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Bayesian inference of a smooth transition dynamic almost
ideal model of food demand in the US.

Kelvin Balcombe and Alastair Bailey
Imperial College London, Wye Campus.

Summary

A dynamic ‘smooth transition’ Almost Ideal model is estimated for food con-
sumption in the US. A Metropolis-Hastings algorithm is employed to map the
posterior distributions and rejection sampling is used to evaluate and impose cur-
vature restrictions at more than one point in the sample. The findings support
the contention of structural change of a ‘smooth transition’ nature. Notably, the
income food elasticity of demand becomes smaller through time, and the own
price elasticities for food and non food become more elastic.

1. Introduction

The estimation of Dynamic ‘Almost Ideal’ demand Systems has been the sub-
ject of extensive research (Anderson and Blundell 1984, .Ng 1995; Attfield, 1997,
Chambers and Nowman, 1997, Duffy, 2002, Pesaran and Shin, 2002, Balcombe,
2003). Recently, Dechamps (2000, 2003) employed a Bayesian approach to esti-
mating dynamic demand and Griffiths et al. (2000) employed a Bayesian when
estimating demand for inputs within agriculture. This paper also considers a
Bayesian approach to the estimation of the dynamic demand for US food from
1966 to 2000 that is of the ‘Almost Ideal’ (Deaton and Meullbauer, 1980) type.
However, it extends the existing applied literature by estimating a smooth tran-
sition model. This is facilitated using a Metropolis-Hastings (M-H) algorithm
(see Albert and Chib 1993; and, Chib and Greenberg 1995a,1995b). Previous
work in estimating demand systems along Bayesian line also include Chalfant et
al. (1991), and Tiffin and Tiffin (1999) which applied the ‘importance sampling’
approach outlined in Geweke (1988,1989). The M-H shares common principles
with the importance sampling approaches, but is more general.

While consumption models using simple log linear forms continue to be es-
timated (De Crombrugghe et al., 1997), within the agricultural economics more
emphasis has been placed on the microeconomic foundations of demand models
along with the power of ‘flexible functional forms’ to conform to theoretical re-
quirements. Arguably, the operational value of microeconomic foundations are
eroded when they are set in a static framework, yet applied in a dynamic setting.
Moreover, their application requires strong assumptions concerning aggregation
across commodities and individuals. Nevertheless, in common with some other
recent papers (e.g. Pesaran and Shin, 2002) we take the view that models should



embody basic properties such as homogeneity, symmetry and curvature where
the parameters of interest characterize ‘long-run’ equilibrium relationships. It is
these restrictions which enable the parameters to be interpreted as structural de-
mand parameters, rather than quantities which merely summarize the statistical
relationships between quantity and price and income. Admittedly, restrictions
such as symmetry and homogeneity have been commonly rejected. However, it
is also recognized that there are a variety reasons why this might occur. Buse
(1994) highlighted problems regarding both misspecification of the AIDs linear
approximation, although much of the work in this area continues to use the linear
approximation. More generally, it is recognized that most models (including the
full AIDs), cannot impose the relevant restrictions globally, or if they can the
imposition of these restrictions impose unreasonable compromises on the ‘flexi-
bility’ of the system. Buse (1998) also outlines problems with divergence between
asymptotic and finite sample results leading to the rejection of restrictions such as
symmetry and homogeneity, and the classical literature has recently explored this
question in some depth (e.g. Balcombe, 2003) from a ‘cointegration’ perspective.

Unlike the classical approach, the Bayesian approach does not have a ‘discon-
tinuity’ in its theory regarding the treatment of unit root processes compared with
those that are stationary. Moreover, it does not rely as heavily on ‘asymptotics’
for its justification. However, to many, the main appeal of a Bayesian approach
will lie in the ease with which basic theoretical requirements of the inequality
type (such as curvature restrictions) can be evaluated and (locally) enforced ex-
plicitly and transparently. Classical methods can also be employed to enforce
these type of conditions (Lau, 1978). However, unlike the Classical approach,
the Bayesian approach generates point estimates that will lie very close to the
inequality boundary only when the sample data is highly unsupportive of a re-
striction. The Bayesian approach is more in tune with the fact that when we set
a boundary, this usually reflects our belief that the estimate lies somewhere in-
side that boundary. While some classical practitioners will cling to the view that
Bayesian approaches are tainted by the use of subjective priors. The imposition
of virtually any type of restriction reflects prior beliefs regardless of whether one
is employing a supposedly Classical or Bayesian methodology. The priors used in
this paper are informative only where they are required to identify the structural
parameters of interest.

A major leap forward in the implementation of the Bayesian methodology
within the last decade has been through the implementation of Gibbs Sam-
pling and/or M-H algorithms (again, readers are referred to Chib and Greenberg,
1995b). These algorithms have been used ostensibly in the Bayesian literature,
although they are not exclusively Bayesian in nature. While they appear com-
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plex at first, their underlying simplicity enables models to be estimated in a way
that solves some of the theoretical and practical difficulties in deriving explicit
or numerically simulated posterior distributions. Using the M-H approach, pa-
rameters can be sampled from their posterior distributions, without knowing the
exact form of that posterior distribution (i.e. Normal, Student t, Inverse Gamma,
etc.). Moreover, inequalities may be enforced by building in ‘rejection’ steps into
the algorithms.

In a study using data over 35 years, such as this one, the preferences of con-
sumers are likely to have changed. Therefore, the estimation of demand over
time may require not only the modelling of ‘dynamics’ using lag structures, but
change in the parameters also. This may require anything from the introduction
of dummy variables, to more complex solutions such as models that allow for
random walk parameters (Morrison et al. 2003, Dechamps, 2003). An attractive
alternative is to model the parameters using a ‘smooth transition’ in the parame-
ters and this is the approach employed herein. There are a wide variety of smooth
transition models, as outlined in Terasvirta (1994). The type used in this paper
are fairly limited, with the transition being a deterministic function of time. A
smooth transition model allows the parameters to change in a logistic fashion.
It is flexible enough to allow for large sudden changes in the parameters, as well
as the slow evolution in the parameters in an almost linear fashion, and can be
easily implemented using a Bayesian approach.

The estimation of an AIDS model using time series also raises issues regarding
the way that elasticities are calculated, and curvature restrictions are enforced. A
general practice has been to calculate elasticities at a mean point in the sample.
However, there are compelling arguments against this practice. Griffiths et al.
(2000) favor imposing curvature at all points (though in a production context).
The alternative which is employed herein, calculates the elasticities at the be-
ginning and end of the sample and curvature is imposed at both these points.
However, curvature effectively holds at most or all points within the sample when
taking this approach.

We proceed by briefly outlining the AIDS model, and the derivation of elastici-
ties. Section 3 examines how the dynamic AIDS model can be specified within the
smooth transition autoregressive distributed lag model. Section 4 briefly covers
the use of the Metropolis Hastings Algorithms. Section 5 presents and discusses
the empirical results, and Section 6 concludes.

2. The Almost Ideal Demand System

The ‘Almost Ideal Demand System’ (AIDS) was developed by Deaton and
Meullbauer (1980). Allowing for the parameters to change with time, the Almost
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Ideal form (ignoring residuals) can be expressed as:

st = αt +Atpt + βtΛt (mt, pt) (0.1)

where st is the vector of expenditure shares pt is a vector of logged prices,
Λt (mt, pt) is ‘real expenditure’

Λt (mt, pt) = mt −
(
α′tpt +

1

2
p′tAtpt

)
(0.2)

where mt is logged total expenditure. Although the system in [0.1] is dynamic in
the sense that the parameters are time dependent, it is not dynamic in the sense
that expenditures depend on past prices or expenditures. In this article [0.1] is
treated here as an depiction of the (time dependent) equilibrium relationship,
from which the parameters αt, At, βt are calculated as long-run multipliers. This
will be discussed in more depth in Section 3. The adding up restrictions require
that the column sums of αt is equal to one and the column sums of At and βt
are equal to zero. In addition, theory suggests that the row sums of At are zero
(price homogeneity), and that At is symmetric. Given the adding up restrictions,
homogeneity and symmetry are equivalent in dual good system such as the one
which is employed here.

2.1 Curvature and Elasticities

The AIDs share equations can be derived as the derivative of a logged indirect
expenditure function. The Hessian matrix of the logged cost function should have
eigenvalues which are non-positive (e.g. the Hessian is semi negative definite).
This restriction cannot be enforced globally within the AIDS model (e.g. for all
prices and incomes). Therefore, it is common practice to calculate the elasticities
and examine the Hessian matrix around a mean point in the data. This practice
has a compelling rationale when the price and expenditure data are stationary,
but is less defensible when the data contain trends. Few papers have highlighted
this as an issue. Exceptions are Griffiths et al. (2000), who impose curvature
in input demand models at multiple points in the sample. The same concerns
arise with regard to the results of many AIDS models in the existing literature.
While they may yield plausible estimates at their ‘mean point’ they would yield
implausible elasticities were the elasticities calculated at different points within
the sample. Consequently, while it does not represent a solution to the problem
that the AIDS model does not have all its theoretical properties globally, it is
worthwhile examining the elasticities at more than one point in the data set, and
to impose curvature restrictions at these points if possible. This view is given
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added weight in circumstances where the parameters are treated as variable, as
in this paper.

Therefore, this paper therefore adopts an alternative approach whereby elas-
ticities are calculated both that the beginning and end of the sample, using the
parameters and variable values at those points. Moreover, the Bayesian rejection
sampling approach is employed to impose curvature at these points. Defining the
matrix ∂st

∂p′
t

|m = Vt, it can be observed that:

∂st

∂p′t
|m = Vt = At + βtβ

′

tΛt (mt, pt)− βts
′

t (0.3)

The Uncompensated Price Elasticities are (using the notation δ (st) to denote the
diagonalised matrix with the elements of st constituting its diagonal elements):

Ut = δ (st)
−1 Vt − I (0.4)

The Expenditure Elasticities are:

ηt = δ (st)
−1 βt + 1k (0.5)

where 1 is a conformable column vector of ones. Using the Slutsky decomposition,
the Compensated Price Elasticities are:

ξt = Ut + ηts
′

t = δ (st)
−1 Vt − I + δ (st)

−1 βts
′

t + 1s
′

t (0.6)

If the share equation is derived from an indirect cost function, then the matrix

Kt = δ (st) (ξt) = At + βtβ
′

tΛt (mt, pt)− δ (st) + sts
′

t (0.7)

must have non-positive eigenvalues if the curvature restrictions are obeyed at the
point t.

As argued above, there is a compelling case for this enforcing curvature at all
points t=1,.... T. However, if the parameters are allowed to evolve in a smooth
transition manner, then enforcing the restrictions at the beginning, and end, of
the sample (using K1and KT respectively) is likely to give results that broadly
conform to curvature requirements throughout the sample, while significantly
decreasing the computational requirements when using the Bayesian methods
that are discussed in Section 4. The eigenvalues can subsequently be evaluated
at all points in the sample in order to ascertain whether they conformed to the
curvature restrictions throughout the sample.
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3. Dynamic Smooth Transition AIDS

This paper presents the results for a model estimated using annual data from
1966 to 2000. Both the characteristics of foods, and the tastes and habits of
consumers are likely to have altered during this time. Thus, the underlying
utility functions and consequentially the parameters of demand equations are not
likely to be invariant throughout the sample. Moreover, as already noted, the
constant parameter AIDS model itself is known to have good ‘local properties’
but cannot preserve these properties globally (at all prices and incomes). Allowing
the parameters to evolve may therefore mitigate some of these shortcomings. The
solution proposed and implemented here is to allow for changes in the parameter
using a ‘smooth transition regression’ (STR) version of the AIDS. This approach
is restrictive in the sense that the parameters must evolve monotonically. Random
parameter models, such as those which allow for random walk parameters, are
flexible in the sense that ‘reversals’ can take place, but are restrictive in other
ways (i.e. cannot model large one-off shifts under a constant innovation variance).
Smooth transition models allow the parameters to change in a smooth or sudden
way without requiring too many additional parameters.

The variables used in this paper are the share of disposible income spent on
food sf,t, the logged food price pf,t, logged non-food price pn,t, real disposable
income mt and the AIDS price index Λ(pt) defined using the price vector pt =
(pf,t, pn,t) . The construction of the price index is discussed below. Under homo-
geneity on the relative price is required xt = (pf,t − pn,t) , along with real income
zt = Λt (mt, pt) (as in [0.2]). The main specification considered in this paper is
the smooth transition form1:

sf,t = δ1 (1− ft) + δT ft + λsf,t−1 + (0.8)

+(1− ft)
1∑

i=0

θ1ixt−i + ft

1∑

i=0

θT,ixt−i

+(1− ft)
1∑

i=0

π1izt−i + ft

1∑

i=0

πT,izt−i

+ut

where ut
iid∼ N

(
0, σ2

)
and

ft = F (t, γ) = c1
(
γ1,γ2,

)
(γ1 + exp (−γ2t))−1 − c2

(
γ1,γ2,

)
(0.9)

1 A second order model was intitally considered. However, a preliminary examination of
the ADL equation without smooth transition suggested that second order lags were not at all
significant (using Classical Tests).
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where c1

(
γ1,γ2,

)
and c2

(
γ1,γ2,

)
are ‘normalizing constants’ calculated so that

for any γ =
(
γ1, γ2,

)
, F (1, γ) = 0 and F (T, γ) = 1. The parameter γ2 governs

the speed of the transition, whereby as γ2 goes towards infinity, the transition
becomes a sharp break. As γ2 goes to one, the transition becomes linear. The
parameter γ1, allows for variation in the central point at which the transition
takes place.

Since λ is held constant, transitions are therefore limited to the independent
variable coefficients, rather than the lag coefficient for the share of food. While,
in principle, it would be possible to allow for λ to be time dependent, treating this
one coefficient as constant simplifies the computational difficulties considerably.
This model can be viewed as a time dependent long-run equilibrium model, with
the rate of adjustment towards this equilibrium being constant.

A reparameterisation of the autoregressive equation [0.8] into an error correc-
tion form gives two sets of the ‘long-run’ multipliers (under the condition that
λ �= 1) at the beginning of the sample (t=1) and at the end of the sample (t=T).
The long-run multipliers are for:

• The Intercept:

µ1 =

(
δ1

1− λ

)
and µT =

(
δT

1− λ

)
(0.10)

• Prices:

φ0 =

(
θ10 + θ11

1− λ

)
and φT =

(
θT0 + θT1

1− λ

)
(0.11)

• Real income:

ϕ0 =

(
π10 + π11

1− λ

)
and ϕT =

(
πT0 + πT1

1− λ

)
(0.12)

In each case the time dependent long-run multipliers can be constructed as:

µt = (1− ft)µ1 + ftµT (0.13)

φt = (1− ft)φ1 + ftφT

ϕt = (1− ft)ϕ1 + ftϕT

The time dependent long run equilibrium error can be computed as: εt = sft−
(µt + φtxt + ϕtzt). However, this requires the construction of zt = Λt (mt, pt).
The approach employed in this paper constructs Λt (mt, pt) from the long-run
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multipliers, using the adding up and homogeneity conditions. Therefore the pa-
rameters of [0.1] are constructed as:

α′t = (µt, 1− µt) (0.14)

At =

(
φt −φt
−φt φt

)

β′t = (ϕt,−ϕt) .

Using these values the elasticities and other quantities in equations [0.4] to [0.7]
can be computed, using the parameters, and st calculated at its long-run equi-
librium ŝft = (µt + φtxt + ϕtzt) and ŝnt = 1− ŝft. The implied error correction
form is:

∆sft = (λ− 1) εt−1 + θ1t∆xt + π1t∆zt + ut (0.15)

where θ1t = θ11 (1− ft) + θ1T ft and π1t = π11 (1− ft) + π1T ft. Therefore, the
parameters which require estimation within this model are

Ω =
(
δ1, δT , θ11, θT1, π1t, σ

2, γ1, γ2

)
. (0.16)

An examination of evidence supporting the homogeneity and curvature restric-
tions is likely to be of interest to readers. This can be done in a variety of ways,
since homogeneity can be evaluated with and without imposing curvature and
vice versa. We evaluate the evidence for symmetry by augmenting the equation
[0.8] with

(1− ft)
1∑

i=0

π∗1ipft−i + ft

1∑

i=0

π∗T,ipft−i. (0.17)

From a classical perspective, π∗10 + π∗11 and π∗T0 + π∗T1 should be insignificantly
different from zero if homogeneity holds,. However, from a Bayesian perspective,
there should be a substantial proportion of the posterior mass for each of these
quantities either side of zero. Likewise, by examining the posterior mass of the
largest eigenvalues of [0.7], the evidence supporting curvature restrictions can be
assessed. An estimate of the posterior mass can be made using the techniques
outlined in the next section.

4. Estimation Using the Metropolis Hastings Algorithm

A full Bayesian analysis, using the M-H algorithm is relatively straight for-
ward. Moreover, this approach naturally leads to the computation of posterior
distributions for the elasticities, and not just for the parameters of the model. A
full description of the M-H algorithms could not be done justice in this paper, and
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readers are referred to Chib and Greenberg (1995b), and Griffiths et al. (2000).
However, their usefulness can be outlined in the following way.

Using the ‘conditional or approximate approach’ (Bauwens et al., 1999; p.135)
the data likelihood is treated as normal:

L (Ω) =

(
1√
2πσ2

)T
exp

(

−
∑T
t=1 u

2
t

2σ2

)

(0.18)

with the errors expressed in [0.8]. The classical solution would be to maximise
the likelihood function. However, Bayesians would augment this with prior infor-
mation. If no consideration was given to the ECM or transition parameters, then
we could multiply the Likelihood by the ‘reference prior’.

pr (Ω) =
1

σ2
(0.19)

This prior is non-informative, in the sense that the prior information will play
only a negligible part in the determination of the posterior distributions which
are derived subsequently (in the sense that the data will dominate the priors).
However, if the parameters of interest are the long-run multipliers [0.10 to 0.12],
then these are not identified at λ = 1. Likewise, as the transition parameter
γ2 tends towards zero, then ft becomes constant, therefore also inducing non-
identification of the model. These issues are discussed in Bauwens et. al. (1999).
There are at least two solutions to this problem. The first is to use alternative
priors which are designed to give higher probabilities to the parameters when
they are in the identified region. The second is to use ‘rejection sampling’ so that
only parameters that are within an identified region are deemed acceptable. This
can be operationalised within the M-H algorithm. The latter method is used in
the example herein. Therefore, the posterior distribution becomes:

p (Ω) = pr (Ω)L (Ω) if Ω ∈ SΩ (0.20)

= 0 otherwise

where SΩ contains only those parameters with λ < .95, γ1 > 0, γ2 > 1. At γ1 = 1
the transition variable ft becomes approximately linear, whereby as γ1 increases
the transition become ‘logistic’ and increasingly concentrated over a shorter space
of time.

In line with the discussions regarding curvature in the preceding sections,
the parameter space SΩ should also be limited to those producing non-positive
eigenvalues of the matrices K1 and KT . One type of M-H algorithm would then
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proceed from a starting point Ω0 then, by generating parameters using random
walk,

Ωi+1 = Ωi + vi (0.21)

where vi is a symmetrically distributed iid error term (perhaps normally distrib-
uted and with variances that are computed from the data). A step from Ωi to
Ωi+1 would be accepted with probability

α =
p (Ωi+1)

p (Ωi)
(0.22)

which can be performed by generating a uniformly distributed random variable
Ui, with acceptance according to the rule Ωi+1 = Ωi+1 if Ui < α and Ωi+1 = Ωi
otherwise. The general principle behind these algorithms is that after a ‘burn
in’ i > I, the values of Ωi+1 should be independent of their starting value Ω0
and should behave as if they were being drawn from p (.) . The values will be
highly dependent (obviously, since many of the values will be repeated). However,
this is not overly problematic when generating a simulated distribution from
a very large number of simulated values, providing the acceptance rate is not
too small. Moreover, the dependence can be reduced by sampling every nth
value from the simulated values. Care also needs to be taken to ensure that
the ‘burn in’ is sufficiently large to ensure that any dependence on the starting
values is negligible, and that the algorithm can be treated as if it is producing
simulated values that are in accord with the underlying posterior distributions
(convergence of the algorithm). Again, various suggestions are made in Bauwens
et al. (1999). The efficiency of the algorithms can be improved by blocking
(or grouping) the parameters, and taking steps for each of the parameter blocks
sequentially. Likewise, the some of the parameters can be directly simulated
from their conditional posterior distributions (such as the Inverse Gamma for the
variance) in a manner similar to Gibbs sampling (for which readers are referred
to Casalla and George, 1992).

4.1 Testing Restrictions

The literature on demand estimation has devoted considerable energy to the
question of ‘testing’ for the underlying restrictions on the system. The classical
approach to this problem is to examine the behavior of certain test statistics
under a given pointwise null hypothesis. The Bayesian approach can examine
the evidence against point wise restrictions by observing the proportion of the
posterior mass that lies above and below certain values.

As covered in Section 3, by adding additional prices to [0.8], a significant
proportion of the mass of the posterior distributions of parameters π∗10+π∗11 and
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π∗T0+π∗T1 should lie both above and below zero if homogeneity holds. Therefore,
this proportion can be calculated using the simulated values M-H algorithm. The
closer this proportion is to .5, the less evidence has been accumulated against
homogeneity. The curvature restrictions can be tested by accepting parameters
which do not conform to the curvature restrictions in another run of the MH
algorithm. The simulated maximum eigenvalue (calculated both at the beginning
and end of the sample) can be recorded, and the proportion of positively occurring
values calculated. The smaller the proportion of eigenvalues above zero, the
less evidence has been accumulated against the curvature restrictions. These
proportions are presented in Table 1 within Section 5. In each case, the proportion
has been calculate having imposed the other restriction (thus the proportion of
the posterior mass of the maximum eigenvalue has homogeneity imposed).

Although it is somewhat controversial, the Bayesian approach may have some
advantages over the classical approach in this regard. The reason being the
‘discontinuity’ in the classical theory of estimation and inference in systems con-
taining unit roots. Arguably, the Bayesian approach does not have such a dis-
continuity. We deal with this problem simply by enforcing the condition that λ
is less than one (though we evaluate the evidence supporting this), and make no
further analysis of the explanatory variables in our models. A good summary of
the ‘unit root’ controversy is given in Chapter 6, Bauwens et al. (1999). Some
of the same issues arise when estimating distributed lag models with potential
unit roots in some of the variables. We do not wish stray into this argument any
further within this paper since it seems to evoke rather strong perspectives from
both Bayesian and Classical statisticians alike. However, we would draw readers
attention to the fact that any superiority of the Bayesian approach in dealing
with unit root processes is, we concede, disputable.

5 Empirical Section.

5.1 The Data

The data used in this study was taken from the Website of the Economic
Research Service, U.S. Department of Agriculture. The data is annual from 1966
to 2000. The share of food is as a proportion of disposable income, and includes
all food (consumed at home or away from home). The prices for food and non-
food are taken directly from the data set, along with disposable income (per-
capita). Strictly speaking, the AIDS framework uses ‘total expenditure’ rather
than disposable income. However, the AIDS framework is static, and as such does
not make any provision for saving. In view of this, it is not apparent that using a
total expenditure figure is particularly advantageous in a time series setting and,
in any case, the two logged series are likely to be closely related. The share of food
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is around 14.8% of disposable income in 1966, falling (monotonically) to around
10% in 2000. The relative price of food to non-food has generally risen over the
period, and real disposable incomes per capita have increased over 70% during the
period. Thus, in real terms the consumption of food has increased, even though
it is a smaller proportion of the budget. While some of this may be explained by
increases in consumption measured in calorie terms, it also suggests that there
has been some switch to higher quality items, or at least more expensive food
items.

5.2 Results

5.2.1. Convergence

The convergence of the M-H algorithm must be checked prior to analysis of
the results. In this paper, the convergence was checked in three ways. First,
sequential plots of the sampled parameters and elasticities were examined, along
with the acceptance rates. Second, different starting points were used and the
results compared. Third, Bauwens et al. suggest that if after N draws, the value
of the CUSUM statistic on a given set of parameters lies within ±.05 then the
sampler can be considered to have converged after N.

There were several runs of the model, with and without restrictions having
(homogeneity and curvature) been imposed. Generally, acceptance rates were
extremely small, (around than 2%) consequently to reduce the dependence every
100th value generated by the sampler was recorded. Acceptance rates without
homogeneity imposed were even smaller. It is possible that the sampler could
have been calibrated to give superior results. However, using this process, the
sampler took about an hour which was not unduly problematic. The sequential
plots then appeared to fairly ‘random’ in the sense that they appeared to be
consistent with being stationary around a given mean, and without having overly
long stretches of repeated values. In each case, then providing a ‘burn in’ of
10000 was used (that is 10000 collected values with every 100th being sampled,
thus 106 in total) then the mean and standard errors from the remaining 10000
sampled values were very similar. Plots for the parameters appeared to suggest
that the burn in of 10000 was sufficient, although the CUSUM plots for some of
the parameters were just inside the boundaries, particularly when homogeneity
was not imposed

Turning first to Table 1, the first line gives the proportion of the posterior
pertaining to the homogeneity restriction. Upon having approximately 50% of
the posterior mass above zero one would conclude that there was little evidence
against homogeneity. On the other hand having small values, or very large values
would indicate that the data was inconsistent with the homogeneity restriction.
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At the beginning of the sample (t=1) it is around 54%, suggesting that there
is little evidence against homogeneity. At the end of the sample, the evidence
against homogeneity is more pronounced, with a little less than 10% of the pos-
terior mass above zero. The curvature restrictions give approximately the same
proportion of the mass of the maximum eigenvalue above zero at both points in
the sample. In each case the most of the mass of the maximum eigenvalues is
below zero (supporting the curvature restrictions).

Table 1. Restrictions
t=1 t=T

Homogeneity P (π∗10 + π∗11 > 0) =.54 P (π∗T0 + π∗T1 > 0) =.089
Curvature P (MaxEig > 0) = .31 P (MaxEig > 0) =.32

We may conclude from the results in Table 1, that the data is broadly con-
sistent with the homogeneity and curvature restrictions, although the authors
acknowledge that a case could be made for not imposing homogeneity given the
relatively small proportion of the posterior mass of π∗T0 + π∗T1 above zero. How-
ever, our view is that removing such theoretical underpinnings undermines the
credibility of the elasticities that are subsequently produced. In view of these
results the remaining results have these restrictions imposed.

Turning to the parameters in Table 2, these are of limited interest in them-
selves, with the elasticities arguably being more easily interpretable. Before dis-
cussing these parameters it is worth noting that the eigenvalues of the matrix Kt

were computed at all points in the sample. This revealed that all the eigenvalues
were non-positive, at all points in the sample confirming that the enforcement of
curvature at only two points in the sample was sufficient to give estimates that
obeyed curvature throughout the whole sample.

Only the mean and the standard deviations of the posterior distributions have
been presented in Table 2. The M-H algorithm permits the examination of the full
simulated distribution using a histogram or frequency plot. In most cases (though
notably not γ1 and γ2 which had their distributions truncated for identification
purposes) the distributions looked bell shaped symmetric. Therefore, the mean
point of the distribution along with the standard deviation should give readers a
fairly good idea of the nature of the simulated distributions. A standard deviation
of the parameter that is larger (in absolute terms) than the mean will mean that a
substantial proportion of the posterior mass of the distribution will lie either side
of zero. Most of the coefficients (both short-run and long-run) at the beginning of
the sample appear to have a substantial proportion of their posterior mass either
side of zero. However, ‘end of period’ coefficients do not, most notably, the real
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income variable zt. This indicates that there is an important ‘transition’ in the
response of food to real income. The consequences of this will be dealt with when
the elasticities are subsequently discussed. On the other hand, the parameters
γ1 and γ2 are not very far away from their lower boundary. As γ2 becomes close
to one, the transition function becomes extremely insensitive to the value of γ1.
Essentially, this result indicates that the transition is approximately linear.

Turning to Table 3 which presents the Uncompensated (Marshallian) and
Compensated (Hicksian) elasticities with respect to price. Once again, the mean
and the standard deviations for the simulated posterior distributions are being
reported. Readers should note that the reported means in this table, vary mar-
ginally from the values that would be calculated using the mean of the posterior
distribution of the parameters. The Marshallian price elasticities are presented
on the left hand side of the table, and the Hicksian on the right hand side. Since
the Hicksian elasticities sum to zero across the rows, only the diagonal elements
are given so as to avoid repetition. Balcombe et al. (1999) observe that typical
income or expenditure elasticities for ‘all food’ range from .45 to .99 in the ma-
jority of the literature on food demand, but with a substantially larger range for
individual food items. Typical price elasticities tend to be at least -.5 and lower
(more negative). On the other hand developed countries appear to have lower
income elasticities.

The estimates of the Marshallian own price elasticities are around unity in
1967, but become elastic throughout time, being highly elastic in 2000. This is
also reflected in a substantial increase in cross price elasticities for food and non-
food between the beginning and end of the sample. This increase can be seen in
as the result of a large growth in the pure substitution effect, as is evident in the
decrease in the Hicksian price elasticities with respect to the price of food. It is
not the result of an increased income effect. An examination of the elasticities in
Table 4, indicate that the income elasticity for food is not only less than unity, but
has fallen over the sample period. In 1967, the estimate was .88, falling to .522
at the end of the sample. This decrease has come from two sources. First, there
has been a fall in the share of expenditure on food over the period. A constant
negative real income coefficient combined with a fall in the share of food con-
sumed will result in a smaller elasticity. However, there has also been a fall in the
long-run coefficient (ϕ1 > ϕT ) of real income. This has worked in the same direc-
tion. Likewise, the decrease in the long-run price coefficient (φ1 > φT ) suggests
that it is not just changes in prices and income shares that are responsible for the
increased substitutability of food for other goods. Visualizing this in terms of an
indifference map with food on the horizontal axis, our results would be consistent
with a rather flat indifference curves (at the consumption point) at both points at
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the sample, with this tendency being more pronounced at the end of the sample.
This interpretation is counter intuitive if food consumption is thought of in terms
of calorie intake, since it is unlikely (we believe) that calorie intake would be
highly price sensitive. Consequently, we would interpret this result as implying
a preparedness of consumers to reorganize the food consumption bundle, if items
within the consumption bundle become more expensive, with consumers spending
on less expensive food items and a resulting substitution towards non-food items.
Therefore, in summary, the results presented here suggest that food is price elas-
tic, and income inelastic, and that this tendency has increased throughout the
period from 1967 to 2000.

15



Table 2. Parameters
mean std dev

int δ0 .1120 .0141
xt θ11 .0245 .0318
zt π11 .0071 .0364
xt−1 θT1 -.024 .0322
zt−1 πT1 -.021 .0356
ftint δ1 -.011 .0079
ftxt θ12 -.099 .0612
ftzt π12 -.122 .0558
ftxt−1 θT2 .0157 .0561
ftzt−2 πT2 .0959 .0561
yt−1 λ .1586 .1120
γ1 2.277 2.07
γ2 2.612 2.24
σ2 1.5×10−6 1.5×10−7

Long-run
φ1 -0.0004 0.027
ϕ1 -0.0156 0.027
φT -0.0978 0.041
ϕT -0.0490 0.019

Table 3: Price Elasticities
Uncompensated Compensated
Price
Food

Price
Non-Food

Price
Food

Price
Non-Food

1967

Food
-.988
(.213)

-.099
(.206)

-.866
(.200)

Non-Food
-.0016
(.033)

-1.01
(.032)

-.139
(.0321)

2000

Food
-1.88
(.400)

1.36
(.404)

-1.835
(.396)

Non-Food
.102
(.046)

-1.15
(.057)

-0.211
(.0472)

Mean Elasticities are without parentheses

Standard deviations are within parentheses
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Table 4: Income Elasticities
Food Non-Food

1967
.889
(.203)

1.02
(.032)

2000
.522
(.189)

1.054
(.021)

Mean Elasticities are without parentheses

Standard deviations are within parentheses

6. Summary

This paper estimated and presented some results for a dynamic, smooth tran-
sition, Almost Ideal model for food consumption in the US using annual data from
1966 to 2000. A Metropolis-Hastings algorithm was employed to map the poste-
rior distributions and rejection sampling was used to evaluate and impose curva-
ture restrictions at more than one point in the sample. The findings supported
the contention of structural change of a ‘smooth transition’ nature. They also
broadly supported the curvature and homogeneity restrictions that were placed
on the model. The income food elasticity of demand was inelastic and becom-
ing smaller through time, and the own price elasticities for food were elastic and
became more elastic through time.

The M-H algorithm and the Bayesian approach to estimation has much to rec-
ommend it. An obvious extension of the work in the paper is to extend the analysis
beyond the two good case. The drawbacks, we believe, are mainly computational.
However, with increasing computing power, and more efficient algorithms, this
does not present an insurmountable problem.
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