The Plight of Mixed Race Adolescents

Fryer, Roland G.; Levitt, Steven D.; Kahn, Lisa and Spenkuch, Jörg L.
Harvard University, University of Chicago, Yale School of Management, University of Chicago

05. June 2010

Online at http://mpra.ub.uni-muenchen.de/23099/
MPRA Paper No. 23099, posted 06. June 2010 / 21:37
The Plight of Mixed Race Adolescents

Roland G. Fryer, Jr.
Harvard University and NBER

Lisa Kahn
Yale School of Management

Steven D. Levitt
University of Chicago and American Bar Foundation

Jörg L. Spenkuch
University of Chicago

Abstract

Over the past 40 years, the fraction of mixed race black-white births has increased nearly nine-fold. There is very little empirical evidence on how these children fare relative to their single-race counterparts. This paper describes basic facts about the behaviors and outcomes of black-white mixed race individuals. As one might expect, on a host of background and achievement characteristics as well as adult outcomes, mixed race individuals fall in between whites and blacks. When it comes to engaging in risky and anti-social adolescent behavior, however, mixed race adolescents are stark outliers compared to both blacks and whites. We argue that these behavioral patterns are most consistent with a two-sector Roy model, in which mixed race adolescents – not having a predetermined peer group – engage in more risky behaviors to be accepted.

* First Draft: August 2005; this version: June 2010. We are grateful to Gary Becker, Edward Glaeser, Claudia Goldin, Lawrence Katz, Kevin Murphy, Lawrence Summers, a focus group of nine mixed race undergraduates at Harvard University, and two anonymous referees for comments and suggestions. Katherine Barghaus, Peter Evangelakis, Ethan Lieber, and Iolanda Palmieri provided outstanding research assistance. Financial Support was provided by the National Science Foundation, Harvard University’s Milton Fund (Fryer), the Education Innovation Lab (Fryer and Spenkuch), the Sherman Shapiro Research Fund (Levitt), and the German National Academic Foundation (Spenkuch). Correspondence should be addressed to Fryer at Department of Economics, Harvard University, 1805 Cambridge Street, Cambridge MA, 02138 (e-mail: rfryer@fas.harvard.edu); or Levitt at Department of Economics, University of Chicago, 1126 E. 59th Street, Chicago IL, 60637 (e-mail: slevitt@uchicago.edu). This research uses data from Add Health, a program project designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris, and funded by a grant P01-HD31921 from the National Institute of Child Health and Human Development, with cooperative funding from 17 other agencies. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwistle for assistance in the original design. Persons interested in obtaining data from Add Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill, NC 27516-2524 (addhealth@unc.edu).
I. Introduction

Throughout history racial mixing has been taboo, though not completely absent. Fear of interracial mixing was a driving force behind the Jim Crow system in the South and the Black Codes in the North (Romano 2003). Mulattoes in the antebellum South occupied a distinct position between blacks and whites (Bodenhorn and Ruebeck 2003), yet Romano (2003) reports that children of mixed racial heritage were thought to be morally and physically inferior to “pure” blacks, and more prone to diseases such as tuberculosis. Indeed, in *Perez v. Sharp* (1948) the State of California argued before the California Supreme Court that anti-miscegenation laws protected the larger social good because the children of racially mixed couples were biologically inferior. Even supporters of the civil rights movement drew sharp distinctions between political and social equality (Moran 2003).

Figure 1 plots the share of interracial marriages, by gender and race of spouse, from 1880 to 2000. Interracial marriage between blacks and whites has increased greatly over the second half of the 20th century. In 1920, marriages to whites comprised roughly 0.3% of black marriages (Fryer 2007a). By 2000, 5.9% of married black men chose a white bride and 2.7% of black women chose a white husband (Fryer 2007a). Accompanying the changes in interracial marriage were increases in the number of black-white mixed-race births. Figure 2 presents time series evidence from 1920-2000. Before 1960, mixed-race

1 Laws governing the integration of schools, neighborhoods, and intimate relationships were among the last civil rights to be granted. Between 1913 and 1948, 30 out of 48 states banned interracial marriage. In 1948 California was the first state since 1887 to repeal its antimiscegenation law. This was done in response to *Perez v. Sharp*. On June 12, 1967, the landmark Supreme Court decision in *Loving v. Virginia* ruled, unanimously, that preventing marriages between individuals solely on the basis of racial classification violated the Equal Protection and Due Process Clauses of the Fourteenth Amendment. This ruling struck down anti-miscegenation laws in 16 remaining states. See Moran (2003) for a thoughtful review.
2 Interestingly, light skinned blacks were much more likely to operate farms and accumulated more wealth than their dark skinned counterparts (Bodenhorn 2003, Bodenhorn and Ruebeck 2007).
3 Some whites even went as far as to claim that mixed-race children would be sterile like mules (Romano 2003). Hoffman (1896) argues that miscegenation is responsible for the increasing black mortality rate, as well as blacks’ “consequent inferior social efficiency and diminishing power as a force in American national life.”
4 Cohn (1944) argued that blacks should be given justice in the courts, protection of their property, a fair distribution of tax money, and equal wages. But, he insisted, white southerners would not forgo the segregation that kept blacks and whites separate for fear that any breach in the walls of social segregation would lead to racial mixture.
5 We are well aware that black-white individuals comprise only a fraction of all people of mixed race in the US today. However, given the historical opposition to the mixing of blacks and whites, and blacks’ special position in American society, it seems warranted to focus our attention in this group of mixed race individuals.
6 The solid line has been computed using age-specific responses given on the 2000 Census, which allowed individuals to check multiple race categories for the first time. It is possible that individuals in earlier cohorts are more reluctant to identify themselves as mixed race, exaggerating the growth in this category over time. Also, to the extent that survival rates differ between racial groups, our estimates will be biased. The dashed line is based on NCHS Natality data, which contain information on the race of parents. Unfortunately, information on the race of the father is often missing. Mothers of mixed race babies might be more reluctant to
black-white births were a negligible share of total births to blacks and whites, but by the 1980s they accounted for one in 200 births, and by the year 2000, one birth out of 70 was mixed race. Despite this recent increase, empirical evidence on the experiences of these children and adults is scarce. This is particularly surprising given the nexus of opposition to interracial mixing has been the negative implications for the children of such marriages (Romano 2003).7

Using a variety of data sources, including (but not limited to) the 2000 US Census, NCHS Vital Statistics, and the National Survey of Adolescent Health (Add Health), our empirical analysis of the plight of black-white biracial individuals (whom we call “mixed race” hereafter in the paper, recognizing that there are other forms of biracialism not included in our analysis) unearths a rich set of new facts. Figure 3 presents a high-level summary of these findings. Using the wide range of variables available in these data sets we construct index measures of birth outcomes (e.g. birth weight, duration of pregnancy, etc.), home environment (e.g. household income, father in household, mother’s education, etc.), physical characteristics (e.g. height, BMI, physical attractiveness), scholastic achievement (e.g. GPA, test scores, etc.), risky and anti-social behaviors (e.g. trouble with teacher, smoking, lying to parents, violent acts, etc.), psychological wellbeing (e.g. feel loved, not depressed, chances of living to 35, etc.), and adult outcomes (e.g. married, employed, household income, etc.). Figure 3 shows mean indices and their associated standard errors for blacks and whites relative to those for mixed race individuals. For all composite measures higher values are better.8

According to Figure 3, at birth mixed race children fall in between their black and white counterparts, but are closer to whites. They are reared in home environments that overall are more similar to those of black children. On the physical dimension mixed race adolescents score higher than both monoracial groups. School achievement results are between blacks and whites, but closer to blacks. Their adult outcomes are closer to blacks, too. Strikingly, however, mixed race adolescents engage in substantially more risky and anti-social behavior than either blacks or whites, especially outside of school. Of the twenty-one different “bad behavior” variables that we analyze, mixed race adolescents are worse

provide information on the father of their child, and this reluctance might have decreased over time. Therefore, these estimates might be biased, too. Despite the fact that we can’t rule out that both time series overstate the increase in mixed race births, it seems implausible to attribute all or even most of the sharp increase to bias.

7 Romano (2003) reports that whites considering interracial marriage are nearly always asked the question “What about the Children?”

8 In constructing our index measures we have regressed each variable belonging to a particular outcome category on a set of covariates including gender, several age categories, place of birth, region, home environment variables, multiple birth weight intervals, and school fixed effects. For each category we then averaged the standardized residuals from these regressions for each individual, and normalized the resulting individual-level means on each variable to have a mean of zero and a standard deviation of one. The estimates reported in Figure 3 correspond the racial differences in means, with mixed race individuals serving as the omitted category. The Web Appendix provides further details on the construction of these indices.
than both blacks and whites on fourteen of them; they fall in between blacks and whites on the remaining seven measures. Mixed race children also fare somewhat worse on measures of psychological wellbeing.

We argue that the pattern in mixed race adolescents’ behavior is largely consistent with a two sector Roy model (Roy 1951), in which all adolescents face pressure to conform to peer norms. For mono-racial adolescents, this norm is determined by their race: black adolescents adhere to black norms and white adolescents adhere to white norms. Mixed race children have a choice, they can choose to associate with black children and adopt their norms, befriend white children and adopt their norms, or both. It is this outside option that gives mixed race adolescents a higher cost of group acceptance, resulting in them choosing riskier behaviors to gain such acceptance. While the Roy model we develop yields many predictions that are similar to a conformity model (Bernheim 1994), these two models diverge in one important dimension. The conformity model predicts that mixed race children who mostly interact with whites will adopt white behaviors, and mixed race children whose peer groups are mostly black will act black. In contrast, in the Roy model, when there are few blacks around, mixed race children can have a comparative advantage in black behaviors, inducing them to act particularly “black,” And vice versa. Empirically, the evidence on this point tips the balance in favor of the Roy model.

Our analysis builds upon a relatively small prior literature on individuals of mixed race, especially Harris and Thomas (2002) and Ruebeck, Averett and Bodenhorn (2009), both of whom also use Add Health data. Harris and Thomas (2002) focus on educational outcomes such as GPA, grade repetition, and test scores, generally finding that mixed race black-white children have outcomes between blacks and whites, but in some cases closer to and not statistically distinguishable from whites. Ruebeck et al. (2009) is the paper most similar to ours. In independent research, they analyze many of the same outcomes that we consider through the lens of a Bernheim-type conformity model. They find that mixed race children adopt behaviors that are characterized both as “white” and as “black” leading to a greater variance in mixed race behavior than is observed for either whites or blacks. They conclude that mixed-race identities are not as strongly codified as those for monoracials.

As we note in an earlier version of this paper, Fryer et al (2008), the two-sector Roy model can be interpreted as formalizing some of the ideas in the “marginal man” hypothesis (Park 1928, 1931, Stonequist 1935, 1937), a highly influential, yet rarely tested description of the experiences of mixed race individuals. The “marginal man” is depicted as someone who lives in a bi-cultural environment and who is caught between the two conflicting cultures. The “marginal man” concept has been criticized by various authors, largely based on counterexamples and subtle theoretical grounds (Goldberg 1941, Golovensky 1952, Green 1947, Antonovsky 1956). Most importantly these authors have argued that living in a bicultural environment does not automatically result in inner conflict. In his qualitative analysis Antonovsky (1956), for instance, finds multiple coping strategies among American Jews. Inner conflict is not a critical component of the Roy model.

Less closely related is a more recent literature that relates skin tone to economic outcomes (Keith and Herring 1991, and Hill 2000).

We did not become aware of Ruebeck et al’s (2009) parallel research agenda until shortly before the completion of Fryer et al (2008).
The remainder of the paper is structured as follows. Section II describes the data used in the analysis and the process of identifying mixed race individuals. Section III describes the empirical evidence on the behaviors and outcomes of mixed race individuals from birth to adulthood. Section IV interprets the empirical findings of Section III through the lens of economic theory (with the formal treatment of the theory presented in the appendix). Section V concludes.12

II. Data Description and Identification of Mixed Race Individuals

The absence of systematic empirical research on how mixed race children fare relative to their monoracial peers is due in part to data limitations. Few data sets record racial information in a way that mixed race children can be identified. Data sets that include a mixed race classification are either too small to be useful, or contain little information on childhood or adolescent experiences. The notable exception to this data shortcoming is the restricted-use version of the National Longitudinal Study of Adolescent Health (Add Health) – the primary data set used in this paper.13

Add Health began as a stratified random sample of all high schools in the US, resulting in a nationally representative sample of 90,118 students entering grades 7 through 12 in the 1994-95 school year. A sub sample (of the original in-school survey) of 20,745 students was given a series of in-home interviews.14 The original data collection took place in 1995, with Wave II done in 1996 and Wave III carried out in 2001.15 In addition, Wave I included a parent questionnaire conducted at home, in which 17,700 out of roughly 20,000 of the children’s parents participated. As in all longitudinal data, some respondents could not be located or contacted after repeated attempts, refused to participate, or were unable to do so. Sample weights supplied with each wave attempt to correct for observed patterns of non-response.

A wide range of data is gathered on the adolescents in the study.16 We use an array of data on demographics, family background, psychological wellbeing, behavior and academic achievement. In all our analysis we use missing value indicators and sample weights.

12 A Web Appendix with the precise definitions and sources of all variables used in the analysis is available on the authors’ websites.
13 We use the restricted-use data set that contains the full sample and more detailed information. The number of observations in restrictive-use version of Add Health is 90,118, while only roughly 6,500 observations are available in the public-use version. Furthermore, the restricted-use version contains more detailed information related to friend and sibling identification, respondents' romantic relationships, and spatial distances.
14 This sample was selected in part to be representative of the full sample (a core of 12,105) as well as selection on several criteria for oversamples: disabled, blacks from well-educated families, Chinese, Cuban, Puerto Rican, and adolescents with siblings. The response rate on the first wave of the home interview was 78.9%.
15 The response rates on the second and third waves of the survey were 88.2% and 77.4%, respectively.
16 For a detailed description, see the Add Health website http://www.cpc.unc.edu/projects/addhealth.
In order to provide a more comprehensive analysis of the economic and social outcomes of mixed race people we supplement Add Health with the 2000 US Census and NCHS Natality data. The US Census allows us to expand the set of outcomes to include adult outcomes such as income, completed education, home ownership, marital status, and so on; while the NCHS Natality data allows us to analyze how mixed race individuals fare relative to their monoracial counterparts at birth. The Web Appendix describes these two supplementary data sources in detail.

Classifying Individuals as Mixed Race

Identifying individuals of mixed race in survey data can be tricky, and there is little consensus about the best way to do so (Robbin 2000). We conceptualize the tradeoffs in constructing such a measure using a 2×2 matrix. The first relevant dimension is whether one bases the classification on the race of the parents or the response of the individual himself. The second relevant dimension for classifying mixed race children is how “strict” or “inclusive” one is in defining who is mixed race. Our preferred definition is one that is individual-based and strict. We use an individual-based definition both because data on fathers in Add Health are often missing, and even if a male guardian is present, it is impossible in our data to determine whether he is the biological father. By “strict,” we mean an individual is considered race A if and only if he consistently says he is race A whenever he is observed in the data. If there are any inconsistencies across waves, we code the race as missing.

17 We also have some very limited data on outcomes of young adults from the third wave of Add Health. Unfortunately, the sample sizes for mixed race children on these adult outcomes are extremely small and most likely subject to selective attrition, leading to estimates that are quite imprecise and sometimes deviate from our estimates using the 2000 Census. Therefore, we rely on the Census in our analysis of adult outcomes, though it is important to note that mixed race adolescents are weakly above blacks in nearly all outcomes in both datasets.

19 Ruebeck, Averett, and Bodenhorn (2008) make use of the racial classification of an adolescent’s parents in Add Health and code an individual as mixed race if one of his parents is mixed or black and the other one is white or mixed. To increase their sample size and lessen the degree of selection associated with children living in intact families, they also employ a definition based on children’s self-selection into black and white on the home survey.

20 Because our definition is based on self-reporting, we cannot rule out that endogeneity in who declares themselves to be race A biases our results. We have explored the sensitivity of our findings to a variety of different categorizations of race. While results for particular variables do, of course, vary across these definitions, the same basic patterns are present under each of these definitions. Full results for the other definitions are available from the authors on request.
Using this definition we obtain 304 black-white mixed children in Add Health, which is likely to understate the true number of mixed race adolescents in the data. Nonetheless, the resulting frequency of mixed race children is consistent with that observed in the 2000 Census among children of the appropriate age. In the 2000 Census children who check black and white as race constitute approximately 0.38% of the population between the ages of 12 and 18—the age range of the overwhelming majority of children in Add Health. The percentage of mixed race children in Add Health, employing our strict, child-based definition, is 0.34%. All of the results we report in the paper for adolescent and adult outcomes correspond to this definition of mixed race.

We cannot use our preferred child-based definition with the NCHS Natality data. In this data set we rely on parents’ race in classifying babies as mixed race. That is, an infant is coded as mixed race if one of his parents is listed as white on the birth certificate and the other one is listed as black. Unfortunately, information on the race of the father is missing for 14.4% of observations. We omit these observations from our analysis, which likely leads us to understate the number of mixed race babies.

Variables Used in the Analysis

The variables contained in Add Health are at the heart of our analysis. We broadly classify them into five categories: home environment, physical characteristics, school achievement, risky and anti-social behavior, and psychological wellbeing. For further details on these variables and their construction, see the Web Appendix.

Demographic variables include age, gender, whether born in the United States, and region of residence. Our set of home environment variables consists of 10 variables. These include household income, receipt of public assistance such as welfare, father in the household, the marital status of the parent filling out the questionnaire; mother’s age, whether or not their mother is a college graduate or has ever been married, and years in current residence.

As a robustness check, we looked at the consistency of racial identification for whites and blacks in the Add Health and the Early Childhood Longitudinal Survey (ECLS). In the Add Health 16.3% of blacks would be dropped from the data for inconsistent racial identification and 10.7% of whites. In ECLS, these numbers are 1.1% for blacks and 0.2% for whites. We have also explored a more “inclusive” child-level definition, under which there are three additional ways in which a student can be classified as mixed race. First, if he is consistently non-Hispanic and marked both black and white, and no other race, in all waves in which he participated. This corresponds to our strict definition. Second, a student is coded as mixed if he qualified as mixed under the above definition on any single survey, even if he failed to do so in other instances. Third, a student is coded as mixed if he marks a combination of black and white and no other race across surveys. For example if the student marks only black at school and only white at home then he is coded mixed. This is the same procedure used in Harris and Thomas (2002) and is done so to obtain as many potentially mixed race students as possible.

We have tried to bound the results by assigning different races to observations with missing information. While the actual values of individual point estimates do of course change, the results remain qualitatively unchanged, and are even quantitatively surprisingly robust to different assumptions.
Our measures of physical attributes include birth weight, height, Body Mass Index (BMI), and interviewer rated attractiveness.\(^{23}\) Achievement is proxied by score on the Add Health Picture Vocabulary Test (AHPVT), grade point average (GPA), whether or not a student has repeated a grade, and whether the student has a learning disability.\(^{24}\) The AHPVT is an abridged and computerized version of the well-known Peabody Picture Vocabulary Test-Revised, conducted as part of the Wave I home interview for 19,713 children. GPA is based on student self reports; grade repetition and learning disabilities are drawn from the parent questionnaire.\(^{25}\)

We analyze eight variables corresponding to a child’s (broadly defined) psychological wellbeing. These variables include the child’s responses to questions such as the degree to which his mother or father cares about him, how close he feels to other people, whether he feels accepted or loved, is depressed, likes himself, and expects to live to age 35.

Our final category of variables from Add Health is designed to capture a student’s risky and anti-social behavior in and out of school. The in-school behavior variables include: trouble with teachers, trouble paying attention, trouble with homework, trouble with students, effort on schoolwork, skipping school, and never suspended or expelled. The variables designed to measure behavior out of school include: watch TV, drink, smoke, dare, lie to parents, fight, property damage, steal, violent acts, sell drugs, encounter violence, ever had sex, ever had sexually transmitted disease (STD), and ever illegal drugs.

In the survey many of these questions take the form “Since school started this year, how often have you had trouble …?” Answers to these questions range, for example, from 0 to 4, where 0 indicates “never,” and 4 indicates “everyday.” For all such questions with answers that are ordinal, but do not have clear cardinality, we normalize responses to be mean zero with standard deviation equal to one in our weighted sample. While this procedure complicates comparisons of results across variables, as the distance between points is unlikely to be constant, the advantage is that by reducing the “dimensionality” of the outcome within variable comparisons between racial groups become easier. We have also estimated

\(^{23}\) At the end of the in-home interview in Wave I the interviewer was asked to rate the physical attractiveness of the respondent on a scale from 1 to 5, where 0 indicates “very unattractive”, and 5 indicates “very attractive.” Whenever we use this variable in our analysis, we include interviewer fixed effects to account for interviewer specific tastes.\(^{24}\) Harris and Thomas (2002) analyze three of these outcomes: grade point average, grade retention, and AHPVT.\(^{25}\) To get a sense of how much exaggerating there might be in the data among different racial groups, we compared the survey data with data collected from official transcripts, for the first year of high school of 12,115 Wave III respondents who signed a transcript release form. Blacks reported that their GPAs were 10.9% higher than the actual GPA compared to 4.5% for whites and 8.7% for mixed race students. Due to a lack of objective measures we are forced to rely on self-reports for other outcomes we report. Of course differential self-reporting is a possible source of bias in our analysis.
ordered logistic regressions that do not impose cardinality, but yield the same qualitative results. We focus on the normalized regressions for ease of interpretation of the main coefficients.

In addition to the variables contained in Add Health we use natality data from the NCHS Vital Statistics to judge how well mixed race individuals fare at birth. Our set of birth outcomes includes: birth weight, duration of pregnancy, indicators for anemia, diabetes, fetal distress, and for whether the mother smoked or consumed alcohol during the pregnancy.

To complete the picture, we obtain information on adult outcomes from the 2000 US Census. Our set of adult outcomes includes being married, having children, having at least a bachelor’s degree, an employment indicator, the number of weeks worked in previous year, occupational prestige score, household income, an indicator for being poor, not migrated within the last five years, owning one’s own home, the value of the house, live outside city center, and indicators for being disabled and being institutionalized. We view the latter as a proxy variable for involvement in criminal activity. As information in the Census on the institutionalized population is often based on administrative records, our results with respect to this outcome should be taken with a grain of salt.26

III. Empirical Evidence on Mixed Race Adolescents

In this section, we describe basic facts about the plight of mixed race individuals on the myriad dimensions we consider: birth outcomes, demographics, home environment, physical characteristics, academic achievement, psychological wellbeing, adult outcomes, and behaviors inside and outside of school. Summary statistics for the variables we use in our analysis are displayed in Tables 1-7. The left panels in these tables present means with standard deviations in parenthesis for whites, blacks, and mixed black-white students under our strict individual-centered definition, if possible. Individuals of all other races have been omitted from the analysis. As noted earlier, except where there are natural units for a variable (e.g. household income or weight), we have normalized the responses to be mean zero with a standard deviation of one in our sample.

Also of interest is the degree to which there are differences across groups after controlling for background characteristics. For instance, in the raw data it is unclear whether the outcomes of mixed-race kids differ from those of whites because those of mixed-race are less likely to come from two-parent households. Thus, in the right panel of Tables 1-7 we report the estimated racial gaps for each outcome measure after controlling for a range of background characteristics using the following linear model:

26 Jonas (2003) shows that only 19.7% of individuals in correctional institutions filled out the Census form themselves or were interviewed by a Census enumerator, while 56.3% of answers are based on administrative data, and 24.0% result in non-response.
\[y_{i,s} = \alpha + \beta_{w, \text{white}_{i,s}} + \beta_{b, \text{black}_{i,s}} + X_{i,s}' \gamma + \mu_s + \varepsilon_{i,s}, \]

where \(y_{i,s} \) represents an outcome for individual \(i \) in geographic unit \(s \), \(\text{white}_{i,s} \) and \(\text{black}_{i,s} \) are a mutually exclusive set of racial identifiers with mixed race as the omitted category; \(X_{i,s} \) is a vector of controls for gender, several age categories, place of birth, region, the full set of home environment variables, and multiple birth weight intervals, and \(\mu_s \) denotes a school fixed effect for variables from Add Health and a state fixed effect for those from the Census and Vital Statistics.\(^{27}\)

In each of the tables, we report all results relative to mixed race children. That is we report our estimates for \(\beta_w \) and \(\beta_b \). For all outcome variables contained in Add Health we also estimate models without school fixed effects, and display the results in the Web Appendix. The results change very little when we include school fixed effects.\(^{28}\)

Table 1 displays birth outcomes for mixed race babies relative to that of blacks and whites. On five out of seven dimensions mixed race infants fall in between their monoracial counterparts, but are often closer to whites.\(^{29}\) The exception to this pattern is whether the mother smoked or consumed alcohol during the pregnancy. The mothers of mixed race children are much more likely to do so—or at least to admit to doing so—than the mothers of monoracial babies.

Racial differences in home environment variables are shown in Table 2A. Mixed race adolescents have family incomes more similar to black children. The likelihood of having a father in the home is virtually identical for these two groups. The parents of mixed race children are less likely to have been married than those of other races (although rates of ever married are higher for these mothers than for blacks). The mothers of mixed race children are younger on average, but slightly more likely to be a college graduate. Mixed race children are much more mobile than their single race counterparts.\(^{30}\)

In Tables 2-5 and 7, we rely on the relatively small sample of mixed race children available in Add Health. For the home environment variables shown in Table 2A, unlike the other variables we use in the paper (e.g. anti-social behaviors, academic achievement, psychological wellbeing), it is possible to verify the patterns in Add Health using the 2000 Census. Census results for a set of home environment variables similar to those in Add Health are reported in Table 2B. The results are generally quite similar, but with

\[^{27}\text{When considering physical attributes we do not control for birth weight. Similarly, the results for our set of home environment variables have not been adjusted for the effect of the other variables in this category.}\]

\[^{28}\text{Under the assumption that reference points vary on the school level we can therefore dismiss the hypothesis that differences in self-reported outcomes are due to different reference points.}\]

\[^{29}\text{Given the small sample means the racial differences in birth outcomes portrayed in Table 2 are not only statistically significant, but are often substantial in a real world sense.}\]

\[^{30}\text{One possible explanation for the greater mobility of mixed race children might be that their parents are more likely to be members of the military. Yet, we are able to dismiss this explanation as the same pattern emerges in the 2000 Census after we exclude all children whose parents currently or formerly served in the armed forces.}\]
some differences. Mixed race children fare slightly better with respect to household income, having a father in the home, and having married parents in the Census, but still lag far behind whites. The mothers of mixed race children are not as young in the Census as they are in Add Health.

Table 3 shows our set of physical variables. Mixed race birth weights look more like whites than blacks. Differences in adolescent height and BMI are relatively small. Mixed race adolescents are rated as .41 standard deviations more attractive than white children, and .44 standard deviations more attractive than blacks.

Table 4 presents academic outcomes. Mixed race adolescents are less likely than blacks or whites to have a learning disability. Their AHPVT scores are between that of blacks and whites, but closer to whites. While blacks fare .71 standard deviations worse than whites, mixed race children lag .24 standard deviations behind. On our other two achievement variables (grade point average and whether or not a student repeated a grade), mixed race adolescents are either between blacks and whites but more similar to blacks, or essentially tied with blacks.

The next set of variables we consider is related to psychological wellbeing. Table 5 displays the results. Although not always statistically significantly different, mixed race children fare worst on four out of seven psychological dimensions explored. The greatest observed difference is with respect to whether the child perceives his father as caring, which mixed race children do significantly less. In all other dimensions mixed race adolescents fall roughly between their monoracial peers, but often report outcomes closer the worse group. Interestingly, blacks tend to be more content on most dimensions relative to whites and mixed race children. The exception to this finding is when asked about their chances of surviving to age 35. It is important to note that our analysis cannot answer questions of causality. We simply uncover racial differences in the data that cannot be explained by differences in observable characteristics.

Tables 6A-6D show results for our set of adult outcomes by age bracket. As there are likely differences related to cohorts in who self-identifies as mixed race in the 2000 Census, we find it instructive to report separate sets of results for four broadly defined age groups (ages 18-28, 21-40, 41-60, as well as 61 and older). With the exception of having not migrated within the last five years, mixed race individuals between the ages of 18 and 28 have outcomes in between blacks and whites on every dimension we consider. While mixed race young adults are closer to blacks with regard to having children, they are more similar to whites in terms of being employed, and almost exactly in the middle between blacks and whites for household income, having obtained at least a bachelors degree, and weeks worked last year. A qualitatively similar pattern holds for age groups 29-40 and 41-60. When it comes to

31 Under the parent-strict definition of mixed race adolescents, these differences become quite stark.
being married, having children, and weeks worked last year, mixed race individuals of these cohorts are closer to blacks than to whites. Their educational attainment is closer to that of whites, however. Mixed race people in our oldest age group also fall in between blacks and whites on most outcomes. A clear exception is that, similar to our other age groups, they are much more mobile. Surprisingly, they are almost equally likely as whites to have a bachelor's degree, have similar occupational scores, and conditionally upon owning a home their houses are almost as valuable as those of whites. However, with respect to owning a home in the first place, and being married mixed race individuals of these cohorts are much more similar to blacks.

With the aforementioned caveat regarding the reliability of Census data on the institutionalized population in mind, Tables 6A-6D also show that mixed race adults in our younger two age groups are much less likely to be institutionalized than blacks. Mixed race peoples’ rates of institutionalization in our older two age groups are closer to blacks than to whites. We have also explored differences in victimization rates using data from the National Crime and Victimization Survey (not shown here). For almost all types of crimes and age groups mixed race people are much more likely to report having been victimized than either monoracial group, although some of these differences are implausibly large.\(^{32}\)

In addition to the variables considered so far, the richness of Add Health allows us to analyze one last set of variables: adolescent behaviors. Tables 7A and 7B display our results. Strikingly, on fourteen out of the twenty-one variables related to bad behavior mixed race adolescents exhibit strictly worse behavior than both of their single race counterparts. Behavior at school by mixed race adolescents generally mirrors that of blacks, except with regard to exerting effort and skipping school—two dimensions on which mixed race children are significantly worse than blacks.\(^{33}\) The bad behavior of mixed race children stands out even more clearly outside of school. With the exception of watching television (which blacks do more of), mixed race adolescents are the worst or essentially tied for worst on every other behavior considered. This is true whether the risky behaviors are those more common to whites (e.g. drinking and smoking) or to blacks (e.g. sex and violence). Mixed race adolescents roughly occupy the lower envelope of good behaviors of blacks and whites.\(^{34}\) In a similar manner Choi et al (2006) find that multi-racial adolescents are at greater risk for substance abuse.

\(^{32}\) A detailed set of results is available from the authors upon request.

\(^{33}\) One, admittedly unsatisfactory, explanation for blacks reporting more effort on schoolwork than whites would be racially different conceptions of what it means to invest “a lot of” effort.

\(^{34}\) One possible explanation for why mixed race adolescents fight more often is that they might get picked on more than blacks or whites. However, if mixed race children got picked on a lot, we would expect them to say that they don’t feel accepted. Yet, on that measure they are very close to whites (see Table 5).
IV. Interpreting the Data through the Lens of Economic Theory

Broadly summarizing, the data presented above suggests that mixed race individuals grow up in home environments that are similar to blacks, have academic achievement and adult outcomes in between that of whites and blacks, but engage in much more risky behaviors than either racial group as adolescents.

In this section we explore a range of possible economic models with the goal of understanding the degree to which the various models are capable of matching the patterns in the data, particularly mixed race adolescents’ especially bad behavior. We discuss three broad categories of models: discrimination-based models, conformity models, and a Roy model. In the main text we restrict ourselves to a verbal discussion of different models. The intuition provided in the text is formalized in a technical appendix.

Discrimination-Based Models

In almost all models with human capital investment and discrimination, lower levels of discrimination lead to more investment in human capital (e.g. Becker 1957, Arrow 1973, Fryer and Jackson 2008). If mixed race individuals face weakly lower discrimination than blacks, for instance because they have lighter skin, one would expect weakly more human capital investment on their part. If one interprets bad behavior as interfering with human capital investment, which seems sensible, traditional discrimination models cannot explain our findings that mixed race adolescents behave worse than blacks.

Arcidiacono, Bayer and Hizmo (forthcoming) and Lang and Manove (forthcoming) present models in which discrimination can actually increase educational investment. In these models, discrimination decreases with educational attainment. Thus, it can be beneficial to “overinvest” in education to face lower levels of discrimination. These models predict that, at least for certain parts of the ability distribution, blacks invest more in education than mixed race individuals, and mixed race adolescents invest more than whites. However, neither model is consistent with mixed race children investing less than both blacks and whites.

Models of Conformity

In the classic conformity model, due to Bernheim (1994), each individual has preferences over behaviors, but also cares about popularity and social esteem in school. Social esteem is determined by the peer group’s perceptions of a student’s type. Types are unobservable, but others can infer an individual’s type from her behavior. This may include patterns of speech, style of clothing, time engaged in certain activities, music on their iPod, and so on. Absent popularity considerations a student would choose behaviors solely based on her preferences. Given that her utility also depends on social esteem, she will
adopt behaviors leading to favorable perceptions of her by others if she values popularity sufficiently much.

In our context, it is logical to think of peer groups as being determined by race, with white students automatically assigned to the white peer group and blacks put into the black peer group. If black and white peer groups draw different inferences about a student’s type from the same observed behaviors, Ceteris paribus, this will lead to “typically black” and “typically white” behaviors. For instance, it has been argued that strong academic achievement, wearing clothes from GAP, or whistling Vivaldi might have a positive impact on how white peers perceive a person, but a negative impact among black peers. Tables 7A and 7B document the existence of such patterns in our data. Differences between blacks and whites are statistically significant at the 5%-level for 18 out of the 21 behaviors we consider.

Mixed race adolescents in this model may differ from blacks and whites in that they do not have a predetermined peer group. They may care about popularity among both blacks and whites, possibly putting more weight on the assessment of one particular peer group. The ability of mixed race children to conform to either racial peer group can impose a cost on them in this model. Berman (2000) argues that groups provide public goods and charge their members for group membership by requiring them to make costly, but unproductive, investments. When it is easy to leave the group after receiving the public good, groups do better by holding their members to tougher standards. Because mixed race adolescents have an outside option, they must go to greater lengths to demonstrate their affiliation with the group. One way of demonstrating solidarity is to go to extremes in carrying out group-sanctioned misbehavior (see Austen-Smith and Fryer (2005) or Fryer (2007b) for a micro model of group dynamics which justifies this assumption). Peer groups holding mixed race adolescents to tougher standards can therefore rationalize why the inference function would be “flatter” than for monoracials. If the weight on group acceptance is large enough and the type-inference functions for mixed race adolescents are “flatter” than those for the monoracial groups, then the conformity model can explain why mixed race adolescents overinvest in bad behaviors.

A reasonable assumption is that a mixed race student puts more weight on the black peer group as the fraction of blacks in the student’s school rises. Under this assumption the conformity model would predict mixed race adolescents who attend schools with more blacks to “act more black” and those that attend schools with more whites to “act more white”. This pattern, however, is not observed in the data. As Table 8 demonstrates, mixed race children exhibit less typical black behavior as the fraction of blacks

35 If extreme levels of bad behavior are detrimental to group acceptance, then, compared to monoracial children, mixed race adolescents will still overinvest in bad behaviors; unless, of course, any bad behavior decreases their chances of acceptance.

36 One would expect the variance of bad behaviors to be larger among mixed race adolescents. This is hypothesis, indeed, confirmed by Reubeck et al (2009).
at their school increases. We characterize typical black behaviors as those behaviors of which blacks do significantly more than whites. Our index of typical black behaviors reported in Table 8 is constructed from factor analyzing the residuals from regressing typical black behaviors on our set of covariates and school fixed effects.

A Two-Sector Roy Model

As in the conformity model, in our conceptualization of the Roy model each individual has preferences over behaviors and cares about popularity. The latter depends solely on whether or not an individual is an accepted member of the peer group. Blacks and whites seek acceptance by the members of their own race, i.e. they have a predetermined peer group. Mixed race adolescents, however, are able to choose whether to identify with whites or blacks—the two sectors in this model. There are fixed costs associated with choosing each peer group, and the probability of being accepted by the group depends on observed behaviors. Mixed race individuals choose the group yielding the highest expected utility.

The two-sector Roy model is consistent with the facts described in the empirical section. As in the conformity model, the fact that mixed race adolescents engage in more risky behavior than any of their single race peers can be rationalized through them being held to tougher standards by both peer groups. That is they need to engage more in risky and anti-social behaviors to gain acceptance.

Unlike the standard conformity model, however, the two-sector Roy model can also be made consistent with the observation that when there are very few blacks in a school, mixed race adolescents “act more black”. It is important to note that when there are few blacks present, the costs of choosing blacks as a peer group, i.e. of “acting black”, may be lower. For example, fighting is one aspect of behavior more associated with blacks than whites. If blacks are more experienced fighters than whites,
then it is less costly for a mixed race child to prove he can fight when the only opponents are whites.41 This force works in the opposite direction of conformity.

In many Roy models, the individuals with the most choice have higher utility. In our model, there is tradeoff between having the benefit of more choice and incurring the cost of not having a predetermined peer group, so we are unable to sign the change in utility.

The Roy model is not the only model that can explain the data. For instance, the payoff to acting black may also depend on the racial composition in one’s school thereby increasing or decreasing conformist tendencies.42 It is important to note, however, that two of the most prominent theories, i.e. discrimination and a simple Bernheim-type conformity model, are incompatible with the data.

\textbf{V. Conclusion}

The number of mixed-race children has increased dramatically. While sociologists have theorized about the challenges facing these individuals since early in the 20th century, little systematic empirical research has explored their outcomes. Using a variety of data sources we show that mixed race individuals fall roughly in between their monoracial counterparts on most outcome categories: birth outcomes, demographics, home environments, scholastic achievement, and adult outcomes.

A stark exception to this pattern, however, is that on virtually every dimension we are able to measure, mixed race adolescents engage in higher rates of risky and anti-social behavior than either whites or blacks. A Roy model in which mixed race individuals get to choose their peer group, but monoracials are restricted to have the peer group of their own race, is consistent with the observed patterns in the data.

Interestingly, however, mixed race individuals do not have particularly bad adult outcomes, despite the negative behaviors that are observed in adolescence. This raises an important question as to how detrimental negative adolescent behaviors are to long-term human capital formation.

41 Anecdotally, this phenomenon has been observed among some programs for gifted minority youth held at M.I.T. each summer. These programs attract a subset of black and mixed race children who are among the “ whitest” acting in their schools. At M.I.T., however, they have a comparative advantage in acting “ black,” and engage in a wide range of behaviors to signal how “ black” they are (Suskind 1999). Similarly, Canada (1995) speculates that even the most violent youth in Boston “would not have lasted more than a couple of weeks in the South Bronx.” (p. 25).

42 We thank the editor for pointing this out to us.
Technical Appendix

In this appendix we formalize the two-sector Roy model and the conformity model discussed verbally in the main text.

A Formal Roy Model

Consider a population of many agents, each of whom selects some publicly observable behavior x from the set X. Each agent has intrinsic preferences over the set X, which we summarize by a utility function $g(x - t)$. The parameter t represents an agent’s intrinsic bliss point: the $\arg\max_{x \in X} g(x - t)$.

Following Bernheim (1994), we assume that $g(\cdot)$ is twice continuously differentiable, strictly concave, symmetric, and achieves its maximum at $g(0)$.

Let $p_b(x)$ (resp. $p_w(x)$) denote the probability that the black (white) peer group accepts and individual with observable behavior x. Individuals who are accepted by the group garner a payoff $\beta > 0$. We denote the cost of choosing sector j by c_j.

Each agent chooses x to solve:

$$\max_{x \in X} \left\{ \max_{\substack{x \in X}} g(x - t) + p_b(x)\beta - c_b, \max_{\substack{x \in X}} g(x - t) + p_w(x)\beta - c_w \right\}$$

To keep the model simple, we assume that $c_j = 0$ and $p_j(x) = 1$ for all monoracials. Thus, their decision problem can be represented as: $\max_{x \in X} g(x - t) + \beta$. The solution of which is $x = t$. This simplification abstracts away from peer dynamics that are surely going on within racial groups. All of the results of this simple model are consistent with a more general model in which all agents can choose their peer group if the cost of switching sectors is significantly lower for multiracial adolescents.

The fact that mixed race adolescents engage in more risky behavior than any of their single race peers can be rationalized through $p_j(x)$. As argued in the main text, because mixed race adolescents have an outside option, they must go to greater lengths to demonstrate their affiliation with the group, i.e. $p_j(x)$ is “flatter” for mixed race individuals than for monoracials.

To make the Roy model consistent with the observation that when there are very few blacks in a school, mixed race adolescents “act more black”, c_b must rise with the respective racial group’s share in a student’s school. Under this assumption, choosing blacks as a peer group is less costly when there are fewer blacks.

A Formal Conformity Model
The Roy model described above is similar in spirit to a conformity model along the lines of Bernheim (1994), generalized to allow different groups to have different social norms. In the classic conformity model, an individual’s type is unobservable to her peers. Thus, popularity is determined by other students’ perceptions of a student’s type. We assume that all agents within a racial group will, in equilibrium, form the same inferences about an individual’s type. This lets us summarize a student’s perceived type by a real number, \(q \). Let \(s(q) \) denote the social esteem of an individual thought to be type \(q \). Types are unobservable, but others can infer an individual’s type from her observable choices. Let \(\varphi(q,x) \) be the inference function that links observable behaviors to perceived types and \(\lambda_{j}, j \in \{b,w\} \) the weight that an individual puts on acceptance by group \(j \).

Using the same notation as above, the utility maximization of an individual in the classic conformity model can be expressed as follows:

\[
\max_{x_{w}, x_{b}} \left\{ g(x_{w} - t_{w}, x_{b} - t_{b}) + \lambda_{w} \int_{T} s_{w}(q) \varphi(q, x_{b}, x_{w}) dq + \lambda_{b} \int_{T} s_{b}(q) \varphi(q, x_{b}, x_{w}) dq \right\},
\]

where \(x_{w} \) and \(x_{b} \) represent “white” and “black” behaviors, respectively, and other racially dependent parameters are defined similarly.

If the weight on group acceptance is large enough and the inference functions for mixed race adolescents are “flatter” than those for the monoracial groups, then the model explains why mixed race adolescents overinvest in bad behaviors. As in the Roy model, for mixed race adolescents it takes more black behaviors to be accepted by the black peer group and more white behaviors to be accepted by the white peer group.

If one interprets \(\lambda_{b} \) and \(\lambda_{w} \) as the fraction of blacks and whites in an individual’s school, then under the conformity model we would expect mixed race adolescents who attend more black schools to “act more black” and those that attend more white schools to “act more white”. As discussed in the main text, this pattern is not observed in the data.
References

Figure 1: Percent of Whites (A) and Blacks (B) Marrying out of Race, by Gender and Race of Spouse (as percent of all marriages)

(A)

(B)

Notes: Both figures are from Fryer (2007a).
Figure 2: Black-White Births as Percentage of all Black and White Births

Sources: Data are from the 2000 Census 5% Public Use Micro Sample (solid line) and from NCHS Vital Statistics (dotted line). See Data Web Appendix for details.
Notes: Figure shows coefficients and associated standard errors from regressing our composite outcome measures on indicator variables for race. Black-white mixed race individuals are the omitted category. The construction of our composite measures is outlined in the text; the Web Appendix provides additional detail, and the source and precise definition of every variable used in construction.
<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>White</th>
<th>Black</th>
<th>Mixed</th>
<th>White</th>
<th>Black</th>
<th>Observations</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth Weight</td>
<td>3.376</td>
<td>3.144</td>
<td>3.299</td>
<td>.043***</td>
<td>-.153***</td>
<td>3,220,900</td>
<td>.037</td>
</tr>
<tr>
<td></td>
<td>(.587)</td>
<td>(.657)</td>
<td>(.618)</td>
<td>(.002)</td>
<td>(.002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infant Mortality</td>
<td>.005</td>
<td>.011</td>
<td>.008</td>
<td>-.003***</td>
<td>.003***</td>
<td>3,222,671</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>(.071)</td>
<td>(.106)</td>
<td>(.089)</td>
<td>(.000)</td>
<td>(.000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of Pregnancy (weeks)</td>
<td>38.886</td>
<td>38.364</td>
<td>38.794</td>
<td>.126***</td>
<td>-.374***</td>
<td>3,191,247</td>
<td>.111</td>
</tr>
<tr>
<td></td>
<td>(2.403)</td>
<td>(3.078)</td>
<td>(2.697)</td>
<td>(.009)</td>
<td>(.010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>.020</td>
<td>.035</td>
<td>.029</td>
<td>-.006***</td>
<td>.008***</td>
<td>3,176,459</td>
<td>.008</td>
</tr>
<tr>
<td></td>
<td>(.140)</td>
<td>(.185)</td>
<td>(.167)</td>
<td>(.001)</td>
<td>(.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>.029</td>
<td>.032</td>
<td>.028</td>
<td>-.004***</td>
<td>.002***</td>
<td>3,176,459</td>
<td>.009</td>
</tr>
<tr>
<td></td>
<td>(.168)</td>
<td>(.175)</td>
<td>(.166)</td>
<td>(.001)</td>
<td>(.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fetal Distress</td>
<td>.037</td>
<td>.049</td>
<td>.042</td>
<td>-.004***</td>
<td>.008***</td>
<td>2,887,514</td>
<td>.007</td>
</tr>
<tr>
<td></td>
<td>(.188)</td>
<td>(.217)</td>
<td>(.202)</td>
<td>(.001)</td>
<td>(.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother Smoked During Pregnancy</td>
<td>.113</td>
<td>.065</td>
<td>.173</td>
<td>-.006***</td>
<td>-.100***</td>
<td>2,769,370</td>
<td>.089</td>
</tr>
<tr>
<td></td>
<td>(.316)</td>
<td>(.246)</td>
<td>(.378)</td>
<td>(.001)</td>
<td>(.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother Drank During Pregnancy</td>
<td>.008</td>
<td>.007</td>
<td>.010</td>
<td>-.001**</td>
<td>-.002***</td>
<td>2,764,040</td>
<td>.005</td>
</tr>
<tr>
<td></td>
<td>(.088)</td>
<td>(.083)</td>
<td>(.098)</td>
<td>(.000)</td>
<td>(.000)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Entries in the left panel are means and standard deviations by race in the weighted raw data. Entries in the right panel are coefficients for whites and blacks as well as heteroskedasticity robust standard errors from estimating the empirical model, i.e. equation (1), by population weighted least squares. Mixed race is the omitted category. The respective dependent variables are listed on the left of each row. Covariates include gender as well sets of indicator variables for mothers' age, mothers' years of schooling, mother never married. Missing values indicators for each covariate and region fixed effects are also included in the regressions. See the Data Web Appendix for the precise definition and source of each variable. * denotes significance at the 10%-level, ** significance at the 5%-level, and *** significance at the 1%-level. Variables marked with ° are normalized to have mean 0 and standard deviation 1 in our weighted sample including individuals of all ages.
<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Raw Data</th>
<th></th>
<th>Adjusted</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White</td>
<td>Black</td>
<td>Mixed</td>
<td>White</td>
<td>Black</td>
<td>Observations</td>
</tr>
<tr>
<td>Household Income (log)</td>
<td>10.613</td>
<td>9.913</td>
<td>10.106</td>
<td>.385**</td>
<td>-.141</td>
<td>8,294</td>
</tr>
<tr>
<td></td>
<td>(.734)</td>
<td>(.912)</td>
<td>(.664)</td>
<td>(.155)</td>
<td>(.133)</td>
<td></td>
</tr>
<tr>
<td>Not on Welfare</td>
<td>.940</td>
<td>.794</td>
<td>.844</td>
<td>.064</td>
<td>-.051</td>
<td>9,406</td>
</tr>
<tr>
<td></td>
<td>(.237)</td>
<td>(.404)</td>
<td>(.366)</td>
<td>(.060)</td>
<td>(.048)</td>
<td></td>
</tr>
<tr>
<td>Father in Household</td>
<td>.833</td>
<td>.534</td>
<td>.544</td>
<td>.263***</td>
<td>.002</td>
<td>48,197</td>
</tr>
<tr>
<td></td>
<td>(.373)</td>
<td>(.499)</td>
<td>(.499)</td>
<td>(.036)</td>
<td>(.038)</td>
<td></td>
</tr>
<tr>
<td>Parents Married</td>
<td>.787</td>
<td>.426</td>
<td>.245</td>
<td>.491***</td>
<td>.176*</td>
<td>9,433</td>
</tr>
<tr>
<td></td>
<td>(.409)</td>
<td>(.495)</td>
<td>(.434)</td>
<td>(.090)</td>
<td>(.098)</td>
<td></td>
</tr>
<tr>
<td>Mother's Age</td>
<td>41.596</td>
<td>41.600</td>
<td>39.660</td>
<td>1.828**</td>
<td>.984</td>
<td>8,537</td>
</tr>
<tr>
<td></td>
<td>(5.964)</td>
<td>(8.273)</td>
<td>(3.737)</td>
<td>(.785)</td>
<td>(.713)</td>
<td></td>
</tr>
<tr>
<td>Mother is College Graduate</td>
<td>.321</td>
<td>.308</td>
<td>.370</td>
<td>-.028</td>
<td>-.068*</td>
<td>41,016</td>
</tr>
<tr>
<td></td>
<td>(.467)</td>
<td>(.462)</td>
<td>(.484)</td>
<td>(.041)</td>
<td>(.042)</td>
<td></td>
</tr>
<tr>
<td>Mother Ever Married</td>
<td>.987</td>
<td>.800</td>
<td>.916</td>
<td>.042</td>
<td>-.132***</td>
<td>8,564</td>
</tr>
<tr>
<td></td>
<td>(.115)</td>
<td>(.400)</td>
<td>(.281)</td>
<td>(.051)</td>
<td>(.051)</td>
<td></td>
</tr>
<tr>
<td>Years in Current Residence</td>
<td>8.065</td>
<td>6.719</td>
<td>4.654</td>
<td>3.159***</td>
<td>1.439*</td>
<td>10,716</td>
</tr>
<tr>
<td></td>
<td>(5.743)</td>
<td>(5.782)</td>
<td>(4.151)</td>
<td>(.802)</td>
<td>(.859)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Entries in the left panel are means and standard deviations by race in the weighted raw data. Entries in the right panel are coefficients for whites and blacks as well as heteroskedasticity robust standard errors clustered by school from estimating the empirical model, i.e. equation (1), by population weighted least squares. Mixed race is the omitted category. The respective dependent variables are listed on the left of each row. In addition to the covariates listed in the text, indicator variables for missing values on each covariate, and school fixed effects are also included in the regressions. See the Data Web Appendix for the precise definition and source of each variable. * denotes significance at the 10%-level, ** significance at the 5%-level, and *** significance at the 1%-level.
Table 2B: Home Environment (Census)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Raw Data</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White</td>
<td>Black</td>
</tr>
<tr>
<td>Household Income (log)</td>
<td>1.916</td>
<td>1.253</td>
</tr>
<tr>
<td></td>
<td>(.842)</td>
<td>(1.073)</td>
</tr>
<tr>
<td>Not on Welfare</td>
<td>.994</td>
<td>.977</td>
</tr>
<tr>
<td></td>
<td>(.077)</td>
<td>(.15)</td>
</tr>
<tr>
<td>Father in Household</td>
<td>.749</td>
<td>.399</td>
</tr>
<tr>
<td></td>
<td>(.433)</td>
<td>(.49)</td>
</tr>
<tr>
<td>Parents Married</td>
<td>.776</td>
<td>.408</td>
</tr>
<tr>
<td></td>
<td>(.417)</td>
<td>(.492)</td>
</tr>
<tr>
<td>Mother's Age</td>
<td>41.366</td>
<td>39.528</td>
</tr>
<tr>
<td></td>
<td>(5.863)</td>
<td>(6.837)</td>
</tr>
<tr>
<td>Mother is College Graduate</td>
<td>.253</td>
<td>.121</td>
</tr>
<tr>
<td></td>
<td>(.435)</td>
<td>(.326)</td>
</tr>
<tr>
<td>Mother Ever Married</td>
<td>.984</td>
<td>.758</td>
</tr>
<tr>
<td></td>
<td>(.124)</td>
<td>(.428)</td>
</tr>
<tr>
<td>Not Migrated within Last 5 Years</td>
<td>.586</td>
<td>.504</td>
</tr>
<tr>
<td></td>
<td>(.493)</td>
<td>(.5)</td>
</tr>
</tbody>
</table>

Notes: Entries in the left panel are means and standard deviations by race in the weighted raw data. Entries in the right panel are coefficients for whites and blacks as well as heteroskedasticity robust standard errors from estimating the empirical model, i.e. equation (1), by population weighted least squares. Mixed race is the omitted category. The respective dependent variables are listed on the left of each row. Covariates include gender, an extensive set of age indicators, a nativity indicator, and indicator variables for missing values on each covariate. State fixed effects are also included in the regressions. See the Data Web Appendix for the precise definition and source of each variable. * denotes significance at the 10%-level, ** significance at the 5%-level, and *** significance at the 1%-level. Variables marked with ° are normalized to have mean 0 and standard deviation 1 in our weighted sample including individuals of all ages.
<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Raw Data</th>
<th></th>
<th></th>
<th></th>
<th>Adjusted</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White</td>
<td>Black</td>
<td>Mixed</td>
<td>White</td>
<td>Black</td>
<td>Observations</td>
<td>R-squared</td>
<td></td>
</tr>
<tr>
<td>Birth Weight (in kg)</td>
<td>3.415 (0.539)</td>
<td>3.222 (0.547)</td>
<td>3.362 (0.443)</td>
<td>-0.022 (0.079)</td>
<td>-0.165** (0.079)</td>
<td>8,672</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td>Height (in meters)</td>
<td>1.692 (0.106)</td>
<td>1.692 (0.108)</td>
<td>1.707 (0.096)</td>
<td>-0.025** (0.012)</td>
<td>-0.018 (0.012)</td>
<td>10,711</td>
<td>0.305</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>22.136 (4.244)</td>
<td>23.239 (4.744)</td>
<td>22.601 (4.617)</td>
<td>-0.557 (0.759)</td>
<td>0.511 (0.731)</td>
<td>10,549</td>
<td>0.085</td>
<td></td>
</tr>
<tr>
<td>Attractiveness°</td>
<td>0.007 (0.998)</td>
<td>-0.041 (1.008)</td>
<td>0.414 (0.904)</td>
<td>-0.413** (0.169)</td>
<td>-0.441*** (0.160)</td>
<td>10,787</td>
<td>0.040</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Entries in the left panel are means and standard deviations by race in the weighted raw data. Entries in the right panel are coefficients for whites and blacks as well as heteroskedasticity robust standard errors clustered by school from estimating the empirical model, i.e. equation (1), by population weighted least squares. Mixed race is the omitted category. The respective dependent variables are listed on the left of each row. In addition to the covariates listed in the text, but birthweight, indicator variables for missing values on each covariate, and school fixed effects are also included in the regressions. See the Data Web Appendix for the precise definition and source of each variable. * denotes significance at the 10%-level, ** significance at the 5%-level, and *** significance at the 1%-level. Variables marked with ° are normalized to have mean 0 and standard deviation 1 in our weighted sample.
Table 4: Achievement Variables (Add Health)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Raw Data</th>
<th>Adjusted</th>
<th>Observations</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White</td>
<td>Black</td>
<td>Mixed</td>
<td>White</td>
</tr>
<tr>
<td>No Learning Disability</td>
<td>.863</td>
<td>.850</td>
<td>.961</td>
<td>-.116***</td>
</tr>
<tr>
<td></td>
<td>(.344)</td>
<td>(.357)</td>
<td>(.197)</td>
<td>(.036)</td>
</tr>
<tr>
<td>AHPVT Score°</td>
<td>.164</td>
<td>-.756</td>
<td>-.161</td>
<td>.183</td>
</tr>
<tr>
<td></td>
<td>(.913)</td>
<td>(1.037)</td>
<td>(1.011)</td>
<td>(.165)</td>
</tr>
<tr>
<td>GPA</td>
<td>2.934</td>
<td>2.592</td>
<td>2.720</td>
<td>.157***</td>
</tr>
<tr>
<td></td>
<td>(.788)</td>
<td>(.755)</td>
<td>(.783)</td>
<td>(.056)</td>
</tr>
<tr>
<td>Never Repeated a Grade</td>
<td>.824</td>
<td>.673</td>
<td>.653</td>
<td>.135</td>
</tr>
<tr>
<td></td>
<td>(.381)</td>
<td>(.469)</td>
<td>(.480)</td>
<td>(.086)</td>
</tr>
</tbody>
</table>

Notes: Entries in the left panel are means and standard deviations by race in the weighted raw data. Entries in the right panel are coefficients for whites and blacks as well as heteroskedasticity robust standard errors clustered by school from estimating the empirical model, i.e. equation (1), by population weighted least squares. Mixed race is the omitted category. The respective dependent variables are listed on the left of each row. In addition to the covariates listed in the text indicator variables for missing values on each covariate, and school fixed effects are also included in the regressions. See the Data Web Appendix for the precise definition and source of each variable. * denotes significance at the 10%-level, ** significance at the 5%-level, and *** significance at the 1%-level. Variables marked with ° are normalized to have mean 0 and standard deviation 1 in our weighted sample.
Table 5: Psychological Variables (Add Health)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>White</th>
<th>Raw Data</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Black</td>
<td></td>
</tr>
<tr>
<td>Mother Cares°</td>
<td>-.016</td>
<td>.062</td>
<td>-.017</td>
</tr>
<tr>
<td></td>
<td>(1.012)</td>
<td>(.947)</td>
<td>(1.069)</td>
</tr>
<tr>
<td>Father Cares°</td>
<td>.009</td>
<td>-.044</td>
<td>-.298</td>
</tr>
<tr>
<td></td>
<td>(.978)</td>
<td>(1.111)</td>
<td>(1.352)</td>
</tr>
<tr>
<td>Close to People°</td>
<td>.042</td>
<td>-.170</td>
<td>-.095</td>
</tr>
<tr>
<td></td>
<td>(.985)</td>
<td>(1.042)</td>
<td>(1.961)</td>
</tr>
<tr>
<td>Feel Accepted°</td>
<td>-.024</td>
<td>.098</td>
<td>-.002</td>
</tr>
<tr>
<td></td>
<td>(.997)</td>
<td>(1.007)</td>
<td>(1.926)</td>
</tr>
<tr>
<td>Feel Loved°</td>
<td>-.030</td>
<td>.124</td>
<td>-.068</td>
</tr>
<tr>
<td></td>
<td>(.992)</td>
<td>(1.022)</td>
<td>(1.023)</td>
</tr>
<tr>
<td>Not Depressed°</td>
<td>-.035</td>
<td>.145</td>
<td>-.185</td>
</tr>
<tr>
<td></td>
<td>(.995)</td>
<td>(1.006)</td>
<td>(1.103)</td>
</tr>
<tr>
<td>Like Oneself°</td>
<td>-.071</td>
<td>.292</td>
<td>.021</td>
</tr>
<tr>
<td></td>
<td>(.999)</td>
<td>(1.950)</td>
<td>(1.061)</td>
</tr>
<tr>
<td>Chances Live to 35°</td>
<td>.054</td>
<td>-.216</td>
<td>-.013</td>
</tr>
<tr>
<td></td>
<td>(.947)</td>
<td>(1.163)</td>
<td>(1.065)</td>
</tr>
</tbody>
</table>

Notes: Entries in the left panel are means and standard deviations by race in the weighted raw data. Entries in the right panel are coefficients for whites and blacks as well as heteroskedasticity robust standard errors clustered by school from estimating the empirical model, i.e. equation (1), by population weighted least squares. Mixed race is the omitted category. The respective dependent variables are listed on the left of each row. In addition to the covariates listed in the text indicator variables for missing values on each covariate, and school fixed effects are also included in the regressions. See the Data Web Appendix for the precise definition and source of each variable. * denotes significance at the 10%-level, ** significance at the 5%-level, and *** significance at the 1%-level. Variables marked with ° are normalized to have mean 0 and standard deviation 1 in our weighted sample.
Table 6A: Adult Outcomes, Ages: 18-28 (Census)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Raw Data</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White</td>
<td>Black</td>
</tr>
<tr>
<td>Married</td>
<td>.289</td>
<td>.184</td>
</tr>
<tr>
<td></td>
<td>(.453)</td>
<td>(.387)</td>
</tr>
<tr>
<td>Have Children</td>
<td>.203</td>
<td>.255</td>
</tr>
<tr>
<td></td>
<td>(.402)</td>
<td>(.436)</td>
</tr>
<tr>
<td>Bachelors Degree</td>
<td>.175</td>
<td>.079</td>
</tr>
<tr>
<td></td>
<td>(.38)</td>
<td>(.269)</td>
</tr>
<tr>
<td>Employed</td>
<td>.725</td>
<td>.540</td>
</tr>
<tr>
<td></td>
<td>(.447)</td>
<td>(.498)</td>
</tr>
<tr>
<td>Weeks Worked Last Year</td>
<td>4.706</td>
<td>37.823</td>
</tr>
<tr>
<td></td>
<td>(15.201)</td>
<td>(16.613)</td>
</tr>
<tr>
<td>Occupational Score°</td>
<td>-0.244</td>
<td>-0.417</td>
</tr>
<tr>
<td></td>
<td>(.911)</td>
<td>(.779)</td>
</tr>
<tr>
<td>Household Income (log)</td>
<td>1.682</td>
<td>1.264</td>
</tr>
<tr>
<td></td>
<td>(.87)</td>
<td>(1.064)</td>
</tr>
<tr>
<td>Poor</td>
<td>.139</td>
<td>.269</td>
</tr>
<tr>
<td></td>
<td>(.346)</td>
<td>(.443)</td>
</tr>
<tr>
<td>Not Migrated within Last 5 Years</td>
<td>.301</td>
<td>.372</td>
</tr>
<tr>
<td></td>
<td>(.459)</td>
<td>(.483)</td>
</tr>
<tr>
<td>Own Home</td>
<td>.545</td>
<td>.390</td>
</tr>
<tr>
<td></td>
<td>(.498)</td>
<td>(.488)</td>
</tr>
<tr>
<td>Value House (log)</td>
<td>11.517</td>
<td>11.173</td>
</tr>
<tr>
<td></td>
<td>(.864)</td>
<td>(.822)</td>
</tr>
<tr>
<td>Live Outside City Center</td>
<td>.460</td>
<td>.301</td>
</tr>
<tr>
<td></td>
<td>(.498)</td>
<td>(.459)</td>
</tr>
<tr>
<td>Institutionalized</td>
<td>.009</td>
<td>.057</td>
</tr>
<tr>
<td></td>
<td>(.097)</td>
<td>(.231)</td>
</tr>
<tr>
<td>Disabled</td>
<td>.119</td>
<td>.189</td>
</tr>
<tr>
<td></td>
<td>(.324)</td>
<td>(.392)</td>
</tr>
</tbody>
</table>

Notes: Entries in the left panel are means and standard deviations by race in the weighted raw data. Entries in the right panel are coefficients for whites and blacks as well as heteroskedasticity robust standard errors from estimating the empirical model, i.e. equation (1), by population weighted least squares. Mixed race is the omitted category. The respective dependent variables are listed on the left of each row. Covariates include gender, an extensive set of age indicators, a nativity indicator, and indicator variables for missing values on each covariate. State fixed effects are also included in the regressions. See the Data Web Appendix for the precise definition and source of each variable. * denotes significance at the 10%-level, ** significance at the 5%-level, and *** significance at the 1%-level. Variables marked with ° are normalized to have mean 0 and standard deviation 1 in our weighted sample including individuals of all ages.
Table 6B: Adult Outcomes, Ages: 29-40 (Census)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Raw Data</th>
<th>Adjusted</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White</td>
<td>Black</td>
<td>Mixed</td>
<td>White</td>
<td>Black</td>
<td>Observations</td>
</tr>
<tr>
<td>Married</td>
<td>.668 (.471)</td>
<td>.430 (.495)</td>
<td>.439 (.496)</td>
<td>.212*** (.012)</td>
<td>-.033*** (.012)</td>
<td>2,035,826</td>
</tr>
<tr>
<td>Have Children</td>
<td>.615 (.487)</td>
<td>.550 (.498)</td>
<td>.487 (.5)</td>
<td>.098*** (.012)</td>
<td>.031*** (.012)</td>
<td>2,035,826</td>
</tr>
<tr>
<td>Bachelors Degree</td>
<td>.308 (.462)</td>
<td>.152 (.359)</td>
<td>.270 (.444)</td>
<td>.069*** (.011)</td>
<td>-.099*** (.011)</td>
<td>2,035,826</td>
</tr>
<tr>
<td>Employed</td>
<td>.803 (.398)</td>
<td>.670 (.47)</td>
<td>.718 (.45)</td>
<td>.075*** (.011)</td>
<td>-.051*** (.011)</td>
<td>2,035,826</td>
</tr>
<tr>
<td>Weeks Worked Last Year</td>
<td>47.198 (1.689)</td>
<td>44.949 (12.832)</td>
<td>45.230 (12.256)</td>
<td>1.552*** (.345)</td>
<td>.521 (.347)</td>
<td>1,762,400</td>
</tr>
<tr>
<td>Occupational Score°</td>
<td>.158 (1.024)</td>
<td>-.184 (1.901)</td>
<td>.005 (-.992)</td>
<td>.166*** (0.025)</td>
<td>-.184*** (0.025)</td>
<td>1,892,458</td>
</tr>
<tr>
<td>Household Income (log)</td>
<td>1.893 (.772)</td>
<td>1.450 (.967)</td>
<td>1.674 (.869)</td>
<td>.254*** (.021)</td>
<td>-.197*** (.021)</td>
<td>1,977,291</td>
</tr>
<tr>
<td>Poor</td>
<td>.067 (.249)</td>
<td>.192 (.394)</td>
<td>.130 (.337)</td>
<td>-.063*** (.009)</td>
<td>.062*** (.009)</td>
<td>2,002,654</td>
</tr>
<tr>
<td>Not Migrated within Last 5 Years</td>
<td>.411 (.492)</td>
<td>.412 (.492)</td>
<td>.321 (.467)</td>
<td>.048*** (.011)</td>
<td>.049*** (.011)</td>
<td>2,035,826</td>
</tr>
<tr>
<td>Own Home</td>
<td>.726 (.446)</td>
<td>.473 (.499)</td>
<td>.476 (.5)</td>
<td>.203*** (.012)</td>
<td>-.052*** (.012)</td>
<td>1,992,332</td>
</tr>
<tr>
<td>Value House (log)</td>
<td>11.668 (.819)</td>
<td>11.280 (.799)</td>
<td>11.668 (.861)</td>
<td>.136*** (.027)</td>
<td>-.220*** (.027)</td>
<td>1,399,904</td>
</tr>
<tr>
<td>Live Outside City Center</td>
<td>.537 (.499)</td>
<td>.351 (.477)</td>
<td>.482 (.5)</td>
<td>.106*** (.014)</td>
<td>-.099*** (.014)</td>
<td>1,301,460</td>
</tr>
<tr>
<td>Institutionalized</td>
<td>.009 (.097)</td>
<td>.056 (.23)</td>
<td>.021 (.144)</td>
<td>-.014*** (.004)</td>
<td>.035*** (.004)</td>
<td>2,035,826</td>
</tr>
<tr>
<td>Disabled</td>
<td>.137 (.343)</td>
<td>.237 (.425)</td>
<td>.202 (.401)</td>
<td>-.073*** (.010)</td>
<td>.028*** (.010)</td>
<td>2,035,826</td>
</tr>
</tbody>
</table>

Notes: Entries in the left panel are means and standard deviations by race in the weighted raw data. Entries in the right panel are coefficients for whites and blacks as well as heteroskedasticity robust standard errors from estimating the empirical model, i.e. equation (1), by population weighted least squares. Mixed race is the omitted category. The respective dependent variables are listed on the left of each row. Covariates include gender, an extensive set of age indicators, a nativity indicator, and indicator variables for missing values on each covariate. State fixed effects are also included in the regressions. See the Data Web Appendix for the precise definition and source of each variable. * denotes significance at the 10%-level, ** significance at the 5%-level, and *** significance at the 1%-level. Variables marked with ° are normalized to have mean 0 and standard deviation 1 in our weighted sample including individuals of all ages.
Table 6C: Adult Outcomes, Ages: 41-60 (Census)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Raw Data</th>
<th>Adjusted</th>
<th>Observations</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White</td>
<td>Black</td>
<td>Mixed</td>
<td>White</td>
</tr>
<tr>
<td>Married</td>
<td>.724</td>
<td>.481</td>
<td>.527</td>
<td>.193***</td>
</tr>
<tr>
<td></td>
<td>(.447)</td>
<td>(.5)</td>
<td>(.499)</td>
<td>(.015)</td>
</tr>
<tr>
<td>Bachelors Degree</td>
<td>.299</td>
<td>.159</td>
<td>.278</td>
<td>.040***</td>
</tr>
<tr>
<td></td>
<td>(.458)</td>
<td>(.366)</td>
<td>(.448)</td>
<td>(.013)</td>
</tr>
<tr>
<td>Employed</td>
<td>.770</td>
<td>.636</td>
<td>.692</td>
<td>.081***</td>
</tr>
<tr>
<td></td>
<td>(.421)</td>
<td>(.481)</td>
<td>(.462)</td>
<td>(.014)</td>
</tr>
<tr>
<td>Weeks Worked Last Year</td>
<td>47.555</td>
<td>45.896</td>
<td>45.582</td>
<td>1.847***</td>
</tr>
<tr>
<td></td>
<td>(1.211)</td>
<td>(12.023)</td>
<td>(12.615)</td>
<td>(.430)</td>
</tr>
<tr>
<td>Occupational Score°</td>
<td>.177</td>
<td>-.191</td>
<td>.043</td>
<td>.143***</td>
</tr>
<tr>
<td></td>
<td>(1.024)</td>
<td>(.89)</td>
<td>(1.045)</td>
<td>(.032)</td>
</tr>
<tr>
<td>Household Income (log)</td>
<td>1.983</td>
<td>1.510</td>
<td>1.735</td>
<td>.299***</td>
</tr>
<tr>
<td></td>
<td>(.858)</td>
<td>(1.018)</td>
<td>(1.035)</td>
<td>(.030)</td>
</tr>
<tr>
<td>Poor</td>
<td>.056</td>
<td>.171</td>
<td>.132</td>
<td>-.078***</td>
</tr>
<tr>
<td></td>
<td>(.23)</td>
<td>(.376)</td>
<td>(.339)</td>
<td>(.010)</td>
</tr>
<tr>
<td>Not Migrated within Last 5 Years</td>
<td>.674</td>
<td>.628</td>
<td>.558</td>
<td>.098***</td>
</tr>
<tr>
<td></td>
<td>(.469)</td>
<td>(.483)</td>
<td>(.497)</td>
<td>(.014)</td>
</tr>
<tr>
<td>Own Home</td>
<td>.841</td>
<td>.611</td>
<td>.625</td>
<td>.193***</td>
</tr>
<tr>
<td></td>
<td>(.366)</td>
<td>(.487)</td>
<td>(.484)</td>
<td>(.014)</td>
</tr>
<tr>
<td>Value House (log)</td>
<td>11.754</td>
<td>11.289</td>
<td>11.723</td>
<td>.176***</td>
</tr>
<tr>
<td></td>
<td>(8.37)</td>
<td>(8.11)</td>
<td>(8.39)</td>
<td>(.028)</td>
</tr>
<tr>
<td>Live Outside City Center</td>
<td>.535</td>
<td>.330</td>
<td>.492</td>
<td>.104***</td>
</tr>
<tr>
<td></td>
<td>(.499)</td>
<td>(.47)</td>
<td>(.5)</td>
<td>(.017)</td>
</tr>
<tr>
<td>Institutionalized</td>
<td>.006</td>
<td>.028</td>
<td>.021</td>
<td>-.016***</td>
</tr>
<tr>
<td></td>
<td>(.076)</td>
<td>(.165)</td>
<td>(.142)</td>
<td>(.004)</td>
</tr>
<tr>
<td>Disabled</td>
<td>.193</td>
<td>.335</td>
<td>.317</td>
<td>-.136***</td>
</tr>
<tr>
<td></td>
<td>(.394)</td>
<td>(.472)</td>
<td>(.466)</td>
<td>(.014)</td>
</tr>
</tbody>
</table>

Notes: Entries in the left panel are means and standard deviations by race in the weighted raw data. Entries in the right panel are coefficients for whites and blacks as well as heteroskedasticity robust standard errors from estimating the empirical model, i.e. equation (1), by population weighted least squares. Mixed race is the omitted category. The respective dependent variables are listed on the left of each row. Covariates include gender, an extensive set of age indicators, a nativity indicator, and indicator variables for missing values on each covariate. State fixed effects are also included in the regressions. See the Data Web Appendix for the precise definition and source of each variable. * denotes significance at the 10%-level, ** significance at the 5%-level, and *** significance at the 1%-level. Variables marked with ° are normalized to have mean 0 and standard deviation 1 in our weighted sample including individuals of all ages.
Table 6D: Adult Outcomes, Ages: 61- over (Census)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Raw Data</th>
<th>Adjusted</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White</td>
<td>Black</td>
<td>Mixed</td>
<td>White</td>
<td>Black</td>
</tr>
<tr>
<td></td>
<td>Observations</td>
<td>R-squared</td>
<td>Observations</td>
<td>R-squared</td>
<td>Observations</td>
</tr>
<tr>
<td>Married</td>
<td>.605 (489)</td>
<td>.403 (49)</td>
<td>.463 (499)</td>
<td>.145*** (.020)</td>
<td>-.059*** (.020)</td>
</tr>
<tr>
<td></td>
<td>2,098,212</td>
<td>.141</td>
<td>2,098,212</td>
<td>.032</td>
<td></td>
</tr>
<tr>
<td>Bachelors Degree</td>
<td>.177 (382)</td>
<td>.092 (289)</td>
<td>.196 (397)</td>
<td>-.002 (016)</td>
<td>-.088*** (016)</td>
</tr>
<tr>
<td></td>
<td>2,098,212</td>
<td>.003</td>
<td>2,098,212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>.202 (402)</td>
<td>.189 (392)</td>
<td>.222 (416)</td>
<td>.002 (016)</td>
<td>-.027</td>
</tr>
<tr>
<td></td>
<td>2,098,212</td>
<td>.135</td>
<td>2,098,212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weeks Worked Last Year</td>
<td>41.238 (15.708)</td>
<td>41.581 (15.187)</td>
<td>4.885 (16.809)</td>
<td>1.413 (1.428)</td>
<td>1.350 (1.431)</td>
</tr>
<tr>
<td></td>
<td>502,317</td>
<td>.025</td>
<td>502,317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupational Score°</td>
<td>.027 (1.06)</td>
<td>-.391 (872)</td>
<td>.070 (1.073)</td>
<td>.137** (.067)</td>
<td>-.276*** (.067)</td>
</tr>
<tr>
<td></td>
<td>718,189</td>
<td>.096</td>
<td>718,189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household Income (log)</td>
<td>1.462 (921)</td>
<td>1.107 (1.035)</td>
<td>1.407 (1.115)</td>
<td>.131*** (.047)</td>
<td>-.241*** (.047)</td>
</tr>
<tr>
<td></td>
<td>1,969,621</td>
<td>.078</td>
<td>1,969,621</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>.076 (265)</td>
<td>.227 (419)</td>
<td>.156 (363)</td>
<td>-.088*** (.016)</td>
<td>.059*** (.016)</td>
</tr>
<tr>
<td></td>
<td>2,009,102</td>
<td>.037</td>
<td>2,009,102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Migrated within Last 5 Years</td>
<td>.766 (423)</td>
<td>.772 (419)</td>
<td>.704 (457)</td>
<td>.055*** (.018)</td>
<td>.050*** (.018)</td>
</tr>
<tr>
<td></td>
<td>2,098,212</td>
<td>.016</td>
<td>2,098,212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Own Home</td>
<td>.845 (362)</td>
<td>.685 (465)</td>
<td>.685 (465)</td>
<td>.133*** (.020)</td>
<td>-.033* (.020)</td>
</tr>
<tr>
<td></td>
<td>1,990,154</td>
<td>.043</td>
<td>1,990,154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value House (log)</td>
<td>11.569 (862)</td>
<td>11.128 (849)</td>
<td>11.593 (1.028)</td>
<td>.076 (048)</td>
<td>-.342*** (048)</td>
</tr>
<tr>
<td></td>
<td>1,669,939</td>
<td>.163</td>
<td>1,669,939</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live Outside City Center</td>
<td>.490 (500)</td>
<td>.252 (434)</td>
<td>.409 (492)</td>
<td>.133*** (.023)</td>
<td>-.112*** (.023)</td>
</tr>
<tr>
<td></td>
<td>1,341,392</td>
<td>.228</td>
<td>1,341,392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institutionalized</td>
<td>.039 (194)</td>
<td>.042 (200)</td>
<td>.051 (220)</td>
<td>-.016* (.009)</td>
<td>-.008 (.009)</td>
</tr>
<tr>
<td></td>
<td>2,098,212</td>
<td>.059</td>
<td>2,098,212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disabled</td>
<td>.423 (494)</td>
<td>.551 (497)</td>
<td>.529 (500)</td>
<td>-.124*** (.020)</td>
<td>.016 (.020)</td>
</tr>
<tr>
<td></td>
<td>2,098,212</td>
<td>.09</td>
<td>2,098,212</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Entries in the left panel are means and standard deviations by race in the weighted raw data. Entries in the right panel are coefficients for whites and blacks as well as heteroskedasticity robust standard errors from estimating the empirical model, i.e. equation (1), by population weighted least squares. Mixed race is the omitted category. The respective dependent variables are listed on the left of each row. Covariates include gender, an extensive set of age indicators, a nativity indicator, and indicator variables for missing values on each covariate. State fixed effects are also included in the regressions. See the Data Web Appendix for the precise definition and source of each variable. * denotes significance at the 10%-level, ** significance at the 5%-level, and *** significance at the 1%-level. Variables marked with ° are normalized to have mean 0 and standard deviation 1 in our weighted sample including individuals of all ages.
Table 7A: Behavior in School (Add Health)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Raw Data</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White</td>
<td>Black</td>
</tr>
<tr>
<td>Trouble with Teacher°</td>
<td>-.051</td>
<td>.198</td>
</tr>
<tr>
<td></td>
<td>(.967)</td>
<td>(1.098)</td>
</tr>
<tr>
<td>Trouble Paying Attention°</td>
<td>-.031</td>
<td>.119</td>
</tr>
<tr>
<td></td>
<td>(.972)</td>
<td>(1.095)</td>
</tr>
<tr>
<td>Trouble with Homework°</td>
<td>-.044</td>
<td>.170</td>
</tr>
<tr>
<td></td>
<td>(.976)</td>
<td>(1.071)</td>
</tr>
<tr>
<td>Trouble with Students°</td>
<td>-.065</td>
<td>.247</td>
</tr>
<tr>
<td></td>
<td>(.966)</td>
<td>(1.086)</td>
</tr>
<tr>
<td>Effort Schoolwork°</td>
<td>-.058</td>
<td>.224</td>
</tr>
<tr>
<td></td>
<td>(1.002)</td>
<td>(9.56)</td>
</tr>
<tr>
<td>Skipping School°</td>
<td>.013</td>
<td>-.054</td>
</tr>
<tr>
<td></td>
<td>(1.002)</td>
<td>(9.82)</td>
</tr>
<tr>
<td>Never Suspended or Expelled</td>
<td>.774</td>
<td>.519</td>
</tr>
<tr>
<td></td>
<td>(.418)</td>
<td>(.500)</td>
</tr>
</tbody>
</table>

Notes: Entries in the left panel are means and standard deviations by race in the weighted raw data. Entries in the right panel are coefficients for whites and blacks as well as heteroskedasticity robust standard errors clustered by school from estimating the empirical model, i.e. equation (1), by population weighted least squares. Mixed race is the omitted category. The respective dependent variables are listed on the left of each row. In addition to the covariates listed in the text indicator variables for missing values on each covariate, and school fixed effects are also included in the regressions. See the Data Web Appendix for the precise definition and source of each variable. * denotes significance at the 10%-level, ** significance at the 5%-level, and *** significance at the 1%-level. Variables marked with ° are normalized to have mean 0 and standard deviation 1 in our weighted sample.
Table 7B: Behavior Outside School (Add Health)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Raw Data</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White</td>
<td>Black</td>
</tr>
<tr>
<td>Watch TV°</td>
<td>-.140</td>
<td>.527</td>
</tr>
<tr>
<td></td>
<td>(.947)</td>
<td>(1.021)</td>
</tr>
<tr>
<td>Drinking°</td>
<td>.026</td>
<td>-.103</td>
</tr>
<tr>
<td></td>
<td>(1.004)</td>
<td>(.975)</td>
</tr>
<tr>
<td>Smoking°</td>
<td>.078</td>
<td>-.303</td>
</tr>
<tr>
<td></td>
<td>(1.055)</td>
<td>(.667)</td>
</tr>
<tr>
<td>Daring°</td>
<td>.057</td>
<td>-.227</td>
</tr>
<tr>
<td></td>
<td>(1.025)</td>
<td>(.856)</td>
</tr>
<tr>
<td>Lie to Parents°</td>
<td>-.005</td>
<td>.015</td>
</tr>
<tr>
<td></td>
<td>(.985)</td>
<td>(1.054)</td>
</tr>
<tr>
<td>Fight°</td>
<td>-.019</td>
<td>.071</td>
</tr>
<tr>
<td></td>
<td>(.997)</td>
<td>(1.007)</td>
</tr>
<tr>
<td>Property Damage°</td>
<td>.032</td>
<td>-.152</td>
</tr>
<tr>
<td></td>
<td>(1.033)</td>
<td>(.816)</td>
</tr>
<tr>
<td>Steal°</td>
<td>.011</td>
<td>-.063</td>
</tr>
<tr>
<td></td>
<td>(1.013)</td>
<td>(.920)</td>
</tr>
<tr>
<td>Violent Acts°</td>
<td>-.058</td>
<td>.252</td>
</tr>
<tr>
<td></td>
<td>(.947)</td>
<td>(1.166)</td>
</tr>
<tr>
<td>Sell Drugs°</td>
<td>-.004</td>
<td>.020</td>
</tr>
<tr>
<td></td>
<td>(.989)</td>
<td>(1.048)</td>
</tr>
<tr>
<td>See Violence°</td>
<td>-.065</td>
<td>.294</td>
</tr>
<tr>
<td></td>
<td>(.933)</td>
<td>(1.213)</td>
</tr>
<tr>
<td>Ever Sex</td>
<td>.358</td>
<td>.576</td>
</tr>
<tr>
<td></td>
<td>(.480)</td>
<td>(1.494)</td>
</tr>
<tr>
<td>Ever STD</td>
<td>.018</td>
<td>.079</td>
</tr>
<tr>
<td></td>
<td>(.134)</td>
<td>(.270)</td>
</tr>
<tr>
<td>Ever Illegal Drugs</td>
<td>.321</td>
<td>.266</td>
</tr>
<tr>
<td></td>
<td>(.467)</td>
<td>(.442)</td>
</tr>
</tbody>
</table>

Notes: Entries in the left panel are means and standard deviations by race in the weighted raw data. Entries in the right panel are coefficients for whites and blacks as well as heteroskedasticity robust standard errors clustered by school from estimating the empirical model, i.e. equation (1), by population weighted least squares. Mixed race is the omitted category. The respective dependent variables are listed on the left of each row. In addition to the covariates listed in the text indicator variables for missing values on each covariate, and school fixed effects are also included in the regressions. See the Data Web Appendix for the precise definition and source of each variable. * denotes significance at the 10%-level, ** significance at the 5%-level, and *** significance at the 1%-level. Variables marked with ° are normalized to have mean 0 and standard deviation 1 in our weighted sample.
Table 8: Mixed Race Adolescents' "Typical Black" Behavior

<table>
<thead>
<tr>
<th>Quartile</th>
<th>Index Value</th>
<th>Percent Black at School</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quartile</td>
<td>.303</td>
<td>less than 4.1%</td>
</tr>
<tr>
<td></td>
<td>(.128)</td>
<td></td>
</tr>
<tr>
<td>2nd Quartile</td>
<td>.134</td>
<td>4.1% to 17.2%</td>
</tr>
<tr>
<td></td>
<td>(.104)</td>
<td></td>
</tr>
<tr>
<td>3rd Quartile</td>
<td>-.017</td>
<td>17.2% to 48.4%</td>
</tr>
<tr>
<td></td>
<td>(.124)</td>
<td></td>
</tr>
<tr>
<td>4th Quartile</td>
<td>-.110</td>
<td>above 48.4%</td>
</tr>
<tr>
<td></td>
<td>(.116)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Entries are means and standard errors for our index measure of typical black behaviors by racial composition of school. The construction of the index is described in the text; the Web Appendix provides additional detail, and the source and precise definition of every variable used in construction.