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SEASONAL UNIT ROOTS IN TRADE VARIABLES

Carol Alexander and Manuel Cantavella-Jordá

A B S T R A C T

In this paper we examine the presence of seasonal unit roots in trade variables for

Germany, France, the United Kingdom, and Italy, using the procedure developed by Hylleberg,

Engle, Granger, and Yoo (1990) [HEGY]. Both quarterly and monthly data reject the presence

of unit roots at most seasonal frequencies, more frequently in quarterly than in monthly data. This

has important implications for econometric modeling of trade balance, exchange rates and income

in European Union (EU) countries.

JEL : C22
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R E S U M E N

En este trabajo se examina la posible presencia de raíces unitarias estacionales en variables

de comercio para Alemania, Francia, Reino Unido e Italia utilizando la metodología de Hylleberg,

Engle, Granger y Yoo (1990) [HEGY]. Tanto las series mensuales como las trimestrales rechazan

la presencia de raíces unitarias en la mayor parte de las frecuencias estacionales, de manera más

frecuente en datos trimestrales que en datos mensuales. Esto puede tener implicaciones

interesantes en la modelización econométrica de variables de comercio como balanza comercial,

tipos de cambio y renta, por lo menos para países de la Unión Europea (EU).

JEL : C22

Palabras clave: raíz unitaria estacional, metodología HEGY, ciclo, periodo, frecuencia, filtro



 For a broad literature review on international trade models see Goldstein and Khan 1985. 1

 Moreover, according to Maravall (1996) when using seasonally adjusted series in univariate models which2

exhibit some seasonality they will become noninvertible. In this case, testing for unit roots on those series may
be affected by a misspecification error.

I. INTRODUCTION

Economic relationships between trade variables have been examined within the context

of the 'imperfect substitutes' model.   This model is based on a partial equilibrium analysis which1

combines the elasticities approach of Marshall (1923), Lerner (1944), and Robinson (1947) with

the absorption approach of Alexander (1952). Instead of having a structural model of import and

export equations in the imperfect substitutes model, a reduced-form approach may be adopted

(Bahmani-Oskooee 1985, Rose and Yellen 1989). This reduced form has the trade balance as

dependent variable and exchange rates, domestic income, and foreign income as explanatory

variables. 

Most empirical validation of the imperfect substitutes model employs seasonal data which

have been seasonally adjusted prior to the analysis (Rose 1991, Backus et al. 1994). If we work

with seasonal adjusted data, one might think that seasonality could be ignored. In principle, those

data should have the seasonal pattern removed. However, caution has to be taken when working

with seasonally adjusted data. Although a standardised procedure may have been necessary for

the OECD original data source, reporting hundreds of series, the procedure might not be best

when modeling a single series. Parameter estimates would be biased if a seasonal pattern remains

in the data, and inefficient if unnecessary de-seasonalization has been applied.2

When econometric models are built on seasonal data there are certain modelling issues

which need to be resolved at the outset. For example, should seasonality be modelled by

deterministic or stochastic seasonals, and if they are stochastic what is the appropriate stationarity

transform for these data. Are there any common seasonalities in the variables, and if so what are

the implications for the econometric specification of multivariate models? We have to answer

these questions first, to ensure that economic models are applied to trade variables in a well

specified form.

The conventional treatment of seasonality in seasonal unadjusted data employs dummy

variables which represent deterministic seasonals. However the use of deterministic seasonal

dummy variables is not appropriate if the observed seasonality is generated by a stochastic process

(Barsky and Miron, 1989).  And if this stochastic process is non-stationary, it is important that



 That is, the roots of 1- L  = 0. (L denotes the usual lag operator: L y  = y ).3 s n
t t-n

4

we investigate the presence of unit roots at all frequencies, not just the long run, because in this

case it would be necessary to use seasonal rather than annual differencing to attain stationarity.

If the annual differencing stationarity filter is inappropriately applied the true dynamic relations

between the variables may not be revealed, and consequent forecasting performance will be poor

(Frances, 1991). Moreover, according to Beaulieu and Miron (1993), statistical properties of

different seasonality models are distinct and the imposition of one type when another is present

can result in serious biases or loss of information. Therefore it is important to establish whether

seasonal unit roots exist, and at which frequencies, before implementing econometric models of

trade variable data.

A non-seasonal time series may be well described by a deterministic process, a stationary

stochastic process, an integrated process, or by a simple combination of these. A seasonal time

series has much more structure: In order to model a seasonal component it is common practice

to use a stationary form (Banerjee et al. 1993). However, when seasonal components are found

to be integrated it is suitable to allow the model of the seasonal component to drift significantly

over time. This possibility is implied in the modus operandi of seasonal differencing (Box and

Jenkins 1970), whereby a process observed s times per year could be made stationary by

transforming to its s-period difference y  - y . The application of this stationarity filter assumest t-s

that the process contains an integrated seasonal component, with s unit roots given by the s-th

roots of unity.3

It is our purpose to analyse whether unit roots at frequencies other than the long run exist

in seasonally unadjusted monthly and quarterly trade variable data for some European Union

countries. The methodology that we use for the examination of seasonal unit roots is based on

that of Hylleberg, Engle, Granger, and Yoo (1990) also known as HEGY.

Section 2 deals with the construction of data variables and their sources. Section 3

explains the methodology for investigating seasonal integration given by Hylleberg et al. (1990)

and provides empirical evidence on quarterly data. Section 4 examines similar issues following

the method proposed by Beaulieu and Miron (1993) for monthly data. Empirical evidence on

stochastic seasonality for monthly data is within the same section. Finally, section 5 comments on

the implications of the results presented.
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 The HEGY test is based on quarterly data. For quarterly data, the seasonal difference operator  can be4

factorized to show all the possible roots in the generating process as follows: 
1 - L = (1-L) (1+L+L +L ) = (1-L) (1+L) (1+L ) = (1-L) (1+L) (1-iL) (1+iL),  so that the seasonal process has4 2 3 2

four possible roots: 1,-1,i,and -i.

 The frequency is the angle of the root in polar coordinates; A period which is usually measured by the length5

of a cycle is expressed as p=2 /f.

 According to Hylleberg et al. (1990), the effects of the two complex roots are indistinguishable.6
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II. SEASONAL INTEGRATION WITH QUARTERLY DATA

Theory: HEGY test procedure

This test is based on the same idea as the Dickey-Fuller tests (1979 and 1981) for a unit

root at the long-run frequency. It is also easy to implement from an OLS regression. The HEGY

procedure starts by specifying a general autoregressive model parameterised so as to introduce

the seasonal and long run unit roots:

(1)

where ¯  i.i.d.  and A(L) is a fourth order lag polynomial.

The process is said to be stationary if all the roots of the polynomial A(L) lie outside the

unit circle. To test the hypothesis that the roots of A(L) lie on the unit circle against the alternative

that they lie outside the unit circle Hylleberg et al. (1990) use a polynomial expansion of A(L)=1-

L . They show that the polynomial in the lag operator on the left-hand side may be expanded4

around the roots 1, -1, i, and -i (quarterly data).   Hence, the quarterly seasonal unit root process4

has four roots of modulus unity. Each of these roots correspond to different cycles in the time

domain. For quarterly data, Number of ; ;

Frequency = , where  of a cycle.5

Thus, for  corresponds a 0 frequency, a  �  period and a 0 cycle. This would be the

long run cycle. For  corresponds a  frequency, a 4 period, and a 1 cycle (annual) per

year. For  corresponds a  frequency, a 2 period, and 2 cycles per year. Finally, for

 corresponds a  frequency, a 4/3 period and 3 cycles per year.  In order to relate6
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 See Hylleberg et al. 1990 for the approximation theorem.7
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these cycles and roots in an intuitive way, let us consider the application of the particular factor

(corresponding to the root of interest) of the difference operator to the series , observing this

way the number of periods needed for the process to return to its original value. For example,

consider the deterministic process , now, if A(L) = (1+L) for root -1, then 

and ,  Thus the process returns to its original value on a two-period cycle. If

 for root i, then ; ; ; and

 . The process in this case returns to its original value on a cycle of four periods.

Zero frequency is given, obviously, when A(L) = (1-L) in which case the unit root is positive (+1)

and .

Testing for a unit root at a seasonal frequency has much in common with testing for unit

roots at zero frequency (Banerjee et al. 1993). In order to test the null hypothesis that the roots

of  lie on the unit circle against the hypothesis that they lie outside Hylleberg et al. (1990)

define three positive parameters , , and  so that,

A(L) = (1 - /  L)(1 + /  L)(1 + /  L )     (2)1 2 3
2

For  close to unity, the expansion of the series can be carried out by using a Taylor

approximation around the four roots. This polynomial yields terms that correspond to each of the

roots plus a remainder (R) as,7

A(L) = -� (1 + L + L  + L )( L) - �  (1 - L + L  - L )(-L) - (�  � L)(-L)(1- L ) + R     (3)1 2 4 + 3
2 3 2 3 2

The polynomial A(L) will have a root at 1, -1, i, and -i if the corresponding terms in  are

zero. The factorization of (3) yields,

(1 - L ) y  = � y + � y  + � y  + � y  - J          (4)4
t 1 1t-1 2 2t-1 3 3t-2 4 3t-1 t

where the polynomials in the lag operator,
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 We used the D-H tests of Durbin and Hausman (Choi 1992) - results available from authors on request.8
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(5)

represent different filters. Thus, filter  will adjust any series for all roots except for that

corresponding to the factor 1-L; filter  will adjust any series for all roots except for that

corresponding to the factor 1+L; and filter  will adjust any series for all roots except for those

corresponding to the two complex roots in the factor .

Equation 4 is amenable to a test where the maintained model includes an intercept, a time

trend, and some seasonal dummies. According to Perron (1988), the inclusion of seasonal

dummies is due to the fact that the critical values might be influenced by starting values of the

dependent variable in their simulations. Equation 4 can be estimated by OLS, with additional lags

of the dependent variable , to avoid serial correlation in the errors. In order to test

the null hypothesis that there is a unit root at zero frequency one tests . To test the null for

a unit root of -1 (half-yearly frequency) one tests . For the complex roots of ±i (annual

frequency) one applies a joint test of  and . The alternative hypotheses are that there

will be no seasonal unit roots if  and either  or  are different from zero and no long run

unit root if  is also different from zero. Rejection of all the aforementioned null hypotheses

indicates stationarity of the process.

The critical values for these tests can be obtained from those of Dickey and Fuller (1979)

for  and , and from Dickey, Hasza, and Fuller (1984) for  if  is assumed to be zero.

These values are tabulated by Hylleberg et al. (1990) through Monte Carlo simulations.

Empirical evidence

The Dickey-Fuller regression for quarterly data is of the form,

Given the absence of deterministic trend in our data (tested but results not shown),  only8

intercept (.) and seasonals (M) are included as deterministic part of equation 5. Sufficient lagged

dependent variables are added in order to whiten the residuals at the cost of the minimum number
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 In Beaulieu and Miron (1993) and Alexander and Barrow (1994), quarterly data on different variables also9

reject the presence of unit roots at most seasonal frequencies. The same results apply in Beaulieu and Miron

8

of parameters.

Table 1 reports the results of seasonal unit root test for quarterly data. The first column

indicates the roots whose corresponding frequencies are shown in Note below Critical values.

The first row specifies the variables for each country which are fully displayed underneath the

table, in Note. The quarterly data variables under consideration are: trade balance, real effective

exchange rate, GDP, all these three variables for Germany, France, the UK, and Italy, plus OECD

GDP. The numbers in the cells express the ADF statistics on the coefficients.

Table 1. Tests for seasonal unit roots (HEGY), quarterly data

GETB GEXR GEY FRTB FRXR FRY UKTB UKXR UKY ITTB ITXR ITY Y

1 lag 1 lag 1 lag 1 lag 1 lag 1 lag 1 lag 1 lag 1 lag 1 lag 1 lag 1 lag 1 lag
� 1.76* 0.006* 0.17* 0.60* 0.90* -0.27* 0.68* -0.20* 0.05* 0.82* 0.19* -0.28* -0.121

� -4.23 -5.80 -2.94* -4.89 -6.35 -5.87 -4.02 -4.28 -4.65 -5.09 -5.40 -5.8 -5.212

� -6.95 -6.74 -3.24 -6.13 -4.88 -5.48 -5.38 -4.46 -7.17 -7.10 -3.68 -3.71 -5.103

� -4.05 -4.98 -3.75 -4.07 -5.06 -5.36 -3.65 -6.94 -2.6 -3.60 -3.92 -8.91 -6.014

Critical values � � � �1 2 3 4

5% (Intercept, Seasonal Dummies, No trend) -2.95 -2.94 -3.44 -1.96

1% -3.55 -3.60 -4.06 -2.78

Note:  �  (upper case  ) denotes the root at each frequency.  Thus,  �  corresponds to frequency 0 (long run trend and no1

cycles);  �   to frequency  /2 (annual cycle);  �  to frequency   (two cycles per year);  �  to frequency 3/2    (three cycles2 3 4

per year).

- GETB Stands for Germany trade balance, GEXR for Germany real effective exchange rates, GEY for Germany income

(GDP), analogously for the rest of the countries (France, The United Kingdom, and Italy); whereas Y stands for OECD GDP.

- An asterisk indicates the existence of a unit root at the corresponding frequency.

- All variables are in logs.

- Estimation has been implemented in TSP 4.2a

In the first place it is worth noting that the null hypothesis for every series at zero

frequency (root � ) cannot be rejected. This indicates that there exists a unit root in the long run1

for every variable. However, for seasonal unit roots it seems that there is little evidence.  Only

seasonal unit roots at frequency �/2 for Germany GDP (GEY) cannot be rejected, but at 1 per

cent significance level. The most striking aspect in quarterly data, then, is the fact that practically

in all cases no seasonal pattern emerges at any frequency at 5 per cent significance level. For all

countries trade balances, real effective exchange rates, and GDPs, unit roots at the 5 per cent level

and at all the seasonal frequencies are rejected.9
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III. SEASONAL INTEGRATION WITH MONTHLY DATA

Theory

The same procedure can be applied for monthly data. Frances (1991) and Beaulieu and

Miron (1993) adapt the HEGY methodology for monthly data. Considering the same

autoregressive model (1) but with A(L) = 1-L , Beaulieu and Miron (1993) show that the12

seasonal difference operator  is factorized as,

and so the unit roots are,

Hence, the monthly seasonal unit root process has twelve roots of modulus unity. All these

roots correspond to � , 6, 3, 9, 8, 4, 2, 10, 7, 5, 1, and 11 cycles per year, respectively (see Table

3 in Appendix for relation of these roots to respective cycles and frequencies).

The aim is to know whether the polynomial in the lag operator  has roots equal to

one at the zero or seasonal frequencies. In other words, one has to test hypotheses about a

particular unit root without taking a stance on whether other seasonal or zero frequency unit roots

are present. Again, the process  will be stationary if all the roots of the polynomial in the lag

operator  lie outside the unit circle. The hypothesis testing is supported through a polynomial

expansion of the series that uses a Taylor approximation, now, around the twelve roots. Thus, the

new model is (see Appendix for corresponding filters),
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(7)

Just as in the case of quarterly data, the maintained model could include an intercept, time

trend and seasonal dummies. In order to test hypotheses about various unit roots, one has to

estimate equation 6 by OLS : For frequencies 0 (filtered series ) and  (filtered series ), one

simply has to test the corresponding t-statistic for  (k=1,2 resp.) against the alternative that

(stationarity). For the rest of the frequencies,

( ±� / 6, ±� / 3, ±� / 2, 2� / 3, ±5� / 6 )

the corresponding roots come in complex conjugate pairs and therefore one has to implement

joint tests one for each pair. The critical values are tabulated in Beaulieu and Miron (1993).

Empirical evidence

Equation 6 is modified to allow for a deterministic component to enter the regression. This

deterministic part includes an intercept, seasonal dummies, and a trend. Moreover, the

introduction of lagged dependent variables is to avoid serial correlation in the error term of

equation 7. In general, one lag of the dependent variable ( ) has been sufficient in each

regression to whiten the errors, so p=1 in (7).

We run Dickey-Fuller regressions of the form,

where the determinitic part includes, an intercept (.), seasonal dummies (M), and a trend (t).  The

outcomes of the formal test for monthly data are reported in Table 2. The first column indicates

the roots whose corresponding frequencies are shown below the table. The first row expresses

the variables for each country. The variables are: trade balance, real effective exchange rate and

industrial production, for Germany, France, the UK, and Italy, plus industrial production for the

OECD. The numbers in the cells express the ADF statistics on the coefficients. All series are in

log levels, and the sample period is from 1975 (January) to 1993 (December).  Unlike Table 1,

the critical values for monthly data also depend on whether the auxiliary regression includes a time

trend or not. The trend is only included in those equations whose variables have been proved to
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have a deterministic trend. We found that trade balances (GETB, FRTB, UKTB, ITTB) and Italy

industrial production (ITY) in monthly data are trend stationary processes according to the results

of the Durbin-Hausman test (Choi 1992). The rest of the equations do not include a trend. The

critical area for  (k even and larger than 2) is two-sided because these coefficients can be

positive or negative under the alternative.  Except for  and  the rest of the statistics have10

to be evaluated in pairs in order to reject or not the null hypothesis.

Table 2. Tests for seasonal unit roots (HEGY), monthly data

GETB GEXR GEY FRTB FRXR FRY UKTB UKXR UKY ITTB ITXR ITY Y

1 lag 1 lag 1 lag 1 lag 1 lag 3 lags 2 lags 1 lag 1 lag 1 lag 1 lag 1 lag 1 lag
� -0.35*  0.18* -0.17*  0.84*  0.26* -1.21*  1.59*  0.07* -0.43*  0.99*  0.69* -0.48*  0.23*1

� -2.53* -5.08 -4.56 -5.64 -4.92 -5.46 -4.57 -4.95 -3.83 -2.09* -1.88* -2.25* -4.232

� -2.18 -5.94  -1.52 -1.75 -4.56  -1.77 -2.03 -5.51 0.28 -2.17 -6.64  -1.9 -0.553

� -7.75 -2.85 -5.39 -5.16 -2.95 -4.75 -4.83 -2.78 -4.41 -5.21  1.12 -2.85 -6.784

� -1.82 -5.91 -3.40 -0.92 -5.63 -0.99 -1.65 -5.38 -2.43 -0.45 -6.19 -2.66 -3.915

�  3.84  0.60  4.73  3.79  1.90  2.87  4.68 -0.66  7.11  3.21  1.18  2.82  4.766

�  0.35 -3.31  0.05  2.57 -6.02  -0.39 -0.08 -3.55  -0.43  0.46 -3.91  -0.23 -0.487

� -3.36 -4.93 -4.24 -6.20 -4.79 -3.19 -5.13 -3.22 -3.91 -4.18 -3.18 -4.96 -5.348

� -5.43 -7.08 -5.41 -2.81 -5.54 -3.63* -5.92 -7.05 -4.64 -4.67 -5.49 -3.66* -5.819

�  3.77  1.15  1.51  4.60 -1.04  1.55*  2.63  1.59  1.77  2.52  0.81  0.34*  1.7410

�  6.12 -0.31  1.49  2.58 -1.50  0.04  0.32 -3.31  1.31  4.28 -1.25  0.60 -0.0811

� -9.84 -6.95 -4.51 -4.43 -6.41 -5.77 -6.87 -4.88 -9.51 -7.86 -3.64 -8.47 -7.6312

Critical values: � � odd even1 2

5% 1) I,SD,NT : -2.76 -2.76 -3.25 -1.86a

1% -3.32 -3.28 -3.83 -2.60

� �1 2
odd  even

5% 2) I,SD,T : -3.28 -2.75 -3.24 -1.86b

1% -3.83 -3.31 -3.79 -2.57

Note:
a Auxiliary regression with intercept, seasonal dummies (11), and no trend.(applied to all variables except trade balances
and Italy income).
 Auxiliary regression with intercept, seasonal dummies (11) and trend (applied to all trade balances and Italy income).b

-� (upper case ) denotes the root at each frequency.  Thus,  corresponds to frequency 0 (long run trend and no cycles);

 to frequency  (six cycles per year);  and  to frequency  (three cycles per year);  and  to frequency

 (four cycles per year);  and  to frequency (two cycles per year);  and  to frequency

(five cycles per year);  and  to frequency  (annual cycle).
- All variables are in logs.
-GETB Stands for Germany trade balance, GEXR for Germany real effective exchange rates, GEY for Germany income
(industrial production), analogously for the rest of the countries (France, The United Kingdom, and Italy); finally, Y stands
for foreign income (OECD GDP). 
- An asterisk indicates the existence of a unit root at the corresponding frequency.
- Estimation has been implemented in TSP 4.2a.
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 Recall that ADF statistics for roots  where  have to be examined by pairs, that is, both statistics11

have to agree about rejecting the null hypothesis of seasonal unit root against the alternative of no seasonal unit
root at the corresponding frequency. The test is two-sided.

12

As expected from the results on quarterly data unit roots at zero frequency exist in all time

series. For trade balances, we reject unit roots at the 5 per cent level at all the seasonal

frequencies (see critical values for auxiliary regression with trend) except for Germany (GTTB)

and Italy (ITTB) at frequency  (root � ).   For real effective exchange rates, we reject unit2
11

roots at every seasonal frequency except for Italy (ITXR) at frequency  (see now critical values

of the auxiliary regression without trend). Industrial production for Italy is integrated of order 1

at frequency  (5 per cent significance level) and  (1 per cent significance level) and for

France at frequency  (1 per cent significant level). Finally, for the OECD industrial

production, seasonal unit roots are rejected at 5 per cent and at every frequency (except for the

long run).

Summarising, there is weak evidence of seasonal unit roots on monthly series. In the

German trade balance, and French industrial production series there is weak evidence of seasonal

integration. The UK does not present seasonal unit roots at all. Italy is the only country that

exhibits seasonal unit roots in all its three variables and at the same frequency, .

IV. CONCLUSIONS

In this paper we present an introductory analysis which can serve as motivation for

understanding seasonality and our ability to capture it in an econometric model of trade balances.

Results derived from these kind of tests should be taken cautiously since they depend on multiple

factors such as, previous tests on the integration order of the lagged endogenous variable, the

presence of outliers, the inappropriate inclusion or omission of determinist components,

asymptotic validation, so on and so forth.

Even though our empirical research on the presence of seasonal unit roots at different

frequencies show that they are more evident on monthly than quarterly data, we cannot say that

there is strong seasonal integration in trade variables of Germany, France, the UK and Italy.
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The demonstration presented in this paper indicates that unit roots are often absent at

some or all of the seasonal frequencies. Therefore we have learned that empirical research should

be implemented for their presence rather than imposing them a priori. The annual differencing

filter assumes the existence of unit roots at all seasonal frequencies, and since we have found this

not to be the case, any model which employs this stationarity filter will be misspecified. In fact

very few seasonal unit roots were indicated by our tests, so we have shown that the seasonality

for most of the series does not apparently change over time. Therefore, the use of dummy

variables for these stationary seasonal components such as in the first differences seasonal

dummies model of Frances (1991) may be appropriate.
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APPENDIX

Monthly filters

The corresponding monthly filters are (Beaulieu and Miron 1993)
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The data are filtered in twelve different ways to eliminate each of the seasonal roots in

turn. For instance the filter, 

removes all roots except those at frequency zero. One would proceed analogously with the rest

of the filters.

Data definitions and sources

The empirical work considers both monthly and quarterly data and deals with four

European Union countries: Germany, France, the United Kingdom, and Italy. Monthly data span

the first month of 1975 through the last month of 1993 and quarterly data cover the first quarter

of 1975 up to the last quarter of 1993.

The trade balance is defined on an aggregate basis taking into account just visible goods

traded around the world. The construction of this variable has been carried out through a ratio

of exports over imports. It is measured in 1985 U.S. dollars. The real effective exchange rate is

the one used by the International Monetary Fund. This is a weighted index that combines the

exchange rates between a currency in particular and the currencies of seventeen other industrial

countries (partner and/or competitor countries). It is adjusted for relative movements in national

price and expressed on 1985 year base. Industrial production (1985 index) is used as a proxy for

domestic income in monthly data whereas gross domestic product (GDP), in 1985 domestic

currency units, performs the same function but for quarterly data. Industrial production for the

OECD countries (1985 index) is employed as a proxy for foreign income in monthly data. OECD

GDP (1985 U.S dollars) represents the same variable for quarterly data. All variables are real and
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transformed into natural logarithms. Unfortunately, the OECD industrial production index and

the OECD GDP are seasonally adjusted.

Trade balance and real effective exchange rate data are drawn from International

Financial Statistics 1993 monthly data series CD-ROM published by the IMF. Quarterly data for

the same variables are obtained by dealing with monthly data.  For instance, trade balance

variables are realisable by simply adding their three consecutive monthly observations; real

effective exchange rate variables are attainable by calculating the average index of their three

consecutive monthly data.  Industrial production in monthly data and GDP in quarterly data are

collected from OECD Main Economic Indicators and OECD Quarterly National Accounts

respectively, both from various issues.
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Table 3. Possible unit roots in monthly data

Frequency Period Cycles per year Filter Filtered Series

0 0

y  (Long-run Trend)1t

12 1

{ y , y } (Annual Cycle)11t 12t

6 2

{ y , y } (Biannual Cycle)7t 8t

4 3

{ y , y }3t 4t

3 4

{ y , y }5t 6t

12/5 5

{ y , y }9t 10t

2 6

{ y }2t
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