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STRATEGIC BEHAVIOR AND EFFICIENCY 
IN A GROUNDWATER PUMPING DIFFERENTIAL GAME 

Santiago J. Rubio and Begoña Casino 

ABSTRACT 

In this paper socially optimal and private exploitation of a common property aquifer are 
compared. Open-loop and feedback equilibria in non linear strategies have been computed to 
characterize the private solution. The use of these two equilibrium concepts allows us to 
distinguish between cost and strategic externalities. The open-loop solution captures on1l1y the 
cost externality, whereas the feedback solution captures both externalities. The results show that 
strategic behavior increases the overexploitation of the aquifer compared to the open-loop 
solution. However, if the groundwater storage capacity is large, the difference between the 
socialIy optimal and private exploitation, characterized by a feedback equilibrium, is negligible 
and can be ignored for practical purposes. 

Key Words: Groundwater exploitation, Cornmon property reSOUl'ces, Strategic externality, 
Differential games, Feedback solution, Nonlinear strategies. 

RESUMEN 

En este trabajo se comparan la explotación privada y socialmente óptima de un acuífero 
de propiedad común. Para caracterizar la solución privada se han calculado los equilibrios 'open­
loop' y 'feedback' en estrategias no lineales. El uso de estos dos conceptos de equilibrio nos ha 
permitido distinguir entre efectos externos estratégicos y de coste. La solución 'open-Ioop' 
captura solamente el efecto externo de los costes mientras que la solución 'feedback' captura 
ambos efectos externos. Los resultados muestran que el comportamiento estratégico aumenta la 
sobreexplotación del acuífero comparado con la solución 'open-loop'. Sin embargo, si la 
capacidad de almacenamiento del acuífero es grande, la diferencia entre la explotación privada 
y la socialmente óptima, caracterizada por un equilibrio 'feedback', es despreciable y puede 
ignorarse para própositos prácticos. 

Palabras Clave: Explotación de aguas subterráneas, Recursos de propiedad común, Efecto 
externo estratégico, Juegos diferenciales, Solución 'feedback', Estrategias no lineales. 
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1 Introduction 

Groundwater has always been regarded as a eommon property resouree where 

entry is restrieted by land ownership and private exploitation is ineffieient. 

Traditionally, two sourees of ineffieieney have been pointed out: the first one 

is a pumping cost extemality and the seeond one a strategic externality. The 

eost externality appears because the pumping cost in creases with pumping 

lift, so that withdrawal by one farmer lowers the water table and increases 

the pumping costs for all farmers operating over the aquifer. The strategic 

externality arises from the competition among the farmers for appropriating 

groundwater through pumping since property rights over the resource are 

not well defined. 

In 1980, Gisser and Sánchez presented a first estimation of this ineffi­

ciency, comparing the socially optimal exploitation with private (competi­

tive) exploitation, using data from the Pecos River Basin, New Mexico. In 

that papel' the private exploitation of the aquifer is characteriz~d assuming 

that farmers are myopic and choose their rate of extraction to maximize 

their current profits, whereas the optimal exploitation is obtained through 

the maximization of the present value of the stream of aggregate profits. For 

a model with linear water demand, average extraction cost independent of 

the rate of extraction and lineady decreasing with l'espect to the water table 

level, they found that if the storage capacity of the aquifer is l'elatively large, 

the diffel'ence between the two systems is so small that it can be ignored fol' 

all practical purposes. This result has been called the Gisser-Sánchez rule by 
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Nieswiadomy (1985).1 

Since the publication of this paper, a series of empirical works have been 

published, comparing optimal exploitation with competition: see Feinerman 

and Knapp (1983), Nieswiadomy (1985), Worthington, Burt and Brustkern 

(1985), Kim et al. (1989) and Knapp and Olson (1995). The main conclusion 

we can reach TI:om this literature is that when it is assumed that average 

extraction cost de creases linearly with respect to the water table level a~ 

in the Gisser and Sánchez model, percentage differences in present value are 

small although nominal differences can be important. However, it seems that 

regulation of groundwater exploitation is unlikely to be beneficial even when 

uncertainty about surface water supply is taken into account, as happens in 

Knapp and Olson's paper. 2 

Nevertheless, at the beginning of the eighties the hypothesis of myopic 

behavior had already been replaced by the hypothesis of rationality in the 

analysis of private exploitation of common property resources by authors 

such as Levhal'i and Mirman (1980), for the analysis of a restricted access 

fishel'Y, and Eswaran and Lewis (1984), fol' a common property nonrenewable 

1Two more papers were published by Gisser at the beginning of the eighties on the 

comparison between the optimal and private exploitation of groundwater, Gisser (1983) 

and Allen and Gisser (1984). In this last papel' it is shown that the Gisser-Sánchez rule 

also works for the case of an isoelastic demand function. 

2The optimal exploitation of groundwater under ullcertainty conditions has been re-

cently addressed by Tsur and Graham-Tomasi (1991), Provencher and Burt (1993), Tsur 

and Zemel (1995) and Rubio and Castro (1996). 
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resource. 3 This approach was finally adopted by Negri (1989) for the analysis 

of the common property aquifer. In Negri's groundwater pumping differential 

game, open-Ioop and feedback equilibria are compared and it is shown that 

the open-Ioop solution captures only the pumping cost externality whereas 

the feedback solution captures both externalities, the pumping cost external-

ity and the strategic externality, and exacerbates the inefficient exploitation 

of the aquifer compared to the open-Ioop solution. This paper has two weak 

points: first, the existence and uniqueness of the feedback solution are as-

sumed and, second, the comparison between the different solutions, including 

the optimal solution, is made in terms of the steady state groundwater re-

serves because the equilibrium pumping paths cannot be explicitly derived 

in his general formulation of the game. 

In Provencher and Burt (1993) optimal and feedback equilibria, computed 

using discrete-time dynamic programming, are compared. The authors ex-

plore dynamic inefficiencies via Kuhn-Tucker conditions. They conclude that 

concavity of the value function is a sufficient condition for strategic behav-

ior to in crease the inefficiency of private groundwater exploitation, and that 

the steady state groundwater reserves attained when firms use decision rules 

stl'ategies are bounded TI:om below by the steady state arising when firms are 

myopic and TI:om aboye by the steady state arising TI:om optimal exploitation. 

In this paper we adapt the model defined by Gisser and Sánchez to study 

3Hartwick (1980), Berck and Perloff (1984) and Van der Ploeg (1987) are other examples 

in the fishery Jiterature and McMillan and Sinn (1984) and Reinganum and Stokey (1985) 

in the nonrenewable resource literature. 
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the effects of strategic behavior on the efficiency of private groundwater ex­

ploitation. In particular, we investigate whether the Gisser-Sánchez rule still 

holds when it is assumed that firms are rational and the effects of strategic 

behavior are taken into account. To do this we follow Negri's approach and 

evaluate the impact of the strategic externality as the difference between 

the open-loop and feedback solutions of a groundwater pumping differential 

game. 

It has been usual in the differential game literature to resort to linear 

strategies to obtain feedback equilibria (see, for instance, Levhari and Mir-

man (1980), Eswaran and Lewis (1984), Reynolds (1987) and Fershtman 

and Kamien (1987)). However, since the publication of Tsutsui and Mino's 

(1990) paper calculation of nonlinear strategies has become more frequent. 4 

Tsutsui and Mino examine, for a differential game of duopolistic competi­

tion with sticky priCE'13, whether it is possible to construct a more efficient 

feedback equilibrium using nonlinear strategies. They conclude that it is not 

possible to construct a feedback equilibrium which supports the cooperative 

01' collusive price, in other words, it is not possible to get a result equivalent 

to the Folk theorem in repeated games.5 Nevertheless, they find that there 

exist feedback equilibria which approach the cooperative solution more than 

4See, in the framework of environmental economics, Dockner and Long (1993), Wirl 

(1994) and Wirl and Dockner (1995), where nonlinear strategies are used to evaluate the 

benefits of international cooperation in pollution control. 

5To be precise, they show that, as the discount rate approaches zero, there exists a 

steady state feedback equilibrium that asymptotically approaches the steady state coop­

erative 01' collusive price. 
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the open-loop equilibrium. 

In the context ofenvironmental economics literature Dockner and Long 

(1993) have obtained results identical to the ones obtained by Tsutsui and 

Mino for a symmetric differential game of international pollution control with 

two countries, and Wirl (1994) and Wirl and Dockner (1995) have shown 

that cooperation between an energy cartel and a consumers' government is 

not necessary to reach the efficient long-run concentration of 002 in the 

atmosphere. 

These precedents have led us to compute the feedback equilibria of our 

gl'oundwater pumping differential game resorting to nonlinear strategies, with 

the aim of examining whether strategic behavior plays against the efficiency 

of the solution, as has been established by Negri and Provencher and Burt, 

01' for the efficiency, as seems to happen in Tsutsui and Mino, Dockner and 

Long and Wirl's papers. 

Our results show that the difference between the sociaHy optimal and 

private exploitation of groundwater, this last characterized by a feedback 

equilibrium, decreases with the stcirage capacity of the aquifer so that if this 

is large enough the two equilibria are identical for aH practical purposes. 

This conclusion confirms the applicability of the Gisser-Sánchez rule. More-

over, we find that strategic behavior plays against the efficiency of private 

exploitation, supporting Negri's results. However, the applicability of the 

Gisser and Sánchez rule reduces the practical scope of this resulto In other 

words, strategic behavior exacerbates the overexploitation of the aquifer but 
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if the storage capacity of the aquifer is relatively large the impact of the 

strategic externality is negligible. 6 These results establish that the potential 

benefits coming from the regulation of the resource will be relatively small. 

In the next section we present our formulation of the differential game 

and we derive the open-loop Nash equilibrium and the stationary Markov 

feedback equilibrium in the subsequent two sections, respectively. In Section 

5 we characterize the stationary Markov feedback equilibrium and compar~ 

it with the open-loop Nash equilibrium and the optimal solution, and in 

Section 6 we use Gisser and Sánchez (1980) and Nieswiadomy (1985) data to 

compute the different equilibria and thus illustrate quantitatively our results. 

Sorne concluding remarks close the papel'. 

2 The roodel 

In this papel' we adapt the model developed by Gisser and Sanchez (1980) 

to the study of strategic behavior effects on groundwater pumping. 

We assume that demand for irrigation water is a negatively sloped linear 

6The different results concerning the effects of strategic behavior on the efficiency of 

private solution can be explained by the different nature of the existing strategic interde­

pendence in each game. For duopolistic firms there exists a potential gain associated with 

cooperation, whereas in a groundwater pumping differential game firms compete for the 

appropriation of a jinite common property resource. Nevertheless, if the resource and the 

number of firms are large the competition is feeble and the strategic externality practically 

disappears. 
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function 

W=g+kP, k < O (1) 

where W is pumping and P is the price of water. We also assume that farmers 

sell their production in competitive markets so that the price of water is equal 

to the value of water marginal product, and moreover that the agricultural 

production function is constant returns to scale and that factors other than 

water and land are optimized conditional on the rate of water extraction. 

Access to the aquifer is restricted by land ownership and consequently 

the number of farmers is fixed and finite over time. In the model all farm-

ers are identical. This symmetry assumption allows us to resolve the game 

analytically and thus to obtain sorne initial results on the effects of strategic 

behavior on private groundwater pumping. Moreover, it also makes feasible 

the study of the effects of changes in property structure on private solution 

efficiency. By symmetry we can write the aggregate rate of extraction as 

W = NWi, where N is the number of farmers and Wi the rate of extraction 

of the representative farmer. Then, the individual demand functions are 

1 
Wi = - (g + kP), i = 1, ... , N 

N 

and the revenues of the ith farmer 

(2) 

(3) 

The total cost of extraction depends on the quantity of water extracted and 

the depth of the water table 

C(H, W) = (co + clH)W, Cl < O, (4) 
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where H is the water table elevation aboye sea level, ea is the maximum 

average cost of extraction and Hm = -ea/el represents the maximum water 

table elevation that we associate with the natural hydrologic equilibrium of 

the aquifer. Then, as the marginal and average costs do not depend on the 

rate of extraotion, the individual farmer's extraction costs are 

(5) 

Costs vary directly with the pumping rate and inversely with the level of 

the water tableo Marginal and average costs in crease with the pumping lift 

and are independent of the extraction rateo We are implicitly assuming that 

changes in the water level are transmitted instantaneously to all users. This 

assumption clearly exaggerates the degree of common property. Moreover, 

the symmetry assumption requires that the groundwater basin has parallel 

sideB with a flat bottom. 

The differential equation which describell the dynamics of the water table 

is obtained as the difference between natural recharge and net extractions 

AS j¡ = R + (¡ - l)W, O < 'Y < 1 (6) 

where R is natural recharge, 'Y is return flow coefficient, and AS is area of 

the aquifer times storativity. We assume that the rate of recharge is constant 

and deterministic and, although artificial recharge of the aquifer is feasible in 

this specification, we focus on the case where the resource is being depleted.7 

7See Knapp and Olson (1995) for a groundwater management model with stochastic 

surface flows and artificial recharge. 
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Finally, we assume that the interactions among the agents aJ.'e completely 

noncooperative and rational, then the ith farmer faces the following dynamic 

optimization problem: 

(7) 

S.t. j¡ H(O) = Ha > O 

where r is the discount rateo We implicitly assume the nonnegativity con-

straint on the control variable and we do not impose H ~ O as a state 

constraint but as a terminal condition: limt-><XJ H(t) ~ O for simplicity.8 

3 Open-Ioop Nash equilibrium 

In the open-Ioop Nash equilibrium, farmers commit themselves at the mo-

ment of starting to an entire temporal path of water extraction that maxi-

mizes the present value of their stream of profits given the extraction path of 

rival farmers. 9 Then for every given path W,i(t) of farmer j, .1 = 1, ... , N - 1, 

farmer 'i faces the problem of maximizing (7) given Wj(t). A similar prob-

lem faces the other players j. An equilibrium of the game are N open-loop 

strategies that solve the N optimization problems simultaneously. Forming 

the current value Hamiltonian in the standard way, the necessary conditions 

STo simplify the notation, the t argument of the variables has been suppressed. It wil! 

be used only if it is necessary for an unambiguous notation. 

9For a formal definition of strategy space and equilibrium concepts used in this paper 

see Fershtman and Kamien (1987) and Tsutsui and Mino (1990). By exteusion they can 

easily be adapted to our game. 
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for an interior open-loop equilibrium are 

N g ')'-1 
kWi - k - (co + C1 H ) + A AS = O, í = 1, .", N (8) 

).i=rAi+C1Wi, í=l,,,.,N, (9) 

the transversálity conditions being: 

(10) 

Assuming the marginal extraction cost of the last unit of water, Co, lS 

higher than the maximum value of marginal product, -g/k, (co ;::: -g/k) 

eliminates the possibility of a corner solution in which H :s 0. 10 On the other 

hand, assuming symmetric farmers simplifies the solution. With symmetry, 

Wi. = Wj = W and Ai = Aj = A and therefore the 2N equations defined by (8) 

and (9) reduce to 2. 

Differentiating (8) with respect to t and substituting ). and A in (9) yields 

(11) 

IOSee Rubio, Martínez and Castro (1994) for a complete characterization of all possible 

long-term equilibria (steady states), including the physical exhaustion of water reserves in 

a finite or infinite time. In fact, the condition for an interior solution given above can be 

relaxed, as it is shown in Rubio, Martínez and Castro (1994), Prop. 2), since it must be 

also taken into account to define it the steady state user costo However, the analysis of 

this issue in the framework of the differential game presented in Section 2 is outside of the 

scope of this papel'. 
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Taking into account that at the steady state f¡ = w = O, we can use equations 

(6) and (11) to find the stationary equilibrium, given by 

H!:n = _-:--R_--:- + _R _ _ ~ (fL + c-o) 
kC1(')'-1) rASN C1 k 

(12) 

and 

W*= 
R (13) 

(')'-l)N' 

AH this can be summarized as: 

Proposition 1 There exists a unique stationary open-loop Nash equilibrium 

for the garne. The water tablc at this equilibrium is given by (12) and the 

rate of extraction by (13). 

Observe that in this game as the dynamics of water table H does not 

depend on H, the stationary equilibrium extraction rate is independent of the 

equilibrium concept used to resolve the game. On the other hand, equation 

(8) implies that at every moment each playerfollows the policy Nw/k-g/k = 

Co + C1H -- A(')' -l)/AS. This rule is the well-known price equal to marginal 

cost, but in this case marginal cost presents two components: the marginal 

extraction cost and the user cost, -A(')' - l)/AS.u At the steady-state, /\ 

is equal to the capitalized value of the in crease in cost resulting from a one-

unit reduction in the water table for an extraction rate equal to its stationary 

value so that the user cost at the steady-state is equal to -c1R/rASN. 

llThe necessary conditions for optimal groundwater pumping have been established in 

the Iiterature a long time ago. See Negri (1989) for an interpretation of A. 
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To evaluate the efficiency of this equilibrium we need the socially opti-

mal or efficient equilibrium. That equilibrium can easily be obtained as a 

particular case of the open-Ioop Nash equilibl'ium making N equal to one. 

_---;-R_--:- + _R _ _ ~ (fL + co) 
kCl(-r -1) rAS Cl k . 

(14) 

Now we can compare the stationary values of the water table fol' the two 

equilibria 

AH* = H~o - H~L = A~r (1 - ~) > O. (15) 

This difference repl'esents the impact of the pumping cost ea;ternality on the 

stational'y value of the water tableo If we now make a comparative statics 

analysis of this difference we get 

8(AH*) 
8r 

8(AH*) 
8N 

-~(1-~) <O 
ASr2 N 
R 

ASrN2 > O. 

These results allow us to present the following proposition: 

Proposition 2 The socially optimal stationary equilibr'ium water table is 

higher than the stationary open-loop Nash equilibrium water table and the 

diffcT'ence declines as the discount rate incT'eases or the number of faT'mers 

decreases. 

The effect a discount rate variation has on the difference between the two 

stationary values is explained by the different impact that a variation of the 

discount rate has on the user cost in each case. As A;LN = A~o we find that 

18A;d8rl < 18A~o/8rl. Thus an in crease in the discount rate decreases the 
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user cost in both cases but by a larger amount in the optimal solution, so 

that, although the two stationary values decrease because of the reduction 

in the usel' cost, the decrease in the optimal value is higher than that in the 

inefficient value, resulting in a decrease of the difference between the two 

steady-states. On the other hand, the effect a variation in the number of 

farmers has on the difference is clear, if one notices that the socially optimal 

equilibrium is independent of the number of farmers. Thus an increase in the 

number of farmers reduces the user cost of the l'esource and, consequentIy, 

the stationary open-Ioop Nash equilibrium water table, causing an increase 

in the difference between the two equilibria. 

Finally, we want to comment on how these results affect Gisser and 

Sánchez's conclusions. The first thing that we can point out is that our 

l'esults confirm their rule, so that we predict, like them, that if the storage 

capacity of the aquifer is relatively large, the two equilibria would be very 

close; in fact, identical for aH practical purposes.12 The second remark is 

that Gisser and Sanchez's estimations are overvalued because these authors 

assume that the farmers are myopic. 13 However, if one assumes, as we do, 

that the farmers are rational, their private eva.luation of the user cost will 

be positive and price will consequently exceed marginal extraction costs (see 

121n Sectíon 6 we use the data from Gisser and Sánchez (1980) to illustrate thís result 

for an open-loop Nash equilibrium. 

13In fact, as the are assuming a constant marginal extractíon cost, they are implícitly us-

íng an equilíbrium concept equivalent to the open access long-run equilibrium for common 

property resources (P = MC = AC). 
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(8)). With rational farmers the myopic solution applies only asymptotically, 

that is, when the number of farmers approaches infinity, 

lim H!:JL = H'lrr = 
N->oo 

which implies' that 

where the right-hand side is equal to the difference found by Gisser and 

Sánchez (see Gisser and Sanchez (1980, p. 641)) in their model, which is 

higher than the difference (15). 

4 Stationary Markov feedback equilibrium 

In an economic environment in which binding commitments are not fe asible 

because of undefined property rights and where all players can have access 

to current information on water table elevation, strategies that depend only 

OIl time cannot be credible. As is well known this requiremeIlt of credibility 

is fulfilled by a stationary Markov feedback equilibrium which is derived by 

the dynamic programming approach. In Markov feedback equilibria farmers 

adopt decision rules that depend OIl the water table, taking as given the 

decisioIl rules of their rivals. 

In this section we demonstrate, following Tsutsui and Mino (1990) and 

Dockner and Long (1993), that our groundwater pumping game admits non-

linear Markov feedback equilibria. As Iloted aboye, a stationary Markov 
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feedback equilibrium must satisfy the dynamic programming equation 

rVi(H) = 

(16) 

where i = 1, ... , N. Using the maximization condition Vi' (H) = 

(ASjb- 1))((gjk) + Co + C1H - (Nwdk)) and the symmetry assumption we 

have 

rV(H) [~ w2 
- (f + Ca + c1H) w] 

+ (1 ~ 1 + NW) (f + Co + C1 H - ~ w) . (17) 

Assuming a zero discount rate, the Bellman equation (17) becomes the 

quadratic equation in w 

with two solutions 

W1,2 = N(2~-1) {(N 1)(f+co+C1H)- k(~~1) 

± [(N -1) (~+c, + "H) - k(~~ 1))' 

+ 2N~~~ _-l~)R (~ +c, + "H ) n (19) 

Based on this result for r = O we propose a nonlinear strategy for the 

case with r > O given by 
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where f(H) is a nonlinear function in H. Working with (20) and the Bellman 

equation we obtain a set of stationary Markov strategies implicitly defined 

by the equation14 

K = {w- N(2~-1) [k(N-1)(t+CO+ClH)- b~~)] 
~ (H + ~) yar I 

{w - N(2~ _ 1) [k(N - 1) (t + Co + cIH) - b~R1)] 
- ( H + ~) yb r2 

(21) 

where K is an arbitrary constant, and 

F 
k(N - l)2ci N ASclr 

- N(2N-1) +b-1)(2N-1»0 (22) 

G F (g ) Nkb -l)Cl - NASr 
- -+co - R<O 
Cl k k(2N - l)b·- 1)2 (23) 

! rAS ± rAS 2 4kF "2 ( { Ir 
2 (7- 1)(2N-l) [t7-1)(2N-l)) - N(2N-l)] ( ) 

where el = b
Yu 

u < O and 1':2 = -;:yba < O. y -y <" y -y 

The set of solution curves given by (21) includes two linear stationary 

Markov strategies corresponding to the case of K = O given by 

k(N - 1) (g) R G a 

N(2N -1) k + Co - b - 1)(2N -1) + F Y 

[
k(N - l)Cl a] 

+ N(2N -1) + Y H (25) 

b _ k(N - 1) (g) R G b 

W - N(2N - 1) k + Co - b -1)(2N - 1) + F Y 

14The derivation of this equation follows step by step the one presented by Doclmer and 

Long (1993) and will not be repeated in this papero 
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[
k(N - l)Cl b] H 

+ N (2N - 1) + y . (26) 

In Fig. 1, we note that each solution curve is only well defined in the region of 

nonnegative marginal value, that is, on the right of the line defined by VI = O, 

and the set of solution curves consists of two straight lines and a family of 

hyperbolic curves. The two straight lines wa(H) and wb(H) correspond to 

the singular solutions (25) and (26). The first is positively sloping and the 

second negatively and they go through (f¡, w). The steep dotted line is the 

locus dw/dH = -00, whereas the dotted line with negative slope is the locus 

dw/dH = O, for Eq. (21). 

V'=o 
w 

dw/dH = - 00 

~~ ____ -+-+~~~ __ ~-+ __ ~~~~___ SSL 
l' 
I 
I 
I 
I 
I 
I 
I 

Figure 1 
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Each curve in Fig. 1 corresponds to a nonlinear stationary Markov feed-

bade equilibrium and as in our game the set of solution curves covers the 

entire H - w plane we see that for each point on the steady-state line, SSL, 

(defined by w* = -R/N(rr - 1)) it is always possible to find some strategy 

satisfying the'stationarity condition: j¡ = O. However, the existence of a sta-

tionary point does not necessarily mean that there exists a path, H* (t), that 

converges to it. For that reason we are interested in t~e stable stationary. 

points. 

Taking into account that the rate of extraction is given by the nonlinear 

stationary Markov strategies implicitly defined by (21), the state equation 

(6) can be written as15 

. 1 
H = AS [R + (rr - l)Nw(H)]. 

Linearizing this equation around the steady-state gives the stability con di-

tion: dw/dH > O, that implies that a stationary water table H* is locally 

stable when the slope of w(H) is positive at the intersection point with SSL. 

Graphically this means that set of locally stable stationary points is defined 

by the interval (HL,HH) (see Fig. 1). The limits of this interval can be 

calculated as the intersection points of the lines Vi = O and dw / dH = O with 

15Remember, in arder to avoid confusion resulting from the term stationary in this 

section, that stationary Markov strategies describe decision rules that prescribe an ex-

tractian rate as a funetion exclusively of the observed water table, and are, consequently, 

illdependent of time. 
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SSL 

(27) 

(28) 

The derivation of HL is immediate. To calculate HH we have to solve for 

f '( ) = _ k(N - l)Cl 
H N(2N-1)' 

(29) 

which has been obtained from (20) for dw/dH = O. 

Substituting (20) into the Bellman equation yields 

1 [ ) NR]2 
rV(H) = 2kN(2N _ 1) -k(N -1) (t + Ca + c1H + 'Y - 1 

R (g ) (2N - l)N 2 + 'Y - 1 ¡;; + Co + c1H - 2k f(H) . 

Differentiating with respect to H and substituting Vi again using Eq. (20) 

for w(H) yields 

{ [ 
ASN ] (g ) ASN R 

r (rr-1)(2N-1) ¡;;+co+c1H + (2N-1)k(rr-1)2 

ASN f(H)} 
k(rr-1) 

(N -l)Cl [ (g ) NR] 
(2N -l)N k(N -1) ¡;; + Co + c1H - 'Y - 1 

+ 'YR~\ - (2N ~ l)N f(H)f'(I-l) , 

which upon rewriting results in 

'( ) _ k [ ASNr f(H) _ FH - e] 
f H - (2N -l)Nf(H) k(rr-1) . 

(30) 
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On the other hand, we know that at the steady-state w* = -R/N(ry - 1), 

then using Eq. (20) one more time we have 

(H*) k(N - 1) (g H* R) 
f =-N(2N-1) k+ CO + C1 + (ry-1)k ' (31) 

and we can use (29), (30) and (31) to obtain HH. 16 The next proposition 

summarizes these results. 

Proposition 3 Any water table level in the interval (HL , HH) 'ís a locally 

stable steady-state, where H L is the stationary water table fo'(' the myopic 

solution and HH is the stationary water table for the open-loop solution. 

In our groundwater pumping game, more can be said about the stability of 

a steady-state. Specifically, we can identify the domain of initial water table 

values from which H*(t) converges to H*, the stationary point. But first, we 

need to introduce more notation. As we have already pointed out, the set 

of solution curves consists of two straight lines and a family of hyperbolic 

curves. This family is divided into six types. Let gn(H) be a solution curve of 

type n and en the set of gn(H) (n = 1, ... ,6) (see Fig. 2). Each en contains 

an uncountable number of hyperbolic curves. From Fig. 2 and equation 

(21), it is clear that each gn(H) E en including the linear ones, n = a, b, 

is well defined and continuously differentiable on the domain Dn == [~n, :En], 

16 As HL < HH the 88L must be below the intersection point of linear strategies in Fig. 

1. If 88L were above (fI, w) then HL > HH since HL is defined by the intersection point 

of the dw/dH = -00 line with 88L, and HH is defined by the intersection point of the 

dw/dH = O Une with 88L, 
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where xnrepresents the lower bound of the domain and :En the upper bound. 

Let B (H*) denote a reachable initial water table set for H*. To find B (H*) 

we use the fact that at any point aboye (below) SSL in the H - w plane, 

dH/dt < (» O. Hence, for some Ho, if the point (Ho,gn(Ho)) is aboye 

(below) SSL, then H*(t) decreases (increases), 

v'=o 
w 

g" (H) 

----
.---

_- dw/dH = - 00 
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Now we consider four cases for H*, (i) If H* = HH, the corresponding 

gH(H) is tangent to SSL at HH and defined on DH = [:.:H,XH]. It is easily 

checked graphicallythat B(HH) = [xH, HH] e DH. In this case the difference 
- 01-

between the dornain of the strategy and the B set is dearly seen. (ii) If H* E 

(Ha, HH), there-exists sorne g4(H) E G4 which supports H* (see Fig. 2). 

g4(H) is defined on the H*-dependent dornain D(H*) = [::4 (H*), x4(H*)]. 

> Frorn the hyperbolic property of g4( H), it can be :;;een that there exists. 

H4(H*) E D(H*) such that H4(H*) > H* and g4(H) intersects SSL again 

at H4(H*). So that B(H*) = [:.:4 (H*), H4(H*)] ~ D(H*).(iii) If H* = Ha, 

the corresponding ga(H) is defined on Da = [:.:a, Hm], where Hm is the 

water table level associated with the rnaxirnurn capacity 01.' natural hydrologic 

equilibriurn of the aquifer. For each Ho E Da, H*(t) converges to Ha. Thus, 

B(Ha) = Da. (iv) If H* E (HL , Ha), there exists sorne g5(H) E G5 which 

supports H* (see Fig. 2). g5(H) is defined on the H*-dependent dornain 

D(H*) = [:.:5 (H*), x5 (H*)]. For each Ho E D(H*), H*(t) converges to H*. 

Hence B(H*) = D(H*). These relationships are surnrnarized in the next 

proposition. 

Proposition 4 (a) B(H*') e B(H*) for any H*,H*' 8uch that Ha < H* < 

H*' S HH. (b) B(H*) --t [:.:a, H b], as H* --t Ha frorn above. (e) B(H*) --t 

[::a, H], as H* --t Ha fTorn below. 

(a) shows that if there are two stationary water tables H* ancl H*' with 

H* < H*', then the clornain of the reachable initial water table for H*' is 

srnaller than the one for H*, Whereas (b) ancl (e) irnply that B(H*) lS 
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discontinuous at H* = Ha, since B(H*) is a set-valued function. 

To condude this section we show that the aboye constructed stationary 

Markov strategies define a stationary Markov feedback equilibriurn. 

Proposition 5 For each w(H) given by (21) the function J(H) defined by 

J(H) = ~ [- N(2~k -1) W(H)2 + ((N -1) (t + Co + CIH) 

-k(~~l))W(H)+ í'~1 (t+CO+CIH)] (32) 

is a twice differentiable value funetion that generates stationary Markov feed­

back equilibria that support any stationary point, H*, in the interval (H L, H H ), 

if Ho E B(H*). 

Proof. See Appendix. 

One irnportant characteristic of this result is the nonuniqueness of the 

stationary Markov feedback equilibriurn. In this case we find that not only a 

stationary water table H* is incleterrninate but for a given initial value of the 

water table, different stationary Markov feedback equilibria can be reachecl. 

So it looks interesting to wonder which equilibrium is the rnost efficient 01.' 

generates the highest payoff.17 

J 7See Tsutsui and Mino (1990, p. 153) for an explanation of the indeterminacy of the 

solution. From a mathematical point of view this is caused by the incomplete transversality 

condition. 
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5 Characterization of stationary Markov 

feedback equilibrium 

As we have established in Proposition 5 the stationary Markov feedback equi­

libria in the intei'Val (HL , HH) that can be supported by a stationary Markov 

strategy depend on the initial water table level. In this papel' we assume that 

the initial water table level is equal to its natural hydrologic eq'uilibrium, cor~ 

responding to the maximum water table elevation at which the water reserves 

coincide with the storage capacity of the aquifer, and that the human activ-

ity, justified by economic parameters, consists of mining the aquifer until an 

economic hydrologic equilibrium has been reached. The difference between 

the two equilibria is that the first depends exclusively on hydrologic parame-

ters whereas the second is explained by hydrologic and economic parameters. 

This assumption has a clear consequence: the socially optimal equilibrium 

water table, H~o, will be lower than the initial water table, Ho, and conse-

quently we can establish the following relationship: HH < H~o < Ho, since 

HH, defined by (28), is lower than H~o, defined by (14).18 

Now we can say more about the possible equilibria that can be reached 

18Notice that if we assume that the initial value is lower than the optimal stationary 

equilibrium water table and, consequently, lower than the natural hydrologic equilibrium, 

this means that there existed a previous phase of resource exploitation from the natural 

hydrologic equilibrium whose steady-state value would now be the initial value we are 

assuming in our model. In this papel' we focus exclusively 011 the mining of the aquifer 

and we do not cOlIsider this case. 
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through a stationary Markov strategy. Specifically, we can identify the locally 

stable equilibria that can reached from the initial water table value. Let 

E(Ho) denote a stable stationary point set reachable from Ho. To find E(Ho) 

we use the fact that any point aboye SSL in the H - w plane, dHjdt < O. 

Hence, for a certain Ho, if the point (Ho,g(Ho)) is aboye SSL, then H*(t) 

decreases. 

w 

-RlN<'t.¡ 

v'=O 

---
-_ .... 

dw/dH = O 
\ 

\ 
\ 
\ 
\ 
\ 
\ 

g"(H) 

\ .... -" .,-...", ...... 
dw/dH =-00 

\ ........ 
(H,w): \ ........ -
........ \ 

.... - \ ....- \ 

t-C---.... ----------~~--~~~~--~--~~--~L 
I 
I 
I 
I 
I 
I 
I 
I I I I I I 

H" H*(H.) H*(HJO )HH HJO H. H 
Figure 3 
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Now we consider two cases for Ho. (i) If Ho 2=: Hb , the only strategy that 

leads to a stable stationary point is the linear one, ga(H) and then E(Ho) = 

[Ha], that is, the only stationary water table that can be supported as a 

stationary Markov feedback equilibrium is Ha. (ii) If Ho < Hb , there exists a 

set of g4(H) É G4, including linear strategy ga(H), which support different 

stable stationary points, H*. From the hyperbolic property of g4(H), one 

can see that there exists one solution curve and one stable stationary point 

H*(Ho) such that H*(Ho) < HH < Ho and g4(H) intersects SSL at H*(Ho) 

and Ho, so that H*(Ho) defines an upper bound for the stable stationary 

points which can be reached from the initial value, HO.19 On the other hand, 

the lowest stable stationary point which can be supported as a stationary 

Markov feedback equilibrium from Ho is given by the intersection of the 

linear strategy, ga(H), with SSL. Thus, the reachable stable stationary point 

set for Ho, E(Ho) , is given by the Ho - dependent interval [Ha, H*(Ho)). 

These results are summarized in the next proposition. 

Proposition 6 (a) E(Hh) e E(Ho) fo1' any Ho, Hh su eh that H~o < Ho < 

Hh < H b• (b) E(Ho) -+ [Ha, H*(Hso )), as Ho -t Hso' 

(a) shows that for two different initial water tables Hu and Hh with 

Ho < Hb the stable stationary point set reachable from Hb is smaller than 

the one from Ho, and (b) implies that the highest stable stationary water 

table that can be supported by a stationary Markov strategy is lower than 

19Notice that the solution curve that defines the point H'(Ho) cannot be llsed to reach 

that pOÍllt becallse it cuts the SSL at Ho. 
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HH since H~o is higher than HH and consequently H*(Hso) is on the left of 

HH (see Fig. 3). This comparison allows us to conclude that the open-loop 

Nash equilibrium water table is higher than the highest stationary water 

table that can be reached as a staUonary Markov feedback equilibrium from 

Ho > Hso since Hso = H~L' In other words, although the stationary water 

table H* remains indeterminate, this result establishes that the strategic ex­

ternality that arises from the competition among farmers to capture ground­

water reserves exacerbates the overexploitation of the aquifer compared to 

the open-loop solution.2o Finally, we want to point out that another corollary 

of this proposition is that the linear stationary Markov feedback equilibrium 

is global; that is, it can be reached from any initial value; whereas the nonlin­

cal' stationary Markov strategies can only be used when the initial value of 

the state variable is lower than the upper bound defined by H b
• However, in 

that case, non linear strategies support a stationary water table that is closer 

to the open-loop Nash equilibrium water table than the stationary water ta­

ble supported by the linear strategy, and consequently closer to the socially 

optimal solution. 

Now if we want to evaluate the impact of the strategic externality on 

the stationary value of the water table it seems necessary to investigate if it 

is possible to resolve the indetermination of the stationary Markov feedback 

20Notice that independently of which is the initial value, Ho, always provided that 

Ha <Ho, wehavethatH*(Ho) < H'(Hso ) < HH = H OL , (seeFig. 3), andconsequently 

the stationary water table for the feedback sollltion has to be lower than the one fOl' the 

open-Ioop solution since H* (Ho) is the upper extreme of E(Ho). 
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equilibrium. The way to do that is to study if a positive relationship between 

the stationary water table level and the payoff of the game can be established, 

because if that kind of relationship exists, then we could conclude that the 

stationary equilibrium water table is that which generates the highest payoff. 

For this point; we have the following proposition. 

Proposition 7 For a given Ho such that Hso < Ho < Hb there exists more 

than one stationary Markov feedback equilibri1lm, E(Ho) e [Ha, H*(Hso )): 
Then the equilibTium which supports the highest stationary water table gen­

erates the highest payoff of the game that starts at Ho. Thus the payoff of 

a stationary Markov feedback equilibrium increases with the level of its sup-

porting water tableo 

Proo.f. See Appendix. 

This result implies that for a given initial value the steady-state equilib-

rium water table is the highest value of the Ho-dependent interval E(Ho). 

Notice that as the interval is open on the right, H*(Ho) is actually the lowest 

upper bound of the stationary point. Moreover, this result also establishes 

that the linear stl'ategy, ga(H), generates the lowest payoff of the game that 

starts at Ho. This implies that, in spite of linear stl'ategy being global, when 

Ho < H b it is dominated by the nonlinear strategies, since these generate a 

higher payoff. In that case using linear strategies to compute the feedback 

solution will lead to an overestimation of the overexploitation of the aquifer 

caused by the strategic behavior of the agents. 
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Returning now to the discussion of the evaluation of the strategic ex-

ternality effect on the stationaJ.'y value of the water table, we find that the 

comparison between the two solutions is not feasible, at least for the non-

linear strategies, since these are not defined in an explicit way (see equation 

(21)). However, it is very easy to find an upper bound for this effect using 

HL 

The comparative statics analysis of this difference results in 

8(D-.H) 
81' 

8(D-.H) 
8N 

R 
ASNr2 < O 

R 
ASrN2 < O. 

These results are summarized in the last proposition. 

(33) 

Proposition 8 (i) The stationary open-loop Nash equilibrium water' table 

is higher than the highest stationary water' table that can be suppoTted by a 

stationary Markov strategy. (ii) The impact of the strategic externality on 

the stationary value of the water table presents an 1lpper bound given by the 

difference between the stationary water table for the open-loop solution and 

the stationary water table for the myopic solution, this difference declines as 

the discount rate and/or the number of farmers increases. 

This result confirms Negri's conclusion: the competition among users fol' 

the appropriation of a finite common property resource increases the overex-

ploitation of the aquifer, compared to the open-loop solution. On the othel' 

hand, the effect of the discount rate variation is explained by the different 
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impacts that the variations of discount rate have on HMy and HlJL • Thus, 

an increase in the discount rate decreases the user cost for the open-loop so­

lution, but does not have any effect on HMy since this value is independent 

of the discount rateo Moreover, the effect that a variation in the number of 

farmers has ori difference (33) is clear if one no tices that HMy is also indepen­

dent of N. Then an increase in N reduces the user cost of the resource and 

the stationary open-Ioop Nash equilibrium water table, causing a decrease i~ 

the difference between Hcn and HMy . 

FinaHy, we can define using (15), the effect of cost externality, and (33), 

the effect of strategic externality, an upper bound for the dynamic inefficiency 

associated wíth the private exploitation of groundwater 

(34) 

This result is consistent with Gisser and Sánchez rule. Thus, we can conclude 

that the difference between the socially optimal exploitation and the prívate 

exploitation of groundwater, characterized by a stationary Markov feedback 

equilibrium, decreases with the storage capacity of the aquifer and if this 

is large enough the two equilibria are identícal for aH practical purposes. 

In fact, when we add the two differences (15) and (33) we get the same 

expression as the one deríved by Gisser and Sánchez.21 Obviously, this result 

limits the practical scope of Negri's result, so that the consideration of the 

21This happens because the upper bound for the strategic externality is defined resorting 

to the myopic solution. However, it must not be forgotten that this difference is an upper 

bound of the difference between the optimal and prívate solutions and therefore represents 

an overestimation of the overexploitation of the aquifer. 
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strategic externality does not significantly increase the inefficíency of prívate 

exploitation. 

6 An empirical illustration 

Usíng data from Gisser and Sánchez (1980) corresponding to Pecos Basin, 

New Mexico and Níeswiadomy (1985) correspondíng to the Texas High Plaíns 

we have computed the different equilibria studied in this paper: the opti­

mal exploitation, the open-Ioop Nash equilibrium and the stationary Markov 

feedback equilibrium in linear strategies. The results obtained allow us to 

compare the different regimens in terms of steady state values of the water 

table as weH as in terms of present values. 

These results establish that the relationship found in Prop. 7 between 

the payoff of the game and the stationary water table level for the stationary 

Markov feedback equilibria is also verified when we compare the different 

equilibria. Thus, we observe that the equilibrium with the highest stationary 

water table always generates the highest payoff of the game. This allows us 

to extend the first part of Prop. 8 to the present values associated with each 

equilibrium, and conclude that the payoff generated by the open-Ioop Nash 

equilibrium is higher than the highest present value that can be generated by 

a stationary Markov strategy. Obviously, the present value associated with 

the optimal exploitation will be the highest payoff of the game. 
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TABLE 11: IDGH PLAINS 

Cost externality: difference between the optimal depletion and the open-loop Nash equilibrium. 
Strategic externality: difference between the open-Ioop Nash equilibrium and the stationary Markov feedback 
equilibrium in linear strategies. 
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TABLE III: PECOS BASIN 

Cost externality: difference between the optimal and the open-loop Nash equilibrium. 
Strategic externality: difference between the open-loop Nash equilibrium and the stationary Markov feedback 
equilibrium in linear strategies. 
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In Tables II and III we have represented the impact of the cost and strate-

gic externalities on the stationary water table and present values for three 

different values of the number of farmers and the rate of discount. The cost 

externality has been calculated as the difference between the optimal ex-

ploitation and the open-loop Nash equilibrium, and the strategic externality 

as the difference between the open-loop Nash equilibrium and the stationary 

Markov feedback equilibrium in linear strategies. The use of linear strategies 

is justified in this last case because we have checked that the initial value 

for the water table is higher than the value defined by the intersection of 

the unstable linear strategy and the steady state line and in that case, as we 

have pointed out at the beginning of Section 5 (see Fig. 3), the only strategy 

that leads to a stable stationary point is the linear one with positive slope. 

The results show that the cost externality decreases as the discount rate 

increases and increases as the number of farmers pumping water from the 

aquifer increases, whereas the strategic externality also decreases as the rate 

of discount increases but decreases as the number of farmers increases. 

The largest cost externality corresponds to the largest number of farmers 

and the lowest rate of discount (0.02). This externality amounts to 27.747 

feet for water table elevation and $14,321,384 for the present value at Texas 

High Plains, and 63.976 feet and $1,316,431 dollars at Pecos Basin, New 

Mexico. The largest strategic externalíty corresponds to the lowest number 

of farmers and the lowest rate of discount. This externality amounts to 0.139 

feet and $143,616 at High Plains and 0.213 feet and $7,760 at Pecos Basin. 
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Therefore, the cost externality is greater than the strategic externality for 

the two cases, so that the largest total externality corresponds to the largest 

number of farmers and the lowest rate of discount for both percentages and 

levels. Total externalities reduce by 27.756 feet, 0.872 in percentage, the 

water table elevation at the steady state and $14,331)42,4.041 in percentage, 

the present value with respect to the optimal exploitation at High Plainsj and 

by 63.991 feet, 4.025 in percentage, the water table elevation and $1,317,071 

dollars, 0.087 in percentage, the present value at Pecos Basin. 

The results indicate that the benefits from groundwater management 

most likely are small, especially relative to any reasonable costs of regu­

lating pumping. For example, for a discount rate of 2%, it would only take 

an annual regulating cost higher than $286,623 per year at High Plains and 

$26,341 per year at Pecos Basin to make the present value of the costs exceed 

the present value of the benefits coming from regulation. 

7 Conclusions 

In this papel' we have developed the model defined by Gisser and Sánchez 

(1980) to study the effects of strategic behavior on the efficiency of pri­

vate groundwater exploitation. We have followed Negri's (1989) approach 

and have evaluated the impact of the strategic externality as the difference 

between the open-loop and feedback solutions. In particular, we have inves­

tigated if the Gisser and Sánchez rule still works when it is assumed that 

agents are rational and the strategic externality is taken into account. To 
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compute the feedback equilibria we have used non linear strategies following 

Tsutsui and Mino's (1990) procedure. 

Our results show that strategic behavior, which arises from the compe­

tition among firrns to capture the groundwater reserves, increases the in­

efficiency of private exploitation with respect to the open-loop equilibriurn 

which captures only the pumping cost externality. However, they also show 

that the difference between the socially optimal exploitation and the private 

exploitation of the aquifer, represented by a feedback equilibrium, decreases 

with the storage capacity of the aquifer, and thus if this is relatively large 

the two equilibria are identical for aH practical purposes. A corollary of this 

result is that the potential benefits associated with the regulation of the 

resource are relatively small. 

Finally, we would like to present sorne remarks about the scope of this last 

conclusion. Fírst, as Worthington, Burt and Brustkern (1985) have pointed 

out in an empírical work using data from a confined aquifer underlying the 

Crow Creek Valley, Montana, it can happen that the difference between the 

two regimens is not trivial if the relationship between average extraction cost 

and the water table level is not linear and there exist significant differences 

in land productivity. ConsequenUy, we think that further research is nec­

essary in at least two directions before taking a position against regulation 

of the resource. One would be to undertake more empirical work to test 

the hypothesis of linearity, and the other to develop more theoretical work 

to resolve an asymrnetric groundwater purnping differential game where the 
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differences in land productivity were taken into account. 1'0 complete the 

analysis, the cornparison between the two regirnes would have to be carried 

out, also assurning uncertainty about recharge 01' surface water supply.22 

Moreover, we also think that using only the firrns' profits to characterize 

the socially 0ptirnal exploitation is problernatic when there exists the possi-

bility of irreversible events 01' irreparable darnage to nature. In that case, the 

water rnanagernent authority would have to incorporate the water table level 

into its objective function and postulate sorne kind of intervention to avoíd 

'extinction' 01' the occurrence of irreversible events. 23 1'his could be another 

subject for future research. 

Another situation that could require sorne kind of regulation rnay present 

itself when groundwater is also used for urban consurnption. In that case the 

water pollution caused by the use of chernical products in agricultural activity 

alters the quality of water and affects negatively the welfare of urban con-

surners, generating another externality that would in crease the inefficiency 

of private exploítation of groundwater. 

22 As far as we know only I<napp and Olson (1995) have addressed this issue, and they 

have found that when surface water supply is uncertain the benefits from groundwater 

management continue to be relatively small. 

23See Tsur and Zemel (1995) fol' the study of the optimal exploitation of groundwater 

when extraction affects the probability of occurrence of an irreversible evento 
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A Proof of Proposition 5 

Since (32) is obtained by substitution of the necessary condition for the 

rnaxirnization of the right-hand side of Bellrnan equation, V' = 

A8/b-1) ((g/k) +- Co +- c1H - (Nw(H)/k)) in the Bellrnan equation, J(H) 

íB a value function that generates stationary Markov strategies such as the 

ones defined byequatíon (21). By its construction, it is clear that J(H) is 

twice differentiable. 

Now for each H* E (Ih, HH), we have to show that J(H) is nonnegative 

on B(H*). 

Except for Ha, we have that all the solution curves on B(H*) are bounded 

by 

o S g(H) S rnin [gL(H),w(H) defined by dw/dH = -00, l(H)] (35) 

for each H* E (HL,HH), as one can see frorn the Fig. 2.24 Define 

N(2N-1) 2 ( (g ) h(w, H) = - 2k w +- (N - 1) k + Ca +- c1H 

-k(~~l))w+- 'Y~1 (~+-CO+-CIH). 
Note that rJ(H) = h(g(H), H). Let us consider the area surrounded by 

w = O, w = gL(H), 

w = (2N ~ l)N [(N -1) (~+- Co +- CIH) - k(~~ 1)] (36) 

24We suppress the superscript n of the solution curves fol' notational simplicity when 

no confusion arises 01' the argument is independent of n. 
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defined by dw / dH = -00 and 

b k(N - 1) (g) R G b 

9 (H) = N(2N _ 1) k + Ca - (ry - 1)(2N -1) + F Y 

+ [
k(N - 1)Cl + b] H (37) 
N(2N -1) Y . 

The intersecÚon between w = O and w = gL(H) is (~L, O); the intersection 

between w = gL(H) and (36) is (HL, -R/N(ry-1)); the intersection between 

(36) and (37) is (H,w); finally the intersection between (37) and SSL is 

(H b , -R/N(ry-1)). It is easy to see that XL< HL < H < H b
• It is important 

that except for w = ga(H), w = g(H) defined on B(H*) is contained in this 

area. Thus, if we can show h(w, H) 2:: O in this area, the proof will be 

completed for H* = Ha. 

(i) We represent the function given by h(w, H) = O in the H w planeo 

The function H(w) defined by condition h(w, H) = O has two extremes 

at the points: 

and 

H ' 1 

w' 1 

H' 2 

w~ = 

NR((2N -1)! - N) _ ~ (fL + co) 
clk(ry -1)(N -1)2 Cl k 

(38) 

R(1- (2N - 1t~) 
(ry - l)(N - 1) 

(39) 

NR((2N - 1)~ + N) 1 (g ) 
- clk(ry - 1)(N - 1)2 - Cl k + Co 

(40) 

R(1 + (2N -1t~) 
(ry - 1)(N - 1) 

(41) 

(HL wD being a local maximum and (H~, w~) a local minimum. Moreover, 

the function presents a discontinuity point at w = -R/(ry - 1)(N - 1), so 
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that 

lim H(w) = -00, 

w-> (-y 1)1N 1) 

(42) 

and is concave on the right of this discontinuity point and cop.vex on the left. 

For w = O, H is -1/Cl((g/k) + ca) which is the sarue value defined by the 

functíon V' = O for w = O. It is also easy to check that (H~, wD and (H~, w~) 

satisfy equation (36) and H~ < HL and H < H~. 

On the other hand, for the function h( w, H) we have 

-=Cl (N-1)w+-- , dh ( R ) 
dH "(-1 

(43) 

and in that case 

R 
(44) 

(ry - l)(N - 1) 

and then we can determine the areas where h(w, H)is positive. These results 

are represented in the Fig. 4 
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v'=O 
w 

• g (H) 

h=O 

dw/dH =-00 

h<O 

-R/(N-1Xf'-I) -
-RlNCrl) SSL 

1, 1 
1 \ 1 b 1 1 g (H) 1 1 
1 1 
1 1 
1 1 
1 1 

!uH', HL H' Hu H' , Hb H 
Figure 4 
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(ii) Now we show that l(H) is a hyperplane which separates the two 

h < O sets: in othel' wol'ds, the linear strategy is contained in the area with 

h > O of the H - w planeo 

Using l(H) and the quadl'atic equatíon fol' y that appears in the deriva-

tion of equation (21), the h(w, H) function can be wrítten as 

h( b(H) H) N ASr (kCl b) H2 
9 , = 2k (')' - 1) 2N - 1 - Y 

N ASr [G b k (g ) 
k(')'-l) F Y - 2N-1 k+ co 

R ] k(N - 1)2 (g )2 
- (2N - 1)(')' -1) H + 2N(2N - 1) k + Co 

RN (g) NR
2 

+ (')' - 1)(2N - 1) k + Co + 2k(ry -1)2(2N - 1) 

_ N(2~-1) (~) 2 (yb)2. (45) 

The mínimum of this functíon is gíven by 

( 
kCl b) 1Gb k (g) R 

2N -1 - Y H = F Y - 2N - 1 k + Co - (2N - 1)(')' -1)' 

It is easy to show that for H' the V' = O and gh(H) functions intersect, so we 

can conclude that V' = O when function (45) l'eaches its mínimum. If now 

we rewrite function (45) in terms of V' we get 

_ k(2N - 1)(')' -1)2 (V' )2 
2N(AS)2 

[ 
R k(')' - 1) (g )] I + AS + AS k + Co + c1H V 

k (g )2 
- 2N k + Co + c1H , 

which at its mínimum takes the value 

( b( ') ') k (g 1)2 h 9 H ,H = - 2N k + Co + c1H ~ O. 
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(46) 

(47) 



Moreover, as gb(H) intersects the line V' = o on the left of the line dw/dH = 

o and aboye the line -R/(,-1)(N-1) (see Fig. 4), we have that h(gb(H'), H') 

is strictly positive. 

AH this shows, as can be seen in Fig. 4, that w = g(H) defined by (35) 

on B(H*) gives a positive value for h(w, H). 

(iii) If H* = Ha, ga(H) is defined by B(Ha) = [~a, Hm). As before, we 

can show 

N ASr (kCl a) H 2 

2k(cy - 1) 2N - 1 - Y 

N ASr [G a k (g ) 
- k(cy - 1) pY - 2N - 1 k + Co 

R ] k(N _1)2 (g )2 
(2N - 1) (cy - 1) H + 2N (2N - 1) k + Co 

RN (g) NR
2 

+ (cy - 1)(2N - 1) k + Co + 2k(cy - 1)2(2N - 1) 

_ N(2~k - 1) (~) 2 (ya)2 

k (g )2 > - 2N k + Co + c1H' ;::: O. (48) 

Notice that if h(ga(H'), H') = O, then the linear strategy would have to be 

tangent to h( w, H) = O at H' and would intersect the V' = O lirie from 

ab ove , but as ga(H) passes through (fI,11;), which is on the right of the 

V' = O line, the linear strategy cuts the V' = O line from below, what means 

that h(ga(H'), H') is strictly positive at its minimum. Furthermore, it is easy 

to confirm using (24) that function (48) is convexo 

These three steps complete the proof. Q.E.D. 
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B Proof of Proposition 7 

Suppose that H*, H*' E E(Ho). Let g(H) and g'(H) be the solution curves 

that support H* and H*' respectively, and let J(H) and J'(H) be the corre-

sponding value functions. From Proposition 5, we have 

rJ(Ho) = - N(2~ -1) g(HO)2 + [(N -1) (* + Ca + CIHo) 

- k(~~ 1)] g(Ho) + , ~ 1 (* + Co + cIHo) , 

rJ'(Ho) N(2~ - 1) g'(HO)2 + [(N - 1) (* + Co + CIHo) 

NR ] , R (g ) 
k(,-l) g(Ho)+ ,-1 k+CO+CIHo . 

The difference rJ'(Ho) - rJ(Ho) can be written as 

Without loss of generality, we assume H* < H*'. Then g'(Ho) < g(Ho) from 

the property of the resolution curves. For g(H) =1= ga(H) we know from 

demonstration of Proposition 5 that g'(Ho) and g(Ho) are lower than (36): 

the linear function defined by the condition: dw/dH = -00, and thus 

rJ'(Ho) - rJ(Ho) is positive. Suppose now that g(H) = ga(H). Then as 
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g'(Ho) < l(Ho) we have 

substituting ga(Ho) and l(Ho) using (25) and (26) yields 

where ya + yb is negative. The sign of G j F + Ho depends on the slope 

of the linear function defined by dw j dH = O. If this is negative, then iI < 

HH < Hso < Ho, and therefore Gj F + Ho is positive. If instead it is 

positive, HH < iI, and G j F + Ho remains undetermined. If we assume that 

GjF +Ho ~ O, then G ~ -FHso , substituting (23), (22) and (14) fol' G,F 

and Hso l'espectively we obtain 

O~ 

which is a contradiction since the right-hand side of the inequality is negative. 

So we have that GjF +Ho is positive and thel'efol'e (ya + yb)(GjF + Ho) 

is negative, l'esulting in a positive value fol' the difference rJ'(Ho) - rJ(Ho). 

To sum up, if H* < H*', rJ(Ho) < rJ'(Ho) , which gives Pl'oposition 7. 

Q.E.D. 
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