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EQUILIBRIUM WITH LIMITED-RECOURSE COLLATERALIZED LOANS

RUBÉN POBLETE-CAZENAVE AND JUAN PABLO TORRES-MARTÍNEZ

Abstract. We address a general equilibrium model with limited-recourse collateralized loans.

Borrowers are burden to constitute physical collateral guarantees, which are repossessed in case

of default and delivered to the associated lenders. In addition, lenders may receive payments over

collateral values, since debtor’s wealth (physical and financial) can be garnished when commit-

ments are not fully honored. The reimbursement of resources is proportional to the size of claims.
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1. Introduction

In seminal papers, Dubey, Geanakoplos, and Zame (1995) and Geanakoplos and Zame (1997,

2002, 2007) introduce default and collateralized loans into the general equilibrium model with in-

complete markets. They prove that, allowing for default it is always possible to assure equilibrium

existence in incomplete markets, even when real assets are available for trade. Indeed, since the

financial sector is linked to physical markets through collateral constraints, the scarcity of commodi-

ties induce endogenous Radner bounds on short-sales. This avoids discontinuities that may appear

on individuals’ demands when the rank of return matrices becomes dependent on asset prices and,

therefore, equilibrium existence can be proved.

This model of mortgage loans gives rise to a growing theoretical literature. In finite horizon

models, Araujo, Orrillo and Páscoa (2000) and Araujo, Fajardo and Páscoa (2005) made exten-

sions to allow for endogenous collateral. Steinert and Torres-Mart́ınez (2007) include CLO markets,

where some claims have priority over others to receive resources obtained by the repossession of

collateral guarantees. In the infinite horizon context, Araujo, Páscoa, and Torres-Mart́ınez (2002,

2010) prove equilibrium existence without the need to impose transversality conditions, debts con-

straints or uniform impatient assumptions.1 Indeed, Ponzi schemes are endogenously avoided by the
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scarcity of physical resources used as collateral guarantees. In the context of Markovian economies,

the existence of stationary equilibrium in collateralized asset markets was proved by Kubler and

Schmedders (2003). Also, Seghir and Torres-Mart́ınez (2008) prove that collateral allows to increase

credit opportunities in economies with incomplete demographic participation.

In all these models the only enforcement mechanism in case of default is the seizure of collat-

eral guarantees. Therefore, borrowers make strategic default delivering the minimum between the

original promise and the associated collateral value. However, additional payment enforcement

mechanisms may appear, for instance, as institutional reactions to credit crisis where collateral

guarantees strongly decrease their values. In this context, Páscoa and Seghir (2009) prove that,

when defaulters are punished by harsh linear utility penalties, Ponzi schemes opportunities may

appear, and equilibrium may cease to exist. Even more, Ferreira and Torres-Mart́ınez (2010) show

that, when collateral guarantees are lower, a persistent effectiveness of any payment enforcement

could be incompatible with equilibrium. There is also a positive theory of equilibrium existence in

collateralized asset markets when utility penalties for default are allowed, as the results of Páscoa

and Seghir (2009) or Martins-da-Rocha and Vailakis (2009, 2010).2

On the other hand, in the context of general equilibrium models of bankruptcy with unsecured

claims, Araujo and Páscoa (2002) propose a two-period incomplete markets model where resources

obtained by the payment of loans and the garnishment of wealth are distributed either in proportion

to the size of claims or giving priority to smaller claims to receive the whole payment. The former

rule of distribution is implemented assuming that a proportion of agents’ wealth is protected from

expropriation in case of bankruptcy, while the last rule of distribution is implemented making

individuals’ exemption asymptotically zero as his debt increases. Thus, when the reimbursement

is proportional to claims, the level of exemption of rich agents could be substantially larger than

the exemption given to poor consumers. In this context, the existence of equilibrium is proved for

nominal asset markets. In a related result, Sabarwal (2003) addresses a finite horizon model with

numeraire assets where the exemption in case of bankruptcy may be a fixed amount of the wealth.

Thus, his result allows poor agents to have a greater proportion of their wealth protected from

garnishment. The author analyzes a proportional reimbursement rule and assumes that borrowing

is restricted by credit constraints, which may depend on the history of default. Then, it could have

two payment enforcements mechanism in case of default: the garnishment of endowment and the

restriction of financial participation. In Araujo and Páscoa (2002) and Sabarwal (2003), commodities

are perishable and only partial garnishment of physical endowments is allowed.

Kehoe and Levine (1993), Magill and Quinzii (1994, 1996), Hernandez and Santos (1996) and Levine and Zame

(1996).
2These results are also extensions of seminal works on default and punishment of unsecured debt (see Dubey,

Geanakoplos and Shubik (1990, 2005) and Zame (1993)).
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In our model we want to include bankruptcy and the garnishment of wealth in a general equilib-

rium framework with collateralized credit contracts and securitization of debts. Since collateralized

loans are securitized into passtrough securities, we can allow markets to garnish the individuals’

wealth associated to financial investment positions. Also, we replace credit limits of models with

unsecured claims by collateral constraints. Since resources obtained by the seizure of collateral

guarantees are delivered to agents that invest in the associated passtrough security, there is no

indetermination of the right over physical guarantees, avoiding any risk about the repossession of

collateral. Also, our garnishment rules allow for either proportional exemptions or exemptions that

protect poor defaulters, reducing the garnishment to a lower percentage of their wealth.

Our economy is stochastic and has two time periods. Commodities may be durable, perishable

or may transform into other goods through the time. Debt contracts are limited-recourse loans

backed by physical collateral guarantees. These promises are pooled and securitized into passtrough

securities. Different to Geanakoplos and Zame (1997, 2002, 2007) or Steinert and Torres-Mart́ınez

(2007), we allow for the garnishment of individual wealth in case that some promise is not fully payed.

Therefore, when agent’s wealth does not cover the total amount of debt, bankruptcy appears.

Since the possibility of wealth loss when debts are not fully payed may induce non-convexities in

budget set correspondences, we assume that a continuum of agents can demand commodities, trade

debt contracts, and invest in passtrough securities. We allow for different types of garnishment rules,

and resources obtained by confiscation are distributed to lenders proportional to their promises.

Since in our model the payment of passtrough securities are endogenous, we will concentrate our

attention in non-trivial equilibria. That is, those equilibria where asset payments are positive in

at least one state of nature. As in Steinert and Torres-Mart́ınez (2007) we can trivially prove the

existence of equilibrium when passtrough securities payments are zero, since the economy can be

reduced to a pure spot market economy (assuming that debt-contracts have zero price too).

The existence of equilibrium is carried out appealing to the existence of pure strategy Nash

equilibria in large non-convex generalized games. Indeed, we construct abstract generalized games

where individuals’ allocations are bounded. Refereeing to Balder (1999) results of Nash equilibrium

existence in generalized games, and to the recent short-proof of its given by Riascos and Torres-

Mart́ınez (2010), we assure the existence of equilibrium in our abstract games. After this, using

multidimensional Fatou’s Lemma, we will prove that Nash equilibria of abstract generalized games

converges asymptotically to equilibria of our economy.

The remaining of the paper is organized as follows: In Section 2 we describe the model. The

statement of our main result about equilibrium existence is given in Section 3, where we also

discuss the assumptions of our model. In Section 4 we discuss different types of garnishment rules
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compatibles with the framework. Extension of our results are discussed in Section 5. Finally, in the

Appendix we make the proof of equilibrium existence.

2. Model

We consider a two period model, without uncertainty at the first period (t = 0) and where one

state of nature of a finite set S can be reached at the second period (t = 1). For convenience of

notations, let S∗ = {0} ∪ S be the set of states of nature in the economy, where s = 0 denotes the

only state of nature at t = 0.

There is a finite set L of perfect divisible commodities, which are available for consumption and

trade in spot markets at each state of nature. Commodities may be durable between periods t = 0

and t = 1. That is, there are functions Ys : RL+ → RL+, with s ∈ S, which represent an exogenous

technology that transform bundles that are consumed at the first period in state contingent bundles

at the second period. We suppose that, for any s ∈ S, Ys is the restriction of a linear mapping

from RL to RL. We denote by Ys(x, `) the `-th coordinate of vector Ys(x) ∈ RL+ and by e(`) the

`-th canonical vector of RL. Then, if a bundle x0 ∈ RL+ is consumed at t = 0, it transforms into

the bundle Ys(x0) ∈ RL+ at state s ∈ S. If Ys(e(`)) = 0, for any s ∈ S, then we refer to commodity

` ∈ L as perishable. When there is at least one state of nature s ∈ S for which Ys(e(`), `) > 0, then

the commodity ` is called durable. However, commodities may transform into other goods and,

therefore, they could be neither durable or perishable. That is, a commodity ` ∈ L such that both

Ys(e(`)) > 0 and Ys(e(`), `) = 0. Let ps ∈ RL+ be the unitary spot price at state of nature s ∈ S∗

and denote by ps,` the unitary price of a commodity ` at s. The vector of commodity prices in the

economy is denoted by p = (ps; s ∈ S∗).

There is a measure space of consumers, H = ([0, 1],B, µ), where B is the Borel σ-algebra of [0, 1]

and µ the Lebesgue measure. Thus, in our economy, each consumer is non-atomic. Agents act on a

desire to maximize their utility function using physical and financial markets. Let whs = (whs,`; ` ∈

L) ∈ RL+ be the endowment of commodities that an agent h ∈ [0, 1] receives at state of nature

s ∈ S∗. We denote by wh := (whs ; s ∈ S∗) the physical endowment plan of agent h. Preferences of

an agent h are represented by a utility function uh : RL×S
∗

+ → R+.

As in Geanakoplos and Zame (2002) or Steinert and Torres-Mart́ınez (2007), there is a finite set

J of collateralized debt contracts that can be issued at the first period. When a borrower issues

one unit of a debt contract j ∈ J , he receives a quantity of resources πj and constitutes a physical

collateral Cj ∈ RL+\{0}. We denote by π = (πj ; j ∈ J) the vector of unitary prices of debt contracts.

The vector of state-contingent real promises associated to one unit of debt contract j ∈ J is given

by (As,j ; s ∈ S) ∈ RL×S+ . If the borrower does not honor his promises at a state of nature s ∈ S, the
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market will seize the associated collateral guarantee and may also implement additional payment

enforcement mechanisms.

Each debt contract j ∈ J is securitized into only one passtrough security. We assume that the

unitary price of the security j (the one associated to the debt contract j) is also πj .3 Thus, we

treat the set of debt contracts and the collection of passtrough securities with the same notation.

Let θh = (θhj ; j ∈ J) ∈ RJ+ be the vector of positions of agent h in passtrough securities at t = 0.

Analogously, ϕh = (ϕhj ; j ∈ J) ∈ RJ+ denotes the agent h’s vector of positions in debt contracts.

Let xh = (xhs ; s ∈ S∗) be the non-collateralized consumption plan for an agent h ∈ [0, 1], where

xhs ∈ RL+ is the bundle of commodities at state of nature s ∈ S∗ that agent h demand in addition

to any collateral guarantee. Particularly, the total consumption plan of agent h at the first period

is given by xh0 +
∑
j∈J Cjϕ

h
j ∈ RL+.

As we say above, in case of default, agents are burden to deliver the associated collateral bundles.

For this reason, an agent h ∈ [0, 1] that borrows ϕhj units of debt contract j ∈ J at the first

period, delivers at any state of nature s ∈ S at least an amount of resources Ds,j(ps)ϕhj , where

Ds,j(ps) = min{psAs,j , psYs(Cj)}ϕhj . Thus, the remaining debt of agent h after the strategic decision

to pay or foreclosure debts, is given by

Ψs(ps, ϕh) =
∑
j∈J

[psAs,j − psYs(Cj)]+ϕhj ,

where [y]+ := max{y, 0}. Additional payment enforcement mechanisms may act over this remaining

debt in order to increase the resources that investors receive may act.

In this model, we concentrate our attention in a particular additional enforcement mechanism:

the garnishment of individuals wealth in case of bankruptcy. However, we assume that the law

protect agents from excessive losses of wealth by confiscation. Specifically, at any state of nature

s ∈ S, after the payment or the foreclosure of debts, if some promise remains without fully payment,

the legal system does not give to lenders the right to confiscate the entire individual’s wealth, since

protects a (1− λs) ∈ (0, 1) percent of borrower endowment. However, other resources, as the value

of either depreciated consumption bundles or financial securities, could be fully garnished.

Thus, given agent’ h ∈ [0, 1] consumption and financial decisions at the first period, (xh0 , θ
h, ϕh),

for any state of nature s ∈ S, the maximal amount of resources that agent h may loose if he gives

default in at least one of his debts is given by Φhs (ps, Rs, xh0 , θ
h, ϕh), where Rs = (Rs,j ; j ∈ J) are

the unitary security payments at state of nature s, and Φhs : RL+ × RJ+ × RL+ × RJ+ × RJ+ → R+ is a

3After normalization, it is always possible to make this identification of prices.
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continuous function satisfying

Φhs (ps, Rs, xh0 , θ
h, ϕh) ≤ λspswhs +

psYs(xh0 ) +
∑
j∈J

[psYs(Cj)− psAs,j ]+ϕhj +
∑
j∈J

Rs,jθ
h
j

 .4

It follows that, associated with a debt
∑
j∈J psAs,jϕ

h
j at state of nature s ∈ S, an agent h ∈ [0, 1]

will strategically decides to pay the following amount of resources,

Mh
s (ps, Rs, xh0 , θ

h, ϕh) =
∑
j∈J

Ds,j(ps)ϕhj + min
{

Ψs(ps, ϕh),Φhs (ps, Rs, xh0 , θ
h, ϕh)

}
.

As we advance above, at each state of nature s ∈ S, an agent h ∈ [0, 1] that invest in θhj units

of passtrough security j ∈ J receives an amount of resources Rs,jθhj , where the unitary payments

Rs = (Rs,j ; j ∈ J) will be determined in equilibrium, since resources payed by debtors over collateral

values will be endogenously distributed pro-rata to associated investors (i.e. proportional to the seize

of original claims).

We assume that, in equilibrium, (i) the quantity of resources that are invested in a passtrough

security will coincide with the quantity of resources that are borrowed to the associated debtors, and

(ii) the unitary price of a debt-contract coincides with the unitary price of the associated passtrough

security. Thus, when a debt contract is traded, the unitary payment of passtrough security j satisfies

Ds,j(ps) ≤ Rs,j . That is, in case of default, investors will receive payments that are at least greater

than the depreciated collateral guarantees.

Since agents are price takers and also advance unitary security payments, given (p, π,R) ∈

RL×S
∗

+ × RJ+ × RS×J+ , each h ∈ [0, 1] maximize his utility functions by choosing a plan in his

budget set Bh(p, π,R), which is defined as the set of vectors (x, θ, ϕ) ∈ E := RL×S
∗

+ ×RJ+×RJ+ that

satisfies,

p0(x0 − wh0 ) +
∑
j∈J

πj(θj − ϕj) + p0

∑
j∈J

Cjϕj ≤ 0;

ps(xs − whs − Ys(x0)) ≤ psYs

∑
j∈J

Cjϕj

+
∑
j∈J

Rs,jθj −Mh
s (ps, Rs, xh0 , θ

h, ϕh).

We denote by E = E
(
S∗, L, (Ys)s∈S , J, (As,j , Cj)(s,j)∈S×J ,H, (uh, wh)h∈[0,1]

)
our economy with

limited-recourse collateralized loans.

Definition 1. A vector of prices and unitary security payments (p, π,R) ∈ RL×S
∗

+ × RJ+ × RS×J+

jointly with allocations
(

(xh, θ
h
, ϕh);h ∈ [0, 1]

)
∈ E[0,1] constitute an equilibrium of E if the following

conditions hold,

4In Section 4 we discuss some examples of garnishment rules that can be captured by our specification of functions

(Φh
s ; s ∈ S) and are compatible with the assumptions imposed in our main result below.
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(1) For each h ∈ [0, 1],

uh

xh0 +
∑
j∈J

Cjϕ
h
j ,
(
xhs ; s ∈ S

) = max
(x,θ,ϕ)∈Bh(p,π,R)

uh

x0 +
∑
j∈J

Cjϕj , (xs; s ∈ S)

 .

(2) Physical and financial markets clear. That is,∫
[0,1]

xh0 +
∑
j∈J

Cjϕ
h
j

 dh =
∫

[0,1]

wh0dh;

∫
[0,1]

(xhs − whs )dh =
∫

[0,1]

Ys

xh0 +
∑
j∈J

Cjϕ
h
j

 dh, ∀s ∈ S;

∫
[0,1]

(θ
h

j − ϕhj )dh = 0, ∀j ∈ J.

(3) At any state of nature s ∈ S, aggregate yields equal aggregate payments for any asset j ∈ J ,

Rs,j

∫
[0,1]

θ
h

j dh =
∫

[0,1]

Ds,j(ps)ϕ
h
j dh+

∫
[0,1]

βhs (ps, Rs, x
h
0 , θ

h
, ϕh)[psAs,j − psYs(Cj)]+ϕhj dh,

where Rs,j ≥ Ds,j(ps) and, for any agent h ∈ [0, 1], the function

βhs : RL+ × RJ+ × RL+ × RJ+ × RJ+ → [0, 1]

is given by

βhs (ps, Rs, x0, θ, ϕ) =


Φh

s (ps,Rs,x0,θ,ϕ)
Ψs(ps,ϕ) , when Φhs (ps, Rs, x0, θ, ϕ) < Ψs(ps, ϕ);

1, in other case.

Note that, by the definition above, if for some j ∈ J , Ds,j(ps) > 0, then in equilibrium the

unitary payments of security j are non-trivial as Rs,j > 0. Analogously to Steinert and Torres-

Mart́ınez (2007), we want to assure this property since, in other case, a proof of equilibrium existence

may be trivially done. Indeed, if we suppose that both security payments and prices of debt-

contract are equal to zero, i.e. (π,R) = 0, then agents will not be interested in negotiate financial

assets. Thus, any pure spot market equilibrium of the economy without assets is an equilibrium

of our economy. For these reasons, using the monotonicity of individuals’ preferences and the non-

triviality of debt-contract promises (Assumptions (A1) and (A6) below), we assure that the minimum

between the original promise and the depreciated collateral value will be effectively strictly positive

in equilibrium.

3. Equilibrium existence

Theorem. Suppose that the following assumptions hold,

(A1) For each agent h ∈ [0, 1], the utility function uh : RL×S
∗

+ → R is continuous and strictly

increasing.
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(A2) Let U(RL×S
∗

+ ) be the set of functions u : RL×S
∗

+ → RL endowed with the sup norm topology.

Then, the mapping u : [0, 1]→ U(RL×S
∗

+ ), that associates to each agent h ∈ [0, 1] the utility

function uh, is measurable.

(A3) The utility function of any agent h ∈ [0, 1] satisfies the following asymptotic property,

lim
σ→+∞

uh(z0 + σ Cj , (zs; s ∈ S)) = +∞, ∀j ∈ J, ∀(zs; s ∈ S∗) ∈ RL×S
∗

++ .

(A4) The function w : [0, 1]→ RL×S
∗

++ , that associated to each h ∈ [0, 1] the initial endowment wh

is measurable. There exists w ∈ RL+ such that whs ≤ w, ∀(h, s) ∈ [0, 1]× S∗.

(A5) For each (h, s) ∈ [0, 1]×S, λs ∈ [0, 1) and Φhs is continuous. Also, given (ps, Rs) ∈ RL+×RJ+,

for any agent h ∈ [0, 1], the function Φhs (ps, Rs, ·) is convex and has strictly positive values

when ps � 0.

(A6) For each j ∈ J , there is a state of nature s ∈ S such that min{‖As,j‖Σ , ‖Ys(Cj)‖Σ} > 0.5

Then, there exists an equilibrium for our economy.

The first assumption is classical, while the second one is imposed by Riascos and Torres-Mart́ınez

(2010) to assure the existence of equilibrium in large non-convex generalized games. Since our

technique of proof of equilibrium existence use generalized games too, we need this assumption.

However, Nash equilibria of the generalized games (in the Appendix) not necessarily are equilibria

of our economy, because consumption bundles and financial portfolios are truncated in these games

(a requirement that our economy does not impose).

To found an equilibrium we will do an asymptotic argument using Fatou’s lemma (see Hilden-

brand (1974, page 69)). To apply this last result, we need to prove that equilibrium allocations of

generalized games are uniformly bounded. We obtain this property as a consequence of the strictly

positivity of asymptotic prices and the existence of a uniformly upper bound on individual endow-

ments (Assumption (A4)). Indeed, on the one hand, we will prove that consumption prices are

positive due to the strictly monotonicity of utility functions, meanwhile asset prices are strictly pos-

itive because asymptotic security payments are non-trivial, which is a consequence of Assumption

(A6), as we will show after Lemma 6. On the other hand, the price of the joint operation of taking

a loan and constituting the associate collateral bundle is strictly positive. In fact, on one side, since

λs < 1 (Assumption (A5)), agents will always have an exemption on the amount of resources that

may be garnished in case of default at state of nature s ∈ S. On the other hand Assumption (A3)

assures that, if an agent may increase his debt without an upper bound, the associated utility level

will be unbounded. Thus, when p0Cj −πj ≤ 0, credit is cheaper today and the exemption assures a

minimum amount of resources to consume tomorrow. As a consequence of Assumption (A3) there is

5The symbol ‖ · ‖Σ denotes the norm of the sum.
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no optimal solution for agent’s problem. This property allows us to prove that for any asset j ∈ J ,

p0Cj − πj > 0 (see Lemma 7 below). Note that, this happens even when an additional payment

enforcement mechanism is introduce: the garnishment of private goods and assets.

Assumptions (A4) and (A5) are also sufficient to prove the lower hemicontinuity of budget set

correspondences, which is necessary to assure the existence of equilibrium in generalized games.

4. Examples of garnishment rules

As we said in the model, for any h ∈ [0, 1] there are continuous functions (Φhs ; s ∈ S) which

determine the maximum amount of resources that the law allows to garnish from agent h. However,

we know that, independent of the functional form of Φhs , it needs to be strictly less than the total

amount of resources that agent h has available at s ∈ S, after the payment and foreclosure of his

debts. That is, for any state of nature s ∈ S, there is a λs ∈ [0, 1) such that,

Φhs (ps, Rs, xh0 , θ
h, ϕh) ≤ λspswhs +

psYs(xh0 ) +
∑
j∈J

[psYs(Cj)− psAs,j ]+ϕhj +
∑
j∈J

Rs,jθ
h
j

 .

Therefore, in addition to the rule that makes Φhs equal to the maximum amount of resources

that the law allows to garnish (making the inequality above an equality), we may have the following

garnishment rules.

• Only non-collateralized commodities may be garnished.

That is, there is a vector (ζs,`; ` ∈ L) ∈ (0, λs]L such that,

Φhs (ps, Rs, xh0 , θ
h, ϕh) =

∑
`∈L

ζs,` ps,`
(
whs,` + Ys(xh0 , `)

)
, ∀s ∈ S.

Note that, in case of bankruptcy, the law may protect some commodities more than others.

• (Almost) only financial investment may be garnished.

Assume that λs is low enough and let

Φhs (ps, Rs, xh0 , θ
h, ϕh) = λspsw

h
s +

∑
j∈J

Rs,jθ
h
j .

Note that, since we need at any s ∈ S a strictly positive Φhs (ps, Rs, xh0 , θ
h, ϕh) for ps � 0

(Assumption (A5)), we can not suppose that only assets are garnished. For this reason we maintain

a lower proportion of physical resources as expropriated wealth.

Since λs is near to zero, the wealth that can be garnished is closer to the resources obtained

as financial investment returns. In some sense, this type of garnishment rule made the additional

payment enforcement of our model to be active only over investors, that is, it acts over the richest

and most patient agents.
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• The total wealth of defaulters can be garnished.

This garnishment rule, which is equivalent to take λs = 1 for any s ∈ S, could be incorporated

in our model if we strength some of the assumptions of our theorem.

Indeed, we can allow for total garnishment if we suppose that the utility function of each agent

h ∈ [0, 1] is separable in time-periods. That is, uh((xs; s ∈ S∗)) = uh(0, x0) + uh(1, (xs; s ∈ S)).

This separability assumption is important to assure that, when λs = 1 for any s, we still have that

p0Cj − πj > 0 holds for each asset j ∈ J (see the proof of Lemma 7 in Appendix).

• A fixed proportional rate of the resources may be garnished.

It is sufficient to assume that, for any s ∈ S, there is a fixed parameter γs ∈ (0, λs] such that

Φhs (ps, Rs, xh0 , θ
h, ϕh) = γs

ps(whs + Ys(xh0 )) +
∑
j∈J

[psYs(Cj)− psAs,j ]+ϕhj +
∑
j∈J

Rs,jθ
h
j

 .

• Survival exemptions in case of bankruptcy.

Suppose that η ∈ RL++ is a consumption bundle that measures a threshold that determines, given

prices ps, personalized exemptions. That is, a level of wealth under which is not allowed to garnish

more than a minimal percentage ε ∈ (0, 1) of individual endowments,

Φh
s (ps, Rs, x

h
0 , θ

h, ϕh) = max

(
ps(wh

s + Ys(xh
0 )) +

X
j∈J

[psYs(Cj)− psAs,j ]+ϕh
j +

X
j∈J

Rs,jθ
h
j − psη; εpsw

h
s

)
.

Then, although in this case the parameter λs (that was defined in the model) depends on the wealth

of agents, we can maintain the proof of equilibrium, because this parameter still belongs to [0, 1),

although it increases to one when the wealth of the agent increases.

5. Concluding remarks

We introduced the possibility of bankruptcy into the general equilibrium model with collateralized

credit markets of Dubey, Geanakoplos and Zame (1995) and Geanakoplos and Zame (1997, 2002,

2007). In case of default, borrowers may loss more than collateral guarantees, as market regulations

allow lenders to be reimbursed by the garnishment of debtor wealth. We show that equilibrium

always exists when there is a continuum of agents in the economy, even when the garnishment of

resources over collateral repossession could induce non-convexities on individuals problems.

Our model can be extended in several dimensions: to allow for more than two periods (or infinite

horizon), to introduce other reimbursement rules or additional payment enforcement over the gar-

nishment of wealth, to include financial collateral or even more complex securitization structures.

However, we want to highlight two natural questions that may be studied departing for our model.

First, it could be interesting to determine the real effectiveness that the garnishment of wealth

has in the process of obtaining higher payments from borrowers. Also, we could analyze its perfor-

mance relative to another payment enforcement mechanisms, as those given by restrictions on future
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credit or non-economic punishments that affects utility levels. Secondly, although in our model the

garnished wealth is reimbursed to lenders following a proportional rule, we could extend our result

to allow some claims to have priority over others to be reimbursed.

In relation with the effectiveness of payment enforcement mechanisms, Ferreira and Torres-

Mart́ınez (2010) showed that, in infinite horizon convex economies, the effectiveness of these mech-

anisms may be incompatible with individual optimality when physical guarantees are low. Indeed,

the market value of collateral may be lower than the loan value and, therefore, Ponzi schemes may

appear. In our model, which is non-convex, a similar situation may happen. That is, the effective-

ness of the garnishment of wealth as payment enforcement may be compromised when the seize of

collateral guarantees is low. However, the formalization of these kind of results need to overcome the

limitations that non-convexities of our model may generate. On the other hand, to allow for more

complicated securitization structures, the same techniques used by Steinert and Torres-Mart́ınez

(2007) could be followed.6

Appendix: Proof of equilibrium existence

To prove the existence of equilibrium, we will define large non-convex generalized games where

(i) each consumer maximizes his utility function, but is restricted to choose bounded plans in his

budget set; and (ii) there are fictitious players that choose prices and securities payments.

We prove first that those generalized games have equilibria. Secondly, making the upper bound

on admissible plans goes to infinity, we find an equilibrium of E as a cluster point of the sequence

of equilibria in generalized games.

Fix n ∈ N and define,

En = {(x, θ, ϕ) ∈ E : (xs,`, θj , ϕj) ≤ n(1, 1, 1), ∀(s, `, j) ∈ S∗ × L× J} ,

∆0 =

{
(qr; r ∈ L ∪ J) ∈ RL+ × RJ+ :

∑
r∈L∪J

qr = 1

}
,

∆1 =

{
(qr; r ∈ L) ∈ RL+ :

∑
r∈L

qr = 1

}
.

Take as given a vector of prices (p, π) = ((p0, π); (ps; s ∈ S)) ∈ ∆0 × ∆S
1 . For convenience of

notations, we rewrite unitary payments of a security j ∈ J at a state of nature s ∈ S as Rs,j =

Ds,j(ps) + Ns,j , where Ns,j ≥ 0. Thus, let N = (Ns,j ; (s, j) ∈ S × J) ∈ [0, A]S×J be the vector

of contingent security payments over collateral values, where A := max(s,j)∈S×J
∑
`∈LAs,j,`. The

6Essentially, following Steinert and Torres-Mart́ınez (2007) we can change the specification of the large generalized

game in the Appendix, in order to include seniority structures of reimbursement, maintaining the equilibrium existence

result.
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truncated budget set of agent h ∈ [0, 1], denoted by Bhn(p, π,N), is defined as the collection of of

plans (xn, θn, ϕn, αn, κn) ∈ En × [0, 1]S × [0, n]S that satisfies,

p0xn,0 +
∑
j∈J

πj(θn,j − ϕn,j) + p0

∑
j∈J

Cjϕn,j ≤ p0w
h
0 ;

ps(xn,s − whs ) ≤ psYs

xn,0 +
∑
j∈J

Cjϕn,j

+
∑
j∈J

Ds,j(ps) (θn,j − ϕn,j)

+
∑
j∈J

Ns,jθn,j − (αn,sΨs(ps, ϕn) + κn,s), ∀s ∈ S;

αn,sΨs(ps, ϕn) + κn,s ≥ min{Ψs(ps, ϕn),Φhs (ps, Ns +Ds(ps), xn,0, θn, ϕn)}, ∀s ∈ S.

We introduce the auxiliary variables ((αn,s, κn,s); s ∈ S) in order to prove equilibrium existence in

our generalized large games (that we will define below). Essentially, we will need that the objective

functions of fictitious players depends on aggregated information about the actions of consumers,

but also that this aggregated information does not depends on prices (as would be the case if we

work with variables Mh
s (ps, Ns + Ds(ps), xn,0, θn, ϕn). Additionally, although the introduction of

variables (αn,s; s ∈ S) is sufficient to attempt this objective, variables (κn,s; s ∈ S) allow us to prove

that truncated budget set correspondences are lower-hemicontinuous (see Lemma 1 below).

The generalized game Gn. Given n ∈ N, let Gn be a generalized game with a continuum of

players, where only a finite number of them are atomic. In this game, the set of players jointly with

their actions spaces, admissible strategies and objective functions, may be described as follows,

(a) Given a vector of prices and payments (p, π,N) ∈ ∆0×∆S
1 × [0, A]S×J , each consumer h ∈ [0, 1]

maximizes the function vhn : RL×S
∗

+ × RJ+ × [0, n]S → R+,

vhn(xhn, ϕ
h
n, κ

h
n) = uh

xhn,0 +
∑
j∈J

Cjϕ
h
j ,
(
xhn,s; s ∈ S

)−∑
s∈S

κhn,s,

by choosing a plan (xhn, θ
h
n, ϕ

h
n, α

h
n, κ

h
n) ∈ Bhn(p, π,N).

Define the continuous function τ : En × [0, 1]S × [0, n]S → En × [0, n]S×J by τ(x, θ, ϕ, α, κ) =

(x, θ, ϕ, α�ϕ), where for each vector (α,ϕ) ∈ [0, 1]S× [0, n]J , α�ϕ = (αsϕj ; (s, j) ∈ S×J) ∈ RS×J+ .

Let Fn be the set of action profiles for players h ∈ [0, 1], that is, the set of functions f : [0, 1] →

En × [0, 1]S × [0, n]S .

In addition to consumers h ∈ [0, 1], we include in the generalized game Gn players that take as

given messages about the actions taken by the consumers. The set of messages is given by,

Messn =

{∫
[0,1]

τ(f(h))dh : (f ∈ Fn) ∧ (τ ◦ f is measurable)

}
.
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Then, in addition to players h ∈ [0, 1], we have,

(b) A player a0 that, given m ∈ Messn, chooses a vector of prices (p0, π) ∈ ∆0 in order to maximize

the function

p0

∫
[0,1]

xhn,0 +
∑
j∈J

Cjϕ
h
n,j − wh0

 dh+
∑
j∈J

πj

∫
[0,1]

(
θhn,j − ϕhn,j

)
dh,

where m =
∫

[0,1]
(xhn, θ

h
n, ϕ

h
n, α

h
n � ϕhn)dh.

(c) For any s ∈ S, a player as that, given m ∈ Messn, chooses a vector of prices ps ∈ ∆1 in order to

maximize the function

ps

∫
[0,1]

xhn,s − whs − Ys
xhn,0 +

∑
j∈J

Cjϕ
h
n,j

 dh,

where m =
∫

[0,1]
(xhn, θ

h
n, ϕ

h
n, α

h
n � ϕhn)dh.

(d) For each pair (s, j) ∈ S×J , a player cs,j that, given (m, ps) ∈ Messn×∆1, chooses Ns,j ∈ [0, A]

in order to maximize the function

−

(
Ns,j

∫
[0,1]

ϕhj dh−
∫

[0,1]

[psAs,j − psYs(Cj)]+αhsϕhj dh

)2

,

where m =
∫

[0,1]
(xhn, θ

h
n, ϕ

h
n, α

h
n � ϕhn)dh.

Definition 2. An Nash equilibrium in pure strategies for the game Gn is given by a plan of strategies

and a message ((
(pn0 , π

n), pns , N
n

s,j

)
(s,j)∈S×J

;
(
xhn, θ

h

n, ϕ
h
n, α

h
n, κ

h
n

)
h∈[0,1]

,m

)
,

such that, any player maximizes his objective function given the message and the strategies chosen

by the other players, where m =
∫

[0,1]
(xhn, θ

h

n, ϕ
h
n, α

h
n � ϕhn)dh.

Lemma 1. Under Assumptions (A1), (A2), (A4) and (A5), there exists n∗ ∈ N such that, for any

n > n∗, there is a pure strategy Nash equilibrium of the generalized game Gn.

Proof. The existence of a pure strategy equilibrium in our game is a consequence of Theorem 1 in

Riascos and Torres-Mart́ınez (2010) (see also Balder (1999)). The only requirement of this Theorem

that does not follows from simple arguments or direct verification, is the lower-hemicontinuity of

correspondences Bhn, for any h ∈ [0, 1].
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Thus, given h ∈ [0, 1], consider the correspondence Ḃhn that associates to a vector (p, π,N) the

collection of plans (xn, θn, ϕn, αn, κn) ∈ En × [0, 1]S × [0, n]S that satisfies,

p0xn,0 +
∑
j∈J

πj(θn,j − ϕn,j) + p0

∑
j∈J

Cjϕn,j < p0w
h
0 ;

ps(xn,s − whs ) < psYs

xn,0 +
∑
j∈J

Cjϕn,j

+
∑
j∈J

Ds,j(ps) (θn,j − ϕn,j)

+
∑
j∈J

Ns,jθn,j − (αn,sΨs(ps, ϕn) + κn,s), ∀s ∈ S;

αn,sΨs(ps, ϕn) + κn,s > min{Ψs(ps, ϕn),Φhs (ps, Ns +Ds(ps), xn,0, θn, ϕn)}, ∀s ∈ S.

It follows from Assumption (A4) that Ḃhn has non-empty values. Also, since the constraints that

define Ḃhn(p, π,N) are given by inequalities that only include continuous functions, the correspon-

dence Ḃhn has open graph. Therefore, for any h ∈ [0, 1], Ḃhn is lower-hemicontinuous (see Hildenbrand

(1974, Theorem 2, page 27)). Moreover, the correspondence that associates to any vector (p, π,N)

the closure of the set Ḃhn(p, π,N) is also lower-hemicontinuous (see Hildenbrand (1974, page 26)).

We affirm that, for any vector (p, π,N) ∈ ∆0×∆S
1 × [0, A]S×J , the closure of the set Ḃhn(p, π,N)

coincides with Bhn(p, π,N). Since, by construction, closure(Ḃhn(p, π,N)) ⊂ Bhn(p, π,N), it is suffi-

cient to prove that, Bhn(p, π,N) ⊂ closure(Ḃhn(p, π,N)).

Therefore, fix (xn, θn, ϕn, αn, κn) ∈ Bhn(p, π,N) ⊂ En × [0, 1]S × [0, n]S .

Given ((εs; s ∈ S∗), δ) ∈ (0, 1)S
∗ × (0, 1), for any j ∈ J , define ϕn,j(ε0, δ) = (1− δ)ϕn,j + ε0 and,

for any s ∈ S, let κn,s(εs, δ) = (1− δ)κn,s + εs. We want to prove that the plan

((1− δ)xn, (1− δ)θn, (ϕn,j(ε0, δ))j∈J , αn, (κn,s(εs, δ))s∈S)

belongs to the interior of Bhn(p, π,N) (i.e. constraints are satisfied with strictly inequality).

However, it is not difficult to verify that this property effectively holds if n > n∗ := max
`∈L

w`, and

the following inequalities are satisfied by the parameters ((εs; s ∈ S∗), δ), 7

Φhs (ps, Ns +Ds(ps), (1− δ)xn,0, (1− δ)θn, ϕn(ε0, δ))

< (1− δ)Φhs (ps, Ns +Ds(ps), xn,0, θn, ϕn) + εs,

εs < min

δpswhs −∑
j∈J

psAs,jε0, δn

 = δ psw
h
s −

∑
j∈J

psAs,jε0, ∀s ∈ S;

ε0
∑
j∈J

(p0Cj − πj) < δmin
`∈L

wh0,`.

7Remember that, for any (ps, Rs) ∈ RL
+ × RJ

+, the function Φh
s (ps, Rs, x0, ϕ, θ) is convex on (x0, θ, ϕ) and

Φh
s (ps, Rs, 0, 0, 0) < pswh

s for any agent h ∈ [0, 1]. On the other hand, the restriction over n is to assure that

agents have freedom to consume their entire physical endowment in any state of nature.
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Note that, inequalities above are well defined as a consequence of Assumption (A4). Thus, making

δ goes to zero (which implies that (εs; s ∈ S∗) vanishes too), we conclude that (xn, θn, ϕn, αn, κn)

belong to the closure of Ḃhn(p, π,N).

Thus, if n > n∗, Bhn is lower-hemicontinuous for every agent h ∈ [0, 1]. 2

In any equilibrium of the game Gn, with n > n∗,((
(pn0 , π

n), pns , N
n

s,j

)
(s,j)∈S×J

;
(
xhn, θ

h

n, ϕ
h
n, α

h
n, κ

h
n

)
h∈[0,1]

,m

)
,

each consumer h ∈ [0, 1] will choose κhn = 0. In fact, the variable κn,s reduces the income of the

agent at s ∈ S and also generates a penalty in the utility. Thus, as a consequence of monotonicity

of preferences (Assumption (A1)), the agent does not have any incentive to make κhn,s > 0, since

αn,s ∈ [0, 1]. Thus, it follows that, for any agent h ∈ [0, 1], αhn,s = βhs (pns , N
n

s +Ds(pns ), xhn,0, θ
h

n, ϕ
h
n).

Indeed, since preferences are monotonic (Assumption (A1)), agent h will never choose, at a state of

nature s ∈ S, an αhn,sΨs(pns , ϕ
h
n) > min

{
Ψs(pns , ϕ

h
n),Φhs (pns , N

n

s +Ds(pns ), xhn,0, θ
h

n, ϕ
h
n)
}

.

Lemma 2. Suppose that Assumptions (A1), (A2), (A4) and (A5) hold. Then, for any n > n∗,

given a Nash equilibrium of Gn,((
(pn0 , π

n), pns , N
n

s,j

)
(s,j)∈S×J

;
(
xhn, θ

h

n, ϕ
h
n, α

h
n, κ

h
n

)
h∈[0,1]

,m

)
,

for each (s, j) ∈ S × J ,

N
n

s,j

∫
[0,1]

ϕhn,jdh =
∫

[0,1]

[pnsAs,j − pnsYs(Cj)]+αhn,sϕhn,jdh.

Proof. Let n > n∗ and fix (s, j) ∈ S × J . Since N
n

s,j ∈ [0, A], it follows from the definition of the

objective function of player cs,j that,

N
n

s,j

∫
[0,1]

ϕhn,jdh ≤
∫

[0,1]

[pnsAs,j − pnsYs(Cj)]+αhn,sϕhn,jdh,

where the strict inequality holds only if both N
n

s,j = A and
∫

[0,1]
ϕhn,jdh > 0, but this is impossible

since pns ∈ ∆1. Thus, the equality always holds. 2

Definition 3. A vector of prices and payments (pn, πn, R
n
) ∈ ∆0 ×∆S

1 × [0, 2A]S×J , jointly with

plans
(

(xhn, θ
h

n, ϕ
h
n);h ∈ [0, 1]

)
∈ E[0,1]

n , constitute a n-equilibrium of E when,

(3.1) For each h ∈ [0, 1],

(xhn, θ
h

n, ϕ
h
n) ∈ argmax(x,θ,ϕ)∈Bh(pn,πn,R

n
)∩En

uh

x0 +
∑
j∈J

Cjϕj , (xs; s ∈ S)

 .
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(3.2) There is no excess of demand in physical or financial markets,∫
[0,1]

xhn,0 +
∑
j∈J

Cjϕ
h
n,j

 dh ≤
∫

[0,1]

wh0dh;

∫
[0,1]

(xhn,s − whs )dh ≤
∫

[0,1]

Ys

xhn,0 +
∑
j∈J

Cjϕ
h
n,j

 dh, ∀s ∈ S;

∫
[0,1]

(θ
h

n,j − ϕhn,j)dh ≤ 0, ∀j ∈ J.

(3.3) At any state of nature s ∈ S and for any j ∈ J ,

R
n

s,j

∫
[0,1]

θ
h

n,jdh ≤ R
n

s,j

∫
[0,1]

ϕhn,jdh

=
∫

[0,1]

Ds,j(pns )ϕhn,jdh+
∫

[0,1]

[pnsAs,j − pnsYs(Cj)]+βhs (pns , R
n

s , x
h
n,0, θ

h

n, ϕ
h
n)ϕhn,jdh,

where R
n

s = (R
n

s,j ; j ∈ J) and R
n

s,j ≥ Ds,j(pns ).

The following result assures the existence of n-equilibria as a consequence of the existence of

Nash equilibria in the generalized game Gn.

Lemma 3. Under Assumptions (A1), (A2), (A4) and (A5), the economy E has a n-equilibrium for

any n > n∗.

Proof. Given n > n∗, let((
(pn0 , π

n), pns , N
n

s,j

)
(s,j)∈S×J

;
(
xhn, θ

h

n, ϕ
h
n, α

h
n, κ

h
n

)
h∈[0,1]

,m

)
,

be a pure strategy Nash equilibrium of Gn. We want to prove that((
(pn0 , π

n), pns , R
n

s,j

)
(s,j)∈S×J

;
(
xhn, θ

h

n, ϕ
h
n

)
h∈[0,1]

)
constitutes a n-equilibrium for the economy E , where for each (s, j) ∈ S × J the unitary security

payment satisfies, R
n

s,j = Ds,j(pns )+N
n

s,j . It follows from comments after Lemma 1, that to attempt

this objective is sufficient to prove that conditions of items (3.2) and (3.3) of Definition 3 hold.

Integrating through agents the first period budget constraints of Bhn(pn, πn, N
n
), we obtain that,

pn0

∫
[0,1]

xhn,0 +
∑
j∈J

Cjϕ
h
n,j − wh0

 dh+
∑
j∈J

πnj

∫
[0,1]

(
θ
h

n,j − ϕhn,j
)
dh ≤ 0.

Thus, the maximal value of player a0 objective function is zero. Therefore, since (pn0 , π
n) ∈ ∆0, for

any commodity ` ∈ L and for each j ∈ J ,∫
[0,1]

xhn,0,` +
∑
j∈J

Cj,`ϕ
h
n,j − wh0,`

 dh ≤ 0,
∫

[0,1]

(
θ
h

n,j − ϕhn,j
)
dh ≤ 0.
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In fact, in other case, player a0 would make his objective function positive by concentrating in those

coordinates that are strictly positive. Thus, as a direct consequence of the last inequality above and

Lemma 2, we obtain

N
n

s,j

∫
[0,1]

θ
h

n,jdh ≤ N
n

s,j

∫
[0,1]

ϕhn,jdh =
∫

[0,1]

[pnsAs,j − pnsYs(Cj)]+αhn,sϕhn,jdh.

If we define R
n

s,j = Ds,j(pns ) + N
n

s,j , we obtain conditions of item (3.3) of Definition 3, using the

fact that αhn,s = βhs (pns , R
n

s , x
h
n,0, θ

h

n, ϕ
h
n).

Finally, given s ∈ S, using inequalities above and aggregating budget constraints at this state of

nature, we obtain that

pns

∫
[0,1]

(xhn,s − whs )dh−
∫

[0,1]

Ys

xhn,0 +
∑
j∈J

Cjϕ
h
n,j

 dh

 ≤ 0.

In other words, the maximal value of the objective function of player as is less than or equal to zero.

Therefore, since pns belongs to ∆1, we conclude that, for any commodity ` ∈ L

∫
[0,1]

(xhn,s,` − whs,`)dh ≤
∫

[0,1]

Ys

xhn,0,` +
∑
j∈J

Cj,`ϕ
h
n,j

 dh.

Thus,
(

(pn0 , π
n), pns , R

n

s,j)(s,j)∈S×J ; (xhn, θ
h

n, ϕ
h
n)h∈[0,1]

)
constitutes a n-equilibrium of E . 2

Lemma 4. Under Assumptions (A1), (A2), (A4) and (A5), let
(

(pn, πn, R
n
);
(

(xhn, θ
h

n, ϕ
h
n);h ∈ [0, 1]

))
be a n-equilibrium of E, with n > n∗. Consider the family of non-negative and integrable functions{
gn : [0, 1]→ RL×S

∗

+ × RJ+ × RJ+ × RS×J+

}
n>n∗

given by,

gn(h) =
(
xhn, θ

h

n, ϕ
h
n, (βhs (pns , R

n

s , x
h
n,0, θ

h

n, ϕ
h
n)ϕhn,j)(s,j)∈S×J

)
, ∀n > n∗.

Then, the sequence
{(
pn, πn, R

n
,
∫

[0,1]
gn(h)dh

)}
n>n∗

is bounded and, therefore, has a convergent

subsequence.

Proof. Since for any n > n∗, the vector (pn, πn, R
n
) ∈ ∆0 ×∆S

1 × [0, 2A]S×J , it follows that the

sequence of equilibrium prices and payments is bounded. On the other hand, using the fact that(
(pn, πn, R

n
);
(

(xhn, θ
h

n, ϕ
h
n);h ∈ [0, 1]

))
is an n-equilibrium of E we have,

0 ≤
∫

[0,1]

xhn,0dh ≤
∫

[0,1]

wh0dh,

0 ≤
∑
j∈J

Cj

∫
[0,1]

ϕhn,jdh =
∫

[0,1]

∑
j∈J

Cjϕ
h
n,jdh ≤

∫
[0,1]

wh0dh,

0 ≤
∫

[0,1]

θ
h

ndh ≤
∫

[0,1]

ϕhndh.
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Moreover, for any (s, j) ∈ S × J ,

0 ≤
∫

[0,1]

βhs (pns , R
n

s , x
h
n,0, θ

h

n, ϕ
h
n)ϕhn,jdh ≤

∫
[0,1]

ϕhn,jdh,

0 ≤
∫

[0,1]

xhn,sdh ≤
∫

[0,1]

(
whs + Ys

(
wh0
))
dh,

where the last inequality is a consequence of the fact that Y (x) ≤ Y (y) if x ≤ y. The result follows

from Assumption (A4), since for any j ∈ J there is ` ∈ L such that Cj,` > 0. 2

It follows from Lemma above that, if we fix a sequence of n-equilibria{(
(pn, πn, R

n
);
(

(xhn, θ
h

n, ϕ
h
n);h ∈ [0, 1]

))}
n>n∗

,

there exists a convergent subsequence{(
pnk , πnk , R

nk
,

∫
[0,1]

gnk
(h)dh

)}
nk>n∗

⊆

{(
pn, πn, R

n
,

∫
[0,1]

gn(h)dh

)}
n>n∗

.

We denote by (p, π,R) the associated limit of prices and payments. Also, applying the weak version

of the multidimensional Fatou’s Lemma to the sequence {gnk
}nk>n∗

(see Hildenbrand (1974, page

69)), we can found a set P ⊂ [0, 1] of full measure (µ(P) = 1), and an integrable function g : [0, 1]→

RL×S
∗

+ ×RJ+ ×RJ+ ×RS×J+ , defined by g(h) := (xh, θ
h
, ϕh, (ρhs,j)(s,j)∈S×J) such that, for each agent

h ∈ P, there is a subsequence of {gnk
(h)}nk>n∗

that converges to g(h), and∫
[0,1]

g(h)dh ≤ lim
k→∞

∫
[0,1]

gnk
(h)dh.

Thus, it follows that, for any h ∈ P, the bundle (xh, θ
h
, ϕh) belong to Bh(p, π,R). In ad-

dition, if commodity prices satisfy ps � 0, then for any (h, s, j) ∈ P × S × J , we have that

ρhs,j = βhs (ps, Rs, x
h
0 , θ

h
, ϕh)ϕhj .8

Lemma 5. Under Assumptions (A1), (A2), (A4) and (A5), take as given n > n∗ and h ∈ [0, 1].

Then, the correspondence Hhn : ∆0×∆1× [0, 2A]S×J → En defined by Hhn(p, π,R) = Bh(p, π,R)∩En
is lower-hemicontinuous.

8Given h ∈ P, the convergence of a subsequence of {ϕh
nk
, (βh

s (p
nk
s , R

nk
s , xh

nk,0, θ
h
nk
, ϕh

nk
)ϕh

nk,j)(s,j)∈S×J}nk>n∗

(those given by the Fatou’s Lemma), does not necessarily imply in the convergence of the associated subsequence

of (βh
s (p

nk
s , R

nk
s , xh

nk,0, θ
h
nk
, ϕh

nk
)s∈S}nk>n∗ . However, the later sequence is bounded and, therefore, taking a sub-

sequence again if it is necessary, we can assume that its converges. Thus, if Ψs(ps, ϕ
h) > 0, then for any ps ∈ ∆1,

the function βh
s is continuous at the point (ps, Rs, xh

0 , θ
h
, ϕh) and, therefore, ρh

s,j = βh
s (ps, Rs, xh

0 , θ
h
, ϕh)ϕh

j . When

ps � 0, if Ψs(ps, ϕ
h) = 0, then the fact that Φh

s (ps, Rs, xh
0 , θ

h
, ϕh) > 0 jointly with the continuity of Ψs assure that,

for nk large enough, βh
s (p

nk
s , R

nk
s , xh

nk,0, θ
h
nk
, ϕh

nk
) = 1, which implies that ρh

s,j = βh
s (ps, Rs, xh

0 , θ
h
, ϕh)ϕh

j .
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Proof. We follow similar arguments to those made in Lemma 1 to prove the lower-hemicontinuity

of the correspondence Bhn. Indeed, since the associated interior correspondence Ḣhn has non-

empty values and open graph, it follows that both correspondences Ḣhn and closure(Ḣhn) are lower-

hemicontinuous. Thus, since for any vector (p, π,R), Ḣhn(p, π,R) ⊂ Hhn(p, π,R), only left to prove

that Hhn(p, π,R) ⊂ closure(Ḣhn(p, π,R)).

Given a vector of prices and payments (p, π,R), fix (xn, θn, ϕn) ∈ Hhn(p, π,R). For any (δ, ε0) ∈

(0, 1)× (0, 1), define ϕn,j(ε0, δ) = (1− δ)ϕn,j + ε0, ∀j ∈ J . Then, if the following conditions hold

ε0
∑
j∈J

(p0Cj − πj) < δmin
`∈L

wh0,`,

Φhs (ps, Rs, (1− δ)xn,0, (1− δ)θn, ϕn(ε0, δ))

< (1− δ)Φhs (ps, Rs, xn,0, θn, ϕn) + δ psw
h
s −

∑
j∈J

psAs,jε0,

the constraints on Bh(p, π,N) ∩ En are satisfied with strict inequality by the plan ((1− δ)xn, (1−

δ)θn, (ϕn,j(ε0, δ))j∈J). In this way, if δ goes to zero (which implies that ε0 vanishes too), we conclude

that (xn, θn, ϕn) belong to the closure of Ḣhn(p, π,R). Thus, Hhn is lower-hemicontinuous. 2

Lemma 6. Under Assumptions (A1), (A2), (A4) and (A5), for each agent h ∈ P, the allocation

(xh, θ
h
, ϕh) is an optimal choice on Bh(p, π,R).

Proof. Fix an agent h ∈ P and suppose that (xh, θ
h
, ϕh) is not optimal for agent h at prices-

payments (p, π,R). Thus, there exists another plan (x̃h, θ̃h, ϕ̃h) ∈ Bh(p, π,R) such that

uh

x̃h0 +
∑
j∈J

Cjϕ̃
h
j ,
(
x̃hs ; s ∈ S

) > uh

xh0 +
∑
j∈J

Cjϕ
h
j ,
(
xhs ; s ∈ S

) .

It is clear that there exists n∗∗ > n∗ such that, for any n ≥ n∗∗ plans (xh, θ
h
, ϕh) and (x̃h, θ̃h, ϕ̃h)

belongs to Hhn(p, π,R) ⊇ Hhn∗(p, π,R).

Fix n > n∗∗. Then, there exists an Thn ∈ N such that (xhm, θ
h

m, ϕ
h
m) ∈ En, for any m > Thn in the

subsequence of {gm′(h)}m′>n∗ that was given by the Fatou’s Lemma and converges to g(h).

It follows from Lemma 5 and the sequential characterization of lower-hemicontinuity, that there

exist a sequence
{

(x̃hm, θ̃
h
m, ϕ̃

h
m)
}
m>Th

n

∈ En such that, for any m > Thn , the plan (x̃hm, θ̃
h
m, ϕ̃

h
m) ∈

Hhn(pm, πm, R
m

) and lim
m→∞

(x̃hm, θ̃
h
m, ϕ̃

h
m) = (x̃h, θ̃h, ϕ̃h).

Therefore, since for m large enough, (x̃hm, θ̃
h
m, ϕ̃

h
m) ∈ Hhn(pm, πm, R

m
) ⊂ Hhm(pm, πm, R

m
)

uh

x̃hm,0 +
∑
j∈J

Cjϕ̃
h
m,j ,

(
x̃hm,s; s ∈ S

) ≤ uh
xhm,0 +

∑
j∈J

Cjϕ
h
m,j ,

(
xhm,s; s ∈ S

) .
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Taking the limit as m goes to infinity, we obtain that

uh

x̃h0 +
∑
j∈J

Cjϕ̃
h
j ,
(
x̃hs ; s ∈ S

) ≤ uh
xh0 +

∑
j∈J

Cjϕ
h
j ,
(
xhs ; s ∈ S

) ,

which contradicts the existence of a plan that improve the utility of agent h at (xh, θ
h
, ϕh). 2

It follows from Lemma 6 and the monotonicity of utility function that (ps; s ∈ S∗)� 0. Therefore,

for any j ∈ J , by the definition of nk-equilibria and the fact that R
nk

s,j converges to Rs,j for each

s ∈ S, Assumption (A6) assures that there is a state of nature s(j) ∈ S such that

Rs(j),j ≥ Ds(j),j(ps(j)) = min
{
ps(j)As(j),j , ps(j)Ys(j)(Cj)

}
> 0.

Furthermore, this last property jointly with the monotonicity of preferences guarantees that, for

any j ∈ J , the unitary price πj is strictly positive.

Lemma 7. Suppose that Assumptions (A1)-(A5) hold. Then for each j ∈ J , p0Cj > πj .

Proof. Let h ∈ P. Suppose that there is a j ∈ J such that, p0Cj ≤ πj . Then, agent h may sell

any quantity a > 0 of debt contract j, to obtain resources at t = 0 that allow him to consume the

bundle wh0 +Cja� 0. This position in the asset j has a limited commitment at any state of nature

s ∈ S. In fact, the agent will never pay more than Φhs (ps, Rs, wh0 + Cja, 0, ae(j)), resources that he

always have, where e(j) ∈ RJ is the canonical vector on j-th coordinate. Therefore, independent of

a, he may consume (at least) at any state of nature s ∈ S the bundle (1− λs)whs which has strictly

positive coordinates as a consequence of Assumptions (A4) and (A5). Using this strategy agent h

could improve, for a large enough, his utility function in relation to the level that he obtained with

plan (xh, θ
h
, ϕh). A contradiction. 2

Lemma 8. Suppose that Assumptions (A1), (A2), (A4) and (A5) hold. Then, {gnk
}nk≥n∗ is uni-

formly integrable and, for each h ∈ [0, 1], {gnk
(h)}nk≥n∗ is bounded.

Proof. For each h ∈ [0, 1], {gnk
(h)}nk≥n∗ is bounded if the sequence

{
(xhnk

, θ
h

nk
, ϕhnk

)
}
nk≥n∗

is bounded too. Since (p, π, (p0Cj − πj)j∈J) � 0, there exists ε > 0 and T ∗ ∈ N such that

(p, π, (p0Cj − πj)j∈J)� ε(1, . . . , 1) and, for any nk > T ∗,

‖
(
pnk , πnk , (pnk

0 Cj − πnk
j )j∈J

)
− (p, π, (p0Cj − πj)j∈J) ‖max ≤ ε.
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Therefore, since ‖
(
pnk , πnk , (pnk

0 Cj − πnk
j )j∈J

)
‖max � 0, using individuals’ first period budget

constraints, we have that, for any (j, `) ∈ J × L and for each nk > T ∗,

0 ≤
(
xhnk,0,`

, θ
h

nk,j
, ϕhnk,j

)
≤

(
pnk

0 wh0
pnk

0,`

,
pnk

0 wh0
πnk
j

,
pnk

0 wh0
pnk

0 Cj − πnk
j

)
.

In addition, for any (s, `) ∈ S × L,

0 ≤ xhnk,s,`
≤
pnk
s

(
whs + Ys(xhnk,0

+
∑
j∈J Cjϕ

h
nk,j

)
)

+
∑
j∈J R

nk

s,jθ
h

nk,j

pnk

s,`

.

Let ζ = min(s,`,j)∈S∗×L×J
{
ps,`, πj , p0Cj − πj

}
and Π0 = 1

ζ−ε‖w‖max (which is well defined as

a consequence of the definition of ε). Then, for each nk > T ∗,

0 ≤ max
(`,j)∈L×J

{
xhnk,0,`

, θ
h

nk,j
, ϕhnk,j

}
≤ Π0,

and for any s ∈ S,

0 ≤ max
`∈L

xhnk,s,`
≤ Πs := Π0

1 +
1

ζ − ε

∥∥∥∥∥∥Ys
(1, . . . , 1) +

∑
j∈J

Cj

∥∥∥∥∥∥
max

+
2A
ζ − ε

#J

 .

Therefore, for any h ∈ [0, 1], each component of the non-negative sequence
{

(xhnk
, θ

h

nk
, ϕhnk

)
}
nk≥n∗

is bounded from above by Π := maxs∈S∗ Πs. Since the upper bound of {gnk
(h)}nk≥n∗ is indepen-

dent of h ∈ [0, 1], the family of functions {gnk
}nk≥n∗ is uniformly integrable (see Hildenbrand (1974,

page 52)). 2

It follows from Lemma 8 that the sequence of non-negative integrable functions {gnk
}nk≥n∗ satis-

fies the assumptions of the strong version of the multidimensional Fatou’s Lemma (see Hildenbrand

(1974, page 69)). Thus, we can found a set P̂ ⊂ [0, 1] of full measure (µ(P̂) = 1) and an integrable

function ĝ : [0, 1]→ RL×S
∗

+ ×RJ+ ×RJ+ ×RS×J+ , defined by ĝ(h) := (x̂h, θ̂h, ϕ̂h, (ρ̂hs,j)(s,j)∈S×J) such

that, for each agent h ∈ P̂ there is a subsequence of {gnk
(h)}nk≥n∗ that converges to ĝ(h), and∫

[0,1]

ĝ(h)dh = lim
k→∞

∫
[0,1]

gnk
(h)dh.9

In addition, the strictly positivity of commodity prices at any state of nature s ∈ S, i.e. ps � 0,

implies that (see footnote 8 above),

(ρ̂hs,j)(s,j)∈S×J = (βhs (ps, Rs, x̂
h
0 , θ̂

h, ϕ̂h) ϕ̂hj )(s,j)∈S×J .

It follows from condition (3.2) on the definition of nk-equilibria, taking the limit as k goes to

infinity, that there is no excess of demand in physical or in financial markets, i.e.,

9Note that, functions g and bg which satisfy, respectively, the weak and strong versions of multidimensional Fatou’s

Lemma do not need to coincide.
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∫
[0,1]

x̂h0 +
∑
j∈J

Cjϕ̂
h
j − wh0

 dh ≤ 0,
∫

[0,1]

θ̂hdh ≤
∫

[0,1]

ϕ̂hdh,

∫
[0,1]

x̂hs − whs − Ys
x̂h0 +

∑
j∈J

Cjϕ̂
h
j

 dh ≤ 0, ∀s ∈ S.

On the other hand, for any h ∈ P̂, identical arguments to those made on Lemma 6 assure that

(x̂h, θ̂h, ϕ̂h) is an optimal choice for agent h on the budget set Bh(p, π,R) and, therefore, budget

constraints are satisfied as equality by (x̂h, θ̂h, ϕ̂h). Thus, since µ([0, 1] \ P̂) = 0, integrating over

agents, we obtain that,

p0

∫
[0,1]

x̂h0 +
∑
j∈J

Cjϕ̂
h
j − wh0

 dh+
∑
j∈J

πj

∫
[0,1]

(θ̂hj − ϕ̂hj )dh = 0;

and for each s ∈ S,

ps

∫
[0,1]

x̂hs − whs − Ys
x̂h0 +

∑
j∈J

Cjϕ̂
h
j

 dh =
∑
j∈J

Rs,j

∫
[0,1]

θ̂hj dh−
∫

[0,1]

Mh
s (ps, Rs, x̂

h
0 , θ̂

h, ϕ̂h)dh.

Since (p0, π)� 0 and there is no excess of demand in physical or in financial markets, it follows

that, ∫
[0,1]

x̂h0 +
∑
j∈J

Cjϕ̂
h
j − wh0

 dh = 0,
∫

[0,1]

(θ̂h − ϕ̂h)dh = 0.

Using condition (3.3) of the definition of nk-equilibria and taking the limit as k goes to infinity,

it follows that, for any (s, j) ∈ S × J ,

Rs,j

∫
[0,1]

θ̂hj dh =
∫

[0,1]

Ds,j(ps)ϕ̂
h
j dh+

∫
[0,1]

[psAs,j − psYs(Cj)]+βhs (ps, Rs, x̂
h
0 , θ̂

h, ϕ̂h) ϕ̂hj dh.

Adding on j ∈ J , for a fixed s ∈ S, we obtain that∑
j∈J

Rs,j

∫
[0,1]

θ̂hj dh =
∫

[0,1]

Mh
s (ps, Rs, x̂

h
0 , θ̂

h, ϕ̂h)dh.

As ps � 0, for any s ∈ S,

∫
[0,1]

x̂hs − whs − Ys
x̂h0 +

∑
j∈J

Cjϕ̂
h
j

 dh = 0.

Therefore, market clearing condition holds for the allocation ((x̂h, θ̂h, ϕ̂h);h ∈ [0, 1]). Moreover, as

we said above, for any h ∈ P̂, (x̂h, θ̂h, ϕ̂h) is an optimal allocation in Bh(p, π,R).

Since ((ps)s∈S∗ , π, (p0Cj − πj)j∈J)� 0, each agent h ∈ [0, 1] has a compact budget setBh(p, π,R).

Continuity of utility functions (Assumption (A1)) assures that any agent h ∈ [0, 1] \ P̂ has an opti-

mal allocation (x̆h, θ̆h, ϕ̆h) ∈ Bh(p, π,R). Thus, if we give to h the allocation (x̆h, θ̆h, ϕ̆h) instead of
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(x̂h, θ̂h, ϕ̂h), we assure that all consumer maximize their utility function without change the validity

of markets clearing condition (because [0, 1] \ P̂ has zero measure).

Therefore, (
(p, π,R); ((x̂h, θ̂h, ϕ̂h);h ∈ P̂); ((x̆h, θ̆h, ϕ̆h);h ∈ [0, 1] \ P̂)

)
is an equilibrium of E . This concludes the proof of equilibrium existence in our economy.

References
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