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In a quantity-competed duopoly, one firm is a naive price-taker (who responses only to the last period’s
price) while the other has all the market information so as be able to optimize its profit stream (either discounted
or un-discounted) dynamically over a finite or infinite horizon. With a traditional linear economy, we are
able to derive algebraically the optimal policies of all periods for the dynamic optimizer. A counter-intuitive
phenomenon is then observed: regardless of the planning horizon and the discounted factor, there exists a relative
profitability range of initial prices, starting with which the price-taker make higher profit than the dynamic
optimizer. Furthermore, with the increase in the planning horizon, the price-taker’s relative profitability range
increases accordingly and finally covers the entire economically meaningful range.
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1. INTRODUCTION

Since the classic work by Cournot in 1838, research interasiligopoly were almost entirely concentrated
on analyzing competitions between firms which were profikimézers. Given limited information about the
market as well as its rivals’ behavior, which varied fromectscase, each firm is invariably assumed to maximize
myopically its instantaneous absolute payoff with a bespoase (as a reaction function of its rival's expected
output for the period). It is economically irrational if arfireither ignores or is ignorant about its market power
but behaves as a price-taker who determines its output bgtieguthe marginal cost to the price of last period.
However, such beliefs were questioned in Huang (2002) waereligopoly that consists of a price-taker and
many sophisticated firms, with identical technology, waslgd. A counter-intuitive phenomena is revealed —
no matter what strategies the sophisticated firms may attapprice-taker always triumphs over them in terms
of relative profitability at any dynamic equilibrium. It isifther demonstrated in Huang (2008) that, either in
dynamical transitionary periods or when the economy tuyticor chaotic, a combination of the price-taking



strategy with a simple cautious adjustment strategy cdstullaad to relatively higher average profits for a firm
than its rival, should the latter adopt a myopic Cournot{sesponse.

The above results naturally motivate us to further inveséigvhether such peculiar phenomenon will be
again observed if the sophisticated firm, instead of beingpity optimizes its discounted payoff stream over the
entire planning horizoff’ (either finite or infinite). To accomplish this goal, a my&riod dynamic optimization
problem in the context of a heterogeneous duopoly modellwtienprises of a sophisticated firm and a price-
taker is studied. The dynamic programming approach andnéag framework adopted in the early studies of
duopoly game such as Friedman (1968), Cyert and DeGroo0j1&7d Diricky (1973) are revisited. With a
traditional linear economy (linear demand and marginat)cege are able to derive algebraically the optimal
policies for all periods. It is found that, regardless of phenning horizon and the discounted factor, there exists
a relative profitability range of initial prices, startingtivwhich the price-taking firm makes higher profit than
the sophisticated firm. This relative profitability ranggards with increasing planning horizon. When the
planning horizon is sufficiently long, the relative profil#l range covers the entire economically meaningful
price regime, that is, the price-taker always enjoys a higlerage profit relative to the sophisticated firm for
any economically meaningful initial price level.

The remaining discussion is organized as follows. In Sa@idl'-periods dynamic optimization model in-
volving the heterogeneous duopoly is formulated and thepdeta set of analytical recursive formulas for the
optimal plan and optimal payoffs are then derived. Secti@xf@ores the long-run stationary property of the
optimal plan, the turnpike property of optimal plan and addrits link to the conventional static optimization
problem. Section 4 then analyzes the relative profitahdftyhe price-taking strategy. Finally, Section 5 com-
prises of the conclusion of the research as well as remarksedfuture research directions.

2. DYNAMIC OPTIMIZATION

Consider a duopoly industry in which two firms X and Y produdeoanogeneous product at perioavith
quantity X; andY;, respectively. The inverse market demand for the produgivisn by P, = D(Q¢%), with
D’ < 0. The conventional assumption th@f = X, + Y; applies, i.e.the actual market price adjusts to the
demand so as to clear the market at every period

Both firms are assumed to have an identical technology ancetemidentical cost functiofi(g).

Firm X is assumed to be a price-taker, whose current proolugf is determined by equating the marginal
cost incurred with the naive price expectation at petiad PF = P,_1, that is,

X, =MC N (P_) =MC (D (Xi—1+ Y1), (1)

whereM C~! denotes the inverse function of the marginal agst
Firm Y, in contrast, is a dynamic optimizer whose objectiggd maximize its discounted profit over an
horizon ofT periods with a given an initial pric&, or, equivalently, the price-taker’s outplit = MC~! ().
LetTl¥ (X;,Y;) = D (Xt + Y3) Y; — C (Y}) be the instantaneous profit of the dynamic optimizer at perio
The the objective function for the dynamic optimizer is

T

Y — t=111Y
S InaXYT;p Y (X, Y;), (2)

where0 < p < 1 is the discount factor applied by the dynamic optimizer

Lr = (1 — p) /p is the discount rate (Friedman 1968).



However, for the convenience of mathematical manipulatienshall insert the subscriptas an indication
of the periods remained before the end of planning horizon

Forl < k < T, let the outputs of the two firms at the sta@ée— k£ + 1) bex,=Xr_k11 andyx = Yr_g+1,
respectively. Since under an optimal plgg,is a function ofzy, we are able to represent the profits of the two
firms as functions ofy, only, that is,n® (zy) =IT* (X7 k41, Yr—g+1) @ndn¥ (zg) =I1Y (Xp_gr1, Yr—gt1)-

Defines} (z) as the weighted sum of the maximized profit for the dynamigiper that could possibly be
accumulated in the remainirigperiods of planning horizon, should the optimal p[@g}le be implemented.
Then we have

k k
sy, (zn) = max Z PP (X gy, Yroji1) =  max " Z prImY (a5) .

Yr_pt1,Yr—kt2,--s - Y1,Y2;5-- Yk <
j=1 j=1

From Bellman'’s principle of optimality, when the optimabplis implemented, we have the following recur-
sion:

sy, (@x) = max{z¥ (zx) + psi_, (ex-1)} (3)

with the boundary conditios (-) = 0.
The state transition equatioty, = MC~! (D (P,_1)) is then recast as

w1 = MC™H (D (wx + yx)) (4)

while the maximized objective function (2) is thus given$y = s¥. (z7) = s% (X1).

Working with (xy, yx) instead of(X;,Y;) provides us with an unique advantage of deriving a full set of
optimal policies for various planning horizdrfor & > 1.

The general formulations (3) and (4) also provide us withaaiework to discuss the qualitative properties
of optimal solutions as well as the optimized objective fisrt However, the best way to explore the relative
profitability quantitatively, that is, to compare the (aage of) the accumulated profits earned by both firms, is
to work with a model that leads to the solutions with anabjticclosed forms. For such consideration, we shall
proceed our discussion for the widely studigdear M odel, by which we mean: i) the market demand is linear,
thatis,P, = D(X;+Y;) = 1— X, —Y; and ii) the marginal cost is linear so that the cost functidoys the form
of C(q) = cq?/2, wherec > 1 is the cost parametérHowever, although adopting Linear Model brings about
the possibility of deriving analytically closed solutigiitsalso generates extra difficulty, that is, the possipiit
“market crash” resulting from the nonpositive price andjeer production (i.e., the industrial outputs exceeds
unity). To have a general picture of the dynamic interachietween the price-taker and the dynamic optimizer
while keeping the generality of the Linear Model, we shatie mainly on the situations in whighe optimal
plans that compose with the interior solution at each andeperiodso thatz; € (0,1), y; € (0,1 —z;) and

2To avoid confusion, a usage convention will be adopted in this paper so that all capital symbols together with subscript
t indicate the forward sequences while the corresponding little cases together with subscript k=7 — ¢t + 1 indicate all the
backward sequences.

3This is because, if ¢ < 1, the price-taker’s response to the market price xp_; = MC~1(D (zp +yr)) =
(1 — 2 — yx) /c may be invalid (that is, may not stay in the interior of [0, 1]).



€ (0,1), foralli = 1,2..., k, can be guaranteed. For interior optimal solution, Eqsa(®@) (4) simplify td.

si (o) = _max {1 = (@5 +ye) ye = eyi/2+ psi_y (@)} (5)

with
wp—1 = (1= (zx +yx)) /e (6)

Fortunately, for a k-periods planning, the interior optis@lutions exist for alt > 1 regardless of, so long
as the initial state, is restrained by amitial upper boundX;' € [0, 1].

THEOREM 1 (Optimal policy and payoffs). For the Linear model with ¢ > 1, we have

i) For any 0 <z, < X}!, an optimal policy is a linear function of xj given by
Yk = Uk — VkZk, (7)

from which the optimal payoff to the dynamic optimizer is a quadratic function of xj that takes the
form?®:
s¥ (zp) = (ak (1 — z1)? + 2Bz +7k) /2, 8)

where oy, Bx and 7y are constant payoff coefficients that can be determined recursively through

c(c+ pag—1)
2 (2+c¢)— pag—1’
1 1 — O—
ﬁk:pc(c;— ) (ak—1 — By 1)7 (10)
2 (2+c)— pag-_1
N PBe-1 (Be-1 — 206—1) + ¢ (* — 2) a1 + 2¢Bp—1 (c + 1)
2 (c+2)— pag—1

O =

e = p(Vk—1 ), (11)

with the boundary conditions ag = By = v9 = 0.

ii) Policy coefficients uy and vy, are determined by

up=1—o+06k)/(c+1) (12)
ve=>0—-ax)/(c+1)
iii) Initial upper-bound X}' is determined by
Xy =1=0/(c+au). (13)
Proof. See Appendix A.
4To take into the possibility of corner solution, the recursion (3) needs to be reformulated as
y — y ]
s (zk) ogyf?iixk{” (zk) + psj_yq (Th—1)}
(I—ap—yr)yk —cyz/2+psh_ (L—zp —yx) fo), 0 <yp <1—umzp,
= ps?_, (min{l, (1 — ) /c}), if i = 0,
psy_1 (0) —c(1—zp)? /2, ifypr =1—wy,
with 0 < z; < 1 for i = 1,2,...,k. The analysis of this type of constrained dynamic optimization problem can only be

carried out with the recursive technique (Stokey and Lucas (1995)) and the meaningful conclusions are generally obtained
through numerical simulations.

5The particular expression is selected for SZ (zg) by trial and error so as to keep the recursive formula for the coefficients
to their simplest forms and at same retain the economic meaning for each coefficient.



3. THE TURNPIKE PROPERTY AND ECONOMIC INTERPRETATIONS

First, we analysis the long-run convergency in recursilaignships for payoff coefficients, economically
meaningful range and the optimal policy parameters and dhgruss the nice characteristics of the Turnpike

property.
The following observations can be verified straightforviafdr ¢ > 1 and any0 < p < 1.

PROPOSITION 1. i) While {ay} is a monotonically increasing sequence with
O<ap <as<...<as <1,
{vr} is a monotonically decreasing sequence with
1>wv > vy > .00 =0(p) > 0.

i) {Ok}, {ur} and {X}'} are positive sequences that converges cyclically to their stationary value

Boo, Uso and XX | respectively.

[oop)

iii) When p < 1, {yx} converges to a constant Voo, otherwise, {yi} approaches infinity.
Proof. See Appendix A.

Stationary values of relevant coefficients are listed indadb

1 clclc+2)+p) c
« —(((c+2)c—p—
e | eeaaro, 5 leF2e—p=m)
5 0 pc(c+1) clc+2)(c+1)=(c+1)(p+n)
' Z(et+2)°—p clc+2)+pB+20+n
., 0 p(c?—2)c P (Boo (PBoo — 2p0toc +2¢ (¢ + 1)) + ¢ (¢ — 2) o)
. _
2(c+2)"—p (1—p)(c*(c+2) — pas)
B 1 cc+2)—p+cp +3p+n
' c+2 A (c+2)°—p 2+3p+2c(1+p)+n
; 1 A(c+2)—p (c+2)(p—¢2) +eny
" c+2| A+’ —p 2(c+1)p
X 1 L 2(c+1+p)
k cle+1)(c+2) 2+4c+2+p—1
Remarks ni\/((c +2)° — p) (€2 — p) andya, (1) = oo

Table 1: Optimal policy
Based on Proposition 1, all recursive coefficients convergfeeir stationary values in the long-run. Although
convergence demands tHatipproaches infinity in theory, in reality a “Turnpike prog&rdoes exhibit so that
the convergence is accomplished in limited periods (lems 110 in our example). Typical trajectories(af., vy)
and.X;' are provided in Fig. 1, from which the speed of convergendiéostationary values, that is, the speed
to reach the “Turnpike”, can be apprecidte@herefore, when the planning horizon is sufficiently lofaging
any initial stateX; € X%, the dynamic optimizer will choose its output according to

Ye = R, (X0) =u(p) — o (p) Xpnt > 1, (14)

for almost the entire processr more precisely, for all but the final 10 periods of the s For the final 10
periods, the optimal plan will then change to (7).

6Stated loosely, the turnpike property describes a situation where an economy, which pursues optimality over a suf-
ficiently long period, spends most of the periods performing nearly a steady state extremal path. Eventually, over an
infinite horizon, any optimal trajectory should converge towards such an extremal steady state. See Haurie (1976) for the
details.
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FIG. 1 Illustration of the Turnpike property

While the price-taker’s response is fixed to Eq. (1), (14) Wé applied repeatedly for long sequence of
periods at the beginning of the proce§X,, Y;) will then converge to ateady statéz (p),7 (p)) independent
of the initial stateX; (or, initial price ), where

c+1+p
4+cp+3c+1+2p

c+p
2+cp+3c+1+2p

andg (p) = (15)

z(p)=

So long as convergence to the stationary outfEifg) , 7 (p)) is achieved, it will be produced most of periods
until approximately the final 10 periods. In other words,eptdor the very early periods and the very late periods
of the dynamical interaction, the output bundle will remastz (p) , § (p)) for most of planning periods\t each
period,an equilibrium profit pai{7® (p) , 7¥ (p)) is earned by the respectively firms, where

cle+1+p)° A (p) = clc+p)(c+2+p)

1 1
2((c+2)(ctp)+ct1)° 2((c+2)(ctp) +et (16)

T (p)=
Needless to say, this profit pdi#® (p) , 7¥ (p)) is equal to the long-run average profits for respective firm.
What we shall do now is to provide the economic interpretetior these stationary values by linking them
to the relevant equivalences in an one-period myopic optition problem.
Let the price-taker’s response be fixed to (1), but assumdtteaynamic optimizer’s best-response is instead
derived from the following first-order static optimizatioondition:

dX;
D+ytD’+ud—YtD’ C'(Yy), (17)

wherep € [0,1] is a variational parameter that reflects the dynamic opénganformation accuracy and/or
confidence about the counter-response from the price;teded X, /dY;.

The dynamic optimizer realizes that the price-taker’s lamgreaction to the market pridg _; boils down
to a direct “reaction” to its outpl; in the long-run so thak; must lie on a “stationary reaction curv&’, =
RZ () implicitly defined by

=MC Y (P)=MC™H(D(X,+Y)), (18)

should an intertemporal equilibrium is arrived.



For the Linear Model, it turns olX; = RZ (Y;) = (1-Y;) / (1 + ¢) anddX;/dY; = —1/ (1 + ¢). Conse-
quently, thevariational best-response reactidor the dynamic optimizer can be derived from (17) as
(c+1)(1-X,)
ct+1)(c+2)—pu(p)

Then we immediately verify that Eq. (19), together with (@}l yield an intertemporal equilibrium that is
identical to(z (p) , ¥ (p)) with

Ve =7u(p) (Xi) i( (19)

w(p)=(c+1)p/(c+p). (20)

Therefore, for any given, there exists an one-to-one correspondence between tiatioaal parameter
(which characterizes the information availability or acmy) for the static optimization (one-shot game) and the
discounted factop for the dynamic optimization. Moreover, from the compamstatics:

0z (p) _ 97 (p)

9 o <0,
9y (p) oY (p)
ap > 0, p >0,

it is concurred that the minimum and the maximun®#8f(p) occur atp = 0 andp = 1 respectively.

Casel: p = 0, that is when the future payoffs are heavily discounted

It follows from the recursive formula of (9)-(11) th&, = 0 andy, = 0 for all £ > 0 while a;, = «4 for all
k > 0 so that the stationary optimal plan (14) for= 0 simplifies to

Yi=Ryo (X)) = (1-X1)/(c+2),t> 1. (21)

We see immediately thdt,—, is nothing but the instantaneous Cournot best respgpsgespecified in (19).
In other words, when the future profit is discounted heawily|ti-periods dynamic optimization degenerates into
infinitely repeated “static optimizatiof

Casell. p = 1, that is when the future payoffs are not discounted, whiald$go the maximura¥ (1).

The optimal response is given by

Y =Rp1 (X¢) =a (1) — 0 (1) Xy (22)
The following proposition confirms that (1) is exactly the un-discounted average profit givetiby, . s} (zx) /k.
PROPOSITION 2. 7% (1) = limy—oo 8 (z%) [k =c/(2(c+3) (c+1)).
Proof. See Appendix A. 1

What is the economic interpretation of long-run averagédipfid (1)? We note from (20) that (1) = 1 so
that (19) takes the form of
(c+1)(1—Xy)
2+3c+1
which is the standard reaction function of Walrasian-St#twérg game in which the price-taker plays the role of
a follower while the dynamic optimizer plays the role of Halberg leader.

The above discussions are summarized in the following #maor

Vi =rua) (Xe) = (23)

"The impact of short-run commitments in dynamic oligopolies have been explored by Maskin and Tirole (1987) and
Dana and Montrucchio (1986, 1987), in which Markov strategies (or dynamic reaction functions) in deterministic infinite-
horizon duopoly games with alternating moves have been derived for quadratic payoffs in particular. One of their main
results is that the set of Markov-perfect equilibria converges to the one-shot best reply functions as the players get more
and more impatient (i.e. the discount factor tends to zero), which is consistent to our analysis.
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FIG. 2 Static equilibria vs. Stationary equilibria

THEOREM 2 (Equivalency). When the planing horizon T is sufficiently long, the optimal plan for
the multiperiod dynamic optimization becomes stationary. This results in a stationary equilibrium that
coincides exactly with the intertemporal equilibrium resulted from the variational best-response (19) in
an one-period static optimization problem. The stationary profits are then the long run average profits
for the respective firm.

In particular, when the dynamic optimizer is shortsighted (i.e., p = 0), the stationary optimal plan
1s to execute the Cournot reaction for all periods. The dynamic optimizer achieves a minimum possible
long-run average profit that coincides with the one achieved with the Walrasian-Cournot equilibrium.

When the dynamic optimizer is provident (i.e., p = 1), the dynamic optimizer achieves a mazimum
possible long-run average profit that coincides with the one achieved with the Walrasian-Stackelberg

equilibrium.

Remark 1. Tt is worthwhile to emphasize that, although an one-to-one correspondence can be es-
tablished between the intertemporal equilibrium of the static optimization problem and the long run
stationary outcome of the dynamic optimization, there exists fundamental difference in general in in-

terpreting these outcomes. In terms of best-response reaction, unless p = 0, we have

Ry # Tu(p)



in general. In terms of average profit, if p < 1, for any initial state of X; (orFy ), we have
i st (X2) /T # Tim % (2 (0)) /T.

These distinctions are illustrated in Fig. 2, in which the thick portion drawn along the price-taker’s
long-run reaction curve RZ represents the stationary equilibrium (Z (p), 7 (p)), while (Z (0), 7 (0)) and
(z (1),7(1)) coincide the Walrasian-Stackelberg equilibrium E, and Walrasian-Cournot equilibrium E.,
respectively. The improvement of stationary profit gained by the dynamic optimizer from p=0top =1
is evidenced by inward-shifting of iso-profit curve 7¥ (p). ¥ (1) is the maximum profit that the dynamic
optimizer can obtain since it is tangent to the price-taker’s implicit reaction RY,. Also can be seen is
the difference between the static reaction R,—; and the stationary reaction r,) (but R,—¢ coincides

with 7‘#(0)).
4. RELATIVE PROFITABILITY OF PRICE-TAKING STRATEGY

As having been explored in the last section, for all the ahifitateX; < XX, a stationary equilibrium
profit bundle(7® (p) , 7¥ (p)) always results if the planning horizdnis sufficiently long, at which the long-run
average of the profit difference between the dynamic opénand the price-taker is given by

AV (6) ST () = 7 () = o <0 (24)

That is to say, for all possible initial prick, € (0,9 ), the long-run average profits made by the dynamic
optimizer is always less than the one made by the price-tdkes fact is consistent with the conclusion for the
intertemporal equilibrium discussed in Huang (2002).

How about the average relative profitability when the plagriorizonT is relatively short? To answer
this question, we can analyze the accumulated profit diffsge]” (x1) = s (zx) — s} (z1) directly, where
st (zg) = Z‘;.“:l pF Iy (x5), fori € {x,y}. Apparently,s}” must be a quadratic function af, as well
and it satisfies the recursive relation:

s (zr) = AL (zg) + psyt (p—1) (25)
with sg* (-) = 0, whereAY" is the relative profit of the two firms at the stalggiven by
AR () = () = rf () = (s — i) (1= (14 5) (s + ).
We are able to arrive at the following recursive relatiopstor the parameters ef" as follows:
PROPOSITION 3. The accumalted profit difference s}" can be expressed as
sp” (wx) = —ax (g — xx) (zr — q3.) (26)

where qZ’l = (bp £ /b7 + ardy)/a and the following recursive relations hold for k > 1:

ap = (2+¢) (1—vf) /24 p(1 —ve)? ar_1/c%, (27)
b= p (1 =) (1= up) ap—1/¢® + (v +1) /2 = p (1 = vg) b—1 /e — upvy, (2 +¢) /2, (28)
di, = 2p (1 — ur) [ebp—1 + pd—1 — p (1 — w)? ap—1/c* — up (1 = (2 + ¢) uz/2), (29)

with the boundary conditions

CLOZbO:dO:O.



Proof. Omitted since it can be verified straightforwardly.

Remark 2. Although it is tedious, it can verified straightforwardly that limy_, o di,/k = AY* (p).

Definez! =max{0, ¢;}, z¥=min{ X%, ¢ }. ThenQ¢=(z!, ¢} ) is such a compact setjf, X ] thats}" (z;) <
0if and only if z;, € Q7. We shall call2} therelative profitability range for the price-takeThe compact prop-
erty of Q7 suggests that if,,, z, € Qf, then for allz, = ex) + (1 — €) z4,with € € (0,1), we haver, € Q.

Due to the cyclically converging characteristics of polmgrameten, the recursive relations (27) to (29)
suggest that both* andg!, must be cyclically converging sequences as well. Therefohenk is small, there
does not exist monotonically inclusive relationships ag@fj. On the other hand, the Turnpike property of the
optimal policy ensures th&t; do exhibit “expansion property” fot > 10, as depicted in Fig. 3. Formally, we
have

THEOREM 3. For Linear Model with ¢ > 1 and arbitrary 0 < p < 1, we have

i) there always exists a compact set QF C [0, X}!] such that the price-taker can make higher average
profit than the dynamic optimizer if xj, € QF;

i) there exists a k* > 1 such that QF C QF ., for all k > k*;

#ii) limy 00 QF = [0, X2 ].

Proof. See Appendix A.

Substitutingyr = ur — v into (4), we are able to get the inverse recursive relatiaritfe price-taker’s
output:
xp—1 =0 (z) = (1 — ug) /e — opxy (30)

whereo,= (1 — vg) /c.
Fork >> 10, we have
i1 = (1= (p)) Je— o (p)a. (31)

with o (¢, p) = (1 — 0 (p)) /c. The convergency speed &, to the intertemporal equilibrium (p) given in (15)
is determined by the multiplier af (¢, p), which in turns accounts for the rate of expansiofgffor largek.
The larger the value af (¢, p) is, the faster the convergency speedfto z (p) and the faster thd®;, expands
with increasingk.
Simple algebra manipulation reveals that
a) do (¢, p) /0p > 0, i.e., for fixing ¢, increasing the discount factprdecreases the stability of (31) and
hence decreases the expansion ratejphlong increasing; and
b) 9o (¢, p) /Oc < 0, i.e., for fixingp, increasing the costparameter increases the stability of (31) and hence
increases the expansion rate(tjf along increasing.
Let A denote the Lebesgue measure, th¢f}) indicates the width of27. We have the following observa-
tions:
i) QF =(1/(c+3),1/(c+1))is independent of while QZ = (0, X% ) depends on bothandp.
However, we havé\ (Q7) /0c < 0 but oA (2%,) /9c > 0. While higher production cost reduces the
one-shot relative profitable range for the price-taker, ited benefit the price-taker in the long-tu@n
the other hand, higher production cestlows down the expansion speed(af. This is consistent with
the fact that higher production cosstabilizes the system (frodo (¢, p) /90c < 0). These facts can be
confirmed by comparing Fig. 3(a) with Fig. 3(c).
i) OX(QZ)/0p < 0, that is, lower discount factor increases the long-runtiregprofitable range for the
price-taker. Since lower discount factor increases thglgtaof the dynamic process as well, it speeds up
the expansion rate ¢1;. These facts can be confirmed by comparing Fig. 3(a) with ¥ig).
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iii) The average profit difference in the long-run is givenloyy, ... s7° = AY* (¢, p), whereA¥” (c, p) is
defined in (24). It can be verified th&\¥* (c, p) /0p > 0 andOAY” (¢, p) /dc > 0. Therefore, the more
advanced the technology (the smaligiis, and/or the more the future profit is discounted, thedatbe
long-run profit difference is.

5. FINAL REMARKS

We have proved theoretically and demonstrated numeriedtly a Linear Model that relative profitability
of price-taking strategy can still be preserved even whema firm strives to maximize its discounted profit
over finite or infinite planning horizon. In particular, whére marginal cost is not too smadl & 1), an interior
optimal plan can always be implemented so that for any findanqing horizon, when the initial price falls within
the a compact relative profitability range that centerediadathe Walrasian equilibrium price, the price-taker
always ends up with a higher relative profit as compared tatmamic optimizer in terms of average profit.
This relative profitability range expands with increasidgnming horizon and finally covers almost all of the
price-domain when the planning horizon approaches infinity

Itis, however, worthwhile to mention that

a) although our analysis is carried out to a duopoly, theyaigtan be carried out to the general oligopoly
model consisting of. price-takers anen dynamic optimizers who forma monopolistic cartel and produce at
an identical output level Analogous conclusions can be arrived for such generasizatcept that the stability
condition, the economically meaningful range and the adatrofitability range vary with the distribution pa-
rameters: andm. However, the implication is straightforward: even theh@grelative profitability enjoyed by
the price-taker may induce additional price-takers to rthte market so that long run profit difference with re-
spect to the dynamic optimizer will be reduced, but the iedgirofitability advantage always prevails, no matter
how insignificant it is, unless free entry is allowed

b) the adoption of Linear Model enables us to present allieguanalytical closed forms so that the exact
optimal plan as well as related concepts can be derivedsiwely and evaluated rigorously. Our numerical
simulations do confirm that the same conclusions can beegivithen general nonlinear demand and/or marginal
cost are adopted.

It should be warned that the higher relative profit is notrtitsnally but unconsciously achieved by the price-
taker. Itis a free-rider and the outcome arises simply bee#s rival is concerned with its own absolute profit,
i.e., the dynamic optimize’s objective is to maximize disoted ABSOLUTE profit instead of RELATIVE profit
as compared to the price-taker over the planning horizoenEe, it is by no mean suggested that the dynamic
optimizing is an inferior strategy. The truth is, with thest@aving technologyc(< 1) and limited planning
horizon, the dynamic optimizer can effectively fulfill dugdals of achieving the absolute profitability (due to
optimizing behavior) and at the same time maintaining thegtike profitability under many circumstances (due
toxy ¢ QY).

Needless to say, this research can be extended and geeéialinany different ways.

First, as we have seen in the this part of research, the acopitLinear Model inevitably brings unnecessary
difficulty of market crash and force us to concentrate owrdibn to the interior optimal solution. Economically,
corner solution (occurring far < 1 and/orz;, € [0, 1] \X) may of interest in its own sake because it may be
rational for the dynamic optimizer to stop production forear two period(s) to allow the price level raise to
a desired high level. It is similarly rational for the dynanoiptimizer to intentionally over-supply to push the

81t is impossible to study the dynamic optimization problem when each dynamic optimizer acts individually unless a
proper sequence of choice is assumed, as assumed in Cyert and DeGroot (1970).

9If so, the strategic advantage of price-takers should vanish in limit because the long run profits of price-takers become
indistinguishable from dynamic profit maximizers as the oligopolistic competition converges to the perfect competition.
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market price extremely low so that the price-taker are edtto produce an extremely small quantity at the next
period or even be forced to exit the market. Such consideratiotivates us to explore the optimal plan that is
not economically meaningful.

Secondly, instead of devising an optimal plan for long psiahe optimizer may also consider to break
the planning horizon, sa¥, into a number of short periods, sdy and repeat the optimal plan cyclically for
T /L times. Such sub-optimal planning may be taken as a measprevent the optimal plan from becoming
stationary and thus avoid the “free-rider” benefit enjoygdHe price-taker. Apparently, a prerequisite for such
implementation is an additional boundary constraift; = X;,;. How the sub-optimal plan changes the
relative profitability of the price-taker will be explored.

6. REFERENCES

Cyert R. M and DeGroot M. H. Multiperiod decision models wétkernating choice as a solution to the duopoly
problem. Quarterly Journal of Economics 1970; LXXXIV; 4429.

Cyert R. M and DeGroot M. H. An analysis of cooperation andra® in a duopoly context. The American
Economic Review 1973; 63-1; 24-37.

Dana R.-A and Montrucchio L. Dynamic complexity in duopobnges. Journal of Economic Theory 1986; 40;
40-56.

Dana R.-A and Montrucchio L. On rational dynamic strategidsfinite horizon models where agents discount
the future. Journal of Economic Behavior and Organizati@®i’t 8; 497-511.

Diricky Y. M. |. Deterministic discrete dynamic programngiwith discount greater than one: structure of optimal
policies. Management Science 1973; 20-1; 32-43.

Friedman, J. M. Reaction functions and the theory of duapdlye review of Economic Studies 1968; 35-3;
257-272.

Haurie, A. Optimal control on an infinite time horizon: thertpike approach. Journal of Mathematical Eco-
nomics 1976; 3; 81-102.

Huang, W. On the incentive for price-taking behavior. Magragnt Decision, 2002, 40, 682-692.

Huang, W. The long-run benefits of chaos to oligopolistic irndournal of Economic Dynamics and Control
2008; 32; 1332-1355.

Maskin E. and Tirole J. A theory of dynamic oligopoly, I1l. Eapean Economic Review 1987; 31; 947-968.
Montruccio L. Optimal decisions over time and strange atties: an analysis by Bellman principle. Mathemat-
ical Modelling 1986; 7; 341-352.

Stokey N. L and Lucas R. E. Recursive Methods in Economic hos. Harvard University Press, U.S.A,
Boston,1995.

7. APPENDIX: PROOFS

Proof of Theorem 1.
i) and ii): Substituting (8) and (6) into (5) and rearrangyields

sp (o) = max H (yy)

Yp<l—xyp

where
H (y) = hayi + hayr + hs (32)
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Yoo = HY(ay-1) M ap = Hoy )

Qoo

(a)ce=3/2,p=1 (b)e=1,p=1/2

FIG. 4 Illustration of recursive map ay = H® (ag—1)

with
hi=— (¢ (2+¢) — par—1) / (2¢%) (33)
hy = (poe—1 (c+ i — 1) — pcBr—1 + 2 (1 — zy)) /¢
and hs = 2—22 (ozk,l (c—1+ xk)2 + A1 +2¢Bp1 (1 — xk))
If the second-order conditio#? s¥ (z) / (dyr)? = by < Ois satisfied, that is,
(34)

ap_1 < a*=c*(2+c¢)/p,

which will be shown indeed true far> 1 in the proof of Propositiod, an interior solution is given by

_lhy  pag_1—c? pak—1 (c—1) — pcfBr_1 + 2
L - L2 (35)
2h1  A2(c+2)— pak_1 2 (c+2) — pag_1

so that
o () = 1 pog_1c+ c? xi pc(ap_1c— (c+1)Br_1) — 2
2¢2(24c) — 2pag_1 2 (24 c) — pag—1
lcz + pBr—1 (pﬁkfl + 2¢c+ 202) — pOg—1 (—63 +c+ 2pﬁk,1) n 1
2 2¢% + ¢ — pag_1 2p7k_1'
Comparing the above expression with (8) leads to (9)-(1é&gaRting (35) leads to (12).
The initial values follow from the boundary condition €f (z¢) = 0.

i) With . = up — vixk, We have

T

pkzl—uk—(l—vk)xk.

pr > 0thusrequires that, < (1 —ug) /(1 —vg) =1 — Br/ (c+ ag). Q.E.D.

Proof of Proposition 1:
i) The recursive relation (9), rewritten as

c(e+ pag—1)
2 (24 c¢) — pag—1

A = H® (Ozkfl) =
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is essentially an one-dimensional discrete dynamic peoedth the derivative propertie)H*/dag—1 > 0
andd9?H*/0a?_, > 0. Hence,H* is a monotonically increasing convex map. Starting with= 0, a; =
H<*(0) > 0, we obtain a monotonically increasing sequence. As ilustt in Fig.4, wher > 1, the mapH*
has two fixed point(s) given by

N c
aoozia 5~ 2_p (2 —=p)((c+ 2)2 -0, (36)
g0’ = 5+ 5o\ (@ =) (e + 2 =) (37)

wherea* is defined in (34) an@ < a., < o, < «*. More importantly, it can be verified that = H* (0) <

/
00"

By the analytical nature off*, we must have) <

o
a [

laee < 1 and
) o Qf—1 Oag—1 _
a and H* intersects the 45 degree line in thg-ay—; plane from abovethe sequencéay} will converge
monotonically to the lower fixed point,,. Moreover, from the expression of (36) itself, we can seédha <
o*, which implies thaty; < as < ... < ay < a*.

While oy, converges monotonically ta,, Eq. (10) degenerates into a constant coefficient lineaanhyo

process:

lar. > 1. Sincea; <

pc(c+1) (oo — Br—1)
2 (24 ¢) — pax
which will convergegyclically to its stationary valug, if the absolute value of the slope

Br=H" (Bp-1) =

_ peler)
2 (c+2) — paso

’ OHP
0Bk—1

is less than unity, which can be shown to be true whenl.
iii) The rest of conclusions follow directly from their réianships witha;, and . Q.E.D.

Qoo

Proof of Proposition 2:
ForT is sufficiently large, and (22) is implemented for sufficlgiong time, s (X1) = s¥. (z1) approaches

infinity, which is confirmed by the facts thditn; ... ax = ac andlimy_, Bx = P for all p < 1 but

limy o0 Yk = Yoo €Xists only forp < 1. Whenp = 1, v, does not converge because the recursive relation (11)

simplifies to

Br—1 (Br—1 — 2ap—1) + ¢ (¢ = 2) ap_1 + 2¢c(c+ 1) Bp—1

2(c+2) —ag- (38)

Ye = Vk—1 T

If we evaluate the average payelf (x) /k, then we hav¥

0, p<l1,
. Y o
klirgo sp (zx) [k = { iy ;_]127 p=1.
Whenk — oo, it follows from (38) that
klim Yi/ (2k) ~ (7Y) + % whenk — oo,

where
_ ﬁoo (ﬁoo _2aoo)+c(c2 —2) CYOO+2C(C+1)500

() 2(2 (c+ 2) — cvoo) ’

10«Average” here is defined in the conventional sense so that the profit at each period carries an equal weight for the
purpose of possible evaluation of long-run characteristics.
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which then suggests thhng .. s{ (zx) /k = limg— o0 v/ (2k) = (m¥). Substitutingx, andf. with their
respective values given by (9) and (10) into above expredsa&ds to(r¥) = ¢/ (2 (c+ 3) (¢c+ 1)), which is
exactlyw¥ (1). Q.E.D.

Proof of Proposition 3:
ii).and iii)
Based on the Turnpike property, when>> 10, the optimal response converges to
Ye =u(p) — v (p) k (39)

andAY” (zy) < 0ifand only if 2, € Aoo= (21, z,,), Where

u(p) 2—(c+2)u(p)
x; = ——— andz, = — .
o)+ (c+2)(1-2(p))
Applying the inverse recursive relation (31), we get
_1-2u(p)+v(p) _ _
6 ) = c(v(p)+1) ande (z.) = cr2 M

It can be verified that (z,,) > x; andf (z;) < z,, or equivalentlyf (A-) C A~. Therefore, if there exists
a large enoughk* such that\., C ., then for allk > k*, starting withz,, € A, the implementation of the
optimal plan given by (39) does not only leadAd” (x;,) < 0 but also enforces;,_; to fall into A.*

Following from the continuity of the accumulated profit @ifénce function;” and the inversely converging
property of{x; }, there exists such@, < z; thatsolongas;, € (z; — €, 2;)U(xy, T, + €), we haveA?” (z;,) >
0,7x—1 € Ao C Qf_, and

SZz («Ik) = AZI (Ik) +p Szz—l (kal) < 0, (40)
SN—— —_——
(+) (=) duetory 1 €A CQ_,

that is, the possibility in which the negative accumulateafipdifference in later periods outweighs the positive
instantaneous profit difference, which justifies the exptahs that there existsig around10 and€2f expands
with increasingk for all £ > £*. In other words, we have}. C Qf. | C --- C Q% = [0,X%]. The last
equalityQZ = [0, X“] follows from the fact thal\¥® (¢, p) < 0 for all X; € [0, X% ]. Q.E.D.

11n this sense, Ao is essentially a “super relative profitability range” for the price-taker in the sense that so long as the
price-taker’s current output happens to fall within it, the price-taker does not only make higher profit than the dynamic
optimizer instantaneously at the current period but also makes a higher average profit than the dynamic optimizer for all
the future periods.
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