarke and Reed (1990)). The aspect of environmental preserva­
tion has also been analyzed by Krautkraemer (1985), Olson (1990) and Barrett 
(1992) within the framework of optimal economic growth models. 

Krautkraemer's papel' focuses on the effects of technological progress and re­
source amenities on economic growth and on the extraction of a non-renewable 
resource, using the remaining non-renewable resource stock as a proxy of the fiow 
of resource amenities. However, we think that thisapproach might not be suit­
ab1e to analyze land preservation because the rate of depletion is considered as 
a production factor. If we identify land with a stock of natural capital, it seems 
more natural to use developed land as a production factor and not the rate at 
which land is developed. 

Barrett's papel' can be seen as an extension of the first model presented in 
Krautkraemer's article. He considers land as a non-renewable stock of natural 
capital and developed land as a production factor. Consumption depends on 
the rate of depletion and on the output produced by employing developed land. 
However, he does not take account of a productive capital stock in the production 
function1. 

Olson's approach seems to be more appropriate to analyze land preservation. 
He presents a model where land is developed for productive purposes 01' remains 
in a natural pristine state2 . The total available land is fixed and finite and it 

lThe tropical rain forests is an example used by Barrett to justify the utilization of the pro­
ductive rate of depletion. At the same time, however, he recognizes (Barrett (1992, p.291)) that 
it would be more realistic to assume that consumption is independent of resource development, 
or to allow for investment. 

2Recently, López et al. (1994) emphasized the fact that significant demand for land in 
general arises from the desire to enjoy environmental amenities. However, their analysis deter-
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must be allocated between these two alternative uses in the framework of a two 
time period optimal growth model with a productive capital stock. However, 
he focuses on the effects of irreversibility and learning on land preservation and 
analyzes neither the optimal intertemporal allocation of land nor the existence 
and properties of the steady state. 

This papel' follows Olson's approach to the problem of land preservation. 
However, we consider time as continuous within an infinite horizon and suggest 
that land development in general is not an irreversible process. Depending on 
the time horizon !-lnder consideration, the majority of the development processes 
can normally be reversed. Thus, we propose to modelland as another control 
variable along with consumption in an optimal economic growth model. In par­
ticular we focus attention on the optimal intertemporal allocation of productive 
and recreationalland3 and on the existence and properties of the steady state of 
the economy, following the methodology of optimal growth models and in partic­
ular that of Krautkraemer's and Barrett's papers. 

The results indicate that for an economy with a constant population and 
without technical progress a unique steady state exists, given by a saddle point. 
Moreover, the necessary conditions suggest that land is used for production until 
the value of the marginal product, defined as the marginal utility of consumption 
times the marginal product, is equal to the marginal cost given by the marginal 
utility of recreationalland. In particular, we show that the specification of the 
preferences plays a critical role in land preservation. Only for a society with a 
high degree of ecological consciousness it is guaranteed that a positive amount of 
land is permanently devoted to recreational uses. This result, based on a more 
general model by incorporating a productive capital stock and by allowing a wider 
range of utility functions compared to Barrett, generalizes proposition l' of his 
papel' (Barrett (1992, p.292))4. Moreover, we define sufficient conditions based 
on the properties of the utility function to have some positive level of land preser­
vation at the steady state that do not appear in Barrett's results and, therefore, 
we show that land preservation is not guaranteed at the steady state as Barrett 
concludes. 

We extend the previous analysis by developing a model of endogenous growth 
with human capital and increasing population based on a Cobb-Douglas tech­
nology and Cobb-Douglas utility function. We establish that the solution of the 

mined only the static optimal allocation of land and the amenity benefits of agricultural land 
exc1usively. 

3The term "recreational land" is understood as a broad aggregate for non productive land 
which may yield a positive utility for an individual in various ways. 

4He assumes an additive utility function with a constant elasticity of the marginal social 
utility of consumption. 
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model can be characterized bya per capita consumption growing at a constant 
rate and a constant allocation of land, provided that the rate of discount is not 
too low. We refer to this kind of solution a sustainable balanced growth path. 
Finally we evaluate the effects of parameter variations on the optimal allocation 
of land. Based on this analysis we emphasize that an in crease in the discount 
rate leading to a rise of the marginal costs of capital, has a positive effect on 
pres~rving open space. This result i8 contrasted with our findin~s with respecto to 
our first model where a comparative static analysis together wlth a comparatlVe 
dynamic analysis show that an increase in the discount rate has negative effect 
on the steady state level of land preservation. The diametric result, however, can 
be explained by different assumptions with respect to population growth and the 
'mechanics' of economic growth in our second model. 

The papel' is organized as follows. In section two a model of economic growth 
subject to a land constraint is analyzed where the size of the popula~ion is ~~n­
stant. In the subsections of section two we state the model, analyze lts stablhty 
in the state-costate phase plane, discuss the optimal trajectories for consump­
tion productive and recreationalland, and conduct a comparative static as well 
as c~mparative dynamic analysis. Section three considers the case of an expo­
nentially growing population along with the introduction of endogenous growth 
through the accumulation of human capital. The final section closes out the pa­
pel' with conclusions and proposals for further research. 

2 Optimal economic growth with a constant 
population 

2.1 The model 

We will begin with the definition of variables and characterization of the functions 
of the model. Let the state, K(t), denote the stock of capital. Three control vari­
ables are employed, namely land utilized for recreational purpo.ses, LR(t)j l~nd 
allocated to production Lp(t), and consumption C(t). To simphfy the notatlon, 
the argument t of the '~ariables' K, LR , Lp , C and of the other 'variables'. to be 
introduced later will be suppressed, unless it is necessary for an unamblguous 
notation. We as~ume that the production function F(N, K, Lp ) is jointly strictly 
concave homogeneous of degree one and twice continuously differentiable. The 
size of ~he population, N, identical to the labor supply, however, is constant. 
Hence, the production can be represented by a function of capital stock and ~he 
productive land alone and it shows decreasing returns to scale. The productlOn 

7 



factors are considered essential for production, Le. F(O, Lp) = F(K, O) = 0, 
and complementary in the sense that FI(Lp = FLpI( > 0, where the subscript 
indicates the partial derivative with respect to the variable. Additionally, it is 
assumed that the production function satisfies the following other properties: 
FI( > O,limI(-->oFI( = +oo,limI(-->+ooFI( = O,FLp > O,limLp-->oFLp = +00 and 
limLp->+oo FLp = O. Finally, the change of the capital stock is given by the state 
equation and reads as 

k = F(K,Lp) - e - 8K, (1) 

where the dot denotes the operator d/dt and 8 the rate of depreciation of capital 
stock. 

With respect to the consumer, we assume that the preferences are well de­
fined for the two goods: consumption and recreational land. Furthermore we 
as sume that the corresponding utility function U( e, LR ) is jointly strictly con­
cave and twice continuously differentiable5

• Consumption is understood to be 
vital for the survival of each single individual. Consequently, it is stipulated that 
U(O, LR ) = ULR(O, LR ) = ° and limc-->o Uc = +00. The utilization of recre­
ationalland as well as its intrinsic value varies considerably among the individu­
als. Hence, it is not conceived as indispensable for the survival of the individual 
which suggests that U(e,O) 2': O,Uc(e,O) 2': ° and limLR->OULR :::; +00 6. More­
over, it is supposed that both goods in crease the utility derived from the other 
good, UCLR = ULRC > ° and limc->+oo Uc = O. 

In our model, land is supplied by nature without any costs and can either be 
utilized in the production process or as a recreational good. In any case, the en­
tire available land, L , is limited, and we need to impose the following restriction 
on control variables Lp and L R : 

(2) 

With p denoting the constant rate of time preference we define the objective 
functional as the present value of the total utility stream 

(3) 

5The constant size of the population allows us to write the aggregate utility of the society 
as a function oí the total consumption and of the entire recreational land. Yet, it is implicitly 
assumed that the aggregate utility of the society is given by a representative individual's utility 
that depends on consumption and recreational land per capita times the number of individuals. 

6If U(C, O) = Uc(C, O) = O we say that recreational land is an essential good for the 
individuals. 

8 

Given the initial state K(O) = Ko > ° we are facing the optimal control prob­
lem: maximize (3) subject to (1), (2) and the control constraints e, L R , L p 2': o. 
For simplicity, we do not impose K 2': ° as a state constraint but as a terminal 

condition: limt-->oo K 2': ° . 
In the following we shall only consider the solutions in the set of control vari­

ables defined by the conditions O > 0, LR 2': 0, Lp > O and L = LR + Lp. 
Admissible solutions with O = 0, Lp = ° and L > LR + Lp can be excluded 
from optimality by the assumptions: limc->o Uc = +00, limLp-->O FLp =_+00 and 
limL -->+00 FL = O. For simplicity in exposition we express LR by (L - Lp ) 

p p -

and the condition L 2': LR + Lp is captured by L 2': Lp. Thus, the maximum 
conditions can be written as 

Uc ( O, L - Lp ) = A 
AFLp(K,Lp) = ULR(O,L-Lp)+w 

L - Lp 2': 0, W 2': ° and w(L - L p ) = 0, 

(4) 
(5) 

(6) 

where A is the adjoint function associated with differential equation (1) and w the 
Lagrange multiplier related to restriction L 2': Lp • Moreover, the adjoint function 
A satisfies the differential equation 

(7) 

From (4) and (5) we conclude that UCFLp = ULR + W. Hence, the value 
of marginal productivity of land, given by the marginal productivity times the 
marginal utility of consumption, must he equal to its marginal costs which are 
given by the marginal utility of recreationalland plus the shadow price of land, w, 
or economic rento If the available land is not completely utilized for production 
the rent will be zero 7 • 

Having discussed the necessary conditions, we will now turn to the steady 
state analysis which is defined by k = >. = o. The differential equations in the 
state and costate variables read as 

k = ° = F(KOO
, Lp) - 0 00 - óK

oo 

>. = ° = AOO(p + ó - FJ((KOO , Lp», 
(8) 
(9) 

7The sufficient conditions for the maximization of the Hamiltonian are satisfied since .>. > O 
and the production and utility functions are strictly concave. 
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where the superscript 00 denotes the evaluation of the variable at the steady 
state. The interpretation of these conditions are well known from the theory of 
economic growth. Therefore, we continue with the analysis of the steady state 
existence. Let us first assume that L;: < L implying that w = O. Oondi­
tion (9) allows us to define an implicit fundion K(L'P) since it requires that 
p + ó = FK(KOO, 1']}) for XX> > O. Applying the implicit function theorem we ob­
tain that dK/dLp = -FKLp/FKK > O. Then, substituting Koo in (8) we obtain 
0= F(K(L'P), L'P) - óK(L'P). Finally, using (4) we can write condition (5) as 

Uc(F(K(L'P), L'P) - óK(L'P) , L - L'P) FLp (K(L'P), L'P) 

= ULR(F(K(L'P), L'f)) - óK(L'f)) , L - L'f)), (10) 

where the left-hand side represents the value of the marginal productivity of land 
(VM PLp ) and the right-hand side the marginal costs of productive land (MOLp ). 
Their derivatives results in 

(11) 

(12) 

since the production function is jointly strictly concave, FK - Ó = P is positive in 
the steady state, and UCLn > O. 

These derivatives show that VMPLp results in a monotonically decreasing 
function on the interval [O, L] with limLp->O VMPLp = +00 and VMPLp(L) 2:: 
O, while MOLp is a monotonical1y increasing fundion on the same interval 
with MOLp(O) = O and limLp->L MOLp ~ +00. This analysis indicates that 
Uc(O,O) = O and limLn->OULR = +00 are sufficient conditions for a solution 
0< L'P, L'R < L, whereas VMPLp(L) < MGLp(L) is a necessary and sufficient 
condition for an interior solution. In the case in which VMPL~(L) 2:: MGLp(L), 
the steady state is a corner solution in the sense that L'R = O and L'P = L, and 
all available land will be used for production. Oonsequently the shadow price 
of land, w oo

, will be positive and equal to the difference between V M PLp and 
MCLp ' Therefore irrespective of whether L'P = L or L'P < L a unique steady 
state exists8 . 

8The terminal condition limt->oo K ~ O will also be satisfied in the steady state since KOO 
has to be positive as is implied by (9), since limK ..... O F[( = +00. 
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2.2 Stability analysis in the state-costate phase plane 

We proceed by an analysis of the (K, A) phase plane, and visualize the maximum 
conditions (4)-(6) for Lp < L solved for (G,Lp) = (O(K, A), Lp(K, A)). Apply­
ing the implicit function theorem, we obtain a set of four linear equations 

which can easily be solved by using Oramer's rule. The results are 

80 1 
(14) = - 6. AFLpKUCLR < O 

8K 
80 1 

(15) 
8A 6. (AFLpLp + ULnLR - UCLnFLp) < O 

8Lp 1 
(16) = - 6. AFLpKUCC > O 

8K 
8Lp 1 

(17) = 6. (-UCCFLp + UCLn ) > O, 8A 

where 

(18) 

is positive due the strict concavity assumptions with respect to the production 
and utility functions. The results of (14) and (16) provide plausible economic in­
terpretation; if the stock of capital increases, the marginal productivity of capital 
decreases. Rence, the marginal productivity will be below the constant marginal 
cost given by p + Ó. In order to satisfy condition (9) it is therefore necessary that 
the productive land in creases since FKLp is positive. However, with an increase 
in productive land, equivalent with a decrease in recreationalland, the marginal 
utility with respect to consumption will de crease since UCLn is positive. Accord­
ing to condition (4) the price of the consumption goods A, which is assumed to be 
constant when the capital stock is changing, is not equal to the marginal utility of 
consumption anymore. In order to satisfy (4), Uc has to be raised by a decrease 
in consumption since Ucc is negative. The interpretation of the signs of (15) and 
(17) is also straightforward from conditions (5) and (8). 

Using (14)-(17), the Jacobian matrix of the syst.em (1) and (7), with G = 
G(K, A) and Lp = Lp(K, A) can be determined by 

8K 
8K 
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ak aLp ae 
(20) 

a>. FLp a>. - a>. > o 

a~ OLp 
{ 

> }o ->.(FKK + FKLp aK ) = (21) 
aK < 
a~ aLp 

(22) = ->'FKLp a>. < O. a>. 

An evaluation at the equilibrium or stationary point (k = ~ = O) where FK -8 = 
p> o yields a po~itive sign for (19). To determine the sign of (21), equation (16) 
and the jointly strictly concavity of the production and utility functions are em­
ployed 

aLp >.FlpKUcc 
FKK + FKLp-- = FKI< - 2 

aK >'UCCFLpLp + UCCULRLR - UCLR 
>.Ucc(FI<I<FLpLp - FlpI<) + FI<I<(UCCULRLR - U't:LR) (23) 

= 2 < O. 
AUccFLpLp + UCCULRLR - UCLR 

Moreover, the results of (19) - (22) show that 

aka~ ak a~ 
det J = aK aA - aA aK < o. (24) 

Hence, the system of difIerential equations (1) and (7) has a unique stationary 
point which is a saddle point. 

The sign of the slope of the two isoclines (k = O and ~ = O) can be specified 
by applying the implicit function theorem, 

dAI 
dK ](=0 

_OK j8K U:}o 
aK aA < 

(25) 

d>'1 a~ /a~ (26) = - aK aA > O. dK '\=0 

The sign of the first derivative remains undetermined since F I< - 8 > O only when 
~ > O. Then we have that (25) is negative when ~ ~ O and it has an undeter­
mined sign when ~ > O. Thus, it can be concluded that the isocline k = O is 
downward sloping in the (K, A) phase plane when it is aboye or cuts the isocline 
~ = O. In this case, the stable branch representing the optimal solution for an 
infinite horizon is downward sloping and converges towards the equilibrium9 (see 

9 As long as there exists an unique stationary point, (24) implies for (25) and >- > O that (26) 
is greater than (25). However, Fig. 1 must be carefully interpreted. Since the results obtained 
are only valid within a neighborhood of the steady state, we have that dA! dK < O. 
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Fig.1), given the difIerentiability of isocline (25). 
The stability analysis indicates that for a low stock of capital the associated 
shadow price, identical with the price of the consumption goods, is compara­
tively high resulting in a low level of consumption. In the case of a high stock 
of capital, an additional unit of capital is far less valuable. As time tends to 
infinity, capital, K, and its associated shadow price, A, monotonically approach 
their steady state values. Hence, the stable branch represents the optimal solu­
tion provided that appropriate sufficiency conditions hold. By Arrow's sufficiency 
theorem for infinite horizon problems (se e Arl'ow and Kurz (1970, Pl'op. 8, p. 
49)) the concavity of the maximized (derived) Hamiltonian 'H(K, >.) in the state 
variable K along with the satisfied transversality condition provide that the stable 
path is optimallO • It has been shown by Hartl (1983, p.289) that the maximized 
Hamiltonian is concave in K, if the matrix A = a2H/a(K,e,Lp)2 is negative 
semidefinite, where H denotes the Hamiltonian. The evaluation of the principal 
minors of the matrix A is straightforward and shows that A is negative definite. 
Hence, it can be concluded that Arrow's sufficiency theorem applies. 

2.3 Optimal consumption and productive land 

In the previous section we derived the properties of the optimal solution in the 
state-costate phase planeo Now, oul' interest is to discuss the trajectories of the 
optimal path for consumption and productive land, and to evaluate their changes 
when the l'estl'iction, Lp ~ L, is operative in the steady state, Le. Lp = 1. For 
this purpose we difIerentiate aH/ae = O and aH/aLp = O with respect to time 
and obtain the following system of equations linear in (él, Lp ) 

uccé - UCLRLp - ~ = O 
-ULRCé + (ULRLR + AFLpLp)Lp + >.FLpI<k + FLp ).. = O 

Thus, él and Lp are given by 

1· . él = bo {-AUCLRFLpI<K + (ULRLR + >'FLpLp - UCLRFLp)>.} (27) 

1 . . 
Lp = bo {->'UCCFLpI<K + (UCLR - UCCFLp )>.} (28) 

where bo, k and ~ are given by (18), (1) and (7) respectively. Solving the 
equations aH/ae = O and aH/aLp = O for >. = >'(K, C) and Lp = Lp(K, e) 

lOThe transversality condition established by Arrow and Kurz takes the form 
limt ..... oo e-pt A ;::: O and limt ..... oo e-pt AK = O. 
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Figure 1: Phase diagram in the K - >. plane 
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allows us to analyze the stability of the system of differential equations given 
. by (1) and (27) in the variables K and O. Likewise, oH/oO = O and oH/oLp = O 
can be solved for ,\ = '\(K, Lp) and O = O(K, Lp) to evaluate the stability of 
the system (1) and (28) in the variables K and Lp • Rartl (1983, Th.2) analyzed 
a nonlinear economic control problem with two control variables. Based on his 
work it is possible to conclude that the determinant of the Jacobian matrix of the 
system of differential equations (1) and (27) in (K, O) and that of (1) and (28) 
in (K,Lp) have the same value of the Jacobian determinant as system (1) and 
(7) in (K, '\). ConsequentIy, the steady states of the different systems demon­
strate the saddle point property. Thus, it is easy to describe the trajectories of the 
optimal paths for O and Lp by applying the results of section 2.2 to (27) and (28). 

Recall that -,\UOLRFLpK < O, ULRLF/+,\FLpLp-UOLF/FLp < O, -'\UOOFLpK 

> O and UOLF/ - UOOFLp > O by assumptions with respect to the utility and 
production functions. Rence, we obtain á/k = oO/fJK < O, and it follows 
immediately from (27) that á> O when the trajectories of K and ,\ pursue the 
unstable path of Figure 1 to the left of the steady state. When the trajectories 
follow the unstable path of Figure 1 to the right of the steady state, k and ), 
will be positive. Since á < O, given by (27), we obtain á/k = 80/8K < O 
for the unstable path in the state-control phase planeo Since the slopes of the 
stable and unstable paths show opposite signs as a result of the saddle point 
property, we can conclude that any trajectory of the optimal solution, which is 
a downward sloping curve in the (K,'\) phase diagram is upward sloping in the 
(K, O) diagram. Likewise, for (28) we obtain that t4e stable path is downward 
sloping in the (K, Lp ) diagram. Thus, the optimal solution for the problem can 
be described by a feedback rule: 0= G(K) and Lp = J(K) where GI > O and 
JI < O. 

2.4 Comparative statics of the steady state 

Now, we turn to a sensitivity analysis of the steady state values with respect to 
a change in the parameters of the model. In order to simplify the calculations 
we first use system (1) and (7) evaluated at 1< = ~ = O. Additionally (O, L p ) 

are substituted by (O(K, ,\), Lp(K, ,\» which are obtained from the necessary 
conditions (4) - (6). Thus it is possible to determine the effects on the state and 
costate variables resulting from a change in a parameter. Then, we use (14) -
(17) to calculate the response of the control variables with respect to a variation 
in the parameters. Applying the implicit function theorem to system (1) and (7) 
yields a system of four equations 
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[
_Koo O] [ ak 

1 1 + .l..~>. 
A"" aK 

ak ] [aK"" aK""] aA -es---¡¡¡-..La>. aAco aN"" = O. 
Aco aA as ap 

Solved by Cramer's rule we obtain 

OKoo ).00 (KOO a~ ak) { > }o OÓ det J ).,,00 O)." + O)." 
< 

(29) 

OKoo ).,,00 OK 
Op 

= det JO)." < O (30) 

0).,,00 >..<'" (OK Koo O~ ) 
Oó 

= - det J aK + ).,,00 aK > O (31) 

0).,,00 ).,,00 ai< 
= - detJ aK > O. Op 

(32) 

where ai</OK, OK/a).", a~/OK and oVa)." are given by (19)- (22) 

Variations in the rate of depreciation, Ó, affed the capital stock in an unde­
termined way, while an increase in this parameter has a positive effect on the 
price of consumption goods. Given that an increase in the rate of depreciation 
leads to higher marginal opportunity cost for capital and the marginal produc­
tivity of capital is decreasing with respect to the capital stock one would expect 
a negative sign for (29). However, according to (17) productive land increases 
with the price of the consumption goods which in turn increases with the rate 
of depreciation. Hence, the marginal productivity function of capital will move 
to the northeast because productive land has risen. The initial reduction in the 
capital stock caused by an increase in the rate of depreciation may thus be ovar 
compensated by the shift of the function resulting finally in an increase in the 
capital stock. 

On the other hand, a rise of the rate of time preference, p, has a negative 
effect on the capital stock in the steady state and a positive effect on the price of 
consumption goods which is equivalent with the shadow price of the capital stock. 
Evaluating the response of the control variables with respect to the variations in 
the parameters Ó and p, we refer to the partial derivatives of the control variables 
given by (14) - (17). Additionally using (30) and (32) we obtain that an increase 
in the rate of time preference reduces the level of steady state consumption. The 
calculations of the sign yield 
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since OC/O).", det J are negative and FK - Ó is positive in the steady state. 

Variations in the rate of depreciation have an ambiguous efl'ect on control 
variables attributed to their undetermined effect on the capital stock. The effect 
on productive land resulting from an increase in p, however, cannot be deter­
mined within the comparative static analysis. Yet, in the next section it is shown 
that the sign of {);; can be determined by a comparative dynamic analysis. The 
results of this analysis indicate that productive land increases and recreational 
land decreases with an increase in the rate of time preference. Thus, the new 
steady state is characterized by an increase in productive land substituted for 
capital and by a lower preservation of land. 

2.5 Comparative dynamics of the optimal paths 

In the previous section we discussed the sensitivity of the steady state with re­
spect to changes in the parameters. Now, we extend our sensitivity analysis of 
the parameters along the optimal path of K and)"'. Currently there are three ap­
proaches to conducting comparative dynamic analysis, see Caputo (1990). The 
first approach is limited to infinite horizon problems that are autonomous in 
present-value 01' current-value terms. Moreover, this type of comparative dy­
namic analysis only reflects the alteration of the optimal paths of the state, 
costate and control variables within a limited neighborhood of the steady state. 
The second approach introduced by Caputo (1990) pertains to how changes in the 
system parameter affect the entire optimal path of the state, costate and control 
variables by analyzing their aggregate effect on a value function evaluated at the 
optimal values for the control, state and costate variables. Its particular strength 
lies in the fact that it is easily applicable even if there are more than one state 
variable. However, this approach does not indicate how the paths of the state, 
costate 01' control variables change individually. The third approach introduced 
into the economic literature by Oniki (1973) is based on a system of variational 
differential equations. Its solution reveals the comparative dynamics ovar the 
entire time horizon for each state, costate and control variable. Using the phase 
diagram in the perturbed variables makes this approach readily applicable for 
models with just one state variable, and thus, it is applied in this paper. 

The necessary conditions (4) and (5) for Lp < L allow us to solve for (C, L p ) 

17 



given as (C(K, ,\), Lp(K, A)). Upon substitution in (1) and (7), the difIerential 
equations and the boundary conditions become 

~ A(p + 8 - F[((K, Lp(K, A))) (34) 
k F(K, Lp(K, A)) - C(K, A) - 8K (35) 

K(O) Ko (36) 
lim K Koo lim A = Aoo

. (37) 
t-+oo 

, 
t->co 

Section 2.1 shows that a unique solution for the optimal control problem exists 
for given values of p and 8. The optimal paths for the state and costate variables 
are given by K(t¡ (30) and A(t; (30) where the parameter vector f3 = (p,8) is spec­
ified and denoted by ,80. 

At the beginning of the comparative dynamic analysis, the solutions of (34) 
- (37), the functions K(t,,8) and A(t,f3), are inserted back into (34) - (37) and 
yield the following identities 

~(t; (3) - A(t¡ (8)(p + 8) - A(t¡ (3)F[((K(t¡ (3), A(t¡ (8))) (38) 
k(t; (3) - F(K(t; (3), Lp(K(t; (3), A(t; (3))) - C(K(t; (3), A(t; (3)) 

-8K(t; (3) (39) 
K(O; (8) Ko (40) 

lim K(t; (3) = KOO(t; (3) tll~ A(t; (3) == A=(t;,8) (41) t->co 

The variational difIerential equations are obtained by difIerentiating (38) - (41) 
with respect to p 01' 8, evaluated at f30. Hence, the variational difIerential equa­
tions for perturbed paren 

\ = anAp + a12 Kp + A(t; (30) (42) 
Kp = a2I Ap + a22 Kp (43) 

Kp(O) ° (44) 
lim K co (f30) < 0, lim A';'(f30) > 0, (45) t->co p t->oo 

where 

llNote that we assume that K(t;f3) and A(t;f3) converge uniformly on an interval J, f3 E J. 
Hence the interchange ofthe two limit processes, limt->oo and lim",->" K(t;¡3J-K(t;¡3o) as well as ,.. "o -(30 

limt->oo and lim(3->(3o >'(ti'j}:::~!ti¡3o) in equation (45) is admissible. 

18 

~ p H - FK(t; /3") - >.(t; ¡J°)FKLp (t; /3") 8Lp~~ /3") { ; } IX 46) 

= -A(t;f30) (F[(K(t;,80) +FKLP(t;,80)8L~~,80)) > O (47) 

= _ 8C(t; (3
0
) + F (t. (30) 8Lp(t; (3

0
) > O (48) 

8A Lp , 8A 

~ FK(t;fJO) - H FLP(t;fJO)8L~~¡JO) - aG~i!) { ; } 0(49) 

The signs of (46) - (49) were determined by using (14) - (18) and (23). 

An analysis of the movement of Kpand Ap yields that an increase in p results in 

Kp(t; (3) :::; O 
Ap(t; (3) < O for t E [O, td, t l > O 
Ap(t; (3) > O for t E (tI,OO]. 

(50) 

To verify the signs of (50) the motions of Kp and Ap are evaluated in the 
(Kp,pp) phase plane, as illustrated in Fig. 2. 
The analysis starts by assuming particular signs fol' Ap and Kp, which determine, 
along with the signs of aij(t;,8), i,j = 1,2, the signs of ~p and Kp. For example, 

. . < 
if Kp = e, e> O and Ap = O, then by (42) - (43), Ap > O and Kp - O. Hence, the 

> 
arrows in the Kp, Ap plane emanating from the point (e, O) are directing north­
east and nol'thwest. This reflects the fact that Ap is incl'easing but Kp may be 
increasing 01' decreasing. Completing this analysis yields the motion of Kp and 
Ap in aH four quadrants. From the perturbed initial condition Kp(O) = 0, the 
optimal path must begin along the Ap-axis. Intuitively this is quite clear since 
the initial capital stock is fixed and thus it is independent of the social discount 
rateo The perturbed boundary conditions suggest that the optimal paths for 
Ap and Kp lie in the second quadrant. Therefore, any time path starting along 
the positive Ap-axis cannot be optimal because the second quadrant cannot be 
reached. Consequently the optimal time path begins along the negative Ap-axis, 
and the boundary condition requires this path to end in the second quadrant. 
Fig. 2 illustrates three possible paths satisfying the perturbed boundary condi­
tions. Note that the path may intersect itself since the system (42)-(43) is non 
autonomous. There exist many more possible optimal perturbed trajectories. 
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Figure 2: The motion of Kp and >"p 
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However, they are aH confined to the second and third quadrant. Fig. 2 in­
dicates that an in crease in the social discount rate leads to a lower capital stock 
over the entire time horizon. It confirms economic intuition that an increase in 
the social discount rate provides less incentive to accumulate capital. For sorne 
initial time period the lower capital stock is accompanied by a decrease in the 
price of the consumption good A. However, as t tends to infinity the price of the 
consumption good will rise as a result of an increase in the social discount rateo 
An evaluation of an increase in {) yields 

< 
K5(t¡ ¡3) ; O 

< A5(tj ¡3) ; O for t E [O, tI], tI ;::: O 

>'5(t¡ ¡3) 2: O for t E (tl,OO]. 

(51) 

These signs are derived from the evaluation of variational differential equations 
for perturbed (j given by 

. o 
A5 = anAs + a21 KS + A(t; ¡3 ) 

Ks = a12AS + a22 KS - K(t¡ ¡3) 

Kp(O) = O 

(52) 

(53) 

(54) 

(55) 

Now, in the same way as before it is possible to construct a phase diagram in the 
(Ks, A8) plane to determine the motion of As and Ks. In Fig. 3 three possible 
perturbed trajectories are given satisfying the perturbed boundary conditions. 
The economic interpretation suggests that an increase in the rate of depreciation 
provides less incentives to invest capital for future consumption. Hence, an in­
crease in the depreciation rate tends to decrease the capital stock. Yet, Fig. 3 
indicates that an increase in the capital stock cannot be excluded as a result of 
an in crease in {j, ei ther for sorne closed time interval of posi tive length or over the 
entire time horizon. An increase in (j, however, will never lead to an in crease in 
the capital stock accompanied by a decrease in the price of the consumption good. 

Finally an in crease in p results in 

(56) 

These signs follow immediately by recalling the results of section 2.3, in particular 
the functions e = G(K) and Lp = J(K), and employing the previous results of 
this section. 
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Figure 3: The motion of K6 and >'6 
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It shows that an increase in p leads to a decrease in K as well as in e, con­
trasted by an increase in productive land. In other words capital is replaced by 
productive land since the intertemporal opportunity cost for capital has risen. It 
implies also that the amount oí recreational land is lower along the new optimal 
path. The sign of the changes of e, Lp as a result of an in crease in {j are am­
biguous, and therefore Httle economic interpretation can be offered. 

3 Optimal economic growth with a growing 
population 

3.1 The model 

In this section we extend our analysis to the case of a growing population. Now 
we as sume that the population is growing exponential1y at arate 1r. For this 
case it is intuitively clear that a steady state where per capita recreational land 
and consumption constantly in crease does not existo For this reason we propose 
a first approach to the problem based on a Cobb-Douglas, technology and utility 
function. 

The preferences of the representative consumer are given by the strictly con­
cave utility function U(c, lr) = cal~ where e = e/N, lr = LR/N, a, b E (0,1) 
and a + b < 1. This specification of the preferences place s a high weight on the 
land utilized for recreational purposes. Notice that for lr = O the total and the 
marginal utility for consumption are zero. Therefore we consider this case as ane 
representing a society with a high degree of ecological consciousness. Given these 
preferences, the objective function of the optimal control problem can be written 
as follows, fooo e-rtea L~ dt, where r = p - 1f(1 - a - b) with p denoting the social 
discount rateo Additionally we set N(O) = 1. 

The technology is represented by a Cobb-Douglas production function with 
constant retums to scale: F(K, Lp,Ne) = AKC\< L~(Ne)'Ywhere Neis the efficiency 
units ofIabor, a+.8+r = 1 and the technology level Ais assumed to be constant. 
Each consumer in the economy owns one unit of nonleisure time per periodo If 
he devotes the fradion u of his or her nonleisure time to work and the efficiency 
per unit of labor supplied is h, then Ne = uhN. The remaining 1 - u is devoted 
to accumulating human capital through schooling. With respect to the accumu­
latian of human capital we assume that ;1 = h€(l- u) ,where 10 > O is the maximal 
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growth rate of human capitall2 . 

Given the· properties of the utility and production function the optimal val­
ues for the control and state variables are strictly positive, if a solution for the 
problem exists. Moreover, the land restriction is satisfied as a strict equality 
(L = LR + Lp ). Thus, the optimal control problem can be simplified and written 
as 

S.t. k = AKO L~(uhN)'Y - 0- 8K, K(O) = Ko 

h = h€(1- u), h(O) = ho 

L;::: Lp , O,Lp ,;::: O, u E [0,1] 

(57) 

(58) 

(59) 

(60) 

The current-value Hamiltonian H for an interior solution, with costate vari­
ables Aland A2, is given by 

H(K, h, Al, A2, O, Lp , u, t) 
oa(L - Lp)b + Al[AKOL~(uhN)1- O - 8K] 

+A2[h€(1 - u)], 

and the necessary conditions are 

a(L - Lp)b = Al 
Ol-a 

A (3AKo L{3-l (uhN)1 = _ boa 
1 p (L _ Lp)l-b 

Al.,-AKo L~U1-1(hN)'Y = A2€h. 

(61) 

(62) 

(63) 

On the margin, goods. must be equally valuable in their two uses: consumption 
and capital accumulation (61), land must be equally valuable in its two uses: 

12This model oí endogenous growth with human capital is based on Luca's model (1988). 
Our main departure from Lucas Hes in the modeling of the production sector. We consider 
a linearly homogeneous Cobb-Douglas production function, whereas Lucas considers a Cobb­
Douglas production function with external effects in the production of the physical good. The 
kind of model we present has been used, among others, by Caballé and Santos (1993) to study 
the stability conditions of the accumulation process and by Gradus and Smulders (1993) and 
Bovenberg and Smulders (1995) to analyze the relations between environmental quality and 
economic growth. 
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recreation and production (62) and time also must be equally valuable in its two 
uses: production and human capital accumulation (63). 

Moreover, we obtain for the costate variables 

~l = Al(r + 8 - aAKO-lL~(uhN)'Y) 

~2 = rA2 - A1"(AKoL~h1-1(uN)1 - A2f(1 - u). 

(64) 

(65) 

Thus, equations (58),(59) and (61)-(65), together with the transversality con­
ditions 

lim e-rtA K = O 
t-+oo 1 , (66) 

implicitly describe the optimal path of Kand h for any initial conditions given 
for these two different types of capital. 

Similar to the Lucas model, the easiest way to characterize optimal paths 
is to look for sustainable balanced growth paths of the system that we define as 
an optimal solution {K, h, Al, A2, O, Lp , u} to the optimization problem for sorne 
initial conditions K(O) = Koand h(O) = ho, such that the rates of growth of 
K, h, Al, A2, O are constant, Lp and u are constant, and the outputjcapital ratio 
is also constant. We refer to this kind of path as a sustainable path because in this 
case, growth is compatible with a positive preservation of land for recreational 
uses13 • Let /'l, denote the rate of growth of consumption CjO. Then from (61), 
we have ~dAl = -(1 - a)/'l" where 1 - a > O is the elasticity of the marginal 
utility. Next from (64), we obtain 

aAKa
-

1 L~(uhN)1 = r + 8 + (1 - a)/'l,. (67) 

Thus, along the balanced path, the marginal product of capital is equal to its 
constant opportunity cost defined by r + 8 + (1- a)/'l,. For the Cobb-Douglas pro­
duction function, the marginal product of capital is equal to a times the average 
product, so that dividing the state equation for physical capital through by K 
and applying (67) we have 

13Note that we are assuming an interior solution for the optimization problem, so Lp < L. 
Later on we show that this is the optimal solution given the specifications of the utility and 
production functions. This kind of solution is a straightforward extension of the solution 
proposed by Lucas which has been extensively used in the literature of optimal growth. 
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k + e = r + Ó + (1 - a)~ _ Ó 
K K a . (68) 

By definition of a balanced path, k/K is constant so (68) implies that e/K 
is constant. Rence differentiating with respect to time we obtain that 

k 6 
-=-=~ 
K e ' (69) 

implying that capital and consumption grow at the same rate~. To calculate 
the common growth rate of consumption and capital we differentiate (67) with 
respect to time, resulting in 

~ = _I'_(v + 11") 
1'+,6 , (70) 

where v stands for the human capital rate of growth h/h. Note that this rate 
is less than the capital rate of growth in Luca's model without external effects: 
v + 11". This means that the existence of a fixed factor in the technology reduces 
the growth potential of the economy but it is not an obstaele for the economy 
to attain a path of balanced growth. This result also establishes that a balanced 
growth is compatible with a production fundion with decreasing returns to scale, 
given that the constant returns to scale of the utilized Cobb-Douglas technology 
become decreasing returns when productive land is fix and stays constant along 
the accumulation process. Finally, we like to point out in respect of this result 
that the rate of growth is decreasing with respect to the partial elasticity of land 
productivity, (3, so that a low productivity of this factor places the growth rate 
of capital near to the rate of the human capital accumulation model v + 11". 

From (70) we obtain that the rate of growth of per capita consumption and 
capital is 

k ¿ I'V - 11"(3 
k=~= 1'+,6 . (71) 

Therefore, (311"/1' < v is a necessary and sufficient condition for an increasing per 
capita consumption. 

Now, to obtain the human capital rate of growth we differentiate (63) with 
respect to time and substituting for ~1 and Al we have 

~2 
A2 = (a - (1- a))~ - (1 -I')v + 1'11". (72) 
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Now using again (63) with (65) we obtain 

~2 
A2 = r - lO. (73) 

Eliminating ~2/ A2 between (72) and (73) and substituting for ~, using (70), yields 
the solution for the human capital growth rate: 

Substituting for r we have 

v = el' + (6) (lO - r) + al'1I" 
l'(l-a)+,6 

1 
v = 1'(1 _ a) + j3 [(')' + (6) (E - p) + 11"(')'(1 - b) + (3(1 - a - b))J. (74) 

Finally, we need to establish conditions under which the integral, which de­
fines the objective function, converges to a finite value. For a balanced growth 
path the consumption is growing at arate equal to ~ while recreationalland is 
constant. Rence, the convergence requires that -r + [al'(v + 11")/(')' + (3)J < O or 
written as a constraint on v, v < [(')' + (3)r / al'J- 11". 

Surnmarizing our results, the following two conditions on parameter values 
guarantee the existence of an optimal path with increasing per capita consump­
tion and a constant allocation ofland between productive and recreational uses14: 

(3 1'+(3 
-11" < v < --r - 11". 
l' al' 

These constraints can be written on parameter E, which denotes the productivity 
of education activities. Substituting fol' v using (74) and reol'dering we obtain 

p+ ((32_1'2 +b)1I"<E<PI'+(3 _ 1'(1-b)+(3(1-a-b)1I". 
1'( l' + (3) al' al' (75) 

Thus, if (75) defines a non-empty interval with positive values we can con­
elude that there exists a non-empty set for the parameter values of the model 
which supports a sustainable balanced growth path as an optimal solution of the 
proposed problem. In order to have a positive value for the upper limit of the 

14Moreover, it is easy to check that the transversality conditions (66) are satisfied provided 
that the right-hand side of the inequality holds. 
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interval defined by (75), it is required that 

,(1 - b) + (3(1 - a - b) 
(3 

. 1f < p. ,+ (76) 

To assure that (75) defines a non-empty interval the difference between the up­
per and lower limit has to be positive which translate into the imposition of the 
following inequality 

(, + j3)[¡(1 - b) + (3(1 - a - ~) + a~J + a((32 _,2) 1f < p. (77) 
((l-a)/+(3) ,+(3 

It is easy to check that the left-hand si de of (77) is greater than the left-hand 
side of (76). Hence, whenever inequality (77) is satisfied the inequality (76) is 
also satisfied. Therefore, constraint (75) is summarized in inequality (77), and 
the unique constraint on the parameter values of the model, necessary for the 
definition of a balanced growth path, is the requirement that the rate of discount 
is not too low. In fact, as the fraction on the left-hand side of (77) is less than 
one, we can express this constraint by saying that the rate of discount should not 
faH strongly below the growth rate of the population. 

Now, we calculate the optimal value for productive land. Using (61) in (62) 
we obtain the optimality condition for the allocation of land as the equality be­
tween the value of marginal product of land and the marginal cost of productive 
land given by the marginal utility of recreationalland 

(78) 

where LR = L - Lp . 

From this condition we can conclude that the land is not used entirely for pro­
duction, because sufficient conditions for a solution Lp , LR E ((O, L), defined in 
section 2.1, are satisfied. Notice that Uc(C, O) = O and limLR->o ULR = +00 where 

Returning to the calculation of Lp we use (78) and (69). Thus, the differential 
equation describing the law of motion for physical capital can be written as 

(79) 
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Factoring AKa L~( uhN)'Y out on the right-hand side and dividing by K we obtain 

~ = AKa- 1 L~(uhNrr (a(3 b+ b - ~~;) - o. (80) 

Using (67) to eliminate AKa-l L~(uhN)'Y and solving for Lp we obtain 

a(o +~) 
where <p = ¡: ( ) < 1. r+u+ 1-a~ 

(81) 

The solution for the optimal value of u is straightforward from (59) using (74). 
Moreover, one can check that its value is positive and les s than one if condition 
(75) holds. 

FinaHy, we would like to point out that equations (70) and (74) describe 
the asymptotic rates of change for both kinds of capital, but, inherent to the 
analysis of growth models with two distinct types of capital, there exists a set of 
balanced growth paths sin ce the levels of the two capitals remains undetermined 
(see (67)). The multiplicity of sustainable balanced growth paths implies that 
economies with different initiallevels of human and physical capital may grow at 
a common rate, although with different physicaljhuman capital ratios. However, 
if the economies only differ by their initial conditions, the model predicts that 
the economies converge to a state where land is allocated identical, since the 
optimal level of productive land does not depend on the level of physical and 
human capital (see (81)). This equation also establishes that differences in the 
preferences (for instance, in the elasticity of the marginal utility with respect 
to recreational land, 1 - b), would be sufficient to have different levels of land 
preservati on 15 

3.2 Comparative statics analysis 

In this last subsection we present a comparative static analysis. We analyze the 
effects of variations in the parameters on the optimal value of L p . Due to our 
approach we have to restrict ourselves to variations which satisfy condition (77). 

15We would also want to point out that Luca's model without external effects can be obtained 
from our model as a particular case by setting (3 = b = O. 
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From (81) we obtain 

8Lp a,8L[(1 - r/J) - b~l 
-8-b = - (a,8 + b(1 _ r/J))2 < O) 

(82) 

since 

. (l(r+aS) + Ó + ] 8r/J __ a7r 'Y(l-a)+i3 I'!, < O. 
8b - (r + ó + (1- a)I'!,)2 

The sign of 8Lp /8a is undetermined. Again from (81) we know that 

8Lp 8r/J ab(3L (83) 
8q = 8q(a,8+b(I-r/J))2) 

h 
. 1 nt of the set T = (p 7r E ó). Thus) we can determine the sign w ere q lS an e eme ) ) ) ., 

of 8Lp/8q by calculating the sign of 8q;j8q) resultmg In 

8r/J 
cq(r+aS) + a(ó + I'!,) 

(84) 'Y(l-a)+i3 < O 
= (r+8+(I-a)K,)2 8p 

a(l- a - b) ['Y 1~~)~i3 + 8 + K,] 8r/J >0 (85) = (r+8+(I-a)",)2 87r 
8r/J a,(r + aó) > O (86) 

= b(1 - a) + ,8)(r + Ó + (1 - a)K,)2 8E 
8r/J a(r - al'!,) O (87) = > . 
88 (r + 8 + (1 - a)I'!,)2 

The positive sign of (87) requires that -r + al'!, = [-r + a,(v + 7r)l/b + (3) < O, 
which is identica1 to the condition imposed to guarantee the convergence of the 

objective functíon to a finite value. . . 
To interpret these results we make use of the necessary conditlOns of the prob-

1em. From (58) and (61)- (65) we have already obtained 

- b boa 
a(L - Lp) f.lAKa Li3-1 (uhN)'Y = _ (88) 

Ol-a f/ p (L - Lp)l-b 

aAK",-l L~(uhN)'Y = r + 8 + (1- a)I'!,) (89) 

and using (61) and (63) yields 

- )b a(L - Lp AKa Li3-1(uh)'Y-l N'Y = A2E• 
Ol-a' p 

(90) 
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These conditions define the standard optimality condition for factor demand 
(productive land) Lp ) capital) K) and unitary efficient labor) uh): the value of 
marginal productivity of a factor (left-hand side) must be equal to its marginal 
cost (right-hand side). In this model the value of marginal productivity is given 
by the marginal utility of consumption) except for the capital. The consumption 
is given by 

o = Ka L~(uhN)'Y - (8 + K,)K. (91) 

Equations (88)- (90) suggest that an increase in b) Le.) a reduction in the elas­
ticity of the marginal utility with respect to recreationalland) increases the value 
of marginal productivity of land and unitary efficient labor. This has a direct 
and indirect positive effect on productive land demand given that the productive 
factors are complementary. However) an increase in balso increases the marginal 
cost of productive land and capital) resulting in a negative effect on demand for 
productive land. Our result establishes that the net effect is negative and the 
optimal value of productive land decreases with a reduction in the elasticity of 
the marginal utility with respect to recreational land. Thus) we find that the 
more inelastic the marginal utility of the recreational land is the stronger is the 
demand for recreational uses. 

An increase in the discount rate, p, reduces the amount of land allocated to 
production and therefore has a positive effect on land preservation. An increase 
in p raises the marginal costs of capital and reduces its employment. Conse­
quently) the marginal productivity of land) being complementary to capital, will 
also decline) which in turn reduces the amount of land allocated to production 
and increases the amount of land allocated to recreation. This result differs froID 
the findings for our first model with a constant population where an increase in 
the rate of time preference leads to a higher employment of productive land and 
to a reduction of recreationalland at the steady state. The diametric results can 
be explained by two reasons. First) in the model of this section efficient labor is 
continuously increasing due to human capital accumulation. Hence) the marginal 
productivity of land will finally be higher than in the model of section 1 where 
the population is constant. Therefore) a reduction in physical capital will have a 
higher effect on the marginal productivity of land when population is increasing 
as when it is constant16. Second) if population is constant) then consumption is 
decreasing with respect to capital) and therefore the value of the marginal pro­
ductivity with respect to land in creases with the reduction in consumption while 

16Remember that in both models population is identical with labor supply. The only differ­
ence is that labor can have different levels of skill in the second model. 
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the marginal cost decreases. The net effect according to the results in this sec­
tion is an increase in the demand for productive land. However, with increasing 
population the effect of a variation in the discount rate on consumption is am­
biguous. From (91) we see that consumption decreases with capital for a given 
rate of growth K, and increases with K, for a given level of capital, since the 

, , f h' 
physical capital accumulation absorbs less resources when the rate o growt lS 
lower17• Thus, even though the net effect results in a reduction in consumption 
with a corresponding in crease in the value of the marginal productivity of land, 
this effect will be lower for the case of a constant population than for the case 
of an increasing population. Hence, the net effect of an increase of the discount 
rate on productive land is positive when population is increasing. 

An increase in the rate of population growth, 7r, increases the demand for 
productive land. This positive effect is explained by the v~riations i~ con~~mp­
tion caused by the variations in the growth rate of populatlOn. As 7r 16 posltlVely 
related with the rate of growth of capital, consumption decreases with an in crease 
in population growth rate (see again (91). Thus, the value of marginal produc­
tivity of land increases and its marginal costs decreases leading to an increase in 
the share of land used for production. 

An increase in the productivity of education activities, é, has the same effect 
on the demand for land as an increEl,se in 1r. MOl'eover, these positive effect over 
compensate the negative effect on the marginal costs of physical and efficient 
labor resulting from an in crease in é. For variations in the rate of depreciation of 
physical capital, o,we have the same effects as for variations in the productivity 
of education activities except that the rate of depreciation does not affect the 
marginal cost of efficient labor. 

4 Conclusions 

A neoclassical growth model is analyzed where land is explicitly considered. The 
model take~ account of land as a production factor as well as a consumption good 
being utilized for recreational purposes. In this way land enters the aggregate 
production function and the utility function of a representative consumero This 
paper shows that for the case where the size of the population is constant, the 

17Notiee that an inerease in the discount rate leads to an inerease in the marginal eost of 
capital (8MCK /8p > O), but reduces its growth rate (8K/8p < O). On the other hand, although 
the function defined by (91) presents a maximum with respeet to K, the solution for the problem 
is always in the increasing section of the function. This explains why consumption decreases, 
other things being equal, when K decreases. 
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model has a unique steady state solution which can be characterized locally by 
a saddle point. The optimal allocation of the land is defined by the necessary 
conditions stating that the value of the marginal product of land must be equal to 
its marginal costs, where the former corresponds to the product of the marginal 
utility of consumption times the marginal product of land, and the latter to the 
marginal utility of recreationalland. Based on this optimality condition we de­
fine sufficient conditions for a positive level of land preservation at the steady 
state, showing that preferences (ethical views 01' normative parameters in Bar­
rett's words) playa critical role in the fate of natural environments. In general, 
we can say that only if recreationalland (land in its 'pristine' state) is an essential 
good for the individuals, or if the marginal cost of productive land is infinite while 
recreationalland is zero, then it is gual'anteed that land will not be completely 
developed. 

With this paper we aim at a generalization of Olson's and Barrett's mod­
els. In particular, we present an optimality condition (10) which coincides with 
Barrett's optimality condition (3.2) of his model where consumption does not 
depend on the rate of depletion (Barrett (1992, p.292)). Howevel', our results 
show that his Proposition l' is only true if the marginal utility of recreational 
land (natural capital for Barrett) tends to infinity as recreational land goes to 
zero, i.e., the available land is completely used for production, or if the marginal 
utility of consumption is zero given that the entire land is developed18• 

Additionally we want to point out that our results neither depend on the elas­
ticity of substitution between the production factors nor on the initial endowment 
of capital as in Krautkraemer's paper. This difference is explained by the distinct 
approach followed in our paper. Whereas Krautkraemer incorporates the rate of 
depletion of a finite stock of a non renewable resource in the production function 
of the economy, we follow Olson's and Barrett's approach by considering, that 
developed land is a production factor. According to our model the elasticity of 
substitution between capital services and land does not play any decisive role 
in explaining a permanent land preservation. Actually, it is the substitutability 
between consumption and recreational land, two consumption goods, that de­
termines the possibility of attaining a steady state with sorne land devoted to 
environmental uses. Our results show that if the indifference curves are asymp­
totic to the axes, i.e., land cannot be completely substituted by consumption 
on an indifference curve, then it is optimal to preserve land permanently as an 
environmental amenity, independently of the initial endowment of the productive 
capital stocP9. 

180bviously, Barrett is implicitly assuming the former beeause he supposes that marginal 
utility of eonsumption do es not depend on recreationalland (see Barrett (1992, p. 291)). 

19Notiee that in Krautkraemer's model it is not possible to define a steady state, given that a 
constant rate of depletion is not compatible with a finite stock of a non renewable resouree for 
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Departing from Barrett's and Olson's assumption of zero population growth 
we extend our analysis by considering the case of an ecologically orientated so­
ciety whose population grows exponentially in the framework of an endogenous 
growth model with human capita120• It shows that it is possible to have economic 
growth with increasing per capita consumption based on a constant allocation of 
land between productive and recreational uses. We establish a sufficient condi­
tion for this result in terms of a lower bound for the rate of discount. Thus, if 
the rate of discol}-nt is not too low, it is possible to have increasing per capita 
consumption together with a fixed production factor (productive land) implying 
decreasing returns to scale. In fact, there exists a set of sustainable balanced 
growth paths since the levels of the two different types of capital remain undeter­
mined so that economies with different initiallevels of physical and human capital 
may finally grow at a common rate, however with different physicaljhuman cap­
ital ratio. Yet, if the economies on1y differ with respect to the initial conditions 
the model predicts that they converge to an identical allocation with respect to 
land. Nonetheless, a difference in the elasticity of the marginal utility (prefer­
ences) with respect to recreationalland would be sufficient to have different levels 
of land preservation. 

A 'comparative static analysis' shows that, given an increase in the discount 
rate, the level of land preservation is decreasing for the case of a constant pop­
ulation where it is increasing for the case of a growing population. The latter 
case, showing that a de crease in the discount rate leads to a deterioration of the 
environment, has already been pointed out by Fisher and Krutilla (1975). The 
diametric results, however, can be explained by different assumptions with re­
spect to population and the 'mechanics' of economic growth. The difference can 
basically be explained by the finding that the rate of discount is a determinant 
for the rate of growth of the economy when the engine of growth is based on the 
accumulation of human capital. 

Finally, we would like to point out that the existence of an optimal trajectory 
from the initial capital stock to one of the optimal paths defined in section 3, Le. 
the transitional dynamics of the model, remains open for further research21 • An-

an infi-nite horizon. Thus, the possibility of substitution between production factors is critical 
to prevent the physical exhaustion of the resource. However, if a production factor is given 
by developed land, then it is possible to find an optimal but constant allocation of land for an 
injinite horizon, even if the initial endowment of land is finite. 

20We understand that recreationalland is an 'essential' good for individuals of an ecologically 
orientated society. 

21See Caballé and Santos (1993) for an analysis of this subject for a model of endogenous 
growth with human capital but without external effects in the production of the goods and 
without land. 
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other ~ossible line o~ research could be the analysis of the optimal intertem oral 
allo.catlOn of land wlth agents strategically acting with different pr f, p 
envlronmental ameni~ies. AH this may help to answer relevant quest~o::~~:~ :~ 
whether or not sustamable growth is compatible with a gr' l . 
a fixed production factor which can also be used for consu:~I~~:OPU atlOn and 
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