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In a quantity-competed duopoly, one firm is a naive price-taker (who responses only to the last period’s
price) while the other has all the market information so as be able to optimize its profit stream (either discounted
or un-discounted) dynamically over a finite or infinite horizon. With a traditional linear economy, we are
able to derive algebraically the optimal policies of all periods for the dynamic optimizer. A counter-intuitive
phenomenon is then observed: regardless of the planning horizon and the discounted factor, there exists a relative
profitability range of initial prices, starting with which the price-taker make higher profit than the dynamic
optimizer. Furthermore, with the increase in the planning horizon, the price-taker’s relative profitability range
increases accordingly and finally covers the entire economically meaningful range.
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1. INTRODUCTION

Since the classic work by Cournot in 1838, research interests in oligopoly were almost entirely concentrated

on analyzing competitions between firms which were profit-maximizers. Given limited information about the

market as well as its rivals’ behavior, which varied from case to case, each firm is invariably assumed to maximize

myopically its instantaneous absolute payoff with a best response (as a reaction function of its rival’s expected

output for the period). It is economically irrational if a firm either ignores or is ignorant about its market power

but behaves as a price-taker who determines its output by equating the marginal cost to the price of last period.

However, such beliefs were questioned in Huang (2002) wherean oligopoly that consists of a price-taker and

many sophisticated firms, with identical technology, was studied. A counter-intuitive phenomena is revealed –

no matter what strategies the sophisticated firms may adopt,the price-taker always triumphs over them in terms

of relative profitability at any dynamic equilibrium. It is further demonstrated in Huang (2008) that, either in

dynamical transitionary periods or when the economy turns cyclic or chaotic, a combination of the price-taking
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strategy with a simple cautious adjustment strategy could also lead to relatively higher average profits for a firm

than its rival, should the latter adopt a myopic Cournot best-response.

The above results naturally motivate us to further investigate whether such peculiar phenomenon will be

again observed if the sophisticated firm, instead of being myopic, optimizes its discounted payoff stream over the

entire planning horizonT (either finite or infinite). To accomplish this goal, a multi-period dynamic optimization

problem in the context of a heterogeneous duopoly model which comprises of a sophisticated firm and a price-

taker is studied. The dynamic programming approach and reasoning framework adopted in the early studies of

duopoly game such as Friedman (1968), Cyert and DeGroot (1970) and Diricky (1973) are revisited. With a

traditional linear economy (linear demand and marginal cost), we are able to derive algebraically the optimal

policies for all periods. It is found that, regardless of theplanning horizon and the discounted factor, there exists

a relative profitability range of initial prices, starting with which the price-taking firm makes higher profit than

the sophisticated firm. This relative profitability range expands with increasing planning horizon. When the

planning horizon is sufficiently long, the relative profitability range covers the entire economically meaningful

price regime, that is, the price-taker always enjoys a higher average profit relative to the sophisticated firm for

any economically meaningful initial price level.

The remaining discussion is organized as follows. In Section 2,T -periods dynamic optimization model in-

volving the heterogeneous duopoly is formulated and the complete set of analytical recursive formulas for the

optimal plan and optimal payoffs are then derived. Section 3explores the long-run stationary property of the

optimal plan, the turnpike property of optimal plan and address its link to the conventional static optimization

problem. Section 4 then analyzes the relative profitabilityof the price-taking strategy. Finally, Section 5 com-

prises of the conclusion of the research as well as remarks onthe future research directions.

2. DYNAMIC OPTIMIZATION

Consider a duopoly industry in which two firms X and Y produce ahomogeneous product at periodt with

quantityXt andYt, respectively. The inverse market demand for the product isgiven byPt = D(Qd
t ), with

D′ ≤ 0. The conventional assumption thatQd
t = Xt + Yt applies, i.e.,the actual market price adjusts to the

demand so as to clear the market at every period.

Both firms are assumed to have an identical technology and hence an identical cost functionC(q).

Firm X is assumed to be a price-taker, whose current productionXt is determined by equating the marginal

cost incurred with the naive price expectation at periodt asP e
t = Pt−1, that is,

Xt = MC−1 (Pt−1) = MC−1 (D (Xt−1 + Yt−1)) , (1)

whereMC−1 denotes the inverse function of the marginal costC′.

Firm Y, in contrast, is a dynamic optimizer whose objective is to maximize its discounted profit over an

horizon ofT periods with a given an initial priceP0, or, equivalently, the price-taker’s outputX1 = MC−1 (P0).

Let Πy (Xt, Yt) = D (Xt + Yt)Yt −C (Yt) be the instantaneous profit of the dynamic optimizer at period t.

The the objective function for the dynamic optimizer is

Sy = max
Y1,Y2,...,YT

T∑

t=1

ρt−1Πy (Xt, Yt) , (2)

where0 < ρ ≤ 1 is the discount factor applied by the dynamic optimizer1.

1r = (1 − ρ) /ρ is the discount rate (Friedman 1968).
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However, for the convenience of mathematical manipulation, we shall insert the subscriptk as an indication

of the periods remained before the end of planning horizon2.

For1 ≤ k ≤ T , let the outputs of the two firms at the stage(T − k + 1) bexk=̇XT−k+1 andyk = YT−k+1,

respectively. Since under an optimal plan,yk is a function ofxk, we are able to represent the profits of the two

firms as functions ofxk only, that is,πx (xk) =̇Πx (XT−k+1, YT−k+1) andπy (xk) =̇Πy (XT−k+1, YT−k+1).

Definesy
k (xk) as the weighted sum of the maximized profit for the dynamic optimizer that could possibly be

accumulated in the remainingk periods of planning horizon, should the optimal plan{yj}
k
j=1 be implemented.

Then we have

sy
k (xk) = max

YT−k+1,YT−k+2,...,YT

k∑

j=1

ρk−jΠy (XT−j+1, YT−j+1) = max
y1,y2,...,yk

k∑

j=1

ρk−jπy (xj) .

From Bellman’s principle of optimality, when the optimal plan is implemented, we have the following recur-

sion:

sy
k (xk) = max

yk

{πy (xk) + ρsy
k−1 (xk−1)} (3)

with the boundary conditionsy
0 (·) ≡ 0.

The state transition equationXt = MC−1 (D (Pt−1)) is then recast as

xk−1 = MC−1 (D (xk + yk)) (4)

while the maximized objective function (2) is thus given bySy = sy
T (xT ) = sy

T (X1).

Working with (xk, yk) instead of(Xt, Yt) provides us with an unique advantage of deriving a full set of

optimal policies for various planning horizonk for k ≥ 1.

The general formulations (3) and (4) also provide us with a framework to discuss the qualitative properties

of optimal solutions as well as the optimized objective function. However, the best way to explore the relative

profitability quantitatively, that is, to compare the (average of) the accumulated profits earned by both firms, is

to work with a model that leads to the solutions with analytically closed forms. For such consideration, we shall

proceed our discussion for the widely studiedLinear Model, by which we mean: i) the market demand is linear,

that is,Pt = D(Xt+Yt) = 1−Xt−Yt and ii) the marginal cost is linear so that the cost function adopts the form

of C(q) = cq2/2, wherec > 1 is the cost parameter3. However, although adopting Linear Model brings about

the possibility of deriving analytically closed solutions, it also generates extra difficulty, that is, the possibility of

“market crash” resulting from the nonpositive price and/orover production (i.e., the industrial outputs exceeds

unity). To have a general picture of the dynamic interactionbetween the price-taker and the dynamic optimizer

while keeping the generality of the Linear Model, we shall focus mainly on the situations in whichthe optimal

plans that compose with the interior solution at each and every periodso thatxi ∈ (0, 1), yi ∈ (0, 1 − xi) and

2To avoid confusion, a usage convention will be adopted in this paper so that all capital symbols together with subscript
t indicate the forward sequences while the corresponding little cases together with subscript k=̇T − t + 1 indicate all the
backward sequences.

3This is because, if c < 1, the price-taker’s response to the market price xk−1 = MC−1 (D (xk + yk)) =
(1 − xk − yk) /c may be invalid (that is, may not stay in the interior of [0, 1]).
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pi ∈ (0, 1), for all i = 1, 2..., k, can be guaranteed. For interior optimal solution, Eqs. (3)and (4) simplify to4.

sy
k (xk) = max

0<yk<1−xk

{(1 − (xk + yk)) yk − cy2
k/2 + ρsy

k−1 (xk−1)}, (5)

with

xk−1 = (1 − (xk + yk)) /c. (6)

Fortunately, for a k-periods planning, the interior optimal solutions exist for allc > 1 regardless ofρ, so long

as the initial statexk is restrained by aninitial upper boundXu
k ∈ [0, 1].

Theorem 1 (Optimal policy and payoffs). For the Linear model with c > 1, we have

i) For any 0 < xk < Xu
k , an optimal policy is a linear function of xk given by

yk = uk − vkxk, (7)

from which the optimal payoff to the dynamic optimizer is a quadratic function of xk that takes the

form5:

sy
k (xk) =

(

αk (1 − xk)
2
+ 2βkxk + γk

)

/2, (8)

where αk, βk and γk are constant payoff coefficients that can be determined recursively through

αk =
c (c + ραk−1)

c2 (2 + c) − ραk−1
, (9)

βk =
ρc (c + 1) (αk−1 − βk−1)

c2 (2 + c) − ραk−1
, (10)

γk = ρ(γk−1 +
ρβk−1 (βk−1 − 2αk−1) + c

(
c2 − 2

)
αk−1 + 2cβk−1 (c + 1)

c2 (c + 2) − ραk−1
), (11)

with the boundary conditions α0 = β0 = γ0 = 0.

ii) Policy coefficients uk and vk are determined by

uk = (1 − αk + βk) / (c + 1)
vk = (1 − αk) / (c + 1)

}

. (12)

iii) Initial upper-bound Xu
k is determined by

Xu
k = 1 − βk/ (c + αk) . (13)

Proof. See Appendix A.

4To take into the possibility of corner solution, the recursion (3) needs to be reformulated as

sy
k

(xk) = max
0≤yk≤1−xk

{πy (xk) + ρsy
k−1 (xk−1)}

=







(1 − xk − yk) yk − cy2
k
/2 + ρsy

k−1 ((1 − xk − yk) /c) , if 0 < yk < 1 − xk,

ρsy
k−1 (min{1, (1 − xk) /c}) , if yk = 0,

ρsy

k−1 (0) − c (1 − xk)2 /2, if yk = 1 − xk,

with 0 ≤ xi ≤ 1 for i = 1, 2, ..., k. The analysis of this type of constrained dynamic optimization problem can only be
carried out with the recursive technique (Stokey and Lucas (1995)) and the meaningful conclusions are generally obtained
through numerical simulations.

5The particular expression is selected for sy
k

(xk) by trial and error so as to keep the recursive formula for the coefficients
to their simplest forms and at same retain the economic meaning for each coefficient.
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3. THE TURNPIKE PROPERTY AND ECONOMIC INTERPRETATIONS

First, we analysis the long-run convergency in recursive relationships for payoff coefficients, economically

meaningful range and the optimal policy parameters and thendiscuss the nice characteristics of the Turnpike

property.

The following observations can be verified straightforwardly for c > 1 and any0 < ρ ≤ 1.

Proposition 1. i) While {αk} is a monotonically increasing sequence with

0 < α1 < α2 < ... < α∞ ≤ 1,

{vk} is a monotonically decreasing sequence with

1 > v1 > v2 > ...v∞ = v̄ (ρ) > 0.

ii) {βk}, {uk} and {Xu
k } are positive sequences that converges cyclically to their stationary value

β∞, u∞ and Xu
∞

, respectively.

iii) When ρ < 1, {γk} converges to a constant γ∞, otherwise, {γk} approaches infinity.

Proof. See Appendix A.

Stationary values of relevant coefficients are listed in Table 1.
k k = 1 k = 2 · · · k = ∞

αk

1

c + 2

c (c (c + 2) + ρ)

c2 (c + 2)
2
− ρ

· · ·
c

2ρ
((c + 2) c − ρ − η)

βk 0
ρc (c + 1)

c2 (c + 2)
2
− ρ

· · · c
c (c + 2) (c + 1) − (c + 1) (ρ + η)

c (c + 2) + ρ (3 + 2c) + η

γk 0
ρ

(
c2 − 2

)
c

c2 (c + 2)
2
− ρ

· · ·
ρ

(
β∞ (ρβ∞ − 2ρα∞ + 2c (c + 1)) + c

(
c2 − 2

)
α∞

)

(1 − ρ) (c2 (c + 2) − ρα∞)

uk

1

c + 2

c2 (c + 2) − ρ + cρ

c2 (c + 2)
2
− ρ

· · ·
c2 + 3ρ + η

c2 + 3ρ + 2c (1 + ρ) + η

vk

1

c + 2

c2 (c + 2) − ρ

c2 (c + 2)
2
− ρ

· · ·
(c + 2)

(
ρ − c2

)
+ cη

2 (c + 1) ρ

Xu
k 1 1 −

ρ

c (c + 1) (c + 2)
· · ·

2 (c + 1 + ρ)

c2 + 4c + 2 + ρ − η

Remarks η=̇

√

((c + 2)2 − ρ) (c2 − ρ) andγ∞ (1) = ∞

Table 1: Optimal policy

Based on Proposition 1, all recursive coefficients convergeto their stationary values in the long-run. Although

convergence demands thatk approaches infinity in theory, in reality a “Turnpike property” does exhibit so that

the convergence is accomplished in limited periods (less than 10 in our example). Typical trajectories of(uk, vk)

andXu
k are provided in Fig. 1, from which the speed of convergency tothe stationary values, that is, the speed

to reach the “Turnpike”, can be appreciated6. Therefore, when the planning horizon is sufficiently long,facing

any initial stateX1 ∈ Xu
∞

, the dynamic optimizer will choose its output according to

Yt = Rρ (Xt) =̇ū (ρ) − v̄ (ρ)Xt, t ≥ 1, (14)

for almost the entire process, or more precisely, for all but the final 10 periods of the process. For the final 10

periods, the optimal plan will then change to (7).

6Stated loosely, the turnpike property describes a situation where an economy, which pursues optimality over a suf-
ficiently long period, spends most of the periods performing nearly a steady state extremal path. Eventually, over an
infinite horizon, any optimal trajectory should converge towards such an extremal steady state. See Haurie (1976) for the
details.
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k

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

uk → ū(ρ)

vk → v̄(ρ)

Xu
k → Xu

∞

(a) ρ = 1/2, c = 3/2

k

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

uk → ū(ρ)

vk → v̄(ρ)

Xu
k → Xu

∞

(b) ρ = 1, c = 3/2

FIG. 1 Illustration of the Turnpike property

While the price-taker’s response is fixed to Eq. (1), (14) will be applied repeatedly for long sequence of

periods at the beginning of the process.(Xt, Yt) will then converge to asteady state(x̄ (ρ) , ȳ (ρ)) independent

of the initial stateX1 (or, initial priceP0), where

x̄ (ρ) =̇
c + 1 + ρ

c2 + cρ + 3c + 1 + 2ρ
andȳ (ρ) =̇

c + ρ

c2 + cρ + 3c + 1 + 2ρ
. (15)

So long as convergence to the stationary outputs(x̄ (ρ) , ȳ (ρ)) is achieved, it will be produced most of periods

until approximately the final 10 periods. In other words, except for the very early periods and the very late periods

of the dynamical interaction, the output bundle will remainas(x̄ (ρ) , ȳ (ρ)) for most of planning periods.At each

period,an equilibrium profit pair(π̄x (ρ) , π̄y (ρ)) is earned by the respectively firms, where

π̄x (ρ) =̇
1

2

c (c + 1 + ρ)
2

((c + 2) (c + ρ) + c + 1)
2 andπ̄y (ρ) =̇

1

2

c (c + ρ) (c + 2 + ρ)

((c + 2) (c + ρ) + c + 1)
2 . (16)

Needless to say, this profit pair(π̄x (ρ) , π̄y (ρ)) is equal to the long-run average profits for respective firm.

What we shall do now is to provide the economic interpretations for these stationary values by linking them

to the relevant equivalences in an one-period myopic optimization problem.

Let the price-taker’s response be fixed to (1), but assume that the dynamic optimizer’s best-response is instead

derived from the following first-order static optimizationcondition:

D + ytD
′ + µ

dXt

dYt

D′ = C′(Yt), (17)

whereµ ∈ [0, 1] is a variational parameter that reflects the dynamic optimizer’s information accuracy and/or

confidence about the counter-response from the price-taker, i.e.,dXt/dYt.

The dynamic optimizer realizes that the price-taker’s longrun reaction to the market pricePt−1 boils down

to a direct “reaction” to its outputYt in the long-run so thatXt must lie on a “stationary reaction curve”Xt =

Rx
w (Yt) implicitly defined by

Xt = MC−1 (Pt) = MC−1 (D (Xt + Yt)) , (18)

should an intertemporal equilibrium is arrived.
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For the Linear Model, it turns outXt = Rx
w (Yt) = (1 − Yt) / (1 + c) anddXt/dYt = −1/ (1 + c). Conse-

quently, thevariational best-response reactionfor the dynamic optimizer can be derived from (17) as

Yt = rµ(ρ) (Xt) =̇
(c + 1) (1 − Xt)

(c + 1) (c + 2) − µ (ρ)
. (19)

Then we immediately verify that Eq. (19), together with (1),will yield an intertemporal equilibrium that is

identical to(x̄ (ρ) , ȳ (ρ)) with

µ (ρ) =̇ (c + 1) ρ/ (c + ρ) . (20)

Therefore, for any givenc, there exists an one-to-one correspondence between the variational parameterµ

(which characterizes the information availability or accuracy) for the static optimization (one-shot game) and the

discounted factorρ for the dynamic optimization. Moreover, from the comparative statics:

∂x̄ (ρ)

∂ρ
< 0,

∂π̄x (ρ)

∂ρ
< 0,

∂ȳ (ρ)

∂ρ
> 0,

∂π̄y (ρ)

∂ρ
> 0,

it is concurred that the minimum and the maximum ofπ̄y (ρ) occur atρ = 0 andρ = 1 respectively.

Case I: ρ = 0, that is when the future payoffs are heavily discounted

It follows from the recursive formula of (9)-(11) thatβk = 0 andγk = 0 for all k ≥ 0 while αk = α1 for all

k ≥ 0 so that the stationary optimal plan (14) forρ = 0 simplifies to

Yt = Rρ=0 (Xt) = (1 − Xt) / (c + 2) , t > 1. (21)

We see immediately thatRρ=0 is nothing but the instantaneous Cournot best responserµ(0) specified in (19).

In other words, when the future profit is discounted heavily,multi-periods dynamic optimization degenerates into

infinitely repeated “static optimization”7.

Case II. ρ = 1, that is when the future payoffs are not discounted, which leads to the maximum̄πy (1).

The optimal response is given by

Yt = Rρ=1 (Xt) = ū (1) − v̄ (1)Xt. (22)

The following proposition confirms that̄πy (1) is exactly the un-discounted average profit given bylimk→∞ sY
k (xk) /k.

Proposition 2. π̄y (1) = limk→∞ sY
k (xk) /k = c/ (2 (c + 3) (c + 1)).

Proof. See Appendix A.

What is the economic interpretation of long-run average profit π̄y (1)? We note from (20) thatµ (1) = 1 so

that (19) takes the form of

Yt = rµ(1) (Xt) =
(c + 1) (1 − Xt)

c2 + 3c + 1
, (23)

which is the standard reaction function of Walrasian-Stackelberg game in which the price-taker plays the role of

a follower while the dynamic optimizer plays the role of Stackelberg leader.

The above discussions are summarized in the following theorem.

7The impact of short-run commitments in dynamic oligopolies have been explored by Maskin and Tirole (1987) and
Dana and Montrucchio (1986, 1987), in which Markov strategies (or dynamic reaction functions) in deterministic infinite-
horizon duopoly games with alternating moves have been derived for quadratic payoffs in particular. One of their main
results is that the set of Markov-perfect equilibria converges to the one-shot best reply functions as the players get more
and more impatient (i.e. the discount factor tends to zero), which is consistent to our analysis.
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ȳ(ρ)

x̄(ρ)

D̄xy = 0
Rx

x̄(0)

ȳ(0)

π̄x(0)

π̄y(0)

rµ(1)

π̄x(1)

π̄y(1)

x̄(1)

ȳ(1)

Rρ=1

Rρ=0 = rµ(0)

Es

Ec

FIG. 2 Static equilibria vs. Stationary equilibria

Theorem 2 (Equivalency). When the planing horizon T is sufficiently long, the optimal plan for

the multiperiod dynamic optimization becomes stationary. This results in a stationary equilibrium that

coincides exactly with the intertemporal equilibrium resulted from the variational best-response (19) in

an one-period static optimization problem. The stationary profits are then the long run average profits

for the respective firm.

In particular, when the dynamic optimizer is shortsighted (i.e., ρ = 0), the stationary optimal plan

is to execute the Cournot reaction for all periods. The dynamic optimizer achieves a minimum possible

long-run average profit that coincides with the one achieved with the Walrasian-Cournot equilibrium.

When the dynamic optimizer is provident (i.e., ρ = 1), the dynamic optimizer achieves a maximum

possible long-run average profit that coincides with the one achieved with the Walrasian-Stackelberg

equilibrium.

Remark 1. It is worthwhile to emphasize that, although an one-to-one correspondence can be es-

tablished between the intertemporal equilibrium of the static optimization problem and the long run

stationary outcome of the dynamic optimization, there exists fundamental difference in general in in-

terpreting these outcomes. In terms of best-response reaction, unless ρ = 0, we have

Rρ 6= rµ(ρ)
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in general. In terms of average profit, if ρ < 1, for any initial state of X1 (orP0 ), we have

lim
T→∞

sy
T (X1) /T 6= lim

T→∞

sy
T (x̄ (ρ)) /T .

These distinctions are illustrated in Fig. 2, in which the thick portion drawn along the price-taker’s

long-run reaction curve Rx
w represents the stationary equilibrium (x̄ (ρ) , ȳ (ρ)), while (x̄ (0) , ȳ (0)) and

(x̄ (1) , ȳ (1)) coincide the Walrasian-Stackelberg equilibrium Es and Walrasian-Cournot equilibrium Ec,

respectively. The improvement of stationary profit gained by the dynamic optimizer from ρ = 0 to ρ = 1

is evidenced by inward-shifting of iso-profit curve πy (ρ). πy (1) is the maximum profit that the dynamic

optimizer can obtain since it is tangent to the price-taker’s implicit reaction Rx
w. Also can be seen is

the difference between the static reaction Rρ=1 and the stationary reaction rµ(1) (but Rρ=0 coincides

with rµ(0)).

4. RELATIVE PROFITABILITY OF PRICE-TAKING STRATEGY

As having been explored in the last section, for all the initial stateX1 < Xu
∞

, a stationary equilibrium

profit bundle(π̄x (ρ) , π̄y (ρ)) always results if the planning horizonT is sufficiently long, at which the long-run

average of the profit difference between the dynamic optimizer and the price-taker is given by

∆yx (c, ρ) =̇π̄y (ρ) − π̄x (ρ) =
−c

2 ((c + 2) (c + ρ) + c + 1)
2 < 0. (24)

That is to say, for all possible initial priceP0 ∈ (0, p̄∞), the long-run average profits made by the dynamic

optimizer is always less than the one made by the price-taker. This fact is consistent with the conclusion for the

intertemporal equilibrium discussed in Huang (2002).

How about the average relative profitability when the planning horizonT is relatively short? To answer

this question, we can analyze the accumulated profit differencesyx
k (xk) = sy

k (xk) − sx
k (xk) directly, where

si
k (xk) =

∑k
j=1 ρk−jΠi

T−j+1 (xj), for i ∈ {x, y}. Apparently,syx
k must be a quadratic function ofxk as well

and it satisfies the recursive relation:

syx
k (xk) = ∆yx

k (xk) + ρsyx
k−1 (xk−1) (25)

with syx
0 (·) = 0, where∆yx

k is the relative profit of the two firms at the stagek given by

∆xy
k (xk) =̇πy

k (xk) − πx
k (xk) = (yk − xk) (1 − (1 +

c

2
) (yk + xk)).

We are able to arrive at the following recursive relationships for the parameters ofsyx
k as follows:

Proposition 3. The accumalted profit difference syx
k can be expressed as

syx
k (xk) = −ak (qu

k − xk)
(
xk − ql

k

)
(26)

where qu,l
k = (bk ±

√

b2
k + akdk)/ak and the following recursive relations hold for k ≥ 1:

ak = (2 + c)
(
1 − v2

k

)
/2 + ρ (1 − vk)

2
ak−1/c2, (27)

bk = ρ (1 − vk) (1 − uk) ak−1/c2 + (vk + 1) /2 − ρ (1 − vk) bk−1/c − ukvk (2 + c) /2, (28)

dk = 2ρ (1 − uk) /cbk−1 + ρdk−1 − ρ (1 − uk)
2
ak−1/c2 − uk (1 − (2 + c)uk/2) , (29)

with the boundary conditions

a0 = b0 = d0 = 0.
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Proof. Omitted since it can be verified straightforwardly.

Remark 2. Although it is tedious, it can verified straightforwardly that limk→∞ dk/k = ∆yx (ρ).

Definexl
k=̇max{0, ql}, xu

k=̇ min{Xu
k , qu

k}. ThenΩx
k=̇(xl

k, ql
k) is such a compact set in[0, Xu

∞
] thatsyx

k (xk) <

0 if and only if xk ∈ Ωx
k. We shall callΩx

k therelative profitability range for the price-taker. The compact prop-

erty ofΩx
k suggests that ifxa, xb ∈ Ωx

k, then for allxǫ = ǫxb + (1 − ǫ)xa,with ǫ ∈ (0, 1), we havexǫ ∈ Ωx
k.

Due to the cyclically converging characteristics of policyparameteruk, the recursive relations (27) to (29)

suggest that bothqu
k andql

k must be cyclically converging sequences as well. Therefore, whenk is small, there

does not exist monotonically inclusive relationships among Ωx
k. On the other hand, the Turnpike property of the

optimal policy ensures thatΩx
k do exhibit “expansion property” fork > 10, as depicted in Fig. 3. Formally, we

have

Theorem 3. For Linear Model with c > 1 and arbitrary 0 < ρ ≤ 1, we have

i) there always exists a compact set Ωx
k ⊂ [0, Xu

k ] such that the price-taker can make higher average

profit than the dynamic optimizer if xk ∈ Ωx
k;

ii) there exists a k∗ > 1 such that Ωx
k ⊂ Ωx

k+1 for all k > k∗;

iii) limk→∞ Ωx
k = [0, Xu

∞
].

Proof. See Appendix A.

Substitutingyk = uk − vkxk into (4), we are able to get the inverse recursive relation for the price-taker’s

output:

xk−1 = θ (xk) = (1 − uk) /c− σkxk (30)

whereσk=̇ (1 − vk) /c.

Fork >> 10, we have

xk−1 = (1 − ū (ρ)) /c − σ (ρ)xk, (31)

with σ (c, ρ) = (1 − v̄ (ρ)) /c. The convergency speed ofXt to the intertemporal equilibrium̄x (ρ) given in (15)

is determined by the multiplier ofσ (c, ρ), which in turns accounts for the rate of expansion ofΩx
k for largek.

The larger the value ofσ (c, ρ) is, the faster the convergency speed ofXt to x̄ (ρ) and the faster thatΩx
k expands

with increasingk.

Simple algebra manipulation reveals that

a) ∂σ (c, ρ) /∂ρ > 0, i.e., for fixing c, increasing the discount factorρ decreases the stability of (31) and

hence decreases the expansion rate ofΩx
k along increasingk; and

b) ∂σ (c, ρ) /∂c < 0, i.e., for fixingρ, increasing the costc parameter increases the stability of (31) and hence

increases the expansion rate ofΩx
k along increasingk.

Let λ denote the Lebesgue measure, thenλ (Ωx
k) indicates the width ofΩx

k. We have the following observa-

tions:

i) Ωx
1 = (1/ (c + 3) , 1/ (c + 1)) is independent ofρ while Ωx

∞
= (0, Xu

∞
) depends on bothc andρ.

However, we have∂λ (Ωx
1) /∂c < 0 but ∂λ (Ωx

∞
) /∂c > 0. While higher production costc reduces the

one-shot relative profitable range for the price-taker, it does benefit the price-taker in the long-run. On

the other hand, higher production costc slows down the expansion speed ofΩk. This is consistent with

the fact that higher production costc stabilizes the system (from∂σ (c, ρ) /∂c < 0). These facts can be

confirmed by comparing Fig. 3(a) with Fig. 3(c).

ii) ∂λ (Ωx
∞

) /∂ρ < 0, that is, lower discount factor increases the long-run relative profitable range for the

price-taker. Since lower discount factor increases the stability of the dynamic process as well, it speeds up

the expansion rate ofΩk. These facts can be confirmed by comparing Fig. 3(a) with Fig.3(b).
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FIG. 3 Relative profitability range for the price-taker
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iii) The average profit difference in the long-run is given bylimk→∞ syx
k = ∆yx (c, ρ), where∆yx (c, ρ) is

defined in (24). It can be verified that∂∆yx (c, ρ) /∂ρ > 0 and∂∆yx (c, ρ) /∂c > 0. Therefore, the more

advanced the technology (the smallerc) is, and/or the more the future profit is discounted, the larger the

long-run profit difference is.

5. FINAL REMARKS

We have proved theoretically and demonstrated numericallywith a Linear Model that relative profitability

of price-taking strategy can still be preserved even when a rival firm strives to maximize its discounted profit

over finite or infinite planning horizon. In particular, whenthe marginal cost is not too small (c > 1), an interior

optimal plan can always be implemented so that for any finite planning horizon, when the initial price falls within

the a compact relative profitability range that centered around the Walrasian equilibrium price, the price-taker

always ends up with a higher relative profit as compared to thedynamic optimizer in terms of average profit.

This relative profitability range expands with increasing planning horizon and finally covers almost all of the

price-domain when the planning horizon approaches infinity.

It is, however, worthwhile to mention that

a) although our analysis is carried out to a duopoly, the analysis can be carried out to the general oligopoly

model consisting ofn price-takers andm dynamic optimizers who forma monopolistic cartel and produce at

an identical output level.8 Analogous conclusions can be arrived for such generalization except that the stability

condition, the economically meaningful range and the relative profitability range vary with the distribution pa-

rametersn andm. However, the implication is straightforward: even the higher relative profitability enjoyed by

the price-taker may induce additional price-takers to enter the market so that long run profit difference with re-

spect to the dynamic optimizer will be reduced, but the relative profitability advantage always prevails, no matter

how insignificant it is, unless free entry is allowed9.

b) the adoption of Linear Model enables us to present all results in analytical closed forms so that the exact

optimal plan as well as related concepts can be derived recursively and evaluated rigorously. Our numerical

simulations do confirm that the same conclusions can be arrived when general nonlinear demand and/or marginal

cost are adopted.

It should be warned that the higher relative profit is not intentionally but unconsciously achieved by the price-

taker. It is a free-rider and the outcome arises simply because its rival is concerned with its own absolute profit,

i.e., the dynamic optimize’s objective is to maximize discounted ABSOLUTE profit instead of RELATIVE profit

as compared to the price-taker over the planning horizon. Even so, it is by no mean suggested that the dynamic

optimizing is an inferior strategy. The truth is, with the cost-saving technology (c < 1) and limited planning

horizon, the dynamic optimizer can effectively fulfill dualgoals of achieving the absolute profitability (due to

optimizing behavior) and at the same time maintaining the relative profitability under many circumstances (due

to xk /∈ Ωy
x).

Needless to say, this research can be extended and generalized in many different ways.

First, as we have seen in the this part of research, the adoption of Linear Model inevitably brings unnecessary

difficulty of market crash and force us to concentrate our attention to the interior optimal solution. Economically,

corner solution (occurring forc < 1 and/orxk ∈ [0, 1] \Xk) may of interest in its own sake because it may be

rational for the dynamic optimizer to stop production for one or two period(s) to allow the price level raise to

a desired high level. It is similarly rational for the dynamic optimizer to intentionally over-supply to push the

8It is impossible to study the dynamic optimization problem when each dynamic optimizer acts individually unless a
proper sequence of choice is assumed, as assumed in Cyert and DeGroot (1970).

9If so, the strategic advantage of price-takers should vanish in limit because the long run profits of price-takers become
indistinguishable from dynamic profit maximizers as the oligopolistic competition converges to the perfect competition.
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market price extremely low so that the price-taker are enticed to produce an extremely small quantity at the next

period or even be forced to exit the market. Such consideration motivates us to explore the optimal plan that is

not economically meaningful.

Secondly, instead of devising an optimal plan for long periods, the optimizer may also consider to break

the planning horizon, sayT , into a number of short periods, sayL, and repeat the optimal plan cyclically for

T/L times. Such sub-optimal planning may be taken as a measure toprevent the optimal plan from becoming

stationary and thus avoid the “free-rider” benefit enjoyed by the price-taker. Apparently, a prerequisite for such

implementation is an additional boundary constraint:X1 = XL+1. How the sub-optimal plan changes the

relative profitability of the price-taker will be explored.
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7. APPENDIX: PROOFS

Proof of Theorem 1:

i) and ii): Substituting (8) and (6) into (5) and rearrangingyields

sy
k (xk) = max

yk<1−xk

H (yk)

where

H (yk) = h1y
2
k + h2yk + h3 (32)
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αk = Hα(αk−1)

αk−1

α∞

α∞

α1

(a)c = 3/2, ρ = 1

αk = Hα(αk−1)

αk−1

α∞

α∞

α∗

α∗

α1

(b) c = 1, ρ = 1/2

FIG. 4 Illustration of recursive map αk = Hα (αk−1)

with

h1=̇ −
(
c2 (2 + c) − ραk−1

)
/

(
2c2

)
(33)

h2 =
(
ραk−1 (c + xk − 1) − ρcβk−1 + c2 (1 − xk)

)
/c2

and h3 =
ρ

2c2

(

αk−1 (c − 1 + xk)
2

+ c2γk−1 + 2cβk−1 (1 − xk)
)

If the second-order conditiond2sy
k (xk) / (dyk)

2
= h1 < 0 is satisfied, that is,

αk−1 < α∗=̇c2 (2 + c) /ρ, (34)

which will be shown indeed true forc > 1 in the proof of Proposition1, an interior solution is given by

yk = −
1

2

h2

h1
=

ραk−1 − c2

c2 (c + 2) − ραk−1
xk +

ραk−1 (c − 1) − ρcβk−1 + c2

c2 (c + 2) − ραk−1
(35)

so that

sy
k (zk) =

1

2

ραk−1c + c2

c2 (2 + c) − 2ραk−1
x2

k +
ρc (αk−1c − (c + 1)βk−1) − c2

c2 (2 + c) − ραk−1
xk

+
1

2

c2 + ρβk−1

(
ρβk−1 + 2c + 2c2

)
− ραk−1

(
−c3 + c + 2ρβk−1

)

2c2 + c3 − ραk−1
+

1

2
ργk−1.

Comparing the above expression with (8) leads to (9)-(11). Recasting (35) leads to (12).

The initial values follow from the boundary condition ofsy
0 (x0) = 0.

iii) With yk = uk − vkxk, we have

pk = 1 − uk − (1 − vk)xk.

pk > 0 thus requires thatxk < (1 − uk) / (1 − vk) = 1 − βk/ (c + αk). Q.E.D.

Proof of Proposition 1:

i) The recursive relation (9), rewritten as

αk = Hα (αk−1) =̇
c (c + ραk−1)

c2 (2 + c) − ραk−1
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is essentially an one-dimensional discrete dynamic process with the derivative properties:∂Hα/∂αk−1 > 0

and∂2Hα/∂α2
k−1 > 0. Hence,Hα is a monotonically increasing convex map. Starting withα0 = 0, α1 =

Hα (0) > 0, we obtain a monotonically increasing sequence. As illustrated in Fig.4, whenc > 1, the mapHα

has two fixed point(s) given by

α∞=̇
1

2
α∗ −

c

2
−

c

2ρ

√

(c2 − ρ) ((c + 2)
2
− ρ), (36)

α′

∞
=̇

1

2
α∗ −

c

2
+

c

2ρ

√

(c2 − ρ) ((c + 2)
2
− ρ), (37)

whereα∗ is defined in (34) and0 < α∞ ≤ α′

∞
< α∗. More importantly, it can be verified thatα1 = Hα (0) <

α′

∞
.

By the analytical nature ofHα, we must have0 <
∂Hα

∂αk−1
|α∞

< 1 and
∂Hα

∂αk−1
|α′

∞
> 1. Sinceα1 <

α andHα intersects the 45 degree line in theαk-αk−1 plane from above,the sequence{αk} will converge

monotonically to the lower fixed pointα∞. Moreover, from the expression of (36) itself, we can see that α∞ <

α∗, which implies thatα1 < α2 < ... < α∞ < α∗.

While αk converges monotonically toα∞, Eq. (10) degenerates into a constant coefficient linear dynamic

process:

βk = Hβ (βk−1) =
ρc (c + 1) (α∞ − βk−1)

c2 (2 + c) − ρα∞

which will convergescyclically to its stationary valueβ∞ if the absolute value of the slope

∣
∣
∣
∣

∂Hβ

∂βk−1

∣
∣
∣
∣
α∞

=
ρc (c + 1)

c2 (c + 2) − ρα∞

is less than unity, which can be shown to be true whenc ≥ 1.

iii) The rest of conclusions follow directly from their relationships withαk andβk. Q.E.D.

Proof of Proposition 2:

ForT is sufficiently large, and (22) is implemented for sufficiently long time,sy
T (X1) = sY

T (xT ) approaches

infinity, which is confirmed by the facts thatlimk→∞ αk = α∞ and limk→∞ βk = β∞ for all ρ ≤ 1 but

limk→∞ γk = γ∞ exists only forρ < 1. Whenρ = 1, γk does not converge because the recursive relation (11)

simplifies to

γk = γk−1 +
βk−1 (βk−1 − 2αk−1) + c

(
c2 − 2

)
αk−1 + 2c (c + 1)βk−1

c2 (c + 2) − αk−1
. (38)

If we evaluate the average payoffsY
k (xk) /k, then we have10

lim
k→∞

sY
k (xk) /k =

{
0, ρ < 1,

limk→∞

γk

2k
, ρ = 1.

Whenk → ∞, it follows from (38) that

lim
k→∞

γk/ (2k) ≃ 〈πy〉 +
γk−1

2k
whenk → ∞,

where

〈πy〉 =
β∞ (β∞ − 2α∞) + c

(
c2 − 2

)
α∞ + 2c (c + 1)β∞

2 (c2 (c + 2) − α∞)
,

10“Average” here is defined in the conventional sense so that the profit at each period carries an equal weight for the
purpose of possible evaluation of long-run characteristics.
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which then suggests thatlimk→∞ sY
k (xk) /k = limk→∞ γk/ (2k) = 〈πy〉. Substitutingα∞ andβ∞ with their

respective values given by (9) and (10) into above expression leads to〈πy〉 = c/ (2 (c + 3) (c + 1)), which is

exactlyπ̄y (1). Q.E.D.

Proof of Proposition 3:

ii).and iii)

Based on the Turnpike property, whenk >> 10, the optimal response converges to

yk = ū (ρ) − v̄ (ρ)xk (39)

and∆yx
k (xk) < 0 if and only if xk ∈ Λ∞=̇ (xl, xu), where

xl =
ū (ρ)

v̄ (ρ) + 1
andxu =

2 − (c + 2) ū (ρ)

(c + 2) (1 − v̄ (ρ))
.

Applying the inverse recursive relation (31), we get

θ (xl) =
1 − 2ū (ρ) + v̄ (ρ)

c (v̄ (ρ) + 1)
andθ (xu) =

1

c + 2
= qw

It can be verified thatθ (xu) > xl andθ (xl) ≤ xu, or equivalently,θ (Λ∞) ⊂ Λ∞. Therefore, if there exists

a large enoughk∗ such thatΛ∞ ⊆ Ωx
k∗ , then for allk > k∗, starting withxk ∈ Λ∞, the implementation of the

optimal plan given by (39) does not only lead to∆yx
k (xk) < 0 but also enforcesxk−1 to fall into Λ∞.11

Following from the continuity of the accumulated profit difference functionsyx
k and the inversely converging

property of{xk}, there exists such aǫk < xl that so long asxk ∈ (xl − ǫ, xl)∪(xu, xu + ǫ), we have∆yx
k (xk) >

0, xk−1 ∈ Λ∞ ⊂ Ωx
k−1 and

syx
k (xk) = ∆yx

k (xk)
︸ ︷︷ ︸

(+)

+ρ syx
k−1 (xk−1)

︸ ︷︷ ︸

(−) due toxk−1∈Λ∞⊂Ωx

k−1

< 0, (40)

that is, the possibility in which the negative accumulated profit difference in later periods outweighs the positive

instantaneous profit difference, which justifies the expectations that there exists ak∗ around10 andΩx
k expands

with increasingk for all k > k∗. In other words, we haveΩx
k∗ ⊂ Ωx

k∗+1 ⊂ · · · ⊂ Ωx
∞

= [0, Xu
∞

]. The last

equalityΩx
∞

= [0, Xu
∞

] follows from the fact that∆yx (c, ρ) < 0 for all X1 ∈ [0, Xu
∞

]. Q.E.D.

11In this sense, Λ∞ is essentially a “super relative profitability range” for the price-taker in the sense that so long as the
price-taker’s current output happens to fall within it, the price-taker does not only make higher profit than the dynamic
optimizer instantaneously at the current period but also makes a higher average profit than the dynamic optimizer for all
the future periods.
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