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The present paper deals with a new approach to the pricing of
credit derivatives, which are innovative financial instruments able
to immunize a securities portfolio from the default risk of the
issuers, using neural networks. After an essential analysis of the
most important topics inherent to these nonlinear statistical
instruments, particular emphasis, due to their diffusion, has been
put on the characters of Credit Default Swaps and on the
particularities of the structural and reduced form approaches
proposed for their analysis. In the final part of the paper the
effectiveness of neural networks in approximating the evaluation
of credit derivatives and in improving the timing in the default
prevision is illustrated. [JEL Classification: C45, G12, G32, G33]

1. - Introduction

The recent history of financial markets shows how the
impetuous development of the financial innovation process, which
concerns all of their structural components, has been associated
with the constant engagement of operators in finding more
efficient computational methodologies to support the analysis. In
this paper a possible way to study this phenomenon goes deeper,
focusing attention on the market of derivative instruments, which
has been the origin of almost all the most important innovative
phenomena for decades, and on neural networks, a computational
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method that has increasingly attracted the interest of operators.
More in particular, we try to analyze the capability of these
instruments in close approximation to the results of complex and
nonlinear financial calculation methodologies. In the following
section, we analyze the architecture of neural networks, mainly
focusing the attention on the concepts that are most useful for
their application to financial instruments.

The first part of the third section deals with credit derivatives,
because of the fast development that has characterized their recent
history as effective ways of credit risk management: particular
emphasis has been put on the analysis of Credit Default Swaps,
because they are the most diffused; in the second part we describe
the CreditGradesTM model, formulated by important financial
institutions as the first attempt to introduce greater transparency
in the evaluation of these instruments. The paper ends with the
conclusion that, concerning this field of the financial markets,
neural networks constitute a valid instrument of calculation: in
fact there still does not exist in literature a formula of evaluation
for the CDSs, able to tie the quoted spreads to the specific
underlying variables of each examined firm, and the neural
network can face the problem of the functional form from a
statistical point of view. A further elaboration made in this paper
concerns one of the biggest international aerial carriers, the
American company UAL Corporation, between 1997 and 2004: the
data needed have been obtained through the database of the
Federal Reserve System and BloombergTM. The elaboration carried
out shows how, even if all the proposed models signal the
deterioration of the creditworthiness with a certain anticipation,
CreditGradesTM turns out particularly efficient under this profile.
The efficiency is improved by the use of the neural network, which
remarkably increases in advance the number of trimesters with
which the deterioration of the creditworthiness is indicated. 

2. - Neural Networks: Architecture and Applications

Neural networks have been used in different fields of study,
such as engineering, medicine, physics and others. As far as the
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reasons that have led in this study to use this type of instruments
among the several types of nonlinear approximation methods
known in literature, it is necessary to remember at first that neural
networks do not preliminarily request to specify the existing
relation between the input and the output of the studied
phenomenon. Neural networks are a highly adaptable and flexible
instrument, as they are able to determine a functional approximat-
ion of nonparametric type. Moreover, neural networks are well
known in the economic and financial field1 and constitute the main
representative of the family of nonlinear learning systems. In any
case, it is necessary to emphasize that there are no studies in the
available literature that apply such instruments to credit derivat-
ives, and this reason has naturally led to the exploration of this
innovative field of analysis. Finally, it is important to remember
that, beyond the effectiveness that will be better illustrated in the
next parts, neural networks are connoted also for relatively small
training, tuning and execution times, because they use optimization
techniques which have been known for a long time in literature.
Although the relative structures differ remarkably from one
another, it is possible to point out some fundamental principles
regarding the functioning of these operative instruments. The
following part of this section is therefore dedicated to the
presentation of the principal results, inherent to this topic,
available in literature. It is important to start by emphasizing that,
in order to analyze financial dynamics, relatively little complex
networks are effective, at least compared to those of other fields2.

A. - Architecture of Neural Networks

A neural network relates a set of input variables {xi}, i = 1, 2,
… k to a set of one or more output variables {yj}, j = 1, 2, … h. An
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essential characteristic of a neural network, differently from other
approximation methods, is that it uses one or more hidden layers,
in which the input variables are transformed by a logistic or
logsigmoid function: this characteristic, as shown later, gives to
these instruments a particular efficiency in modeling nonlinear
statistical processes3.

In the feedforward neural network, parallel elaboration is
associated with the typical sequential elaboration of the linear
methods of approximation. In fact, while, in the sequential
elaboration, particular weights are given to the input variables
through the neurons of the input layer, in the parallel one the
neurons of the hidden layer operate further transformations, in
order to improve the predictions. The connectors (between the
input neurons and the neurons in the hidden layers, and between
these and the output neurons) are called synapses. The
feedforward neural network with a single hidden layer is the
simplest and at the same time the most used network in the
economic and financial field.

Therefore, the neurons process the input variables in two
ways: firstly by forming linear combinations and then by
transforming these combinations with a particular function,
typically the logsigmoid function, illustrated in Graph 1. An
essential characteristic of this function is the threshold behavior
near values 0 and 1, which turns out to be particularly suitable
to economic problems, which usually, for small changes in a high
(or low) value of the independent variables, show little changes in
the dependent variables. At the analytical level, the neural network
can be described by the following equations4:

(1)

(2)
  
N = L n =

+ e
k,t k,t nk,t

( )
1

1
−

n = + xk,t k k,i i,t
i=

m

ω ω,0
1

∑

RIVISTA DI POLITICA ECONOMICA NOVEMBER-DECEMBER 2006

190

3 MCNELIS P.D. (2005, page 21).
4 MCNELIS P.D. (2005, page 25).



(3)

where L (nk,t) represents the logsigmoid activation function. It is
a system with m input variables xi and q neurons. A linear
combination of these input variables, observed at time t, with the
weights of the input neurons ωk,i and the constant term (bias) ωk,0

forms the variable nk,t. Then this variable is transformed by the
logistic function and becomes the neuron Nk,t at time or
observation t. The set of q neurons at time or observation t is
therefore linearly combined with the coefficient vector γk and
added to the constant term γ0 , in order to obtain the output yt,
which represents the prediction of the neural network concerning
time or observation t. The feedforward neural network used with
the logsigmoid activation function is often called multi-layer
perceptron or MLP network. A highly complex problem could be

y = + Nt k
k=

q

k,tγ γ0
1

∑
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treated widening this structure, and therefore using two
(respectively N and P) or more hidden layers5:

(4)

(5)

(6)

(7)

(8)

Adding another hidden layer increases the number of
parameters (weights) to be estimated by the factor (s + 1) (q – 1)
+ (q + 1); in fact the net with a single hidden layer, with m input
variables and s neurons, has (m + 1) s + (s + 1) parameters, while
the same net, with two hidden layers and q neurons in the second
hidden layer, has (m + 1) s + (s + 1) q + (q + 1) parameters.
However, the disadvantage of these models for complexity does
not consist of the number of parameters, but of the greater
probability that the net converges to a local rather than global
optimum. Moreover, increasing the number of parameters uses up
the degrees of freedom if the sample size is limited, and requires
a longer training time. In any case it has been demonstrated that
a neural network with two layers is able to replicate any nonlinear
function6: in fact it does not just approximate a phenomenon by
adapting a fixed functional form, but it determines which
functional form is able to best describe the studied phenomenon.
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In Graph 2 a net with a multiple number of output variables
is illustrated7. A neural network with a hidden layer and two
output variables is described by the following equations8:

(9)

(10)

(11) y = + Nt k
k=

q

k,t1, 1,0 1,
1

γ γ∑

N = L n =
+ e

k,t k,t nk,t
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∑
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GRAPH 2

NEURAL NETWORK WITH ONE HIDDEN LAYER 
AND TWO OUTPUT NEURONS
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(12)

It is possible to observe that adding an output variable leads
to the evaluation of (q + 1) more parameters, which is equal to
the number of neurons of the hidden layer increased of one unit.
Therefore, another output variable causes an increasing number
of parameters that have to be estimated, equal to the number of
the neurons of the hidden layer, not equal to the input variables.
Using a neural network with multiple outputs makes sense only
if they are closely correlated to the same set of input variables:
for example, the temporal structure of inflation or interest rates.
One of the most common criticisms made is that neural networks
are substantially black boxes: it is not possible to find the answer
to questions pertaining to the nature of the parameters, the
reasons of the choice of their number, the number of the
neurons, the number of the hidden layers and the reasons that
relate the architecture of the net to the structure of the
underlying problem9.

The risk, when models are based on a high number of
parameters, is that their flexible nature seems to explain nearly
everything, but in reality explains nothing. In any case, we must
underline that the same criticism can be made to any statistical
approximation method: therefore, not only to neural networks,
but also to linear models, univariate and multivariate regression
and so on. Neural networks, in particular, are able to explain
very irregular processes, on which it is difficult to identify a
precise cause and effect relationship. Hence, the black box
criticism constitutes, paradoxicalally, also one of the greatest
qualities of neural networks. However, even though it is easy to
increase the number of the parameters of the net, the importance
of the clarity of the assumptions must never be forgotten in any
model10.

y = + Nt k
k=

q

k,t2, 2,0 2,
1

γ γ∑
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B. - Data Scaling

A neural network is not able to analyze data or to give
solutions in absolute value: if there are data of an unusually
elevated or reduced value, problems of overflow or underflow
could happen. Instead, when sigmoid functions are used, it
becomes indispensable to preprocess data: this family of functions
in fact has a codominy of type [0, 1] (or [–1, 1] in the case of the
logsigmoid function), so the values must be scaled to these
intervals, otherwise the output of the net would become useless.
In fact, it would be equal to the superior or inferior threshold for
all of the values higher or lower than a determined limit. In other
words, for a great amount of data not standardized to the interval,
the neurons would simply transmit the threshold value, so a wide
part of the information would be lost. As far as the methods11,
the linear reduction transforms the series of values xk in the serie
x̂k, using the following formulas:

(13)

if the range is between 0 and 1, and 

(14)

if the desired range is between –1 and 1.

C. - Learning Process

After the data have been scaled, we have to deal with the
problem of the evaluation of the parameters (weights) through the
process known as learning (training) of the neural network12.

ˆ
min( )

max( ) min( )
x =

x x

x xk,t
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k k

2 1
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−
−

ˆ
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max( ) min( )
x =
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−
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Preliminarily, it is necessary to notice that the ways with which
such process can be carried out are two: the first one, called “not
supervised”, consists in feeding the net with only the input data of
the sample, so that it can carry out a decomposition in cluster with
them picking the existing affinities; the second one, called
“supervised”, is focused on the analysis of both the input and the
output data: because of the importance that it has in this paper, the
considerations which follow are mainly referred to it. The training
of the net is a problem much more complex than the evaluation of
the parameters of a linear model, since neural networks have a high
nonlinear complexity nature. For these reasons, numerous optimal
solutions can exist, but they do not minimize the difference between
the predictions of the net and the effective values. In short, in any
nonlinear model it is necessary to begin the evaluation of the
parameters on the basis of random values of them. However, as it
will be shown, the capability of the evaluation process to converge
to a global optimum depends on the goodness of this initial
hypothesis: in fact, if it is situated near a local optimum rather than
the global one13, it is likely that the first one will be reached. This
is illustrated in Graph 3: the initial choice of the parameters (or
weights of the neurons) could be situated anywhere on the x-axis:
if it is near a local minimum, the training process of the net would
stop there. Later on, it will be observed that the process ends in a
point where the derivative of the loss function is null: we must
remember that this condition, beyond the global optimum,
identifies also the local ones and the saddle points. So, it can be
anticipated that if the learning coefficient, which indicates the
sensibility of the net to the training process, is too low, this would
lead to the impossibility of the network to escape from local
optimums. On the other hand, if it is too high, it could carry the
training process to oscillate continuously far away from the
optimum point, and therefore the network would diverge. In
analytical terms, it is possible to illustrate the learning process of
a net with two hidden layers, where it is therefore necessary to
determine the set of parameters Ω = {ωk,i, ρl,k, γl}.
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The problem consists of minimizing the loss function14,
defined by the sum of the squares of the differences between the
observed data y and the prediction of the net ŷ:

(15)

(16)

in which T is the number of the observations of the output vector
y, and f (xt; Ω) represents the neural network. Ψ is a nonlinear
function of Ω. All nonlinear optimizations begin with an initial
random choice of the parameters and then try to reach the solution
by finding the best possible value within a reasonable number of
iterations. Different methodologies have been proposed in order to

  
ˆ ( ; )y = f xt t Ω

min ( ˆ )Ω Ψ Ω( ) ( ) −∑= y yt t
t=

T
2

1
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GRAPH 3

EXAMPLE OF A SUCCESSION OF LOCAL AND GLOBAL MINIMUMS



lead this search15: some make reference to metaheuristics, e.g.
genetic algorithms, in alternative to the classic gradient descent
method, or Newton-Raphson. However, the chosen algorithm
continues until the last iteration n, or in alternative a tolerance
criterion can be set up, stopping the iterations when the reduction
of the error function goes below the predefined tolerance value16.
In order to avoid local optimums, a first convergence can be
determined, and then the process is repeated with a set of different
initial parameters in order to verify whether the solution changes.
Alternatively, numerous processes could be carried out to
determine the best solution. However, the most important problems
are when the number of the parameters increases or when the
architecture of the network becomes particularly complex. Paul
John Werbos proposed, at the beginning of 1970’s, an alternative
to the gradient descent called backpropagation17. It is a very flexible
method that avoids the problems caused by the evaluation of the
Hessian matrix in the gradient descent, and it is the most widely
used method. In fact, in the training process, the inverse Hessian
matrix is replaced by an identity matrix having a dimension equal
to the number k of the parameters, multiplied by the learning
coefficient ρ:

(17)

In order to avoid oscillations this coefficient is chosen in the
range [0.05, 0.5] and it can also be endogenous, in fact it can
assume various values when the gradient drops and the process
seems to converge; or finally different parameters can be adopted.
So, the problem of this choice along with the existence of local
minimums must be solved. Moreover, low values of the learning
coefficient, although capable of avoiding oscillations, can prolong
the minimizing process. This can however be accelerated by
adding a ‘momentum’, so that at iteration n we will have18:

( )Ω Ω1 0 0
1

0 0− − −−= H Z = Zρ
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(18)

Therefore, with µ generally equal to 0.9, the calculation of the
parameters moves more quickly outside a plateau in the error
surface.

Now we will briefly discuss the methods used to estimate the
effectiveness of the net output. Regarding the evaluation of the
goodness of the predictions, the most common index is the R-
squared (goodness of fit) as far as the capability of the net to
predict the training data. As regards the evaluation of the
predictions outside the training sample, a common index is the
root mean squared error. In other words, after dividing the sample
into two parts, the first (in sample) will be used in order to train
the net. The second part (out of sample) will not be used to train
the net, but to estimate its capability of predicting data coming
from the same population, but not included in the training set.
Usually, about 25% of total data is used for out of sample testing.

However, concerning the amount of necessary data19, a neural
network undoubtedly requires the evaluation of many more
coefficients than e.g. a linear model, and this leads to the necessity
of a wider sample. The availability of wide samples improves the
predictive abilities of the net, but it also implies longer training
times. Moreover, the availability of a wide sample is not always a
positive aspect: in the financial field, using very old data can distort
the models, because they tend to change rapidly. As a consequence,
remote data could not be related to the present ones anymore.

3. - Credit Derivatives

“Credit derivatives20 are contracts whose final value depends
on the creditworthiness of one or more trade or sovereing
entities”21. In this section, we will analyze the principal

( ) ( )Ω Ω Ω Ωn n n n n= Z +− − −− − − −1 1 1 2ρ µ
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contributions available in literature concerning their pricing, also
to introduce the CreditGrades™ model, a first class methodology
in the evaluation of default probability. We, therefore, begin with
credit default swaps (CDSs), which in recent years have conquered
the superiority22 in terms of volumes exchanged in the market of
credit derivatives. However, this market remains essentially over
the counter because the realization of a centralized system of
exchange has still not been achieved: in a limited way, in Europe
the iTraxx index is an example of such a system.

In general, CDSs23 are contracts which offer protection against
the default risk (credit event)24 of a specific firm, called reference
entity. The buyer of the protection obtains the right to sell at par,
on verification of the credit event25, a specific obligation (reference
obligation)26, issued by the firm. The nominal value of this bond is
the notional principal of the contract, and the right is obtained
through a series of periodic payments. They are calculated by
applying the quoted spread to the notional principal: the series ends
when the contract expires or if the credit event takes place, which
usually involves a final accrual payment. As in every derivative
contract, the settlement27 can take place with the physical delivery
of the obligations and the payment of their nominal value, or in
cash. In the last case, a complex procedure is carried out, in which
the calculation agent determines the average price Z of the
obligation28 at a prefixed date, successive to the verification of the
credit event, and pays a sum equal to (100 – Z)% of the notional
principal to the protection buyer. As mentioned, the market of credit
derivatives is essentially an OTC market, and therefore financial
intermediaries carry out a determining role29 as market makers: at
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any moment they quote a bid price to buy the protection and an
ask price to sell the protection, for a given expiry date and reference
entity. Credit derivatives are effective instruments in order to
manage and to modify the risk profile of a financial portfolio, which
is reduced or increased by buying or selling protection. Moreover,
a fast portfolio diversification can be obtained by trading protect-
ions concerning different reference entities.

The following sections are dedicated to two of the most
important models proposed in literature for the evaluation of these
instruments: the first is relative to the reduced form approach and
the last to the structural approach. However, it is necessary to
underline that these two models can only be applied to the analysis
of quoted societies.

A. - The Hull and White Model

Reduced form approaches assume the existence of a
correlation between the default of a firm and some particular
indicators of the economic conjuncture, called background factors.
More specifically, the Hull and White model is based on a
fundamental consideration about the value of the bonds issued by
different entities. In fact, a bond issued by the Government is by
definition risk free, so the difference in value of a similar bond,
issued by a firm, constitutes the market evaluation of the default
costs. Therefore, analyzing the course of this difference, it is
possible to extrapolate at anytime the evaluation of the default
probability expressed by the market, on the base of the quotations
of the issued bonds. Having thus stated, in the following part of
this section the model will be illustrated, with three simplified
hypotheses: risk neutrality, mutual independence of the variables
and possible verification of the credit event only at the payment
dates, i = 1, ... n, so as to avoid the complications related to the
calculation of the accrued interest. Moreover, it is assumed that
the default probability of the protection seller is null, but on this
subject we will return later. We will indicate with:
T: residual life of the contract;
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pi: default probability at time ti;
R̂: expected recovery rate, that is the sums expected from

the reference entity if the credit event takes place;
u(ti): present value, at the rate of 1 € per year, of payments be-

tween time 0 and time ti;
e(ti): present value of an accrual payment at time ti equal to ti

– t* euro, where t* represents the date immediately pre-
ceding time ti;

v(ti): the present value of 1 € received at time ti;
w: annual payment made by the buyer per euro of notional

principal;
s: value of w that causes the credit default swap to have a

value of zero;
π: the probability that within the expiry date the credit event

does not take place;
A(ti): accrued interest on the reference obligation at time ti as

a percentage of face value.
As already stated, the approach obtains the default probabilities

from the quotations of the bonds issued by the reference entity or
from derivative contracts30, such as asset swaps. Therefore:

(19)

The present value of the payments is:

(20)

while the expected payoff of the CDS is:

(21)   
1 (1 1− − −ˆ ( )) ˆ ( ) ˆR + A t = R A t Ri i

w u t +e t p + wu Ti i
i=

n

i( ( ) ( ))
1

∑ ( ) π

π = pi
i=

n

1
1

− ∑
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Then, its present value, given the hypothesis of risk neutrali-
ty, is equal to31:

(22)

Consequently, the current value of a CDS, for the protection
buyer, is equal to the difference between the present value of the
expected payoff and the present value of the payments:

(23)

The buyer will have to pay on an annual basis s (CDS
spread)32, which is the value of w that makes the current value of
the contract equal to 0:

(24)

In Table 1 a numerical example of this formula is shown33; it
concerns a five-year CDS, with payments at times ti, and a
reference obligation with a coupon of 12% per year. Assuming that
the default probabilities obtained from market data, as stated
above, and the expected recovery rate are the ones shown in the
table, and that the default can only happen at the end of each
year, the spread is 542 basis points per year. 

If the default can take place at anytime, pi will be replaced
by qi, that is by the default density probability at time ti, and
therefore:

  

s =

R A t R v t p

u t +e t

i
i=

n

i i

i i
i=

( ˆ ( ) ˆ ) ( )

( ( ) ( ))

1
1

− −∑

11

n

ip +u T∑ ( ) π

( ˆ ( ) ˆ ) ( ) ( ( ) ( ))1
1

− − −∑ R A t R v t p w u t +e ti
i=

n

i i i i
i=11

n

ip wu T∑ − ( ) π
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1

− −∑ R A t R v t pi
i=

n

i i
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32 HULL J.C. (2003).
33 HULL J.C. (2003); BENKERT C. (2004, page 81); O’KANE D. - TURNBULL S. (2003,

pages 5, ss.); FRANCIS C. - KAKODKAR A. - MARTIN B. (2003, pages 16, ss.) for alternative
approaches.



(25)

In order to better understand the nature of the spread s, it is
possible to use a quasi-arbitrage argumentation34. A contemporary
purchase of the reference obligation and a CDS of equal expiry
date, written on it, eliminates the default risk. If y indicates the
yield to maturity of the obligation, it is evident that the
cancellation of the credit risk implies a reduction s of y. This
reduction can eventually last until the credit event, instead of the
maturity date of the obligation. In short, y – s turns out to be a
risk free rate of return, and therefore it must be aligned to the
risk free rate r of the same expiry date, in order to avoid arbitrages.
However, the protection buyer would not gain any interest
between the date of payment of the last coupon and the date of
the credit event. In addition, it is unsure that the rate of return
that the buyer gains from that moment until the original expiry
date of the contract is equal to r35.

The expected recovery rate turns out to be the only variable
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34 HULL J.C. (2003, page 713).
35 HULL J.C. (2003, page 714).

TABLE 1

EXAMPLE OF A CDS CONTRACT
(our elaboration)

Ti R pi A(ti) v(ti) (1-R-A(ti)R)piv(ti) u(ti) u(ti)pi

1 0.4 0.05000 0.12000 0.95238 0.02629 0.95238 0.04762
2 0.4 0.07000 0.12000 0.90703 0.03505 1.85941 0.13016
3 0.4 0.09000 0.12000 0.86384 0.04292 2.72325 0.24509
4 0.4 0.10500 0.12000 0.82270 0.04768 3.54595 0.37232
5 0.4 0.12000 0.12000 0.78353 0.05190 4.32948 0.51954

0.43500 0.20383 1.31473
π 0.56500
∑u(ti)pi+u(T)π 3.76089
S 0.05420



that is estimated in order to obtain the spread s36, as all the other
variables are defined in the CDS contract (T, w, A (t)) or available
on the market (pi, u (t), e (t), v (t)). However, it has a limited
incidence on the CDS spread, because its infuences tend to offset
each other37. In fact, as the expected recovery rate increases,
estimates of the default probability increase and the payoffs
provided by the CDS decrease. The incidence can be elevated for
nonstandard CDSs, e.g. binary CDSs38, which guarantee, when the
credit event takes place, an independent payment from the
expected recovery rate, which only influences the default
probability. Other nonstandard CDSs are basket CDSs39, in which
there are multiple reference entities and the payment is made when
the default of whichever of them takes place. The add-up basket
CDS is a portfolio of ordinary CDSs; the first-to-default basket
CDS40 ceases to exist when the first default takes place. These last
instruments have a very complex nature, and to evaluate them it
is necessary to proceed through Monte Carlo simulations41:
nevertheless, when the correlation of the defaults grows42, the value
of the first-to-default basket CDS diminishes, since it turns out to
be less “diversified”. Instead, if the reference entities are diversified,
a default will be more likely to take place; consequently, the buyer
will also be more likely to receive a payment, so the value of the
first-to-default basket CDS increases43.

Finally, it is necessary to also consider the default
probability of the protection seller44. In fact, in that case, the
buyer will have to stipulate a new CDS with another seller, and,
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36 HULL J.C. (2003, page 715); CAPUTO NASSETTI F. - FABBRI A. (2000, pages 142,
ss.) where the relative evaluation technique is detailed.

37 HULL J.C. - WHITE A. (2000, page 19).
38 HULL J.C. (2003, page 716).
39 HULL J.C. (2003).
40 MORGAN J.P. (2000, page 28); Francis C. - KAKODKAR A. - MARTIN B. (2003,

pages 84, ss.).
41 HULL J.C. (2003); CAPUTO NASSETTI F. - FABBRI A. (2000, pages 190, ss.), where

the evaluation techniques based on the conditional probability of events are
detailed.

42 FRANCIS C. - KAKODKAR A. - MARTIN B. (2003, pages 89, ss.).
43 HULL J.C. (2003).
44 HULL J.C. (2003, pages 717, ss.).



if the creditworthiness of the reference entity has diminished,
the spread will be higher. Therefore, the effects of the default
of the seller on the CDS depend both on the probability of
reduction of the creditworthiness of the reference entity and on
its correlation with this event. This case can only be analyzed
through Monte Carlo simulations, and it has been demonstrated45

that the incidence of the default risk of the seller on the CDS
spread is directly proportional to the mentioned correlation.
However, it is obvious that the protection must be bought from a
seller whose default is as little correlated as possible with that of
the reference entity.

B. - The CreditGrades™ Model

The CreditGrades™ model for credit risk assessment derives
from the operating experience of these four main financial
institutions: Deutsche Bank, Goldman Sachs, Riskmetrics Group
and J.P. Morgan. It is an attempt to create a “standard of
transparency” on the credit markets, after the release of the
CreditMetrics™ model in 1997, which is now considered a de facto
standard for the risk assessment of a credit portfolio. According
to these institutions46, in 2002 there was a strong need for an
instrument that could express the credit risk assessment of a single
exposure. This was a result of the wider controls by the authorities
in this important field of financial intermediation, and the
increasing role that risk plays on the markets. On this topic, it is
possible to mention the impetuous development of credit
derivatives, as seen in the previous part. In this context, an
essential factor has been the increasing number of defaults of
important corporations, which in 2001 became truely worrisome.
Apart from the famous “Enron case”, “Defaults in 2001 were
notable for their individual size as well as their frequency. Twenty-
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45 HULL J.C. (2003, page 718); about these concepts cfr. ANGELINI E. (2002,
pages 276, ss.).

46 FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002,
page 1).



nine issuers had defaults totaling over one billion dollars in debt
apiece”.47

The CreditGrades™ model belongs to the structural approach,
which uses the option pricing theory to estimate the default
probability, starting from the Black, Scholes and Merton studies.
In this way, it tries to create a link between the credit market and
the securities market. For this approach, the shareholders will
reimburse the debt only if the asset value of the company exceeds
it (and therefore the option is in the money), while, in the other
case, they will abandon the assets to the creditors. Therefore, their
position is similar to the holders of a call option sold by the
creditors. Hence, the expiry date and the strike price of the option
are equal to the expiry date and the amount of the debt.
Consequently, the probability that the option is in the money is
opposite to the default probability of the firm. The intention
stressed by the authors of this model was to amplify the
characteristics of this approach, in order to use only market data
for the evaluation. In this way data from proprietary databases
are not necessary, as they could diminish the transparency of the
model48. This section is dedicated to its essential analysis, as was
presented in the technical document by its authors.

One of the peculiar features of the model is its definition of
the default point, which is supposed to be stochastic. As stated in
the technical document: “We cannot expect to know the exact level
of leverage of a firm except at the time the firm actually defaults.
The uncertainty in the barrier admits the possibility that the firm’s
asset value may be closer to the default point than we might
otherwise believe. This leads to higher short-term spreads than are
produced without the barrier uncertainty”49, in this way avoiding
a point of weakness in the structural approach. Briefly, we
summarize its essential characteristics50:
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47 FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002).
48 FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002,

pages 2, ss.).
49 FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002,

page 5).
50 FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002,

page 6); for a brief description of the model cfr. STAMICAR R. - FINGER C.C. (2005,
pages 2, ss.).



– the assets of the firm follow a stochastic process V;
– the default happens when this process crosses the threshold

equal to the default point;
– this default point must necessarily correspond to a certain

part of the debts; in the model it depends on the average recovery
rate L, which is supposed to be stochastic.

As regards the last point, the stochastic nature of L is also
based on the empirical analysis carried out, which are described
in the technical document. It is shown that this value is extremely
variable, because it is influenced e.g. by the operating or finan-
cial nature of the default, by the possibilities of reorganization or
liquidation of the firm and so on. Therefore, L is distributed in a
lognormal way with average L

–
and standard deviation λ; denoting

with D the debt per share of the reference entity, we have

(26)

where Z is a standard normal random variable.

LD = LDe
Zλ λ−











2

2
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GRAPH 4

STOCHASTIC PROCESS OF THE ASSETS OF THE FIRM 
AND DEFAULT POINT*

* FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002, page 7).
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Then, the survival probability at time t is equal to the
probability that V does not cross the default point LD before time
t, and so we will have51

(27)

(28)

(29)

In these equations, N (x) is the standard normal cumulative
distribution function of the variable x, while σ represents the
volatility of the assets of the reference entity. Once obtained the
default probability (1 – P (t)), the corresponding credit spread
must be calculated52. Hence, it is necessary to introduce the
recovery rate R: while L is the medium recovery rate of all the
various debts, R only regards the underlying credit. We can define
the default density probability function53

(30)

so the cumulative default probability within time t will be

(31)

Focusing the analysis on a CDS with expiry date t and spread
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page 45).
53 FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002).



(32)

where, as always, r represents the risk free interest rate, which is
supposed to be constant. The present value of the expected spread
payments will be

(33)

Therefore, we obtain the price of the CDS from the difference
between these two payments54; then, the equilibrium spread makes
the expected spread payments equal to the expected loss payments,
so that the value of the CDS is null55:

(34)

where

(35)

(36)

(37)

(38)

The determination of the asset value and the asset volatility
is faced by the model in a peculiar way, in the attempt to associate
the methodological rigor with an easier evaluation of the

  
ξ

λ
σ

=
2

2

z
r

= +






1
4

2
2σ

G t = d N
d

t
z t + d N

z+ z+
( )

log( )

( )
( )

1
2

1
2− −









 −

−

σ
σ

llog( )

( )
( )

d

t
+ z t

σ
σ











  H t = e G t Gr( ) ( ( ) ( ))ξ ξ ξ+ −

  

ˆ ( )
( ) ( )

( ) ( ) ( )
c = r R

P + H t

P P t e H trt
1

0

0
−

−
− −−

1

c dsP s e
t

rs

0
∫ −( )

( )( ( ) ( ) )1 0− − ∫ −R P + dsf s e
t

rs1
0

RIVISTA DI POLITICA ECONOMICA NOVEMBER-DECEMBER 2006

210

54 FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002,
page 46).

55 FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002).



parameters56. First of all, the attention is focused on the long term,
that is t > λ2 / σ2: otherwise the default probability would be mainly
influenced by λ; moreover, the distance from default is defined as
the number of standard deviations separating the present value of
the assets of the firm from the default point; as a consequence of
Itô’s lemma, we have57:

(39)

where S represents the equity price and σs represents the equity
volatility of the reference entity. At this point, it is possible to
examine the following boundary conditions58:

– near the default point, S/LD is much smaller than 1, hence,
we have V = S + LD ≈ LD and it is possible to write the
approximation

(40)

Replacing in (39) we will have:

(41)

– instead, for high values of S/LD, it is possible to assume
that S/V → 1, that is the rate of increase of V is equal to the one
of S, so

(42)

It follows that all these conditions can be satisfied at the same
time by these expressions:

η
σ

≈






1

s

S
LD

log

  
η

σ
≈

1

s

 
V LD +

V
S

S≈
∂
∂

η
σ σ

=






=
∂
∂







1
log log

V
LD

V
S

S
V

V
LDs

The Application of Neural Networks etc.A. LUDOVICI

211

56 FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002,
page 10).

57 STAMICAR R. - FINGER C.C. (2005, page 10).
58 FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002).



(43) V = S + LD

(44)

and for V0 we will have

(45) V0 = S0 + L
–
D

(46)

The last equation explains that, if the asset volatility is
constant, the equity price and the equity volatility are inversely
related. Near the default, equity volatility is very high, and this
turns out to be coherent59 with the so called volatility smile. Since
erratic values can also be observed on the market, the model
suggests the non-transitory values Ŝ and σ̂S, in order to determine
a stable level of the asset volatility60. It is important to observe
that equity volatility can be either historical or implied. Therefore,
we will have

(47)

For the empirical testing of the model, which is described
with details in the technical document, it is preliminarily
necessary to identify an asset volatility estimator61, because it is
not directly observable, and it is supposed to be constant in the
long term. However, this estimator must depend on equity
volatility in some way, because the model belongs to the structural
approach. Thus, the CDS spread observed on the market has been
chosen as the verification parameter. The authors of the model
have used a sample made up of 122 firms, operating both in the
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page 11).

60 FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002).
61 FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002,

page 17).



industrial and in the financial field, and they have examined the
five-year CDS spread between May 2000 and August 2001. The
data concerning the specific recovery rates of the reference
obligations have been taken from the J.P. Morgan database, and
a total of 6,194 quotations have been used. With the standard
values L

–
= 0.5 and λ = 0.3 and the boundary conditions (40)-(42),

the implied asset volatility is the value of σ which makes the CDS
spread equal to the one observed on the market, and this value
seems to be rather stable in the long term62.

In Graph 5 it is evident that only for 4 firms the difference
between the long term value and the one observed exceeds 10%.
Therefore, historical volatility has been calculated for each firm,
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GRAPH 5

CORRELATION BETWEEN HISTORICAL 
AND IMPLIED VOLATILITY*

* FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002, page 19).
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and, according to the authors of the model, the best results are
obtained63 on the basis of an observation period of between 750
and 1,000 days. The speculative grade firms achieve the best
predictions because they show a strong relationship between
equity and debt, while there is a high64 volatility skew for the firms
characterized by an elevated creditworthiness. In fact, their default
would be similar to a case of deep out of the money. Therefore,
with a temporal window of 1,000 days, 88% of the estimates fall
within 10% of the value assumed to be real, that is the implied
volatility of the five-year CDS spread observed on the market.
Further tests have shown that this result is strong both for the
industrial and the financial field, being invariant with respect to
the historical epoch of observation65.

It has been observed that the deterioration of creditworthiness
is often accompanied by increments in the volatility and in the
spread applied on debt: given the difficulties using historical
volatility, the model has been extended66 in order to use the one-
year option implied volatility. This leads to greater accuracy of the
predictions and to overcome the problems concerning data on
debt, which are only available on a quarterly basis67. Therefore,
implied volatility68 allows to capture the signals of market
quotations with greater rapidity, even if the predictions become
more variable. In Graph 6, it is evident that implied volatility (dash
line) supplies a better evaluation of the CDS spread (black line)
than the one obtained by using historical volatility (grey line), even
not considering the correction for volatility skew (dots line).

Finally, the technical document describes the association
measures between the predictions of the model and the data
observed on the market69: as far as the correlation index, we must
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65 FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002).
66 STAMICAR R. - FINGER C.C. (2005, page 1).
67 HULL J.C. - NELKEN I. - WHITE A. (2004, pages 6, ss.).
68 STAMICAR R. - FINGER C.C. (2005, page 26).
69 FINGER C. - FINKELSTEIN V. - LARDY J.P. - PAN G. - TA T. - TIERNEY J. (2002,
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remember that the high default probabilities of the speculative
grade firms have a greater relative weight. In any case, even
considering these distortions, the value of the index is always over
60%, with a minimum probability of correct classification of the
creditworthiness of 75%.

C. - Application of Neural Networks to the Credit Grades™
Model

The final part of this paper illustrates the results of the
application of the neural networks carried out in the study. Topics
including the architecture of the net, the number of layers and
neurons, the learning process, the measures of efficiency and the
evaluation of the predictive capability of the net have a very
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GRAPH 6

EVALUATED SPREADS CONCERNING VIVENDI 
ON THE BASIS OF THE DIFFERENT TYPES OF VOLATILITY*

* STAMICAR R. - FINGER C.C. (2005, page 18).
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complex nature70, and only the verification of the various existing
methodologies can help in finding their solutions. Therefore, the
proposed approaches are to be seen essentially as starting points,
or obligatory steps toward more detailed analysis, which are
difficult to describe in general terms. In the rest of this section,
the potentialities of neural networks in approximating the pricing
of credit derivatives will be shown, using artificial data71, which
are generated on the basis of the CreditGrades™ model. The
primary reason of this choice is that in this way there are no limits
for the dimensions of the available samples, neither for the in
sample nor for the out of sample; moreover, we must remember
the adhesion characteristics to the reality of this model.

It is therefore necessary to generate a random sample
concerning the independent variables of the model (S, D, σS, t, r,
R): because we are in the presence of homogenous equations in
D72, we can put D = 1 and replace S with S/D. As far as the range
is concerned, it has been chosen 25% < S/D < 625% and 10% < σS

< 90%: they are values73 widely diffused on the market, and in the
same way it has been chosen 3% < r < 7% and 3 < t < 7 years. The
output of the net is made up of two values: the first one represents
the CDS spread (which will not exceed the more than adequate
value of 1,500 basis points, because of the restrictions mentioned
above), and the second indicates the default probability. These two
variables are closely correlated, and therefore it is possible to use
a single neural network for their evaluation. The training sample
is made up of 500 observations.

Table 2 shows R-squared and root mean squared error: the
values are highly coherent, as it is easy to observe. The multi-layer
perceptron neural network has been trained in supervised mode
for 1,000 epochs of learning by using the backpropagation
algorithm, with a single hidden layer of 19 neurons. We have
determined both of these values with a detailed preliminary study,
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according to the cross-validation method74, that divides the sample
into two parts, as described in section 2. The in sample part has
been used to train different nets: the differences were in the
number of neurons, layers and epochs of learning; while the out
of sample part has been used in order to determine which net
minimizes the forecast error. According to the results mentioned
in section 2, that state it is possible to approximate any nonlinear
phenomenon by using neural networks, the new application to the
category of credit derivatives effectively captures the market
dynamics. An interesting development of the analysis is to replace
the artificial sample with real market data, and the future studies
are oriented in this way. In the present paper, it has instead been
chosen to use artificial data, and one of the reasons is that the
application to credit derivatives is new. In fact, apart from
considerations about the availability of data, any attempt of
evaluation of economic phenomena using neural networks must
be preceded by75 the determination of a basis model. This model
is needed to relate the variables which are supposed to be relevant.
In this context, the description of the CreditGrades™ model has
been considered particularly useful, because of its characteristics
of clarity and strength and also for its wide diffusion among
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TABLE 2

EVALUATION OF THE APPROXIMATION 
OF THE NEURAL NETWORK

(our elaboration)

Error tipology Value

R-squared spread 0.99
R-squared default pr. 0.99
Root mean squared error spread 0.00147
Root mean squared error prob. default 0.00744

74 MCNELIS P.D. (2005, pages 115, ss.); about these concepts cfr. BISHOP C.M.
(1995) and HECHT-NIELSEN R. (1991).

75 For various examples cfr. MCNELIS P.D. (2005, pages 145, ss.), in particular
pages 148, ss.



financial operators. However, the use of market data should not
lead to any problems, on the basis of the mentioned coherence of
this model. Because in literature there is no unanimity on the
determination of the CDS pricing function, neural networks can
be seen as effective instruments, which can satisfy this lack from
a statistical point of view.

D. - Prevision of the Default: the UAL Corporation Case

In conclusion of the paper, we show in Graph 7 an elaboration
regarding UAL Corporation, one of the biggest international air
carriers. On September, 12th 2002, this American firm applied for
Chapter 11 of US Bankruptcy Code, and announced the financial
reorganization on February, 1st 2006. The annualized default
probabilities of this firm have been calculated on a quarterly basis.
Graph 7 shows the three different models which have been used:
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GRAPH 7

THE UAL CORPORATION CASE STUDY
(our elaboration)
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they are the CreditGrades™ model (in black), the neural net
trained using it (in grey), and another neural net trained using
the classic model of Merton (dash line). Table 3 shows the data
which have been used for the elaboration: they cover the period
March 1997 - December 2004. The black vertical line in Graph 7
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TAB. 3

DATA CONCERNING THE UAL CORPORATION CASE STUDY
(our elaboration)

Date Leverage D/E Imp. Vol. % Risk free rate

03/31/97 0.9008 35.5400 0.0602
06/30/97 0.8120 36.4100 0.0567
09/30/97 0.7095 35.9500 0.0547
12/31/97 0.7878 38.3700 0.0551
03/31/98 0.9293 40.2400 0.0541
06/30/98 1.1247 33.0900 0.0538
09/30/98 1.4788 46.5000 0.0441
12/31/98 1.7558 43.5600 0.0453
03/31/99 1.3761 39.3000 0.0472
06/30/99 1.5614 46.5200 0.0507
09/30/99 1.5238 38.9200 0.0522
12/31/99 1.3534 40.3100 0.0598
03/31/00 1.7447 68.9900 0.0628
06/30/00 1.6977 38.7800 0.0608
09/30/00 2.5322 44.4500 0.0607
12/31/00 3.6114 43.7700 0.0532
03/31/01 4.2346 46.1000 0.0409
06/30/01 3.9570 39.0200 0.0372
09/30/01 9.3055 78.9300 0.0249
12/31/01 13.6767 92.4500 0.0217
03/31/02 11.3719 68.7800 0.0270
06/30/02 16.0735 90.6400 0.0206
09/30/02 72.5431 287.1200 0.0153
12/31/02 5.9430 325.9800 0.0132
03/31/03 9.4754 345.5400 0.0119
06/30/03 9.3012 233.1100 0.0109
09/30/03 6.1978 226.0700 0.0115
12/31/03 4.7573 170.0500 0.0126
03/31/04 4.8408 143.7500 0.0120
06/30/04 4.9365 152.0600 0.0209
09/30/04 9.9011 203.4300 0.0221
12/31/04 7.9689 256.7400 0.0275



represents the date of default, and it is easy to observe that all
the three models indicate in advance the deterioration of the
creditworthiness of the firm, by increasing the default probability.
However, the identifying capability of the CreditGrades™ model
emerges with respect to the classic Merton model. In a certain
measure, the particular neural network trained with its results
boosts the good predictive characteristics of the CreditGrades™
model, by the timing of increasing the default probability. The
data used for the analysis have been obtained from Bloomberg™
as regards the leverage and the implied equity volatility, and from
the database of the Federal Reserve System as regards the interest
rate of Treasury Bills with a constant maturity of one year, which
is assumed to be the risk free rate. The specific recovery rate has
been put equal to 50%.
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