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Abstract

In this paper, we extend Bai and Perron’s (1998, Econometrica, pp. 47-

78) method for detecting multiple breaks to nonlinear models. To that end,

we consider a nonlinear model that can be estimated via nonlinear least

squares (NLS) and features a limited number of parameter shifts occur-

ring at unknown dates. In our framework, the break-dates are estimated

simultaneously with the parameters via minimization of the residual sum of

squares. Using new uniform convergence results for partial sums, we derive

the asymptotic distributions of both break-point and parameter estimates

and propose several instability tests. We provide simulations that indicate

good finite sample properties of our procedure. Additionally, we use our

methods to test for misspecification of smooth-transition models in the con-

text of an asymmetric US federal funds rate reaction function and conclude

that there is strong evidence of sudden change as well as smooth behavior.

JEL classification: C12, C13, C22

Keywords: Multiple Change Points, Nonlinear Least Squares, Smooth Tran-

sition
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1 Introduction

As pointed out by Lucas (1976), policy shifts and time-varying market condi-

tions induce behavioral changes in the decisions of economic agents. Hence, over

longer time spans, a stable model might not be the appropriate tool to capture the

features of economic decisions. A popular way to capture instability in macroe-

conometric models is to impose sudden parameter shifts at unknown dates, known

as break-points.

Both the econometric and statistical literature on break-point problems is ex-

tensive1, and its main focus is on testing for breaks rather than estimation. For

example, early work by Quandt (1960) suggests using a supremum (sup) type test

for inference on a single unknown break-point. Whether in linear or nonlinear set-

tings, most subsequent work - see inter alia Anderson and Mizon (1983), Andrews

and Fair (1988), Ghysels and Hall (1990), Andrews (1993), Sowell (1996), Hall

and Sen (1999) and Andrews (2003) - proposes tests that are designed against the

alternative of a one-time parameter variation or of more general model misspeci-

fication. For parametric settings, Bai and Perron (1998) is among the few papers

that propose tests for identifying multiple breaks. Their tests are designed for

linear models estimated via ordinary least-squares (OLS). While these tests are

useful, the linear framework might be considered a limitation. Subsequent papers

such as Kokoszka and Leipus (2000), Lavielle and Moulines (2000) and Andreou

and Ghysels (2002) propose tests for parameter instability in nonlinear models,

but the nonlinearities considered are confined to special cases such as general

autoregressive conditional heteroskedasticity (GARCH) models. The framework

considered in this paper is more general, imposing only mild restrictions on the

nonlinear regression function.

1For statistical literature surveys, see Zacks (1983), Krishnaiah and Miao (1988), Bhat-
tacharya (1994), Csörgö and Horváth (1997); for recent developments in econometrics, see Dufour
and Ghysels (1996) and Banerjee and Urga (2005).
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In practice, researchers often argue that it can be difficult to discriminate

between misspecification due to parameter instability or neglected nonlinearity.

It is therefore desirable to develop a framework that allows both features. While

tests such as the ones developed in Eitrheim and Teräsvirta (1996) can detect

instability in some classes of nonlinear models, they are not particularly designed

against an alternative with breaks nor offer an estimation framework that can

allow for both smooth and sudden change. One of the aims of this paper is to

provide change-point tests in the spirit of Bai and Perron’s (1998) tests, but with

a maintained nonlinearity assumption. These tests are valid for a large class of

parametric nonlinear models, including inter alia smooth transition models, neural

networks, partially linear, bilinear and (nonlinear) GARCH models.

Compared to inference procedures, the issue of consistently estimating one or

multiple change-points - when their location is unknown - has received consider-

ably less attention in the literature. Within linear parametric models, there are

a few methods that yield consistent estimates of the break-points, e.g. maximum

likelihood - Quandt (1958), least-squares - Bai (1994), least absolute deviation

- Bai (1995), information criteria - Yao (1988), Davis, Lee, and Rodriguez-Yam

(2006). In Bai and Perron’s (1998) paper, the break points are estimated simulta-

neously with the regression parameters via least-squares methods. Bai and Perron

(1998) establish consistency and derive the convergence rate of the resulting break

point fractions under fairly general assumptions. They also propose a sequential

procedure for selecting the number of break points in the sample based on various

tests for parameter constancy. This procedure is extended to models with cross-

regime restrictions by Perron and Qu (2006), and to multivariate frameworks by

Qu and Perron (2007). Hall, Han, and Boldea (2009) further extend Bai and

Perron’s framework to linear models with endogenous regressors. A slightly differ-

ent approach is proposed by Davis, Lee, and Rodriguez-Yam (2006); they suggest

estimating the number and location of breaks not separately, but simultaneously
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via minimization of the minimum description length (MDL) criterion of Rissanen

(1989).

While useful, all the analyses above are restricted to linear models with breaks,

which are often unsuitable for the asymmetries macroeconomic behavior displays.

To capture these asymmetries, nonlinear models are becoming increasingly pop-

ular, and there is a need to develop tests and inference procedures for multiple

parameter changes in this setting.

In this paper we consider a univariate nonlinear model that can be estimated

via NLS - or under stronger assumptions, equivalent methods such as quasi-

maximum likelihood - and exhibits multiple unknown breaks. Allowing for non-

stationary but piece-wise ergodic regressors and errors, we show that a minimiza-

tion of the sum of squared residuals over all possible break dates and parameters

yields consistent estimates of both the unknown break fractions and parameters.

We further prove T -rate convergence of break fraction estimates, a key result

because it implies that inference on parameters can be conducted as if the break-

points were known a priori. To obtain this result, we arrive at one of the main

contributions of our paper: a new uniform central limit result for piece-wise ergodic

and mixing processess, which may be useful in other contexts.

Based on the above, we provide various structural stability tests - in the pres-

ence or absence of autocorrelation - that naturally generalize those proposed by

Bai and Perron (1998). We consider global tests of no breaks against two types

of alternative, one in which the number of breaks is fixed and another in which

the number of breaks is only restricted to be less than some ceiling, along with

sequential tests for an additional break. These tests can be used to develop a

sequential method for finding the number and locations of breaks, as suggested

by Bai and Perron (1998) in linear settings. Moreover, the sequential Wald test

we propose - similar to Hall, Han, and Boldea (2009) - allows for breaks in the

marginal of regressors, at the same time extending the strategy of identifying the
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number of breaks to settings where autocorrelation is present.

For forecasting purposes, it is still of interest to know with certain confidence

when the last break occurred. As Bai (1994, 1995, 1997) shows, change-point

distributions in linear models can be derived in two cases: when the magnitude of

parameter shifts is constant and when it shrinks to zero at a certain rate. Because

in the first case, the confidence intervals depend on the distribution of the data, the

device of shrinking shifts is used to ensure that shifts disappear at a slow enough

rate so that pivotal statistics can still be obtained. In practice, this framework

can be viewed as one of moderate shifts, according to Bai and Perron (1998). A

local analysis of small shifts is presented in Elliott and Müller (2007) for linear

models, but providing a similar framework here is beyond the scope of our paper.

We consider each of the two cases above in turn. For the first case, we pro-

vide an asymptotic approximation to the exact change-point distribution, but this

approximation is - as for linear cases its exact counterpart - dependent on the

distribution of the data. For the second case, we obtain a similar asymptotic dis-

tribution as in Bai (1997). We validate the usefulness of our estimators, tests and

confidence intervals via simulations.

Next, we illustrate our methodology in the context of the US interest rate

reaction function. Using a similar setup to Kesriyeli, Osborn, and Sensier (2006),

we test a STR model with one-transition and find evidence of both smooth and

sudden change.

The paper is organized as follows: Section 2 describes our model. Section

3 reveals the assumptions needed for our estimation method. We outline the

consistency and limiting distributions results in Section 4. Section 5 rederives -

in a nonlinear context - two classes of stability tests. Section 6 shows good finite

properties of our break-point estimators, tests and number of break-points. Section

7 applies the methods proposed in this paper to an interest rate reaction function

for US. Section 8 concludes. Sketch proofs are relegated to the Appendix, while
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the detailed proofs can be found in a Supplemental Appendix that is available

from the authors upon request.

2 Model

In this section, we introduce a univariate nonlinear model with m unknown change-

points:

yt = f(xt, θ
0
i+1) + ut t ∈ I0

i = [T 0
i + 1, T 0

i+1] i = 0, 1, . . .m (1)

where T 0
0 = 0 and T 0

m+1 = T by convention. Here yt is the dependent variable,

xt (q × 1) are the regressors, θ0
i+1 (p× 1) are parameters that change at dates T 0

i ,

f : Rq × Θ → R is a known measurable function on R for each θ ∈ Θ, and T is

the sample size. To begin, we consider m to be a known finite positive integer,

but we allow for the break dates to be unknown to the researcher; we consider the

question of how to estimate m in Section 6. For simplicity, let ft(θ) = f(xt, θ) and

denote by T̄m ≡ (T0 = 1, T1, . . . , Tm, Tm+1 = T ) any m-partition of the interval

[1, T ]. To further simplify the notation, we will stack column vectors such as θ0
i+1

and θi+1 into two corresponding (m + 1)p × 1 vectors, θc
0 and θc. For a given

sample partition and given parameter values θc, denote by ST (T̄m, θc) the sum of

squares.2

One of our main goals is to provide a method for estimating the unknown pa-

rameters and change points. As in Bai and Perron (1998), the estimation method

we propose is based on the least-squares principle3 and follows in two steps. First,

2We use superscript c to distinguish between (m + 1)p× 1 parameter vectors and the p × 1
parameter vectors at which ft(·) is evaluated.

3Note that an extension to more general settings such as generalized method of moments
(GMM) is non-trivial because minimizing a GMM criterion over all possible partitions does not
yield consistent estimates of the break-fractions indexing the break-points even for linear models
and one break under reasonable conditions, see Hall, Han, and Boldea (2009).
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we obtain the sub-sample NLS estimators for each partition:

θ̂c
T (T̄m) = argmin

θc(T̄ m)

ST ( T̄m, θc(T̄m) ) (2)

Second, we search over all possible partitions to obtain the break-point estimates.

The estimates T̂ = (1, T̂1, . . . , T̂m, T ) for change-points and θ̂c
T = (θ̂1, . . . , θ̂m+1) for

parameters are obtained as follows:

T̂ = argmin
T̄ m

ST ( T̄m, θ̂c
T (T̄m) ) and θ̂c

T = θ̂c
T (T̂ ) (3)

The above is an NLS estimation with an appropriate modification to allow for mul-

tiple break-points, and can be legitimately performed provided that E[utft(θ
0
i+1)] =

0 for each t = T 0
i + 1, . . . , T 0

i+1 (i = 0, 1, . . .m).

3 Assumptions

To derive the statistical properties of our estimators, we establish a framework

that combines elements of asymptotic theory in stable nonlinear models and un-

stable linear models. As pointed out by Hansen (2000), the marginal distributions

of regressors and/or errors may change, possibly at different locations in the sam-

ple than the population parameters of the equation of interest. Our framework

is designed to achieve as much generality as possible with respect to changes in

marginal distributions,4 as well as with respect to other non-stationarities induced

by lagged dependent variables that may enter the model concomitantly with pa-

rameter breaks. In dealing with nonlinear asymptotics, we impose usual smooth-

ness and boundedness assumptions. To deal with instability, we assume uniform

4Allowing for these types of changes is important in many settings. For example, when
estimating a possibly asymmetric (nonlinear) interest rate reaction function, regressors such as
output gap or inflation gap may exhibit changes in variance, due to a period of Great Moderation
- see e.g. Stock and Watson (2002) - and these changes may occur at different locations than
those in the parameters of the equation of interest.
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convergence of certain quantities, jointly in parameters and a partial sum index.

Assumption 1. Let vt = (x′t, ut)
′. Then:

(i) {vt} is a piece-wise geometrically ergodic process, i.e. for some finite m∗ > 0

and each sub-sample [T ∗
j−1 +1, T ∗

j ], where T ∗
j = [Tλ∗j ], j = 0, . . . , m∗ +1, λ∗0 = 0 <

λ∗1 < . . . < λ∗m∗ < λ∗m∗+1 = 1, there exists a unique stationary distribution Qj such

that:

sup
A

|P (A|B) −Qj(A)| ≤ gj(B)ρt

with 0 < ρ < 1, A ∈ FT ∗

j

T ∗

j−1
+t, B ∈ FT ∗

j−1

−∞ , F l
k is the σ-algebra generated by

(vk, . . . , vl), and gj(·) is a positive uniformly integrable function. If {xt} does

not contain lagged dependent variables, then the assumption above holds with {vt}
augmented by yt.

(ii) {vt} is a β-mixing process with exponential decay, i.e. there exists N > 0 such

that for B ∈ Fa
−∞,

βt = sup
a
β(Fa

−∞,F∞
a+t) ≤ Nρt

β(Fa
−∞,F∞

a+t) = sup
A∈F∞

a+t

E|P (A|B) − P (A)|

(iii) E[utft(θ)] = 0 for each θ ∈ Θ.

Assumption 2. The function ft(·) is a known measurable function, twice contin-

uously differentiable in θ for each t.

Assumption 3. Let Ft(θ) = ∂ft(θ)/∂θ, p×1 vector and f
(2)
t (θ), a p×p matrix of

second derivatives, i.e. f
(2)
t (θ) = ∂2ft(θ)/(∂θ∂θ

′), with (i, j)th element f
(2)
t,i,j. Also

denote by ‖ · ‖ the Euclidean norm. Then (i) the common parameter space Θ is a

compact subset of Rp; for some s > 2, we have: (ii) supt,θ E|utft(θ)|2s < ∞; (iii)

supt,θ E‖utFt(θ)‖2s <∞; (iv) For i, j = 1, . . . p, supt,θ E‖utf
(2)
t,i,j(θ)‖s <∞ .
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Assumption 4. (i) S(θc) = plim T−1ST (θc) has a unique global minimum at

θc
0; (ii) Let Ai,T (θ0

i ) = Var T−1/2
∑

t∈I0
i−1

utFt(θ
0
i ), for i = 1, . . . , m + 1, and

AT (θ, r) = Var T−1/2
∑[Tr]

t=1 utFt(θ). Then Ai,T (θ0
i )

p→ Ai(θ
0
i ), and AT (θ, r)

p→
A(θ, r), where the two limits are finite positive definite matrices not depending

on T , and the latter convergence holds uniformly in θ × r ∈ Θ × [0, 1]. (iii) Let

Di,T (θ0
i ) = T−1

∑

t∈I0
i−1
Ft(θ

0
i )Ft(θ

0
i )

′ and DT (θ, r) = T−1
∑[Tr]

t=1 Ft(θ)Ft(θ)
′. Then

Di,T (θ0
i )

p→ Di(θ
0
i ) and DT (θ, r)

p→ D(θ, r), where the two limits are finite positive

definite matrices not depending on T , and the latter convergence holds uniformly

in θ × r ∈ Θ × [0, 1]; (iv) E[ft(θ
0
i )] 6= E[ft(θ

0
i+1)], for each i = 1, 2, . . . , m.

Assumption 5. T 0
i = [Tλ0

i ], where 0 < λ0
1 < . . . < λ0

m < 1.

Assumption 1(i) can be interpreted as asymptotic stationarity of {vt} within

regimes, and it allows for breaks in the marginal distribution of regressors and

errors.5 Additionally, it allows for ‘temporary’ nonstationary behavior, which

is especially useful in the presence of lagged dependent variables, in which case

(1) may induce recurring changes in their marginal distribution. In this case,

Assumption 1(i) ensures that even if the process yt starts in a certain regime at

a draw from the nonergodic distribution, it converges to the stable distribution of

that regime, so enough homogeneity in the process is preserved to ensure that a

uniform central limit theorem still holds in that particular regime.6

Assumption 1(ii) ensures that the dependence within and among sub-samples

dies out at the same rate as the ergodicity rate. If m∗ = 0, {vt} admits a Markov

5Note that m∗ as well as λ∗j are taken as given and are not objects of inference here, unless
all breaks in {vt} either are aligned or coincide with the breaks the parameters of (1), depending
on whether {xt} contains lagged dependent variables or not. When the breaks in {vt} are
neither aligned nor coincide with the parameter breaks, knowledge of λ∗

j is irrelevant as far as
asymptotic distribution results are concerned, but may be of course crucial for both getting
consistent estimates of certain asymptotic variances, as well as obtaining the null distribution of
stability tests - see Hansen (2000) and Section 5.

6In the absence of lagged dependent variables, we need piece-wise ergodicity of ft(θ), which
we ensure by augmenting {vt} with yt. Alternatively, one could verify piece-wise ergodicity of yt

on a case by case basis by specifying a functional form for ft(θ); see e.g. Chan and Tong (1986),
Davidson (2002) or Fan and Yao (2003) for certain classes of nonlinear functions of empirical
interest. For our empirical application, we verify ergodicity rather than impose it.
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chain representation and is geometrically ergodic as in Assumption 1(i), then {vt}
is β-mixing with exponential decay, subject to an absolute continuity condition

on the starting values - see e.g. Rosenblatt (1971), Mokkadem (1985) - and this

connection is often exploited in nonlinear GARCH models - see e.g. Carrasco and

Chen (2002). If {vt} is a Markov chain, but m∗ > 0, then piece-wise geometric

ergodicity only implies that the β-mixing coefficients on those sub-samples (thus,

for restricted σ-algebras) are exponentially decaying, and we could allow for slower

decay across sub-samples. For coherence purposes, we stick to Assumption 1.

Assumption 1(iii) also ensures that the model can be estimated via NLS, since

the errors are uncorrelated with the regression function. Assumption 2 and 3

are typical smoothness and boundedness assumptions encountered in nonlinear

models.

Assumption 4 (i) is the usual NLS identification assumption. Assumptions 4

(ii) and (iii) allow substantial heterogeneity in the second moments of regressors

and errors. Assumption 4 (iv) ensures that the parameter shifts across regimes can

be identified. Assumption 5 is a typical assumption for unstable models, allowing

the break-fractions to be fixed and hence the break-points to be asymptotically

distinct.

4 Asymptotic Behavior of Estimates

4.1 Consistency of Break-Fraction Estimates

In Section 2, we described a least-squares based method similar to its linear coun-

terpart in Bai and Perron (1998). To elucidate the connection between linear

and nonlinear settings, we will provide a heuristic discussion first. As Gallant

(1987) shows, NLS estimators have the same form as OLS estimators (in stable

models) up to a first-order approximation. To see that, denote by X the T × q

and f(X, θ) the T × 1 regressors in stable OLS, respectively NLS models, and let
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F = ∂f(X, θ0)/∂ θ, where θ0 is the true parameter value. The similarity between

OLS and NLS can be seen from the equation below:

OLS = (X ′X)−1X ′y; NLS = (F ′F )−1F ′y + op(T
−1/2) (4)

Given this similarity, extending Bai and Perron’s (1998) methodology to non-

linear settings may seem straightforward. However, consistency of parameters

estimates, and related to this, the Taylor expansion needed to obtain a similar for-

mula as in (4) for unstable NLS estimates cannot be legitimately obtained prior

to deriving the consistency and convergence rate of break-fraction estimates. For

the latter we require different proof strategies, but the results are similar to Bai

and Perron (1998) and are summarized in Theorems 1 and 2.

Theorem 1. For each i = 1, . . . , m, let λ̂i be the smallest number such that

T̂i = [T λ̂i]. Then, under Assumptions 1-5, λ̂i
p−→ λ0

i .

For intuition and because they are informative for Assumption 1, we outline

the main steps of the proof here, the details being relegated to the Appendix.

Define ût = yt − ft(θ̂k+1), for t ∈ Îk and dt = ût − ut = ft(θ
0
j+1) − ft(θ̂k+1), for

t ∈ I0
j ∩ Îk, with I0

j = [T 0
j + 1, T 0

j+1] and Îk = [T̂k + 1, T̂k+1] and k, j = 0, 1, . . . , m.

Also, denote ψt(θ) = utft(θ), a mean zero process governed by Assumption 1.

Then:

T−1

T
∑

t=1

utdt = T−1

m
∑

i=0

∑

I0
i

ψt(θ
0
i ) − T−1

m
∑

i=0

∑

Îi

ψt(θ̂i) = I + II.

The proof of consistency rests on showing that I+ II is op(1). While I = op(1)

by a simple law of large numbers, the analysis of II is more complicated as this

term contains not only sums with random endpoints but summands that depend

on the parameter estimators, which in turn depend on the random endpoints. In

showing II, we appeal to the following main result of this paper:
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Lemma 1. Under Assumptions 1-2 and 3(i)-(ii), QT (θ, r) = T−1/2
∑[Tr]

t=1 ψt(θ) =

Op(1) uniformly in θ × r ∈ Θ × [0, 1].

Lemma 1 was shown by Caner (2007) under the assumption that {vt}, and

hence {ψt(θ)}, is a strictly stationary process. In this paper, we relax strict sta-

tionarity over the whole sample to piece-wise ergodicity, in which case even though

QT (θ, r) does not have a unique limit for all r, the uniform boundedness result

in Lemma 1 holds. Our result applies to a large class of nonlinear models in-

cluding smooth transition autoregressive models, other nonlinear autoregressive

models, neural networks, partially linear models, nonlinear GARCH models, with-

out further restrictions on the functional form of ft(θ) besides those imposed in

Assumption 2.

With Lemma 1 in mind and using the definition of the sum of squared residuals,

one can show that:

T−1

T
∑

t=1

d2
t + 2T−1

T
∑

t=1

dtut ≤ 0 (5)

Consistency follows from the following lemma:

Lemma 2. Let Assumption 1-5 hold. Then T−1
∑T

t=1 utdt = op(1); (ii) If λ̂j
p

9 λ0
j

for some j, then lim sup P
[

T−1
∑T

t=1 d
2
t > C

]

> ε, for some C > 0, ε > 0.

Given part (i) of Lemma 2 and inequality (5), it follows that T−1
∑T

t=1 d
2
t =

op(1). The latter is in contradiction with part (ii) of Lemma 2, establishing con-

sistency of break-fraction estimates.

4.2 Rates of Convergence

A necessary next step involves determining the convergence rates of the break-

fraction estimates. The results are summarized below:

Theorem 2. Under Assumptions 1-5, for every η > 0, there exists a finite C > 0

such that for all large T , P (| T (λ̂k − λ0
k) |> C) < η, (k = 1, . . . , m).
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Theorem 2 is useful since the consistency of θ̂c
T can be established provided that

the difference between the estimated and the true objective function is no more

than op(1). This is the case here because Theorem 2 implies that the difference

involves a bounded number of op(1) terms. Given the T -rate convergence of break-

fraction estimates, the limiting distributions of parameter estimates follow from

standard NLS asymptotics:

Theorem 3. Under Assumptions 1-5, θ̂i and θ̂j are asymptotically independent

and T 1/2(θ̂i − θ0
i )

d→ N (0,Φi(θ
0
i )), where Φi(θ

0
i ) = [Di(θ

0
i )]

−1Ai(θ
0
i )[Di(θ

0
i )]

−1

for i, j = 1, . . . , m+ 1, i 6= j.

Theorems 1-3 allow us to estimate the covariance matrices Φi(θ
0
i ) by replacing

Di(θ
0
i ) with D̂i(θ̂i) = T−1

∑T̂i

t=T̂i−1+1
Ft(θ̂i)Ft(θ̂i)

′ and Ai(θ
0
i ) with a heteroskedas-

ticity and autocorrelation (HAC) robust covariance matrix estimator, Âi(θ̂i). If

more structure is placed on the data, then the form of Φi(θ
0
i ) simplifies and thus

so does the form of its consistent estimator. The following example considers an

important special case.

Assumption 6. (i) Assumption 1 holds with m = m∗, T ∗
i = Ti, i = 1, . . . , m if

{vt} does not contain any lagged dependent variables. If vt contains lags of yt, then

Assumption 1 holds with m∗ = m with T ∗
i = Ti, i = 1, . . . , m but for v∗t = {yt, x

∗
t}

instead of {vt}, with x∗t being all regressors besides the lagged dependent variables;

E[ut|xt] = 0 and E[utus|xkxl] = 0 for all t 6= s and all k, l; (ii) The errors are

homoskedastic within regimes: E[u2
t | xt] =

∑m+1
i=1 σ2

i 1{t ∈ I0
i } for all t; (iii)

Let DT,i(θ, r) = T−1
∑T 0

i−1
+[Tr]

t=T 0
i−1

+1
Ft(θ)Ft(θ)

′. Then DT,i(θ, r)
p→ rDi(θ), uniformly

in θ × r ∈ Θ × [0, λ0
i − λ0

i−1], where the latter is a positive definite matrix not

depending on T , with Di(θ) not necessarily the same for all i; (iv) Let AT,i(θ, r)

= Var T−1
∑T 0

i−1
+[Tr]

t=T 0
i−1

+1
ut(θ)Ft(θ). Then AT,i(θ, r)

p→ rAi(θ), uniformly in θ× r ∈
Θ × [0, λ0

i − λ0
i−1], where the latter is a positive definite matrix not depending on

T , with Ai(θ) not necessarily the same for all i.7

7Part (iv) is implicit from (ii)-(iii) given (i), but is used explicitly without (ii) for Theorems
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Corollary to Theorem 3. Under Assumption 6, the covariance matrix in The-

orem 3 simplifies to Φi(θ
0
i ) = σ2

i [Di(θ
0
i )]

−1 and can be consistently estimated by

σ̂2
i [D̂i(θ

0
i )]

−1, where σ̂2
i = (T̂i − T̂i−1)

−1
∑T̂i

t=T̂i−1+1
û2

t , for i = 1, . . . , m+ 1.

Note that Assumption 6 allows for breaks in marginal distributions of regres-

sors, as well as breaks in the error variance that occur at the same time as the

true breaks in model (1).

4.3 Limiting Distribution of Break Dates

Similar work by Bai (1994, 1995, 1997) for linear models derives the non-standard

distributions of change-point estimates. Hall, Han, and Boldea (2010) extend

these results to models that can be estimated via two stage least squares. These

papers find the distribution of the break-point estimators in two cases, fixed and

shrinking magnitude of shifts. In the first case, in general, the distributions in

linear models depend on the underlying distribution of the regressors and errors.

The second case allows for magnitudes of shifts that shrink to zero as the sample

size increases. We consider both cases in turn.

4.3.1 Fixed Magnitude of Shifts

Consider the following data generation process, with one break8:

yt =











f(xt, θ
0
1) + ut t = 1, . . . , k0

f(xt, θ
0
2) + ut t = k0 + 1, . . . , T.

An implicit assumption so far was that the parameter shifts are constant:

Assumption 7. δ = θ0
2 − θ0

1, a fixed number.

8,9.
8The extension to m breaks is immediate because the implied m+ 1 sub-samples are asymp-

totically independent given Assumption 1.
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Denote by ST (k, θ1, θ2) the sum of squared residuals evaluated at a potential

break-point 1 ≤ k ≤ T . Also, let ST (k) = minθ1,θ2
ST (k, θ1, θ2). Then we can

write:

k̂ = argmin
1≤k≤T

argmin
θ1,θ2

V (k, θ1, θ2) (6)

where: V (k, θ1, θ2) = ST (k, θ1, θ2) − ST (k0, θ
0
1, θ

0
2). We obtain a large sample ap-

proximation to this finite distribution, given below:

Theorem 4. Under Assumptions 1-5 and 7, for m = 1,

[

k̂ − k0

]

− argmax
v∈R

J∗(v)
p→ 0,

where J∗(v) is a double-sided stochastic process with J ∗(0) = 0, J∗(v) = J∗
1 (v), v =

−1,−2, . . .; J∗(v) = J∗
2 (v), v = 1, 2, . . .; and

J∗
1 (v) =

k0
∑

t=k0+v+1

[

ft(θ
0
2) − ft(θ

0
1)
]2 − 2

k0
∑

t=k0+v+1

ut

[

ft(θ
0
2) − ft(θ

0
1)
]

J∗
2 (v) = −

k0+v
∑

t=k0+1

[

ft(θ
0
2) − ft(θ

0
1)
]2 − 2

k0+v
∑

t=k0+1

ut

[

ft(θ
0
2) − ft(θ

0
1)
]

The result above is comparable to linear models. If we assume that the errors

in (1) are independent of each other and of the regressors, J ∗(v) becomes a two-

sides random walk with stochastic drifts. If we also impose strict stationarity of

{vt} in Assumption 1(i) with m∗ = 0, the limit is a two-sided Gaussian stochastic

process with negative drift, and it is the same as the limit for shrinking shifts (see

next section).

4.3.2 Shrinking Magnitude of Shifts

Instead of Assumption 7, consider Assumption 8, which imposes parameter shifts

that are shrinking at a certain rate wT :
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Assumption 8. For i = 1, . . . , m, = θ0
i+1,T − θ0

i,T = δiwT , where δi are fixed p× 1

vectors and {wT} is a scalar series such that wT → 0 and T 1/2−γw2
T → ∞ as

T → ∞, for some γ ∈
[

0, 1
2

)

.

This assumption ensures that the asymptotic distributions of the change-point

estimates do not depend on the underlying distributions of {ut, ft(θ)}. Similar

assumptions are inter alia T 1/2−γwT → ∞, for γ ∈
(

0, 1
2

)

in Bai and Perron (1998)

and T 1/2wT/(logT )2 → ∞ in Qu and Perron (2007). Our assumption allows only

shifts of order T−1/4 or larger, but the simulation section discusses that, despite

this, the coverage probability for the confidence intervals is good. Note that under

shrinking magnitudes of shift, the asymptotic properties of parameter and break-

fraction estimates need to be re-derived (see Appendix), with the break-fraction

distribution presented below.

Theorem 5. Let φ = δ′1A2(θ
0
1)δ1/[δ

′
1A1(θ

0
1)δ1] and ξ = δ′1D2(θ

0
1)δ1/[δ

′
1D1(θ

0
1) δ1].

Under Assumptions 1-5, 6(iii)-(iv), and 8, for m = 1,

[δ′1D1(θ
0
1)δ1]

2

δ′1A1(θ0
1)δ1

w2
T [k̂ − k0] ⇒ argmax

v
Z(v)

where Z(v) = J1(−v)−0.5|v|, v ≤ 0, Z(v) =
√
φJ2(v)−0.5ξ|v|, v > 0, J1(v), J2(v)

are two independent standard scalar Gaussian processes defined on [0,∞], and ‘⇒’

denotes weak convergence in Skorohod metric.

Details regarding this process can be found in Bai (1997). The density of

argmaxv Z(v) is characterized by Bai (1997) and he notes that it is not symmetric

if φ 6= 1 or ξ 6= 1. A confidence interval can be constructed as follows. Let

ω̂1,i = (θ̂2 − θ̂1)
′Âi(θ̂1)(θ̂2 − θ̂1), ω̂2,i = (θ̂2 − θ̂1)

′D̂i(θ̂1)(θ̂2 − θ̂1), D̂i(θ) = (T̂i −
T̂i−1)

−1
∑T̂i

t=T̂i−1+1
Ft(θ)Ft(θ)

′; Âi(θ) a HAC estimator of the long-run variance

Ai(θ), and Ĥ = ω̂2
2,1/ω̂1,1. Also, let ξ̂ = ω̂2,2/ω̂2,1 and φ̂ = ω̂1,2/ω̂1,1. Then, a
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100(1 − α)% confidence interval for k̂ is:

( k̂ − [c1/Ĥ] − 1, k̂ + [c2/Ĥ] + 1 ) (7)

where c1 and c2 are respectively the (α/2)th and (1−α/2)th quantiles for argmaxv Z(v)

which can be calculated using equations (B.2) and (B.3) in Bai (1997).

Theorem 5 can be extended to yield confidence intervals for the multiple break

model, because given Assumption 1, the sample segments are asymptotically in-

dependent, allowing for the analysis of the limiting distribution to be carried out

as in the one break case:

Corollary to Theorem 5. Define φi = δ′iAi+1(θ
0
i )δi/[δ

′
iAi(θ

0
i )δi] and ξi = δ′iDi+1(θ

0
i )δi

/[δ′iDi(θ
0
i )δi]. Under Assumptions 1-5, 6(iii)-(iv) and 8,

[δ′iDi(θ
0
i )δi]

2

δ′iAi(θ
0
i )δi

w2
T [k̂ − k0] ⇒ argmax

v
Zi(v)

where Zi(v) = Wi,1(−v) − 0.5|v|, v ≤ 0, Zi(v) =
√
φiWi,2(v) − 0.5ξi|v|, v > 0

and Wi,1(v), Wi,2(v) are independent standard scalar Gaussian processes defined

on [0,∞], for i = 1, . . . , m.

Confidence intervals can thus be obtained by redefining the appropriate quan-

tities in (7) for each break-point estimator.

5 Tests for Multiple Breaks

This section is concerned with finding the number of breaks m, so far treated as

known. To that end, we consider similar tests in Bai and Perron (1998), as well as

equivalent sup Wald tests that are useful when autocorrelation is present. Given

the results in the previous sections, we are able to show that their distribution

carry over from linear settings. The critical values are already tabulated in Bai

and Perron (1998) and Bai and Perron (2003a).
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5.1 Sup F-Tests

The F -tests based on differences in sum of squared residuals can be carried out as

long as Assumption 6 holds. Extensions to serially correlated errors can be found

in Section 5.2.

5.1.1 An F Test of No Breaks Versus a Fixed Number of Breaks

Consider the following hypothesis:

H0 : m = 0 vs. HA : m = k. (8)

where k is a fixed finite positive integer. For this purpose, consider a partition

(T1, . . . , Tk) of the [1, T ] interval such that Ti = [Tλi]. We also need to restrict

each change point to be asymptotically distinct and bounded away from the end-

points of the sample. To this end, define Λε = {λ̄k ≡ (λ1, . . . , λk) : |λi+1 − λi| ≥
ε, λ1 ≥ ε, λk ≤ 1 − ε}, where ε is a small number, in practice ranging from 0.05

to 0.15. As in Bai and Perron (1998), consider a generalized version of the sup

F -type tests proposed in Andrews (1993):

sup
λ̄k∈Λε

FT (k; p) = sup
λ̄k∈Λε

(SSR0 − SSRk)/kp

SSRk/[T − (k + 1)p]
(9)

where SSR0 and SSRk are the sums of squared residuals under the null, respec-

tively under the alternative hypothesis. Let Bp(·) be a p-vector of independent

Brownian motions. The following theorem describes the distribution of the test

under H0:

Theorem 6. Under Assumptions 2-6 and H0 in (8),

sup
λ̄k∈Λε

FT (k; p) ⇒ 1

kp
sup

λ̄m∈Λε

k
∑

i=1

‖λiBp(λi+1) − λi+1Bp(λi)‖2

λiλi+1(λi+1 − λi)
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It is worth noting that the distribution of the sup-F test under H0 above does

not depend on any nuisance parameters. As Bai and Perron (1998) show, the test

above is consistent for its alternative. Of course, if autocorrelation is present, this

F-test should be replaced with a Wald-type test of equality of parameters across

regimes, and we describe such a test in the next section.

5.1.2 A Double Maximum F Test

Next, one can consider testing against an unknown number of breaks m < M ,

M being an upper bound on the number of change-points. To that end, consider

testing:

H0 : m = 0 vs. HA : m unknown, m < M,M fixed. (10)

As Bai and Perron (1998) point out, to test this hypothesis it suffices to take the

maximum over weighted versions of the test statistics described in the previous

section, where the weights are (a1, . . . , aM):

DmaxFT (M, a1, . . . , aM) = max
1≤m≤M

am sup
λ̄m∈Λε

FT (m; p) (11)

The distribution of the test statistic above is:

Corollary to Theorem 6. Under Assumptions 2-6 and H0 in (10),

DmaxFT (M, a1, . . . , aM) ⇒ max
1≤m≤M

am

mp
sup

λ̄m∈Λε

m
∑

i=1

‖λiBp(λi+1) − λi+1Bp(λi)‖2

λiλi+1(λi+1 − λi)

As Bai and Perron (1998) mention, the choice of weights remains an open

question. It may reflect the imposition of some priors on the likelihood of various

number of breaks. One possibility is to set all weights equal to unity. We denote
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this test as:

UDmaxFT (M, p) = max
1≤m≤M

sup
λ̄m∈Λε

FT (m; p) (12)

Note that, for fixed m and break locations, FT (m; p) is the sum of m dependent χ2
p

variables, each divided by m. This scaling by m can be viewed as a prior that, as

m increases, a fixed sample becomes less informative about the hypotheses that it

is confronted with. Since for any fixed p, the critical values of sup(λ̄k)∈Λε
FT (m; p)

decrease as m increases, this implies that if we have a large number of breaks, we

may get a test with low power, because the marginal p-values decrease with m.

One way to keep marginal p-values of the tests equal across m is to use weights

that depend on p and the significance level of the test, say α. More precisely, let

c(p, α,m) be the asymptotic critical value of the test supλ̄m∈Λε
FT (m; p). Define,

as in Bai and Perron (1998), a1 = 1 and am = c(p, α, 1)/c(p, α,m) for 1 < m ≤M .

The test obtained this way is:

WDmaxFT (M, p) = max
1≤m≤M

c(p, α, 1)

c(p, α,m)
× sup

λ̄m∈Λε

FT (m; p) (13)

For consistency of Dmax tests and critical values of both its versions, UDmax

and WDmax, see Bai and Perron (1998).

5.1.3 An F Test of ` Versus `+ 1 Breaks

Consider the following hypothesis of interest:

H0 : m = ` vs. HA : m = `+ 1. (14)

One would ideally construct such a test based on the difference between the sum

of squared residuals for ` breaks and (` + 1) breaks. Considering the different

mismatches in end-points of partial sums obtained this way, it would be hard to

describe the limiting behavior of such tests. An easier strategy involves imposing
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` breaks and testing each segment for an additional break. The test statistic is:

FT (`+ 1|`) = max
1≤i≤`+1

1

σ̂2
i

{

ST (T̂1, . . . , T̂`) − inf
τ∈∆i,`

ST (T̂1, . . . , T̂i−1, τ, T̂i, . . . , T̂`)

}

where:

∆i, ` = {τ : T̂i−1 + (T̂i − T̂i−1)η ≤ τ ≤ T̂i − (T̂i − T̂i−1)η}, and σ̂2
i

p→ σ2
i

The following result is proved in the Appendix:

Theorem 7. Under Assumptions 2-6 and H0 in (14), lim P (FT (` + 1|`) ≤ x) =

G`+1
p,η , where Gp,η is the distribution function of sup

η≤µ≤1−η

‖Bp(µ) − µBp(1)‖2

µ(1 − µ)
.

Note that this test allows for heterogeneity in regressors and errors across

regimes, including breaks in the distribution of errors and/or regressors occurring

simultaneously with the coefficient breaks.

If there are more than ` breaks, but we estimated a model with just ` breaks,

then there must be at least one additional break not estimated. Hence, at least

one of the (`+1) segments obtained contains a nontrivial break-point, in the sense

that both boundaries of this segment are separated from the true break-point by

a positive fraction of the total number of observations. For this segment, the

sup F (1, p) test statistic diverges to infinity as the sample size increases, since this

test is consistent. Then so does FT (`+ 1|`), hence this test is consistent too.

5.2 Tests in the Presence of Autocorrelation

In this section, we provide tests that are robust to types of autocorrelation allowed

by Assumption 1. In particular, we extend the tests in Sections 5.1.1-5.1.3; the

first two tests were developed for linear models in Bai and Perron (1998), while

the last test is proposed for linear models in Hall, Han, and Boldea (2009).
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5.2.1 A Wald Test of Zero Versus a Fixed Number of Breaks

The hypothesis in (8) can be re-written as: H0 : Rk θ
c
0 = 0, where Rk is the con-

ventional matrix such that (Rk θ
c
0)

′ = (θ0′

1 −θ0′

2 , . . . , θ
0′

k −θ0′

k+1). The corresponding

sup Wald test statistic is:

sup
(λ1,...,λk)∈Λε

WT (k; p) = sup
λ̄k∈Λε

θ̂c′(T̄k)R
′
k (Rk Υ̂(T̄k)R

′
k)

−1Rk θ̂
c(T̄k)

where θ̂c′(T̄k) = [θ̂′1(T̄k), . . . , θ̂
′
k+1(T̄k)], Υ̂(T̄k) = diag [Υ̂1(T̄k), . . . , Υ̂k+1(T̄k)], and

Υ̂i(T̄k) = T−1[D̂−1
i (θ̂i(T̄k))] [Âi(θ̂i(T̄k))] [D̂−1

i (θ̂i(T̄k))], recalling that T̄k was a cer-

tain k-partition of the sample interval.

To facilitate the presentation of an intuitive form for the distribution of the

sup Wald tests, rewrite Rk = R̃k ⊗ Ip, with R̃k being the conventional k× (k + 1)

matrix such that (R̃kβ)′ = (β1 − β2, . . . , βk − βk+1), where βi the ith element of

some (k+1)×1 vector β, and Ip is the p×p identity matrix. From the Appendix,

it follows that:

Theorem 8. Under Assumptions 1-5, 6(iii)-(iv) and H0 in (8),

sup
λ̄k∈Λε

WT (k; p) ⇒ sup
λ̄k∈Λε

B̃k(λ̄k),

where: B̃k(λ̄k) = B′
p(k+1) { [C−1

k R̃′
k(R̃kC

−1
k R̃′

k)
−1R̃kC

−1
k ]⊗Ip }Bp(k+1), with Bp(k+1) =

[B′
p(λ1), B

′
p(λ2) − B′

p(λ1), . . . , B
′
p(λk+1) − B′

p(λk)]
′, a p(k + 1) × 1 vector of pair-

wise independent vector Brownian motions of dimensions p, Ck = diag (λ1, λ2 −
λ1, . . . , λk+1 − λk) and λk+1 = 1 by convention.

It can be shown that the H0 distribution of the sup WT (k; p) is a scaled version

of the corresponding distribution of the sup FT (k; p), with scaling factor kp.
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5.2.2 Double Maximum Wald Tests

Given the result in Theorem 8, the DmaxFT (M, a1, . . . , aM) test has its corre-

sponding autocorrelation-robust version:

DmaxWT (M, a1, . . . , aM) = max
1≤m≤M

am

mp
sup

λ̄m∈Λε

WT (m; p) (15)

whose distribution is:

Corollary to Theorem 8. Under Assumptions 1-5, 6(iii)-(iv) and H0 in (10),

DmaxWT (M, a1, . . . , aM) ⇒ max
1≤m≤M

am

mp
sup

λ̄m∈Λε

B̃m(λ̄m)

The scaling mp is used not only to obtain the same asymptotic distributions

as for the corresponding F-tests, but because, in the absence of scaling and equal

weights ai, this test will be equivalent to testing zero against M breaks, since

supλ̄m∈Λε
B̃m(λ̄m) is increasing in m for a fixed p. Given the scaling, the discussion

in Section 5.1.2. about picking am is still valid. Thus, as in Section 5.1.2, we can

use the unweighted version of the test, with am = 1, or the weighted version of

the test, with am = c(p, α, 1)/ c(p, α,m) in (15).

5.2.3 A Wald Test of ` Versus `+ 1 Breaks

For purposes of sequentially estimating the breaks in the presence of autocorrela-

tion, it is desirable to develop a Wald-type test that is designed for testing ` versus

`+ 1 breaks; under `+ 1 breaks, this is equivalent to testing whether, there exists

exactly one i such that θ0
i 6= θ0

i+1, where i ∈ {1, . . . , `+ 1}.
Under H0 in (14), for each index q ∈ {1, . . . , ` + 1} define the corresponding

hypothesis: R∗ [θ0′

q , θ
0′

q+1]
′ = 0, where R∗ = R̃∗⊗Ip and R̃∗ = [1,−1]. For simplicity,

let ϑ0
q = [θ0′

q , θ
0′

q+1]
′ and ϑ̂q(µ) = [θ̂q(µ)′, θ̂q+1(µ)′]′, where we first estimated the

model with ` breaks, imposed them as if they were the true ones, and then defined,
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for each feasible break [Tµ] ∈ ∆q,` - with ∆q,` defined in Section 5.1.3 - parameter

estimates θ̂q(µ), θ̂q+1(µ), for before and after the break.

The appropriate Wald test is:

WT (`+ 1|`) = max
1≤q≤`+1

sup
τ∈∆q,`

WT,`(τ, q)

where WT,`(τ, q) ≡ WT,`(µ, q) = ϑ̂q(µ)′R∗′ [R∗Υ̂∗
q(µ)R∗′ ]−1R∗ϑ̂q(µ), with Υ̂∗

q(µ) =

diag [Υ̂∗
q,1, Υ̂

∗
q,2] with Υ∗

q,j = T [D̂∗
q,j(µ)]−1 Â∗

q,j(µ) [D̂∗
q,j(µ)]−1, (j = 1, 2), and

D̂∗
q,1(µ) = T−1

∑τ
t=T̂q−1+1 Ft,q(µ)Ft,q(µ)′, D̂∗

q,2(µ) = T−1
∑T̂q

t=τ+1 Ft,q+1(µ)Ft,q+1(µ)′,

while Â∗
q,1(µ) and Â∗

q,2(µ) are HAC estimators of the limiting variances of respec-

tively T−1/2
∑τ

t=T̂q−1+1 ut,q(µ)Ft,q(µ), T−1/2
∑T̂q

t=τ+1 ut,q+1(µ)Ft,q+1(µ), with Ft,s(µ) =

Ft(θ̂s(µ)) and ut,s(µ) = ut(θ̂s(µ)), (s = q, q+1). Even though there exist estimates

of the limiting variance of Υ̂∗
q(µ) that are easier to compute, for increasing the

power of the test, we consider those that would be more relevant if the alternative

were true.

Note that this test is useful for performing sequential estimation of breaks in

the presence of autocorrelation. Not surprisingly, we find that the distribution of

the above Wald test is the same as that of the corresponding F-test, but holds

under more general assumptions:

Theorem 9. Under Assumptions 1-5, 6(iii)-(iv) and H0 in (14), one can write

limP (WT (`+1|`) ≤ x) = G`+1
p,η , where Gp,η is the cdf of sup

η≤µ≤1−η

‖Bp(µ) − µBp(1)‖2

µ(1 − µ)
.

5.3 Sequential Estimation of the Number of Breaks

Using the test statistics presented above, we can suggest a simple sequential

method for obtaining an estimator, m̂T say, of the number of breaks.

On the first step of the sequential estimation, use either supFT (1; p), supWT (1; p)

or Dmax FT (M, p), Dmax WT (M, p), to test the null hypothesis that there are

no breaks. If this null is not rejected then set m̂T = 0; else proceed to the next
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step. On the second step, use FT (2|1) or WT (2|1) to test the null hypothesis of

one against two breaks. If FT (2|1) or WT (2|1) does not reject, then m̂T = 1; else

proceed to the next step. On the `th step, by means of FT (`+1|`) or WT (`+1|`),
test the null hypothesis of ` breaks against `+1 breaks, and if the hypothesis is not

rejected, then m̂T = `; else proceed to the next step. This sequential procedure

stops when M , the ceiling on the number of breaks, is reached. If all statistics in

the sequence are significant then the conclusion is that there are at least M breaks.

Note that this is not a proper sequential procedure, because with each sequential

test, the breaks are re-estimated under the null with a global procedure.

6 Simulation Results

There are some clear computational advantages of the Bai and Perron (2003b)

method for detecting breaks. As Bai and Perron (2003b) show, even when the

number of change-points is large, we need not search over all possible partitions

to find the true break. Imposing a minimum length on the segments in each

partition, one need not perform more than T (T + 1)/2 operations to find the

estimated partition.

Here, we implement an algorithm for finding breaks similar to Bai and Per-

ron (2003b). Along with nonlinearity additional issues arise, related to having no

closed form for updating the sum of squares and parameter estimates when one

more observation is present. Although approximate updating procedures such as

an unscented Kalman filter can be useful, for simplicity we recalculate in each

segment of the T (T + 1)/2 new NLS estimates and sum of squares through global

minimization of the concentrated sum of squares by a quasi Gauss-Newton al-

gorithm.9 As starting values for the nonlinear parameters, we use grid searches,

Taylor expansions of up to 7th order, as well as interpolations suggested in Gallant

9The Levenberg-Marquardt algorithm provides similar results.
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(1987) and Bates and Watts (1988).

We pick data generation processes (DGPs) with m = 1, 2, and a nonlinear

function used in Gallant (1987) and Bates and Watts (1988):

f(xt, θ) = θ1
i + θ2

i exp (−xt θ
3
i ), with t ∈ I0

i , for i = 1, . . . , m+ 1

The true data was generated such that xt ∼ N(0, 1), ut ∼ N(0, 1) and X ⊥ U .10

Table 1: Relative rejection frequencies of F-statistics

supF seq F UDmax F

DGP T
0:1 0:2 2:1 3:2

100 .05 .05 .01 0 .05
1

200 .05 .05 .01 0 .05

100 1.00 1.00 .05 0 1.00
2

200 1.00 1.00 .03 0 1.00
100 1.00 1.00 .04 0 1.00

3
200 1.00 1.00 .03 0 1.00
100 .96 .92 .04 0 .96

4
200 1.00 1.00 .04 0 1.00

100 .97 1.00 1.00 .02 1.00
5

200 1.00 1.00 1.00 .01 1.00
100 .94 1.00 .99 .02 1.00

6
200 1.00 1.00 1.00 .01 1.00

Notes: sup F denotes the statistic SupFT (k; 1) and the second tier column heading
under it denotes 0 : k; seq F denotes the statistic FT (`+1|`) and the second tier col-
umn beneath it denotes `+1 : `; UDmaxF denotes the statistic UDmaxFT (5, 1).

Tables 1-3 are reported for 1000 simulations, an end-of-samples cut-off ε =

15% of the sample size, and 6 DGPs, with m = 0, 1, 2. Let ιj be a j-vector of

ones. We pick DGP 1 : m = 0, θc
0 = ι3; DGP 2, 3, 4 : m = 1, θc′

0 = (1, 2) ⊗ ι′3,

(1, 1.5)⊗ ι′3 and (ι′3; (2, 1, 1)); DGP 5, 6 : m = 2, θc′

0 = (1, 2, 1)⊗ ι′3, (1, 1.5, 1)⊗ ι′3.

The empirical coverage of the break-point 99%, 95%, 90% confidence intervals are

almost 100% in each case. This is consistent with break-point estimates coinciding

with the true break-points or being just one observation away. Table 1 shows very

10We also ran simulations with xt ∼ N(1, 1). The results are similar and are available upon
request.
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Table 2: Empirical distribution of the estimated number of breaks

supF UDmax F

DGP T
0 1 2 3,4,5 0 1 2 3,4,5

100 .95 .05 0 0 .95 .05 0 0
1

200 .95 .05 0 0 .95 .05 0 0

100 0 .95 .05 0 0 .95 .05 0
2

200 0 .97 .03 0 0 .97 .03 0
100 0 .96 .04 0 0 .96 .04 0

3
200 0 .96 .04 0 0 .96 .04 0
100 .04 .93 .03 0 .04 .93 .03 0

4
200 0 .96 .04 0 0 .94 .04 0

100 .03 0 .95 .02 0 0 .98 .02
5

200 0 0 .99 .01 0 0 .99 .01
100 0 .96 .04 0 0 .96 .04 0

6
200 0 0 .99 .01 0 0 .99 .01

Notes: The blocks headed sup F or UDmaxF give the empirical distribution of
m̂T , obtained via the sequential strategy using SupFT (1; 1) or UDmaxFT (5, 1)
on the first step with the maximum number of breaks set to five.

good size and power properties of sup F tests; they improve as the sample size

increases, for both m = 1, m = 2, and so do the properties of the estimate for

number of breaks m̂T in Table 2.

Parameter confidence interval coverages are reported in Table 3 and are in all

cases close to the nominal size. Overall, our methodology seems to work well in

finite samples.

7 An Application to the US Interest Rate Reac-

tion Function

Several recent theoretical and empirical studies question the assumptions of linear-

ity and/or parameter stability underlying (US) monetary policy rules, see interalia

Schaling (2004), Dolado, Maŕıa-Dolores, and Ruge-Murcia (2004), Bec, Salem, and

Collard (2002), Kim, Osborn, and Sensier (2005), Kesriyeli, Osborn, and Sensier

(2006) and Florio (2006).
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Table 3: Empirical coverage of parameter confidence intervals

Confidence Intervals

θ0
1 θ0

2 θ0
3DGP T Regime

99% 95 % 90 % 99% 95 % 90 % 99% 95 % 90 %

100 1st regime .99 .95 .90 .97 .93 .89 .98 .94 .89
2nd regime .99 .95 .89 .98 .95 .89 .98 .95 .89

2
200 1st regime .98 .94 .89 .99 .93 .88 .99 .94 .88

2nd regime .98 .94 .89 .99 .93 .88 .99 .94 .88
100 1st regime .99 95 .90 .97 .93 .89 .99 .94 .89

2nd regime .99 .95 .89 .98 .95 .89 .98 .95 .89
3

200 1st regime .98 .94 .89 .98 .94 .89 .99 .94 .90
2nd regime .99 .94 .89 .98 .94 .89 .98 .94 .90

100 1st regime .98 .94 .87 .96 .91 .86 .98 .93 .86
2nd regime .98 .92 .86 .96 .92 .87 .96 .91 .85

4
200 1st regime .98 .94 .88 .97 .93 .88 .99 .94 .88

2nd regime .98 .93 .89 .98 .94 .89 .98 .93 .88

100 1st regime .96 .91 .87 .94 .89 .85 .97 .92 .87
2nd regime .96 .91 .87 .98 .93 .86 .97 .92 .86
3rd regime .99 .94 .90 .97 .93 .89 .98 .93 .88

5
200 1st regime .98 .94 .89 .99 .93 .88 .99 .94 .88

2nd regime .98 .94 .89 .98 .93 .89 .98 .93 .89
3rd regime .98 .94 .90 .98 .94 .90 .98 .94 .89

100 1st regime .96 .91 .86 .93 .89 .84 .97 .91 .87
2nd regime .95 .88 .82 .96 .90 .84 .96 .90 .84
3rd regime .98 .94 .89 .97 .93 .89 .98 .93 .88

6
200 1st regime .97 .94 .89 .96 .92 .88 .98 .93 .86

2nd regime .98 .93 .87 .97 .93 .89 .98 .93 .89
3rd regime .98 .94 .90 .98 .94 .89 .98 .94 .89

Notes: The column headed 100a% gives the percentage of times the 100a% confi-
dence intervals for each parameter contains its true value.

In most of these studies, nonlinearity is modeled via switching regimes, thresh-

old behavior or as a smooth transition between (linear) regimes associated with

different inflation gaps (deviations of inflation from target), output gaps (devia-

tions of output from their potential) or both.

Threshold models are largely viewed today as a special case of smooth transi-

tion models, when the smoothness parameter of the transition function approaches

infinity. Similarly, change-point models are viewed as a special case of smooth

transition models with the state variable time and the smoothness parameter ap-

proaching infinity, see e.g. van Dijk, Teräsvirta, and Franses (2002). However,
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such a treatment is not desirable, since it is difficult to develop estimation and

inference theory in the presence of parameters approaching infinity; even if these

parameters are not the main object of inference, it is likely that their estimation

will affect the estimation of other parameters of interest. While this discussion

highlights the importance of distinguishing between breaks and time transitions

with smoothness parameters close to infinity, it does not preclude the treatment of

smooth and sudden change jointly. Our methodology allows for such a treatment,

since a large class of smooth transition models are estimated via NLS and are

thus nested by our model. Structural stability in these models can be assessed

via the testing strategies we proposed. If there is evidence of change points, our

methodology allows for modeling them jointly with nonlinearity.

To illustrate this point, we revisit the nonlinear model of the US federal funds

rate reaction function considered in Kesriyeli, Osborn, and Sensier (2006). Unlike

the tests proposed by Eitrheim and Teräsvirta (1996), our tests are designed specif-

ically against the alternative of structural change, providing further evidence of

parameter nonconstancy in the model employed by Kesriyeli, Osborn, and Sensier

(2006).

Following evidence of nonlinearity and structural change, Kesriyeli, Osborn,

and Sensier (2006) use monthly data from 1984 : 1-2002 : 12 to model the US

interest rate reaction function, employing the following two-transition model:

rt = x′tβ1 + x′tβ2G1(∆3rt−1; γ1, c1) + x′tβ3G2(t; γ2, c2) + ut

with rt is the federal funds rate,x′t = (1, rt−1, rt−2, πgt−1, πgt−2, πgt−3, ogt−1, ogt−2,

∆wcpt−3), where πgt and ogt denote inflation gap, respectively output gap, while

∆wcpt stands for the change in the world commodity prices at time t.11 Here,

G1(∆3rt−1; γ1, c1) is a logistic transition function associated with a three month

11For details on how these series are constructed at a monthly frequency, see Kesriyeli, Osborn,
and Sensier (2006).
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change in the interest rate, i.e. st,1 = ∆3rt−1 = rt−1−rt−4, and G2(t; γ2, c2) another

logistic transition function associated with time, i.e. st,2 = t:

Gi(st,i; γi, ci) = {1 + exp[−γi(st,i − ci) / σ̂(st,i)]}−1, i = 1, 2

This model is routinely estimated via NLS, and the smoothness Assumption 3

implicitly holds. The properties of a logistic transition function ensure that the

moment conditions in Assumption 4 are satisfied, as long as the implied moments of

regressor and error distribution exist. Assumptions prone to violation are possibly

Assumptions 1(i),(ii), 6. Potential violations are discussed at the end of this

section.

In this model, Kesriyeli, Osborn, and Sensier’s (2006) obtain a large estimate of

the time smoothness parameter (γ2 = 1082, t-value 0.02) which could be indicative

of a break rather than a smooth transition. This is confirmed by a time-transition

function that lasts only one period. Hence, there is scope to use our tests to detect

potential change-points. However, since Kesriyeli, Osborn, and Sensier’s (2006)

potential ‘break’ occurs at the beginning of the sample, we test for breaks by

enlarging the sample to 1982 : 7−2002 : 12.12 Because of adding observations, the

model specification may change, an issue which we address by step-wise recreating

the model specification strategy in Kesriyeli, Osborn, and Sensier (2006).

This strategy involves first selecting a linear model, then assessing the adequacy

of this specification by performing on this model separate tests for parameter

instability and neglected nonlinearity, and finally using the results from these

tests to inform their final model specification. Following the same steps, we start

with a linear stable model specification, and by backward selection via AIC and

12Our dataset starts at 1982 : 3, but after constructing different lags we lose 4 periods. We
choose to cut the sample where Kesriyeli, Osborn, and Sensier (2006) do for minimal compara-
bility purposes.
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BIC arrive at the following model:

rt = x′tβ + ut, with x′t = (1, rt−1, rt−2, ogt−1, ogt−3, πgt−2)

Bai and Perron’s (1998) tests indicate one possible break, at 1984:9, evidence

supported by a UDmax test (UDmax = 34.855) significant at the 1% level but

not by a sup F test (sup FT (1; 6) = 16.679), insignificant at the 10% level. On

the other hand, tests against nonlinearity proposed in Luukkonen, Saikkonen, and

Teräsvirta (1988) indicate possible nonlinearity related to rt−1, rt−2, πgt−2, rt−4. A

single-transition model with rt−4 fits worse than one with rt−1 and ∆3rt−1 as a state

variable. The latter state variable is justified not only by tests and grid searches,

but also by the intuition that the Fed should reacts differently to previous positive

or negative changes in interest rates on a quarterly (thus smoother) basis.

Thus, with a slightly different model specification, we obtain the same state

variable as in Kesriyeli, Osborn, and Sensier (2006), but find evidence of three

breaks:

rt = x′tβ
(i)
1 + x′tβ

(i)
2 G1(∆3rt−1; γ

(i)
1 , c

(i)
1 ) + ut, t ∈ [Ti−1 + 1, Ti] i = 1, . . . , 4

(16)

with x′t = (1, rt−1, rt−2, ogt−1, ogt−3, πgt−2). This evidence is supported by the

instability tests in Table 4, reported for a cut-off ε = 0.10.

Table 4: Stability Tests and Critical Values

α p × Sup F 0 : 1 Sup F 1|0 Sup F2 |1 Sup F 3|2 Sup F 4|3
Test Statistics 189.154 189.154 52.657 46.255 15.420

Critical Values* 0.01 39.744 41.927 43.293 44.023 44.742
Conclusions 0.01 reject reject reject reject don’t reject

*Critical values for p = 14 for ε = 0.10 and α = 0.01 are taken from Hall and Sakkas (2010).

The Akaike information criterion (AIC) in Table 5 confirms that a model with

one transition and three breaks in our setting is preferred to a two-transition model
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Table 5: AIC and BIC of the Estimated Models
Model SS AIC BIC
Linear 18.154 -2.558 -2.471

STAR One Transition, m = 0 16.771 -2.572 -2.372
STAR Two Transitions∗, m = 0 11.640 -2.872 -2.559

STAR One Transition, m = 1 8.977 -3.067 -2.639
STAR One Transition, Restricted∗∗, m = 1 11.707 -2.866 -2.553

STAR One Transition, m = 2 7.007 -3.201 -2.574
STAR One Transition, m = 3 5.585 -3.305 -2.465

∗The second state variable is time ∗∗Restriction refers to the transition function parameters not breaking across
regimes.

Table 6: Estimates for Two and Three Breaks
1982:7-1984:8 1984:9-1986:10 1986:11-1989:3 1989:4-2002:12 1986:11-2002:12

int 11.289∗∗∗ 7.332∗∗∗ -0.686∗∗∗ -0.313∗∗∗ -0.210∗∗∗

rt−1 -0.297∗∗∗ -0.164 1.746∗∗∗ 1.194∗∗∗ 1.379∗∗∗

rt−2 0.022 0.103 -0.617∗∗∗ -0.164∗∗∗ -0.349∗∗∗

ogt−1 0.246∗∗∗ 0.239∗∗∗ 0.312∗∗∗ 0.037∗∗∗ 0.079∗∗∗

ogt−3 -0.074 0.821∗∗∗ -0.300∗∗∗ -0.068∗∗∗ -0.110∗∗∗

igt−2 0.711∗∗∗ -0.761∗∗∗ -0.145∗∗∗ -0.047∗∗∗ -0.049∗∗∗

G1 × int -11.666∗∗∗ -5.424∗∗∗ 0.073∗∗∗ 0.934∗∗∗ 1.268∗∗∗

G1 × rt−1 1.039∗∗∗ 2.345∗∗∗ -0.396∗∗∗ -0.417∗∗∗ -0.546∗∗

G1 × rt−2 0.301∗∗∗ -1.535∗∗∗ 0.339∗∗∗ 0.305∗∗∗ 0.363
G1 × ogt−1 -0.341∗∗∗ -0.556∗∗∗ -0.737∗∗∗ 0.071∗∗∗ -0.212∗∗

G1 × ogt−3 0.161 -0.646∗∗∗ 0.768∗∗∗ 0.010∗∗∗ 0.451∗∗∗

G1 × igt−2 -0.576∗∗∗ 1.146∗∗∗ 0.233∗∗∗ 0.110∗∗∗ 0.195∗∗∗

γ1 11.798 5.530∗∗∗ 6.805∗∗∗ 1.941∗∗∗ 1.729∗

c1 -0.542∗∗∗ -0.381∗∗∗ 0.474∗∗∗ 0.140∗∗∗ 0.689∗∗∗

with no breaks, as well as to a linear model.13 The global estimates of the three

breaks are located at 1984:8, 1986:10 and 1989:3, all with tight confidence bounds

of only one-period before and after.

Residual and residual autocorrelation plots do not show evidence of autocor-

relation (Ljung-Box test p-value: 0.1649) or unit roots (Augmented Dickey-Fuller

test p-value: 0.0001). Thus, the model in (16) admits a Markov-chain representa-

tion, and Assumption 1(i) is satisfied if {yt, xt, ut} is assumed ergodic within each

regime.14 Hence, Assumption 1 is plausible.

13According to the Bayesian information criterion (BIC), one would pick only one break, but
this is in contrast to both AIC and the outcome of the stability tests, so we pick a model with
three breaks.

14Ergodicity is a common assumption for smooth transition models. For sufficient conditions,
see e.g. Chan and Tong (1986) and Davidson (2002); these sufficient conditions are satisfied here
for the first two regimes with a slight violation for the third and fourth. If one would be more
conservative with the sequential testing, one would note that the supF (4|3) statistic is close to
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Moreover, Bai and Perron’s (1998) tests on the squared residuals, UDmax =

4.375; sup F (1|0) = 1.555, do no reject at the 10% level, indicating no breaks

in variance, and there does not seem to be much evidence of heteroskedastic-

ity. Hence, Assumption 6(i)-(ii) seems to hold. On the other hand, Assumption

6(iii)-(iv), could be violated, e.g. if, according to Hansen (2000), there are breaks

in the marginal distribution of the regressors. Any arguments related to Vol-

cker’s disinflation inducing a break in the mean of the inflation gap are refuted

by UDmaxFT (5, 6) = 1.244, sup FT (1 : p) = 0.044, both insignificant at the 10%,

perhaps due to few observations before disinflation was completed. There could

be breaks in the volatility of output gap, consistent with the ’Great Moderation’

dated by Stock and Watson (2002) around 1984 (even though these are breaks in

conditional variances of an AR process modeling output growth). Since this po-

tential break is at the beginning of the sample and it does not affect consistency of

break-point estimates, the power of tests is not affected; the size of the sequential

test F (3|2) may be affected, but one can run Wald tests instead.15

Table 6 shows the estimates we obtain in the various regimes. The conclusions

of the period 1989:4-2002:12 are similar to Kesriyeli, Osborn, and Sensier’s (2006)

findings with respect to different regimes, since we obtain a similar threshold.

However, we find evidence of more than one break; additional breaks are suggested

in Kesriyeli, Osborn, and Sensier (2006) by an Eitrheim and Teräsvirta (1996)

parameter constancy test p-value of 0.042, but our sequential sup F -test, designed

specifically against for breaks, detects them at the 1% level. We find that the first

break occurs close to the one found in Kesriyeli, Osborn, and Sensier’s (2006), and

can be linked to recovery from the deep recession of 1981-1982, start of Reagan’s

second term and Volcker’s era of disinflation. We also find that the period 1989:4-

the 1% critical value boundary, so one could pick three regimes instead of four. From Table 6,
one can note from the small smoothness parameter that the third regime is close to linear; in
the latter case, ergodicity is no longer of concern.

15Due to invertibility issues in the setting of our application, the Wald tests are not reported.
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2002:12, an Alan Greenspan period, favors smoother transition periods.

8 Conclusions

In this paper, a nonlinear method for estimating and testing in NLS models with

multiple breaks is developed. In our framework, the break-dates are estimated si-

multaneously with the parameters via minimization of the residual sum of squares.

Using nonlinear asymptotic theory, we derive the asymptotic distributions of both

break-point and parameter estimates and propose several instability tests. Our

estimation procedure is similar to that of Bai and Perron (1998), but the proofs

are different since they require empirical process theory results developed in this

paper, results that may be useful in other settings as well. By construction, our

method nests nonlinearities and breaks, and is useful in practice both for testing

for breaks in the presence of nonlinearity, and for jointly modeling breaks and

nonlinearity, should evidence for both be present.

Our method can be a powerful tool for empirical macroeconomic modeling.

Our empirical illustration shows how to test for breaks in the context of nonlin-

ear models such as the ones used for modeling the federal funds rate. If there is

evidence for breaks, we show that imposing a break rather than a time-transition

model may not lead to the same conclusions. Moreover, imposing a break - if justi-

fied - leads to computational ease and more accurate estimates when compared to

estimating a smoothness parameter approaching infinity. The empirical usefulness

of our model is not limited to testing for breaks in smooth transition models, but

can be equally applied to other settings such as partially linear models, functional

coefficient autoregressive models, nonlinear GARCH models.

Many other issues can be important for modeling nonlinearity jointly with

breaks. Important macroeconomic applications that use structural equation mod-

els with endogeneity can be dealt with by extending the methodology in the current
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paper to multivariate, more general nonlinear models, as well as to partial struc-

tural change. On the other hand, developing primitive conditions along with new

uniform convergence results for more general nonlinear time series processes which

are close to stationary but not necessarily strictly stationary or geometrically er-

godic is certainly of interest, and we leave this to future research.
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9 Appendix

This Appendix only contains a complete proof of Lemma 1. For the rest, an

outline is given; for complete proofs, see Supplemental Appendix, available from
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the authors upon request. As a matter of notation, we will use ‖ · ‖ to denote

the Euclidean vector norm, as well as the matrix norm ‖A‖ = [tr(A′A)]1/2, and

let ψt(θ) = utft(θ), respectively Ψt(θ) = utFt(θ).

Proof of Lemma 1.

For simplicity, we only consider the cases m∗ = 0 and m∗ = 1; the extension to

m∗ > 1 is immediate and omitted for simplicity.

Case m∗ = 0. In this case, we need to prove uniform tightness in θ× r of properly

scaled partial sums of geometrically ergodic β-mixing processes, i.e. we need to

show that for any ε > 0, there exists a ηε > 0 and a Tε > 0 such that for any

T ≥ Tε, we have:

P



sup
θ×r

∣

∣

∣

∣

∣

∣

1√
T

[Tr]
∑

t=1

ψt(θ)

∣

∣

∣

∣

∣

∣

> ηε



 < ε (17)

Since this result was shown under Assumptions 1,2,3(i),(ii) by Caner (2007) for

strictly stationary processes16, our strategy is to show that the difference between

the distribution function of 1√
T

∑[Tr]
t=1 ψt(θ) started at ψ0(θ) and the distribution

function of the same process started at the stationary distribution is op(1) uni-

formly in θ× r. To that end, define a sequence {bT } of positive integers such that

bT → ∞ and bT /
√
T → 0. Then P

(

supθ×r

∣

∣

∣

1√
T

∑[Tr]
t=1 ψt(θ)

∣

∣

∣
> ηε

)

is less than:

P

(

sup
θ

∣

∣

∣

∣

∣

1√
T

bT
∑

t=1

ψt(θ)

∣

∣

∣

∣

∣

>
ηε

2

)

+ P



sup
θ×r

∣

∣

∣

∣

∣

∣

1√
T

[Tr]
∑

t=bT +1

ψt(θ)

∣

∣

∣

∣

∣

∣

>
ηε

2





≤ P

(

sup
θ

∣

∣

∣

∣

∣

1√
T

bT
∑

t=1

ψt(θ)

∣

∣

∣

∣

∣

>
ηε

2

)

+Q



sup
θ×r

∣

∣

∣

∣

∣

∣

1√
T

[Tr]
∑

t=bT +1

ψt(θ)

∣

∣

∣

∣

∣

∣

>
ηε

2





16Caner (2007) also indicates that the weak limit of 1√
T

∑[Tr]
t=1 ψt(θ) is a Kiefer process in θ×r

under an appropriate semi-metric.
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+







∣

∣

∣

∣

∣

∣

P



sup
θ×r

∣

∣

∣

∣

∣

∣

1√
T

[Tr]
∑

t=bT +1

ψt(θ)

∣

∣

∣

∣

∣

∣

>
ηε

2



−Q



sup
θ×r

∣

∣

∣

∣

∣

∣

1√
T

[Tr]
∑

t=bT +1

ψt(θ)

∣

∣

∣

∣

∣

∣

>
ηε

2





∣

∣

∣

∣

∣

∣







= I + II + {III}

respectively, where here Q denotes the distribution started at a stationary draw.

Now, I ≤ P (supθ,t
bT√
T
|ψt(θ)| > ηε

2
) = o(1), uniformly in θ×r, by Assumption 3(ii).

On the other hand,

II ≤ Q

(

sup
θ

∣

∣

∣

∣

∣

1√
T

bT
∑

t=1

ψt(θ)

∣

∣

∣

∣

∣

>
ηε

4

)

+Q



sup
θ×r

∣

∣

∣

∣

∣

∣

1√
T

[Tr]
∑

t=1

ψt(θ)

∣

∣

∣

∣

∣

∣

>
ηε

4





≤ Q

(

sup
θ,t

bT√
T
|ψt(θ)| >

ηε

4

)

+ ε = o(1) + ε

where this holds for any ε > 0 and T ≥ Tε, by Caner (2007), Lemma 1, pp.36, while

the o(1) term is uniform in θ × r. It remains to show that III = o(1) uniformly

in θ × r. To that end, in Assumption 1(i), let µ(A) = |P (A|B) −Q(A)|. Since P

and Q are probability measures, P −Q is a signed measure µ∗, and by the Hahn-

Jordan decomposition, there exist two positive measures µ+
∗ and µ−

∗ such that µ∗ =

µ+
∗ −µ−

∗ . Hence, µ = |µ∗| = µ+
∗ +µ−

∗ . Since µ(∅) = 0 it follows that µ is a measure,

therefore sub-additivity holds. Let E1 =
[

supθ×r

∣

∣

∣

1√
T

∑[Tr]
t=bT +1 ψt(θ)

∣

∣

∣
> ηε

2

]

, E2 =
[

supr

∑[Tr]
t=bT +1 supθ|ψt(θ)| > ηε

√
T/2

]

, E3 = [
∑T

t=bT +1 supθ|ψt(θ)| > ηε

√
T/2] and

E4 = ∪T
t=bT +1

[

supθ|ψt(θ)| > ηε

√
T/[2(T − bT )]

]

. Letting the superscript c denote

the complement of a set, we have:

E1 = (E1 ∩ E2) ∪ (E1 ∩ Ec
2) = E1 ∩ E2 ⊆ E2 = E3 = (E3 ∩ E4) ∪ (E3 ∩ Ec

4)

= E3 ∩ E4 ⊆ E4

Using the sub-additivity property of µ, and noting that At =
[

supθ|ψt(θ)| > ηε

√
T

2(T−bT )

]
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∈ F∞
t is an event started at B ∈ F 0

−∞, we have:

III = µ(E1) ≤ µ(E4) = µ

(

T
⋃

t=bT +1

[

sup
θ
|ψt(θ)| >

ηε

√
T

2(T − bT )

])

≤
T
∑

t=bT +1

µ

(

sup
θ
|ψt(θ)| >

ηε

√
T

2(T − bT )

)

≤
T
∑

t=bT +1

|P (At|B) −Q(At)| ≤ g(B)ρbT
1 − ρT−bT

1 − ρ
= o(1)

uniformly in θ × r, where g(·) is the common value of gj(·) for m∗ = 0, and

where the last inequality and the last equality follow from Assumption 1(i) since

supθ|ψt(θ)| is also geometrically ergodic due to continuity of ft(·) by Assumption

2. Hence, III = o(1) uniformly in θ × r, which completes the proof of Lemma 1

a) for the case m∗ = 0.

Casem∗ = 1. By similar arguments as form∗ = 0, P
(

supθ×r

∣

∣

∣

1√
T

∑[Tr]
t=1 ψt(θ)

∣

∣

∣
> ηε

)

is less than:

P
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sup
θ

∣
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∣

∣

∣
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bT
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ψt(θ)

∣

∣

∣

∣

∣
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2

)

+ P


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θ×r
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∣

∣

∣

∣

∣
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T

[Tr]
∑

t=bT +1

ψt(θ)

∣

∣

∣

∣

∣

∣

>
ηε

2





≤ P



 sup
θ×(0≤r≤λ∗

1
)

∣

∣

∣

∣

∣

∣
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T

[Tr]
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ψt(θ)

∣

∣

∣

∣

∣

∣

>
ηε

2



+ P



 sup
θ×(λ∗

1
<r≤1)

∣

∣

∣

∣

∣

∣
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T

[Tr]
∑

t=bT +1

ψt(θ)

∣

∣

∣

∣

∣

∣

>
ηε

2





+ o(1) ≤ IV + V + o(1)

with the o(1) term not depending on θ × r. Also,

IV ≤ o(1) +Q1



 sup
θ×(0≤r≤λ∗

1
)

∣

∣

∣

∣

∣

∣
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[Tr]
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t=bT +1

ψt(θ)
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∣

∣

∣

∣

∣

>
ηε

2





≤ o(1) +Q1

(

bT√
T

sup
θ

|ψt(θ)| >
ηε

4

)

+Q1



 sup
θ×(0≤r≤λ∗

1)

∣

∣

∣

∣

∣

∣

1√
T

[Tr]
∑

t=1

ψt(θ)

∣

∣

∣

∣

∣

∣

>
ηε

4




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IV ≤ o(1) +Q1



 sup
θ×(0≤r≤λ∗

1)

∣

∣

∣

∣

∣

∣

1√
T
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∣

∣

∣
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∣
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4


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ψt(θ)

∣

∣

∣

∣

∣

∣

>
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8



 (18)

We also have:

V ≤ P



sup
θ

∣

∣

∣

∣

∣

∣

1√
T

[Tλ∗
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∑
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∣

∣

∣

∣

∣

∣
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4


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
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∣

∣

∣

∣

∣

∣

1√
T
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∑

t=[Tλ∗

1 ]+1

ψt(θ)

∣

∣

∣

∣

∣

∣

>
ηε

4





= V I + V II (19)

By the results from the case m∗ = 0,

V I ≤
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∣

∣

∣

∣

>
ηε

4
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sup
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∣
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T
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ψt(θ)

∣

∣

∣

∣

∣
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ηε

8

)
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

sup
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ψt(θ)
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∣
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8
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sup
θ

|ψt(θ)| >
ηε

8

)
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

sup
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ψt(θ)
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∣
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ψt(θ)

∣

∣

∣

∣

∣

∣

>
ηε

8




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

 sup
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∣

∣

∣

∣

∣
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1√
T

[Tr]
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ψt(θ)

∣

∣

∣

∣

∣

∣

>
ηε

8



 (20)
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Also, by similar arguments as to the case m∗ = 0,

V II ≤ o(1) +Q2



 sup
θ×(λ∗

1<r≤1)

∣

∣

∣

∣

∣

∣

1√
T

[Tr]
∑

t=[Tλ∗

1 ]+1

ψt(θ)

∣

∣

∣

∣

∣

∣

>
ηε

4


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

 sup
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∣
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∣

∣

∣

∣

1√
T

[Tr]
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1 ]+1

ψt(θ)

∣

∣

∣

∣

∣

∣
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ηε

8



 (21)

Putting (18)-(21) together, it follows that P
(

supθ×r

∣

∣

∣

1√
T

∑[Tr]
t=1 ψt(θ)

∣

∣

∣
> ηε

)
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o(1) + 2Q1
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ψt(θ)

∣

∣

∣

∣

∣

∣

>
ηε

8


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θ×(λ∗
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∣
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ηε

8


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
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2Q1
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ψt(θ)

∣

∣
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ηε
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

 ;Q2


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∣
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∣
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ψt(θ)
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∣

∣

∣

∣

∣

>
ηε

8











+ o(1) < o(1) + 2 max{2ε1/2, ε2} = o(1) + ε

where the o(1) term does not depend on ε, θ, r and the last inequality holds for any

ε1 > 0, ε2 > 0, therefore for any ε ≡ 2 max{ε1, ε2} and any T ≥ Tε ≡ max{Tε1, Tε2}
for some Tε1 > 0, Tε2 > 0. This completes the proof of Lemma 1.17

Let Îi ≡ [T̂i−1+1, T̂i] and I0
i ≡ [T 0

i−1+1, T 0
i ], (i = 1, . . . , m+1). To prove Lemma

2, we use the uniform law of large numbers (ULLN) in Gallant and White (1988),

pp. 34. Note that their assumptions encompass our Assumption 1-3(i),(ii).18

Proof of Lemma 2.

17Extending this result to m∗ > 1, as long as m∗ is finite, can be proven by similar arguments
as above.

18We could alternatively use Lemma 1, but piece-wise ergodicity seems to be needed only for
Lemma 2 (i).
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Part (i). This part follows directly from Lemma 1.

Part (ii). Consider η > 0 such that [Tη] is an integer. Let 1∗ and 2∗ denote

summing over the sets I1(η) = { [Tλ0
j ] − Tη + 1, . . . , [Tλ0

j ] }, respectively I2(η) =

{ [Tλ0
j ] + 1, . . . , [Tλ0

j ] +Tη }. If λ̂j
p

9 λ0
j for at least one j, then there is an η such

that with positive probability, θ̂k will be estimating θ0
j on I1(η) ∈ Îk, but θ0

j+1 on

I2(η) ∈ Îk. Hence, with positive probability greater than ε > 0,

T−1

T
∑

t=1

d2
t ≥ T−1

∑

1∗

d2
t (θ̂k, θ

0
j ) + T−1

∑

2∗

d2
t (θ̂k, θ

0
j+1) ≥ inf

θ
HT (θ) (22)

where dt(θA, θB) = ft(θA) − ft(θB), with θA, θB ∈ Θ, and for i = 1, 2, HT,i(θ)

= T−1
∑

i∗ d
2
t (θ, θ

0
j−1+i), and HT (θ) =

∑

i=1,2HT,i(θ).

To prove T−1
∑T

t=1 d
2
t > C with probability > ε and establish Lemma 2(ii), it is

sufficient to prove uniform convergence in θ of HT (θ) to a positive quantity H(θ).

Uniform convergence can be established using the ULLN mentioned above, under

Assumptions 1-4. It remains to show that infθ H(θ) > 0. This can be establish by

showing - see Supplemental Appendix:

E[HT (θ)] ≥ ‖θ0
j − θ0

j+1‖2tr
{

inf
t

inf
θ
E[Ft(θ)F

′
t (θ)]

}

> C

where the last inequality follows from Assumption 4(iii).

Proof of Theorem 2.

The proof follows in three steps. The first step redefines the proof objective and

introduces some notation. In the second step two distinct terms are analyzed and

compared to finalize the proof.

Step 1. As in Bai and Perron (1998), without loss of generality, we assume only

three breaks. We will focus on proving Theorem 2 for λ̂2; the analyses for λ̂1 and λ̂3

are similar. For any ε > 0, define Vε = {(T1, T2, T3) : | Ti − T 0
i |≤ εT (i = 1, 2, 3)}.

Since λ̂i
p→ λ0

i , limP{(T̂1, T̂2, T̂3) ∈ Vε} = 1. Hence, we need only examine the
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behavior of break-points contained in Vε. Consider, without loss of generality, the

case T̂2 < T 0
2 ; the case T̂2 ≥ T 0

2 can be handled by a symmetric argument. For

C > 0, define: Vε(C) = {(T1, T2, T3) : | Ti − T 0
i |≤ εT (i = 1, 2, 3); T 0

2 − T2 > C}.
Note that Vε(C) ⊂ Vε. We will show that the probability that the break-points

are contained in Vε(C) is very small. Hence, with large probability, |T̂i −T 0
i | ≤ C,

for i = 1, 2, 3, confirming the content of Theorem 2. So, for proving the latter, it

suffices to show that the break-points will not be contained in Vε(C) with large

probability.

To that end, denote by ST (T1, T2, T3) the minimized sum of squared residuals

for a given 3-break-partition (1, T1, T2, T3, T ) of the sample interval. By definition

of minimized sum of squared residuals, ST (T̂1, T̂2, T̂3) ≤ ST (T̂1, T
0
2 , T̂3). Let ∆2 =

T2−T 0
2 . We will show that for any η > 0, we can pick ε and C such that on Vε(C),

we have:

P

{

min
Vε(C)

(∆2)
−1[ST (T1, T2, T3) − ST (T1, T

0
2 , T3)] < 0

}

< η, for T ≥ T (η). (23)

Equation (23) implies that for large T , with probability ≥ 1 − η, ST (T̂1, T̂2, T̂3)

> ST (T̂1, T
0
2 , T̂3), contradicting the sum of squares minimization definition; thus,

T̂2 6∈ Vε(C), completing the proof.

Define SSR1 = ST (T1, T2, T3), SSR2 = ST (T1, T
0
2 , T3) and introduce SSR3 =

ST (T1, T2, T
0
2 , T3). Then ST (T1, T2, T3)−ST (T1, T

0
2 , T3) = (SSR1−SSR3)−(SSR2−

SSR3). This approach helps carry out the analysis in terms of two problems involv-

ing a single structural change: the first imposing an additional break at T 0
2 between

T2 and T3, and the second introducing an additional break at T2 between T1 and

T 0
2 . Let (θ∗1, θ

∗
2, θ

∗∗
3 , θ

∗
4), (θ∗1, θ

∗∗
2 , θ

∗
3, θ

∗
4) and (θ∗1, θ

∗
2, θ

δ
2, θ

∗
3, θ

∗
4) be the NLS parameter

estimates based on partitions (1, T1, T2, T3, T ), respectively (1, T1, T
0
2 , T3, T ) and

(1, T1, T2, T
0
2 , T3, T ). Note that θ∗2, θ

δ
2, θ

∗∗
2 are all estimating θ0

2, while θ∗3, θ
∗∗
3 are

both estimators of θ0
3.
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In the light of proving (23), we need to locate the dominating terms in (SSR1−
SSR2) and show that we can pick ε and C such that they are positive with large

probability for large T . To that end, let Vε(C) be the domain on which some

quantity qT (·) is defined. We will denote qT ∼ Op(T
b) P (|qT | > T b) < η̄ for

T ≥ T (η̄) for some b ∈ R and any η̄ > 0, where T as defined here is large.

Note that the statement above depends on the choice of C and ε. We will write

qT ∼ O+
p (T b) if plim qT is positive (or positive definite for matrices). Similarly,

let qT ∼ Op(T
b) + aT , if qT − aT ∼ Op(T

b) for some aT , and qT ∼ O+
p (T b) + aT , if

qT − aT ∼ O+
p (T b). Under this notation, equation (23) is equivalent to:

∆−1
2 (SSR1 − SSR2) ∼ O+

p (1) (24)

because then the probability that (SSR1 − SSR2) is negative is small. So, for

proving Theorem 2, a proof of (24) suffices.

Step 2: To further simplify the notation, let I1 = [1, T1], I2 = [T1 + 1, T2],

I∆
2 = [T2 +1, T 0

2 ], I3 = [T 0
2 +1, T3], I4 = [T3 +1, T ]. Recall that ∆2 = T 0

2 −T2 > C,

and denote e2
t (θA, θB) ≡ u2

t (θA) − u2
t (θB). Consider SSR1 − SSR3 first:

∆−1
2 (SSR1 − SSR3) = ∆−1

2

∑

I∆
2

e2t (θ
∗∗
3 , θ

δ
2) + ∆−1

2

∑

I3

e2t (θ
∗∗
3 , θ

∗
3) = D1 +D2.

Heuristically speaking, D1 involves a “mismatch“ in estimators, because θ∗∗3 is

estimating θ0
3, while θδ

2 is estimating θ0
2. This “mismatch“ is not present in D2,

because θ∗∗3 and θ∗3 are both estimating θ0
3. Hence, D1 should be dominating D2 for

a large enough ∆2 > C. To see this, note that,for i = 1, . . . , 4, in an interval where

θ0
i is the true parameter value, and θ ∈ Θ, it can be shown that: u2

t (θ) − u2
t =

d2
t (θ, θ

0
i ) − 2ut dt(θ, θ

0
i ). Also, the true parameter value on I∆

2 is θ0
2. Then for

any θA, θB ∈ Θ and t ∈ I∆
2 , e2t (θA, θB) = d2

t (θA, θ
0
2) − d2

t (θB, θ
0
2) − 2ut dt(θA, θB).
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According to the above, we have:

D1 = ∆−1
2

∑

I∆
2

d2
t (θ

∗∗
3 , θ

0
2) − ∆−1

2

∑

I∆
2

d2
t (θ

δ
2, θ

0
2) + 2∆−1

2

∑

I∆
2

utdt(θ
δ
2, θ

∗∗
3 ) =

3
∑

j=1

D1,j

We will find the order of each of the terms above. In the proof of Lemma 2, we

have shown that processes such as {d2
t (θ, θ

0
2)} satisfy the ULLN. In other words,

if we pick C large enough, D1,1 − plim∆−1
2

∑

I∆
2

[d2
t (θ

∗∗
3 , θ

0
2)] ∼ op(1). To find this

limit, note - from the supplemental Appendix - that θ∗∗3 − θ0
3 ∼ Op(T

−1/2). So, by

similar arguments as in the proof of Lemma 2(ii), we obtain:

D1,1 = ∆−1
2

∑

I∆
2

d2
t (θ

∗∗
3 , θ

0
2) ∼ O+

p (1).

This will be the only positive dominating term in SSR1 − SSR2. For analyzing

D1,2, if we pick C big enough, θδ
2 − θ0

2 ∼ op(1). Hence, D1,2 ∼ op(1). Also,

D1,3 ∼ op(1) by Lemma 1. It follows that for large C and small ε, D1 ∼ O+
p (1).

Note that D2 is different than D1 given that we are summing over a different

interval. For deriving the order of D2, we have to consider two cases, T3 < T 0
3

and T3 ≥ T 0
3 - see supplemental Appendix. For both cases, D2 ∼ C−1Op(1).

Since D1 and D2 determine the order of SSR1 − SSR3, for small ε and large

C,∆−1
2 (SSR1 − SSR3) = D1 + D2 ∼ O+

p (1) + C−1Op(1) = O+
p (1). By similar

arguments as for D2, it can be shown that ∆−1
2 (SSR2 − SSR3) = C−1Op(1),

if we pick C large enough and ε small enough. Hence, ∆−1
2 (SSR1 − SSR2) ∼

O+
p (1)−C−1Op(1) = O+

p (1), provided that C is large enough and ε small enough,

for large T . This is in fact (24), completing the proof.

Proof of Theorem 3.

As usual for nonlinear consistency proofs, we need to show uniform convergence

of the minimand, and then use uniqueness to establish consistency of parameter

estimates. As a matter of notation, consider some partition of the interval [1, T ],
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denoted (1, T1, . . . , Tm, T ). Let ST,Ii
(θ) = T−1

∑Ti

t=Ti−1
u2

t (θ) be the partial sum of

squares in interval Ii = [Ti−1+1, Ti], for i = 1, . . . , m+1, and let I0
i = [T 0

i−1+1, T 0
i ],

respectively Îi = [T̂i−1 + 1, T̂i]. Moreover, let Îi ∇ I0
i = (Îi \ I0

i ) ∪ (I0
i \ Îi), and

define as indicator function ιi : Îi ∇ I0
i → {−1, 1}, where ιi(t) = ιi,t = 1, if

t ∈ Îi \ I0
i , and ιi,t = −1, if t ∈ I0

i \ Îi. Then ST,Îi
(θ) − ST,I0

i
(θ) is equal to

∑

Îi ∇ I0
i
ιi,t [T−1u2

t ] +
∑

Îi ∇ I0
i
ιi,t [T−1d2

t (θ, θ
0
i )] +

∑

Îi ∇ I0
i
ιi,t [T−12ut dt(θ, θ

0
i )]. By

Theorem 2, there can be no more than 2C integer values contained in Îi ∇ I0
i . By

ULLN, ST,Îi
(θ) − ST,I0

i
(θ) = op(1). Since we replaced the estimated break-points

with the true breaks, standard nonlinear analysis tells us that under Assumptions

1-4, θ̂i
p→ θ0

i , for i = 1, . . . , m. One can also show - see Supplemental Appendix -

that mean value expansions T 1/2 ∂ST,Îi
/∂θ around θ0

i are uniformly within op(1) of

the mean-value expansions using the true break-point estimates. Hence, standard

nonlinear asymptotics shows that θ̂i have indeed the distribution given in Theorem

3. Asymptotic independence of θ̂i and θ̂j for i 6= j follows from Assumption 1,

completing the proof.

Proof of Theorem 4.

The distribution of k̂ depends on the distribution of argminθ1,θ2
VT (k, θ1, θ2). As-

sume k < k0; the case k ≥ k0 can be handled similarly.

VT (k, θ̂1(k), θ̂2(k)) =
k
∑

t=1

[u2
t (θ̂1(k)) − u2

t (θ
0
1)] +

k0
∑

t=k+1

[u2
t (θ̂2(k)) − u2

t (θ
0
1)] +

+

T
∑

t=k0+1

[u2
t (θ̂2(k)) − u2

t (θ
0
2)] = Σ1 + Σ2 + Σ3. (25)

Since we know the convergence rates of k̂ and θ̂i(k), the minimization problem is

defined over a neighborhood of (k, θ1, θ2). Note that the asymptotic distributions

of Σ1 and Σ3 do not depend on v, since the difference between the summations

involving the true breaks and the estimated breaks is asymptotically negligible,

uniformly in v. Hence, we can write VT (k, θ̂1(k), θ̂2(k)) = D + Σ2 + op(1), where
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D is a distribution that does not depend on v, and the op(1) term is uniform in v.

On the other hand, it can be shown that:

Σ2 =

k0
∑

t=k+1

d2
t (θ

0
2, θ

0
1) +

k0
∑

t=k+1

ut dt(θ
0
2, θ

0
1) + op(1)

with the op(1) term uniform in v. Continuity of ft(θ) guarantees that the maximum

of J∗(v) is unique almost surely, and we can use the Continuous Mapping Theorem

(CMT) to express the distribution of k̂ as stated in Theorem 4.

To prove Theorem 5, we need to show consistency of the break-fractions at a

certain rate, as well as asymptotic normality of parameter estimates. Consistency

is summarized by the following theorem.

Theorem A 1. Under Assumptions 1-5 and 8, λ̂i
p→ λ0

i , for i = 1, . . . , m.

Proof of Theorem A1.

The proof of Theorem A1 is similar to that of Theorem 1, but modifications are

required to avoid the possibility that T−1
∑T

t=1 d
2
t

p→ 0 even if a break-fraction

is not consistently estimated. Under Assumptions 1-5 or Lemma 1 and Assump-

tions 2-5, we have:
∑T

t=1 utdt ≤ Op(T
1/2+ν), uniformly over the space of all par-

titions and parameters (T1, . . . , Tm) × θ, with ν ≥ 0. On the other hand, by

arguments similar to before, if at least one break-fraction is not consistently es-

timated,
∑T

t=1 d
2
t ≥ ‖θ0

j − θ0
j+1‖2OP (T ) > CTw2

T . By Assumption 8, this term

dominates 2T−1
∑T

t=1 dtut, and T−1
∑T

t=1 d
2
t + 2T−1

∑T
t=1 dtut ≤ 0

p→ ∞. The

latter contradicts equation (5), thus the break-points are consistent.

Next, we state the rate of convergence for the break-fractions:

Theorem A 2. Under Assumptions 1-5 and 8, for any η > 0, there is a C > 0

such that, for large T, P (Tw2
T |λ̂k − λ0

k| > C) < η, for any k = 1, . . . , m.
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Proof of Theorem A2.

The proof of Theorem A2 proceeds in the same fashion as the proof of Theo-

rem 2, except for convergence rates which are different given shrinking shifts; see

Supplemental Appendix for proof.

Theorem A 3. Under Assumptions 1-5 and 8, T 1/2(θ̂ − θ0)
d→ N (0,Φi(θ

0
i )).

Proof of Theorem A3. The Proof of Theorem A3 is similar to that of Theorem

3 and can be found in the Supplemental Appendix.

Proof of Theorem 5. Let k < k0, the proof for k ≥ k0 is similar. Also let

v = k0−k, 0 < v ≤ C/v2
T ; by similar arguments as for fixed shifts, using Theorems

A1-A3, VT (k, θ̂1(k), θ̂2(k)) = D + op(1) + Σ2, where the op(1) term is uniform in

v and D is a distribution that does not depend on v. So, even in this case, Σ2

will govern the distribution of the minimand for shrinking shifts. It can be shown

that, uniformly in v, Σ2 = |v|$2,1 − 2$
1/2
1,1 W1(−v) + op(1), for v ≤ 0., where

$1,1 = (θ0
2 − θ0

1)
′A1(θ

0
1)(θ

0
2 − θ0

1) and $2,1 = (θ0
2 − θ0

1)
′D1(θ

0
1)(θ

0
2 − θ0

1). Since

C/v2
T → ∞, it follows that:

k̂ − k0 = argmax
v≤0

[

$
1/2
1,1 W1(−v) − 0.5|v|$2,1

]

+ op(1) (26)

Note that the limiting Brownian motions can only be obtained under Assumption

6(iii)-(iv), that is, when {utFt(θ)} is second-order stationary within regimes, and

Ft(θ) as well. Breaks in the variance of regressors are excluded, unless they coincide

with the true value. By a change in variable in (26) - see Supplemental Appendix,

we obtain the desired result.

To prove Theorem 6, we need two additional Theorems. Denote by θ̂i and θ̂1,i

the [Ti−1 + 1, Ti], respectively the [1, Ti]- sub-sample estimators of θ0 where Ti is

the i − th break belonging to a certain partition T̄ k on which θ̂i were defined as

well. Then:
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Theorem A 4. Under Assumptions 2-6 and H0 : m = 0,

T 1/2(θ̂1,i − θ0) ⇒ σλ−1
i D−1/2(θ0)Bp(λi), where D(θ) is the common value of Di(θ)

in Assumption 4(iii), under H0.

Theorem A 5. Under Assumptions 2-6 and H0 : m = 0,

T 1/2(θ̂i − θ0) ⇒ σ[λi − λi−1]
−1D−1/2(θ0) [Bp(λi) −Bp(λi−1)].

Proof of Theorem A4.

First, θ̂1,i
p→ θ0 because it is just a sub-sample NLS estimator of θ0 in stable models.

Using the mean value theorem, the desired result follows from Assumptions 2,3,4

and 6. The latter is essential for the limit to be a Brownian motion; thus, no

breaks in the variance of regressors and errors are allowed. The proof of Theorem

A5 follows the same steps and is omitted for simplicity.

Proof of Theorem 6.

First, under Assumptions 2-6 and H0, SSRk/(T − (k + 1)p)
p→ σ2, an immediate

consequence of Lemma 2. On the other hand, it can be shown:

SSR0 − SSRk =

k
∑

i=1

F ∗
T,i,with F ∗

T,i = DR(1, i+ 1) −DR(1, i) −DU(i+ 1, i+ 1)

where the sum subscript 1, i indicates summing over interval [1, Ti], while i indi-

cates, as before, summing over [Ti−1 +1, Ti], and DR(1, i) =
∑

1,i[u
2
t (θ̂1,i)−u2

t ] and

DU(i, i) =
∑

i[u
2
t (θ̂i)−u2

t ]. Using the last two theorems, it can be shown - see Sup-

plemental Appendix - that under Assumptions 2-6, DR(1, i) ⇒ −σ2‖Bp(λi)‖2/λi,

DR(1, i + 1) ⇒ −σ2‖Bp(λi+1)‖2/λi+1 and DU(i + 1, i + 1) ⇒ −σ2‖Bp(λi+1) −
Bp(λi)‖2 /[λi+1 − λi], yielding:

F ∗
T,i ⇒ σ2‖λiBp(λi+1) − λi+1Bp(λi)‖2

λiλi+1[λi+1 − λi]
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Proof of Theorem 7.

Under H0 : m = `, compute the estimated break-points, and let SSR(T̂i, T̂j) be

the minimized sum of squared residuals for the segment containing observations

in the interval [T̂i + 1, T̂j], i < j. We can write:

FT (`+ 1|`) = max
1≤i≤`

sup
τ∈∆i,η

F ∗
T,i(`+ 1|`)/σ̂2

i , (27)

where F ∗
T,i(`+ 1|`) = SSR(T̂i−1, T̂i) − SSR(T̂i−1, τ) − SSR(τ, T̂i).

Using similar arguments to the previous theorem - see Supplemental Appendix:

F ∗
T,i(`+ 1|`)

σ2
i

⇒
[

supη≤µ≤1−η
‖Bp(µ) − µBp(1)‖2

µ(1 − µ)

]

. (28)

Since the regimes considered in SSR(·, ·) are non-overlapping, F ∗
T,i(` + 1|`) are

asymptotically independent for different i by Assumption 6. Hence, the result in

Theorem 7.

Proof of Theorem 8. Recall that H0 : Rk θ
c
0 = 0, implying that θ0

1 = . . . =

θ0
k+1 = θ0. Let ∆λi = λi − λi−1, for i = 1, . . . , k + 1. By the uniform convergence

statements in Assumption 6(iii) and (iv), it follows that D̂i(θ̂i(T̄k))
p→ ∆λiD(θ0)

and Âi(θ̂i(T̄k))
p→ ∆λiA(θ0), where D(·), A(·) are the common value of Di(·),

respectively Ai(·) under H0. For simplicity, let A(θ0) ≡ A0 and D(θ0) ≡ D0.

Then:

T Υ̂(T̄k)
p→ [C−1

k ⊗D−1
0 ] × [Ck ⊗ A0] × [C−1

k ⊗D−1
0 ]

T 1/2(θ̂i(T̄k) − θ0) ⇒ (∆λi)
−1D−1

0 A
1/2
0 [Bp(λi) − Bp(λi−1)]

Putting the last two equations together completes the proof of Theorem 8. The

proof of Theorem 9 is similar - see Supplemental Appendix.
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