MPRA

Munich Personal RePEc Archive

Estimation and inference in unstable nonlinear least squares models

Boldea, Otilia and Hall, Alastair R.
University of Tilburg, University of Manchester
20. May 2010

Online at http://mpra.ub.uni-muenchen.de/23150/ MPRA Paper No. 23150, posted 08. June 2010 / 17:01

Estimation and Inference in Unstable Nonlinear

 Least Squares Models*Otilia Boldea ${ }^{\dagger}$ and Alastair R. Hall ${ }^{\ddagger}$

May 20, 2010

[^0]
Abstract

In this paper, we extend Bai and Perron's (1998, Econometrica, pp. 4778) method for detecting multiple breaks to nonlinear models. To that end, we consider a nonlinear model that can be estimated via nonlinear least squares (NLS) and features a limited number of parameter shifts occurring at unknown dates. In our framework, the break-dates are estimated simultaneously with the parameters via minimization of the residual sum of squares. Using new uniform convergence results for partial sums, we derive the asymptotic distributions of both break-point and parameter estimates and propose several instability tests. We provide simulations that indicate good finite sample properties of our procedure. Additionally, we use our methods to test for misspecification of smooth-transition models in the context of an asymmetric US federal funds rate reaction function and conclude that there is strong evidence of sudden change as well as smooth behavior.

JEL classification: C12, C13, C22

Keywords: Multiple Change Points, Nonlinear Least Squares, Smooth Transition

1 Introduction

As pointed out by Lucas (1976), policy shifts and time-varying market conditions induce behavioral changes in the decisions of economic agents. Hence, over longer time spans, a stable model might not be the appropriate tool to capture the features of economic decisions. A popular way to capture instability in macroeconometric models is to impose sudden parameter shifts at unknown dates, known as break-points.

Both the econometric and statistical literature on break-point problems is extensive 1 , and its main focus is on testing for breaks rather than estimation. For example, early work by Quandt (1960) suggests using a supremum (sup) type test for inference on a single unknown break-point. Whether in linear or nonlinear settings, most subsequent work - see inter alia Anderson and Mizon (1983), Andrews and Fair (1988), Ghysels and Hall (1990), Andrews (1993), Sowell (1996), Hall and Sen (1999) and Andrews (2003) - proposes tests that are designed against the alternative of a one-time parameter variation or of more general model misspecification. For parametric settings, Bai and Perron (1998) is among the few papers that propose tests for identifying multiple breaks. Their tests are designed for linear models estimated via ordinary least-squares (OLS). While these tests are useful, the linear framework might be considered a limitation. Subsequent papers such as Kokoszka and Leipus (2000), Lavielle and Moulines (2000) and Andreou and Ghysels (2002) propose tests for parameter instability in nonlinear models, but the nonlinearities considered are confined to special cases such as general autoregressive conditional heteroskedasticity (GARCH) models. The framework considered in this paper is more general, imposing only mild restrictions on the nonlinear regression function.

[^1]In practice, researchers often argue that it can be difficult to discriminate between misspecification due to parameter instability or neglected nonlinearity. It is therefore desirable to develop a framework that allows both features. While tests such as the ones developed in Eitrheim and Teräsvirta (1996) can detect instability in some classes of nonlinear models, they are not particularly designed against an alternative with breaks nor offer an estimation framework that can allow for both smooth and sudden change. One of the aims of this paper is to provide change-point tests in the spirit of Bai and Perron's (1998) tests, but with a maintained nonlinearity assumption. These tests are valid for a large class of parametric nonlinear models, including inter alia smooth transition models, neural networks, partially linear, bilinear and (nonlinear) GARCH models.

Compared to inference procedures, the issue of consistently estimating one or multiple change-points - when their location is unknown - has received considerably less attention in the literature. Within linear parametric models, there are a few methods that yield consistent estimates of the break-points, e.g. maximum likelihood - Quandt (1958), least-squares - Bai (1994), least absolute deviation - Bai (1995), information criteria - Yao (1988), Davis, Lee, and Rodriguez-Yam (2006). In Bai and Perron's (1998) paper, the break points are estimated simultaneously with the regression parameters via least-squares methods. Bai and Perron (1998) establish consistency and derive the convergence rate of the resulting break point fractions under fairly general assumptions. They also propose a sequential procedure for selecting the number of break points in the sample based on various tests for parameter constancy. This procedure is extended to models with crossregime restrictions by Perron and Qu (2006), and to multivariate frameworks by Qu and Perron (2007). Hall, Han, and Boldea (2009) further extend Bai and Perron's framework to linear models with endogenous regressors. A slightly different approach is proposed by Davis, Lee, and Rodriguez-Yam (2006); they suggest estimating the number and location of breaks not separately, but simultaneously
via minimization of the minimum description length (MDL) criterion of Rissanen (1989).

While useful, all the analyses above are restricted to linear models with breaks, which are often unsuitable for the asymmetries macroeconomic behavior displays. To capture these asymmetries, nonlinear models are becoming increasingly popular, and there is a need to develop tests and inference procedures for multiple parameter changes in this setting.

In this paper we consider a univariate nonlinear model that can be estimated via NLS - or under stronger assumptions, equivalent methods such as quasimaximum likelihood - and exhibits multiple unknown breaks. Allowing for nonstationary but piece-wise ergodic regressors and errors, we show that a minimization of the sum of squared residuals over all possible break dates and parameters yields consistent estimates of both the unknown break fractions and parameters. We further prove T-rate convergence of break fraction estimates, a key result because it implies that inference on parameters can be conducted as if the breakpoints were known a priori. To obtain this result, we arrive at one of the main contributions of our paper: a new uniform central limit result for piece-wise ergodic and mixing processess, which may be useful in other contexts.

Based on the above, we provide various structural stability tests - in the presence or absence of autocorrelation - that naturally generalize those proposed by Bai and Perron (1998). We consider global tests of no breaks against two types of alternative, one in which the number of breaks is fixed and another in which the number of breaks is only restricted to be less than some ceiling, along with sequential tests for an additional break. These tests can be used to develop a sequential method for finding the number and locations of breaks, as suggested by Bai and Perron (1998) in linear settings. Moreover, the sequential Wald test we propose - similar to Hall, Han, and Boldea (2009) - allows for breaks in the marginal of regressors, at the same time extending the strategy of identifying the
number of breaks to settings where autocorrelation is present.
For forecasting purposes, it is still of interest to know with certain confidence when the last break occurred. As Bai $(1994,1995,1997)$ shows, change-point distributions in linear models can be derived in two cases: when the magnitude of parameter shifts is constant and when it shrinks to zero at a certain rate. Because in the first case, the confidence intervals depend on the distribution of the data, the device of shrinking shifts is used to ensure that shifts disappear at a slow enough rate so that pivotal statistics can still be obtained. In practice, this framework can be viewed as one of moderate shifts, according to Bai and Perron (1998). A local analysis of small shifts is presented in Elliott and Müller (2007) for linear models, but providing a similar framework here is beyond the scope of our paper.

We consider each of the two cases above in turn. For the first case, we provide an asymptotic approximation to the exact change-point distribution, but this approximation is - as for linear cases its exact counterpart - dependent on the distribution of the data. For the second case, we obtain a similar asymptotic distribution as in Bai (1997). We validate the usefulness of our estimators, tests and confidence intervals via simulations.

Next, we illustrate our methodology in the context of the US interest rate reaction function. Using a similar setup to Kesriyeli, Osborn, and Sensier (2006), we test a STR model with one-transition and find evidence of both smooth and sudden change.

The paper is organized as follows: Section 2 describes our model. Section 3 reveals the assumptions needed for our estimation method. We outline the consistency and limiting distributions results in Section 4. Section 5 rederives in a nonlinear context - two classes of stability tests. Section 6 shows good finite properties of our break-point estimators, tests and number of break-points. Section 7 applies the methods proposed in this paper to an interest rate reaction function for US. Section 8 concludes. Sketch proofs are relegated to the Appendix, while
the detailed proofs can be found in a Supplemental Appendix that is available from the authors upon request.

2 Model

In this section, we introduce a univariate nonlinear model with m unknown changepoints:

$$
\begin{equation*}
y_{t}=f\left(x_{t}, \theta_{i+1}^{0}\right)+u_{t} \quad t \in I_{i}^{0}=\left[T_{i}^{0}+1, T_{i+1}^{0}\right] \quad i=0,1, \ldots m \tag{1}
\end{equation*}
$$

where $T_{0}^{0}=0$ and $T_{m+1}^{0}=T$ by convention. Here y_{t} is the dependent variable, $x_{t}(q \times 1)$ are the regressors, $\theta_{i+1}^{0}(p \times 1)$ are parameters that change at dates T_{i}^{0}, $f: \mathbb{R}^{q} \times \Theta \rightarrow \mathbb{R}$ is a known measurable function on \mathbb{R} for each $\theta \in \Theta$, and T is the sample size. To begin, we consider m to be a known finite positive integer, but we allow for the break dates to be unknown to the researcher; we consider the question of how to estimate m in Section 6. For simplicity, let $f_{t}(\theta)=f\left(x_{t}, \theta\right)$ and denote by $\bar{T}^{m} \equiv\left(T_{0}=1, T_{1}, \ldots, T_{m}, T_{m+1}=T\right)$ any m-partition of the interval $[1, T]$. To further simplify the notation, we will stack column vectors such as θ_{i+1}^{0} and θ_{i+1} into two corresponding $(m+1) p \times 1$ vectors, θ_{0}^{c} and θ^{c}. For a given sample partition and given parameter values θ^{c}, denote by $S_{T}\left(\bar{T}^{m}, \theta^{c}\right)$ the sum of squares. 2^{2}

One of our main goals is to provide a method for estimating the unknown parameters and change points. As in Bai and Perron (1998), the estimation method we propose is based on the least-squares principl 3^{3} and follows in two steps. First,

[^2]we obtain the sub-sample NLS estimators for each partition:
\[

$$
\begin{equation*}
\hat{\theta}_{T}^{c}\left(\bar{T}^{m}\right)=\underset{\theta^{c}\left(\bar{T}^{m}\right)}{\operatorname{argmin}} S_{T}\left(\bar{T}^{m}, \theta^{c}\left(\bar{T}^{m}\right)\right) \tag{2}
\end{equation*}
$$

\]

Second, we search over all possible partitions to obtain the break-point estimates. The estimates $\hat{T}=\left(1, \hat{T}_{1}, \ldots, \hat{T}_{m}, T\right)$ for change-points and $\hat{\theta}_{T}^{c}=\left(\hat{\theta}_{1}, \ldots, \hat{\theta}_{m+1}\right)$ for parameters are obtained as follows:

$$
\begin{equation*}
\hat{T}=\underset{\bar{T}^{m}}{\operatorname{argmin}} S_{T}\left(\bar{T}^{m}, \hat{\theta}_{T}^{c}\left(\bar{T}^{m}\right)\right) \text { and } \hat{\theta}_{T}^{c}=\hat{\theta}_{T}^{c}(\hat{T}) \tag{3}
\end{equation*}
$$

The above is an NLS estimation with an appropriate modification to allow for multiple break-points, and can be legitimately performed provided that $E\left[u_{t} f_{t}\left(\theta_{i+1}^{0}\right)\right]=$ 0 for each $t=T_{i}^{0}+1, \ldots, T_{i+1}^{0}(i=0,1, \ldots m)$.

3 Assumptions

To derive the statistical properties of our estimators, we establish a framework that combines elements of asymptotic theory in stable nonlinear models and unstable linear models. As pointed out by Hansen (2000), the marginal distributions of regressors and/or errors may change, possibly at different locations in the sample than the population parameters of the equation of interest. Our framework is designed to achieve as much generality as possible with respect to changes in marginal distributions, $\frac{4}{4}$ as well as with respect to other non-stationarities induced by lagged dependent variables that may enter the model concomitantly with parameter breaks. In dealing with nonlinear asymptotics, we impose usual smoothness and boundedness assumptions. To deal with instability, we assume uniform

[^3]convergence of certain quantities, jointly in parameters and a partial sum index.

Assumption 1. Let $v_{t}=\left(x_{t}^{\prime}, u_{t}\right)^{\prime}$. Then:
(i) $\left\{v_{t}\right\}$ is a piece-wise geometrically ergodic process, i.e. for some finite $m^{*}>0$ and each sub-sample $\left[T_{j-1}^{*}+1, T_{j}^{*}\right]$, where $T_{j}^{*}=\left[T \lambda_{j}^{*}\right], j=0, \ldots, m^{*}+1, \lambda_{0}^{*}=0<$ $\lambda_{1}^{*}<\ldots<\lambda_{m^{*}}^{*}<\lambda_{m^{*}+1}^{*}=1$, there exists a unique stationary distribution Q_{j} such that:

$$
\sup _{A}\left|P(A \mid B)-Q_{j}(A)\right| \leq g_{j}(B) \rho^{t}
$$

with $0<\rho<1, A \in \mathcal{F}_{T_{j-1}^{*}+t}^{T_{j}^{*}}, B \in \mathcal{F}_{-\infty}^{T_{-\infty}^{*}}, \mathcal{F}_{k}^{l}$ is the σ-algebra generated by $\left(v_{k}, \ldots, v_{l}\right)$, and $g_{j}(\cdot)$ is a positive uniformly integrable function. If $\left\{x_{t}\right\}$ does not contain lagged dependent variables, then the assumption above holds with $\left\{v_{t}\right\}$ augmented by y_{t}.
(ii) $\left\{v_{t}\right\}$ is a β-mixing process with exponential decay, i.e. there exists $N>0$ such that for $B \in \mathcal{F}_{-\infty}^{a}$,

$$
\begin{aligned}
\beta_{t} & =\sup _{a} \beta\left(\mathcal{F}_{-\infty}^{a}, \mathcal{F}_{a+t}^{\infty}\right) \leq N \rho^{t} \\
\beta\left(\mathcal{F}_{-\infty}^{a}, \mathcal{F}_{a+t}^{\infty}\right) & =\sup _{A \in \mathcal{F}_{a+t}^{\infty}} E|P(A \mid B)-P(A)|
\end{aligned}
$$

(iii) $E\left[u_{t} f_{t}(\theta)\right]=0$ for each $\theta \in \Theta$.

Assumption 2. The function $f_{t}(\cdot)$ is a known measurable function, twice continuously differentiable in θ for each t.

Assumption 3. Let $F_{t}(\theta)=\partial f_{t}(\theta) / \partial \theta, p \times 1$ vector and $f_{t}^{(2)}(\theta)$, a $p \times p$ matrix of second derivatives, i.e. $f_{t}^{(2)}(\theta)=\partial^{2} f_{t}(\theta) /\left(\partial \theta \partial \theta^{\prime}\right)$, with $(i, j)^{\text {th }}$ element $f_{t, i, j}^{(2)}$. Also denote by $\|\cdot\|$ the Euclidean norm. Then (i) the common parameter space Θ is a compact subset of \mathbb{R}^{p}; for some $s>2$, we have: (ii) $\sup _{t, \theta} E\left|u_{t} f_{t}(\theta)\right|^{2 s}<\infty$; (iii) $\sup _{t, \theta} E\left\|u_{t} F_{t}(\theta)\right\|^{2 s}<\infty$; (iv) For $i, j=1, \ldots p, \sup _{t, \theta} E\left\|u_{t} f_{t, i, j}^{(2)}(\theta)\right\|^{s}<\infty$.

Assumption 4. (i) $S\left(\theta^{c}\right)=$ plim $T^{-1} S_{T}\left(\theta^{c}\right)$ has a unique global minimum at θ_{0}^{c}; (ii) Let $A_{i, T}\left(\theta_{i}^{0}\right)=\operatorname{Var} T^{-1 / 2} \sum_{t \in I_{i-1}^{0}} u_{t} F_{t}\left(\theta_{i}^{0}\right)$, for $i=1, \ldots, m+1$, and $A_{T}(\theta, r)=\operatorname{Var} T^{-1 / 2} \sum_{t=1}^{[T r]} u_{t} F_{t}(\theta)$. Then $A_{i, T}\left(\theta_{i}^{0}\right) \xrightarrow{p} A_{i}\left(\theta_{i}^{0}\right)$, and $A_{T}(\theta, r) \xrightarrow{p}$ $A(\theta, r)$, where the two limits are finite positive definite matrices not depending on T, and the latter convergence holds uniformly in $\theta \times r \in \Theta \times[0,1]$. (iii) Let $D_{i, T}\left(\theta_{i}^{0}\right)=T^{-1} \sum_{t \in I_{i-1}^{0}} F_{t}\left(\theta_{i}^{0}\right) F_{t}\left(\theta_{i}^{0}\right)^{\prime}$ and $D_{T}(\theta, r)=T^{-1} \sum_{t=1}^{[T r]} F_{t}(\theta) F_{t}(\theta)^{\prime}$. Then $D_{i, T}\left(\theta_{i}^{0}\right) \xrightarrow{p} D_{i}\left(\theta_{i}^{0}\right)$ and $D_{T}(\theta, r) \xrightarrow{p} D(\theta, r)$, where the two limits are finite positive definite matrices not depending on T, and the latter convergence holds uniformly in $\theta \times r \in \Theta \times[0,1]$; (iv) $E\left[f_{t}\left(\theta_{i}^{0}\right)\right] \neq E\left[f_{t}\left(\theta_{i+1}^{0}\right)\right]$, for each $i=1,2, \ldots, m$.

Assumption 5. $T_{i}^{0}=\left[T \lambda_{i}^{0}\right]$, where $0<\lambda_{1}^{0}<\ldots<\lambda_{m}^{0}<1$.
Assumption 1(i) can be interpreted as asymptotic stationarity of $\left\{v_{t}\right\}$ within regimes, and it allows for breaks in the marginal distribution of regressors and errors. 5 Additionally, it allows for 'temporary' nonstationary behavior, which is especially useful in the presence of lagged dependent variables, in which case (11) may induce recurring changes in their marginal distribution. In this case, Assumption 1(i) ensures that even if the process y_{t} starts in a certain regime at a draw from the nonergodic distribution, it converges to the stable distribution of that regime, so enough homogeneity in the process is preserved to ensure that a uniform central limit theorem still holds in that particular regime. 6

Assumption 1(ii) ensures that the dependence within and among sub-samples dies out at the same rate as the ergodicity rate. If $m^{*}=0,\left\{v_{t}\right\}$ admits a Markov

[^4]chain representation and is geometrically ergodic as in Assumption 1(i), then $\left\{v_{t}\right\}$ is β-mixing with exponential decay, subject to an absolute continuity condition on the starting values - see e.g. Rosenblatt (1971), Mokkadem (1985) - and this connection is often exploited in nonlinear GARCH models - see e.g. Carrasco and Chen (2002). If $\left\{v_{t}\right\}$ is a Markov chain, but $m^{*}>0$, then piece-wise geometric ergodicity only implies that the β-mixing coefficients on those sub-samples (thus, for restricted σ-algebras) are exponentially decaying, and we could allow for slower decay across sub-samples. For coherence purposes, we stick to Assumption 1.

Assumption 1(iii) also ensures that the model can be estimated via NLS, since the errors are uncorrelated with the regression function. Assumption 2 and 3 are typical smoothness and boundedness assumptions encountered in nonlinear models.

Assumption 4 (i) is the usual NLS identification assumption. Assumptions 4 (ii) and (iii) allow substantial heterogeneity in the second moments of regressors and errors. Assumption 4 (iv) ensures that the parameter shifts across regimes can be identified. Assumption 5 is a typical assumption for unstable models, allowing the break-fractions to be fixed and hence the break-points to be asymptotically distinct.

4 Asymptotic Behavior of Estimates

4.1 Consistency of Break-Fraction Estimates

In Section 2, we described a least-squares based method similar to its linear counterpart in Bai and Perron (1998). To elucidate the connection between linear and nonlinear settings, we will provide a heuristic discussion first. As Gallant (1987) shows, NLS estimators have the same form as OLS estimators (in stable models) up to a first-order approximation. To see that, denote by X the $T \times q$ and $f(X, \theta)$ the $T \times 1$ regressors in stable OLS, respectively NLS models, and let
$F=\partial f\left(X, \theta^{0}\right) / \partial \theta$, where θ^{0} is the true parameter value. The similarity between OLS and NLS can be seen from the equation below:

$$
\begin{equation*}
O L S=\left(X^{\prime} X\right)^{-1} X^{\prime} y ; \quad N L S=\left(F^{\prime} F\right)^{-1} F^{\prime} y+o_{p}\left(T^{-1 / 2}\right) \tag{4}
\end{equation*}
$$

Given this similarity, extending Bai and Perron's (1998) methodology to nonlinear settings may seem straightforward. However, consistency of parameters estimates, and related to this, the Taylor expansion needed to obtain a similar formula as in (4) for unstable NLS estimates cannot be legitimately obtained prior to deriving the consistency and convergence rate of break-fraction estimates. For the latter we require different proof strategies, but the results are similar to Bai and Perron (1998) and are summarized in Theorems 1 and 2.

Theorem 1. For each $i=1, \ldots, m$, let $\hat{\lambda}_{i}$ be the smallest number such that $\hat{T}_{i}=\left[T \hat{\lambda}_{i}\right]$. Then, under Assumptions 1-5, $\hat{\lambda}_{i} \xrightarrow{p} \lambda_{i}^{0}$.

For intuition and because they are informative for Assumption 1, we outline the main steps of the proof here, the details being relegated to the Appendix.

Define $\hat{u}_{t}=y_{t}-f_{t}\left(\hat{\theta}_{k+1}\right)$, for $t \in \hat{I}_{k}$ and $d_{t}=\hat{u}_{t}-u_{t}=f_{t}\left(\theta_{j+1}^{0}\right)-f_{t}\left(\hat{\theta}_{k+1}\right)$, for $t \in I_{j}^{0} \cap \hat{I}_{k}$, with $I_{j}^{0}=\left[T_{j}^{0}+1, T_{j+1}^{0}\right]$ and $\hat{I}_{k}=\left[\hat{T}_{k}+1, \hat{T}_{k+1}\right]$ and $k, j=0,1, \ldots, m$. Also, denote $\psi_{t}(\theta)=u_{t} f_{t}(\theta)$, a mean zero process governed by Assumption 1. Then:

$$
T^{-1} \sum_{t=1}^{T} u_{t} d_{t}=T^{-1} \sum_{i=0}^{m} \sum_{I_{i}^{0}} \psi_{t}\left(\theta_{i}^{0}\right)-T^{-1} \sum_{i=0}^{m} \sum_{\hat{I}_{i}} \psi_{t}\left(\hat{\theta}_{i}\right)=I+I I .
$$

The proof of consistency rests on showing that $I+I I$ is $o_{p}(1)$. While $I=o_{p}(1)$ by a simple law of large numbers, the analysis of $I I$ is more complicated as this term contains not only sums with random endpoints but summands that depend on the parameter estimators, which in turn depend on the random endpoints. In showing $I I$, we appeal to the following main result of this paper:

Lemma 1. Under Assumptions 1-2 and 3(i)-(ii), $Q_{T}(\theta, r)=T^{-1 / 2} \sum_{t=1}^{[T r]} \psi_{t}(\theta)=$ $O_{p}(1)$ uniformly in $\theta \times r \in \Theta \times[0,1]$.

Lemma 1 was shown by Caner (2007) under the assumption that $\left\{v_{t}\right\}$, and hence $\left\{\psi_{t}(\theta)\right\}$, is a strictly stationary process. In this paper, we relax strict stationarity over the whole sample to piece-wise ergodicity, in which case even though $Q_{T}(\theta, r)$ does not have a unique limit for all r, the uniform boundedness result in Lemma 1 holds. Our result applies to a large class of nonlinear models including smooth transition autoregressive models, other nonlinear autoregressive models, neural networks, partially linear models, nonlinear GARCH models, without further restrictions on the functional form of $f_{t}(\theta)$ besides those imposed in Assumption 2.

With Lemma 1 in mind and using the definition of the sum of squared residuals, one can show that:

$$
\begin{equation*}
T^{-1} \sum_{t=1}^{T} d_{t}^{2}+2 T^{-1} \sum_{t=1}^{T} d_{t} u_{t} \leq 0 \tag{5}
\end{equation*}
$$

Consistency follows from the following lemma:
Lemma 2. Let Assumption 1-5 hold. Then $T^{-1} \sum_{t=1}^{T} u_{t} d_{t}=o_{p}(1)$; (ii) If $\hat{\lambda}_{j} \xrightarrow{p} \lambda_{j}^{0}$ for some j, then $\lim \sup P\left[T^{-1} \sum_{t=1}^{T} d_{t}^{2}>C\right]>\epsilon$, for some $C>0, \epsilon>0$.

Given part (i) of Lemma 2 and inequality (5), it follows that $T^{-1} \sum_{t=1}^{T} d_{t}^{2}=$ $o_{p}(1)$. The latter is in contradiction with part (ii) of Lemma 2, establishing consistency of break-fraction estimates.

4.2 Rates of Convergence

A necessary next step involves determining the convergence rates of the breakfraction estimates. The results are summarized below:

Theorem 2. Under Assumptions 1-5, for every $\eta>0$, there exists a finite $C>0$ such that for all large $T, P\left(\left|T\left(\hat{\lambda}_{k}-\lambda_{k}^{0}\right)\right|>C\right)<\eta,(k=1, \ldots, m)$.

Theorem 2 is useful since the consistency of $\hat{\theta}_{T}^{c}$ can be established provided that the difference between the estimated and the true objective function is no more than $o_{p}(1)$. This is the case here because Theorem 2 implies that the difference involves a bounded number of $o_{p}(1)$ terms. Given the T-rate convergence of breakfraction estimates, the limiting distributions of parameter estimates follow from standard NLS asymptotics:

Theorem 3. Under Assumptions 1-5, $\hat{\theta}_{i}$ and $\hat{\theta}_{j}$ are asymptotically independent and $T^{1 / 2}\left(\hat{\theta}_{i}-\theta_{i}^{0}\right) \xrightarrow{d} \mathcal{N}\left(0, \Phi_{i}\left(\theta_{i}^{0}\right)\right)$, where $\Phi_{i}\left(\theta_{i}^{0}\right)=\left[D_{i}\left(\theta_{i}^{0}\right)\right]^{-1} A_{i}\left(\theta_{i}^{0}\right)\left[D_{i}\left(\theta_{i}^{0}\right)\right]^{-1}$ for $i, j=1, \ldots, m+1, i \neq j$.

Theorems 1-3 allow us to estimate the covariance matrices $\Phi_{i}\left(\theta_{i}^{0}\right)$ by replacing $D_{i}\left(\theta_{i}^{0}\right)$ with $\hat{D}_{i}\left(\hat{\theta}_{i}\right)=T^{-1} \sum_{t=\hat{T}_{i-1}+1}^{\hat{T}_{i}} F_{t}\left(\hat{\theta}_{i}\right) F_{t}\left(\hat{\theta}_{i}\right)^{\prime}$ and $A_{i}\left(\theta_{i}^{0}\right)$ with a heteroskedasticity and autocorrelation (HAC) robust covariance matrix estimator, $\hat{A}_{i}\left(\hat{\theta}_{i}\right)$. If more structure is placed on the data, then the form of $\Phi_{i}\left(\theta_{i}^{0}\right)$ simplifies and thus so does the form of its consistent estimator. The following example considers an important special case.

Assumption 6. (i) Assumption 1 holds with $m=m^{*}, T_{i}^{*}=T_{i}, i=1, \ldots, m$ if $\left\{v_{t}\right\}$ does not contain any lagged dependent variables. If v_{t} contains lags of y_{t}, then Assumption 1 holds with $m^{*}=m$ with $T_{i}^{*}=T_{i}, i=1, \ldots, m$ but for $v_{t}^{*}=\left\{y_{t}, x_{t}^{*}\right\}$ instead of $\left\{v_{t}\right\}$, with x_{t}^{*} being all regressors besides the lagged dependent variables; $E\left[u_{t} \mid x_{t}\right]=0$ and $E\left[u_{t} u_{s} \mid x_{k} x_{l}\right]=0$ for all $t \neq s$ and all k, l; (ii) The errors are homoskedastic within regimes: $E\left[u_{t}^{2} \mid x_{t}\right]=\sum_{i=1}^{m+1} \sigma_{i}^{2} \mathbf{1}\left\{t \in I_{i}^{0}\right\}$ for all t; (iii) Let $D_{T, i}(\theta, r)=T^{-1} \sum_{t=T_{i-1}^{0}+1}^{T_{i-1}^{0}+[T r]} F_{t}(\theta) F_{t}(\theta)^{\prime}$. Then $D_{T, i}(\theta, r) \xrightarrow{p} r D_{i}(\theta)$, uniformly in $\theta \times r \in \Theta \times\left[0, \lambda_{i}^{0}-\lambda_{i-1}^{0}\right]$, where the latter is a positive definite matrix not depending on T, with $D_{i}(\theta)$ not necessarily the same for all i; (iv) Let $A_{T, i}(\theta, r)$ $=\operatorname{Var} T^{-1} \sum_{t=T_{i-1}^{0}+1}^{T_{i-1}^{0}+[T r]} u_{t}(\theta) F_{t}(\theta)$. Then $A_{T, i}(\theta, r) \xrightarrow{p} r A_{i}(\theta)$, uniformly in $\theta \times r \in$ $\Theta \times\left[0, \lambda_{i}^{0}-\lambda_{i-1}^{0}\right]$, where the latter is a positive definite matrix not depending on T, with $A_{i}(\theta)$ not necessarily the same for all $i .7$

[^5]Corollary to Theorem 3. Under Assumption 6, the covariance matrix in Theorem 3 simplifies to $\Phi_{i}\left(\theta_{i}^{0}\right)=\sigma_{i}^{2}\left[D_{i}\left(\theta_{i}^{0}\right)\right]^{-1}$ and can be consistently estimated by $\hat{\sigma}_{i}^{2}\left[\hat{D}_{i}\left(\theta_{i}^{0}\right)\right]^{-1}$, where $\hat{\sigma}_{i}^{2}=\left(\hat{T}_{i}-\hat{T}_{i-1}\right)^{-1} \sum_{t=\hat{T}_{i-1}+1}^{\hat{T}_{\hat{L}}} \hat{u}_{t}^{2}$, for $i=1, \ldots, m+1$.

Note that Assumption 6 allows for breaks in marginal distributions of regressors, as well as breaks in the error variance that occur at the same time as the true breaks in model (1).

4.3 Limiting Distribution of Break Dates

Similar work by Bai $(1994,1995,1997)$ for linear models derives the non-standard distributions of change-point estimates. Hall, Han, and Boldea (2010) extend these results to models that can be estimated via two stage least squares. These papers find the distribution of the break-point estimators in two cases, fixed and shrinking magnitude of shifts. In the first case, in general, the distributions in linear models depend on the underlying distribution of the regressors and errors. The second case allows for magnitudes of shifts that shrink to zero as the sample size increases. We consider both cases in turn.

4.3.1 Fixed Magnitude of Shifts

Consider the following data generation process, with one break ${ }^{8}$:

$$
y_{t}= \begin{cases}f\left(x_{t}, \theta_{1}^{0}\right)+u_{t} & t=1, \ldots, k_{0} \\ f\left(x_{t}, \theta_{2}^{0}\right)+u_{t} & t=k_{0}+1, \ldots, T\end{cases}
$$

An implicit assumption so far was that the parameter shifts are constant:

Assumption 7. $\delta=\theta_{2}^{0}-\theta_{1}^{0}$, a fixed number.
8,9.
${ }^{8}$ The extension to m breaks is immediate because the implied $m+1$ sub-samples are asymptotically independent given Assumption 1.

Denote by $S_{T}\left(k, \theta_{1}, \theta_{2}\right)$ the sum of squared residuals evaluated at a potential break-point $1 \leq k \leq T$. Also, let $S_{T}(k)=\min _{\theta_{1}, \theta_{2}} S_{T}\left(k, \theta_{1}, \theta_{2}\right)$. Then we can write:

$$
\begin{equation*}
\hat{k}=\underset{1 \leq k \leq T}{\operatorname{argmin}} \underset{\theta_{1}, \theta_{2}}{\operatorname{argmin}} V\left(k, \theta_{1}, \theta_{2}\right) \tag{6}
\end{equation*}
$$

where: $V\left(k, \theta_{1}, \theta_{2}\right)=S_{T}\left(k, \theta_{1}, \theta_{2}\right)-S_{T}\left(k_{0}, \theta_{1}^{0}, \theta_{2}^{0}\right)$. We obtain a large sample approximation to this finite distribution, given below:

Theorem 4. Under Assumptions 1-5 and 7, for $m=1$,

$$
\left[\hat{k}-k_{0}\right]-\underset{v \in \mathbf{R}}{\operatorname{argmax}} J^{*}(v) \xrightarrow{p} 0,
$$

where $J^{*}(v)$ is a double-sided stochastic process with $J^{*}(0)=0, J^{*}(v)=J_{1}^{*}(v), v=$ $-1,-2, \ldots ; J^{*}(v)=J_{2}^{*}(v), v=1,2, \ldots ;$ and

$$
\begin{aligned}
& J_{1}^{*}(v)=\sum_{t=k_{0}+v+1}^{k_{0}}\left[f_{t}\left(\theta_{2}^{0}\right)-f_{t}\left(\theta_{1}^{0}\right)\right]^{2}-2 \sum_{t=k_{0}+v+1}^{k_{0}} u_{t}\left[f_{t}\left(\theta_{2}^{0}\right)-f_{t}\left(\theta_{1}^{0}\right)\right] \\
& J_{2}^{*}(v)=-\sum_{t=k_{0}+1}^{k_{0}+v}\left[f_{t}\left(\theta_{2}^{0}\right)-f_{t}\left(\theta_{1}^{0}\right)\right]^{2}-2 \sum_{t=k_{0}+1}^{k_{0}+v} u_{t}\left[f_{t}\left(\theta_{2}^{0}\right)-f_{t}\left(\theta_{1}^{0}\right)\right]
\end{aligned}
$$

The result above is comparable to linear models. If we assume that the errors in (1) are independent of each other and of the regressors, $J^{*}(v)$ becomes a twosides random walk with stochastic drifts. If we also impose strict stationarity of $\left\{v_{t}\right\}$ in Assumption 1(i) with $m^{*}=0$, the limit is a two-sided Gaussian stochastic process with negative drift, and it is the same as the limit for shrinking shifts (see next section).

4.3.2 Shrinking Magnitude of Shifts

Instead of Assumption 7, consider Assumption 8, which imposes parameter shifts that are shrinking at a certain rate w_{T} :

Assumption 8. For $i=1, \ldots, m,=\theta_{i+1, T}^{0}-\theta_{i, T}^{0}=\delta_{i} w_{T}$, where δ_{i} are fixed $p \times 1$ vectors and $\left\{w_{T}\right\}$ is a scalar series such that $w_{T} \rightarrow 0$ and $T^{1 / 2-\gamma} w_{T}^{2} \rightarrow \infty$ as $T \rightarrow \infty$, for some $\gamma \in\left[0, \frac{1}{2}\right)$.

This assumption ensures that the asymptotic distributions of the change-point estimates do not depend on the underlying distributions of $\left\{u_{t}, f_{t}(\theta)\right\}$. Similar assumptions are inter alia $T^{1 / 2-\gamma} w_{T} \rightarrow \infty$, for $\gamma \in\left(0, \frac{1}{2}\right)$ in Bai and Perron (1998) and $T^{1 / 2} w_{T} /(\log T)^{2} \rightarrow \infty$ in Qu and Perron (2007). Our assumption allows only shifts of order $T^{-1 / 4}$ or larger, but the simulation section discusses that, despite this, the coverage probability for the confidence intervals is good. Note that under shrinking magnitudes of shift, the asymptotic properties of parameter and breakfraction estimates need to be re-derived (see Appendix), with the break-fraction distribution presented below.

Theorem 5. Let $\phi=\delta_{1}^{\prime} A_{2}\left(\theta_{1}^{0}\right) \delta_{1} /\left[\delta_{1}^{\prime} A_{1}\left(\theta_{1}^{0}\right) \delta_{1}\right]$ and $\xi=\delta_{1}^{\prime} D_{2}\left(\theta_{1}^{0}\right) \delta_{1} /\left[\delta_{1}^{\prime} D_{1}\left(\theta_{1}^{0}\right) \delta_{1}\right]$. Under Assumptions 1-5, 6(iii)-(iv), and 8, for $m=1$,

$$
\frac{\left[\delta_{1}^{\prime} D_{1}\left(\theta_{1}^{0}\right) \delta_{1}\right]^{2}}{\delta_{1}^{\prime} A_{1}\left(\theta_{1}^{0}\right) \delta_{1}} w_{T}^{2}\left[\hat{k}-k_{0}\right] \Rightarrow \underset{v}{\operatorname{argmax}} Z(v)
$$

where $Z(v)=J_{1}(-v)-0.5|v|, v \leq 0, Z(v)=\sqrt{\phi} J_{2}(v)-0.5 \xi|v|, v>0, J_{1}(v), J_{2}(v)$ are two independent standard scalar Gaussian processes defined on $[0, \infty]$, and ' \Rightarrow ' denotes weak convergence in Skorohod metric.

Details regarding this process can be found in Bai (1997). The density of $\operatorname{argmax}_{v} Z(v)$ is characterized by Bai (1997) and he notes that it is not symmetric if $\phi \neq 1$ or $\xi \neq 1$. A confidence interval can be constructed as follows. Let $\hat{\omega}_{1, i}=\left(\hat{\theta}_{2}-\hat{\theta}_{1}\right)^{\prime} \hat{A}_{i}\left(\hat{\theta}_{1}\right)\left(\hat{\theta}_{2}-\hat{\theta}_{1}\right), \hat{\omega}_{2, i}=\left(\hat{\theta}_{2}-\hat{\theta}_{1}\right)^{\prime} \hat{D}_{i}\left(\hat{\theta}_{1}\right)\left(\hat{\theta}_{2}-\hat{\theta}_{1}\right), \hat{D}_{i}(\theta)=\left(\hat{T}_{i}-\right.$ $\left.\hat{T}_{i-1}\right)^{-1} \sum_{t=\hat{T}_{i-1}+1}^{\hat{T}_{i}} F_{t}(\theta) F_{t}(\theta)^{\prime} ; \hat{A}_{i}(\theta)$ a HAC estimator of the long-run variance $A_{i}(\theta)$, and $\hat{H}=\hat{\omega}_{2,1}^{2} / \hat{\omega}_{1,1}$. Also, let $\hat{\xi}=\hat{\omega}_{2,2} / \hat{\omega}_{2,1}$ and $\hat{\phi}=\hat{\omega}_{1,2} / \hat{\omega}_{1,1}$. Then, a
$100(1-\alpha) \%$ confidence interval for \hat{k} is:

$$
\begin{equation*}
\left(\hat{k}-\left[c_{1} / \hat{H}\right]-1, \hat{k}+\left[c_{2} / \hat{H}\right]+1\right) \tag{7}
\end{equation*}
$$

where c_{1} and c_{2} are respectively the $(\alpha / 2)^{t h}$ and $(1-\alpha / 2)^{t h}$ quantiles for $\operatorname{argmax}_{v} Z(v)$ which can be calculated using equations (B.2) and (B.3) in Bai (1997).

Theorem 5can be extended to yield confidence intervals for the multiple break model, because given Assumption 1, the sample segments are asymptotically independent, allowing for the analysis of the limiting distribution to be carried out as in the one break case:

Corollary to Theorem 5. Define $\phi_{i}=\delta_{i}^{\prime} A_{i+1}\left(\theta_{i}^{0}\right) \delta_{i} /\left[\delta_{i}^{\prime} A_{i}\left(\theta_{i}^{0}\right) \delta_{i}\right]$ and $\xi_{i}=\delta_{i}^{\prime} D_{i+1}\left(\theta_{i}^{0}\right) \delta_{i}$ $/\left[\delta_{i}^{\prime} D_{i}\left(\theta_{i}^{0}\right) \delta_{i}\right]$. Under Assumptions 1-5, 6(iii)-(iv) and 8,

$$
\frac{\left[\delta_{i}^{\prime} D_{i}\left(\theta_{i}^{0}\right) \delta_{i}\right]^{2}}{\delta_{i}^{\prime} A_{i}\left(\theta_{i}^{0}\right) \delta_{i}} w_{T}^{2}\left[\hat{k}-k_{0}\right] \Rightarrow \underset{v}{\operatorname{argmax}} Z_{i}(v)
$$

where $Z_{i}(v)=W_{i, 1}(-v)-0.5|v|, v \leq 0, Z_{i}(v)=\sqrt{\phi_{i}} W_{i, 2}(v)-0.5 \xi_{i}|v|, v>0$ and $W_{i, 1}(v), W_{i, 2}(v)$ are independent standard scalar Gaussian processes defined on $[0, \infty]$, for $i=1, \ldots, m$.

Confidence intervals can thus be obtained by redefining the appropriate quantities in (7) for each break-point estimator.

5 Tests for Multiple Breaks

This section is concerned with finding the number of breaks m, so far treated as known. To that end, we consider similar tests in Bai and Perron (1998), as well as equivalent sup Wald tests that are useful when autocorrelation is present. Given the results in the previous sections, we are able to show that their distribution carry over from linear settings. The critical values are already tabulated in Bai and Perron (1998) and Bai and Perron (2003a).

5.1 Sup F-Tests

The F-tests based on differences in sum of squared residuals can be carried out as long as Assumption 6 holds. Extensions to serially correlated errors can be found in Section 5.2.

5.1.1 An F Test of No Breaks Versus a Fixed Number of Breaks

Consider the following hypothesis:

$$
\begin{equation*}
H_{0}: m=0 \quad \text { vs. } \quad H_{A}: m=k . \tag{8}
\end{equation*}
$$

where k is a fixed finite positive integer. For this purpose, consider a partition $\left(T_{1}, \ldots, T_{k}\right)$ of the $[1, T]$ interval such that $T_{i}=\left[T \lambda_{i}\right]$. We also need to restrict each change point to be asymptotically distinct and bounded away from the endpoints of the sample. To this end, define $\Lambda_{\epsilon}=\left\{\bar{\lambda}_{k} \equiv\left(\lambda_{1}, \ldots, \lambda_{k}\right):\left|\lambda_{i+1}-\lambda_{i}\right| \geq\right.$ $\left.\epsilon, \lambda_{1} \geq \epsilon, \lambda_{k} \leq 1-\epsilon\right\}$, where ϵ is a small number, in practice ranging from 0.05 to 0.15 . As in Bai and Perron (1998), consider a generalized version of the sup F-type tests proposed in Andrews (1993):

$$
\begin{equation*}
\sup _{\bar{\lambda}_{k} \in \Lambda_{\epsilon}} F_{T}(k ; p)=\sup _{\bar{\lambda}_{k} \in \Lambda_{\epsilon}} \frac{\left(S S R_{0}-S S R_{k}\right) / k p}{S S R_{k} /[T-(k+1) p]} \tag{9}
\end{equation*}
$$

where $S S R_{0}$ and $S S R_{k}$ are the sums of squared residuals under the null, respectively under the alternative hypothesis. Let $B_{p}(\cdot)$ be a p-vector of independent Brownian motions. The following theorem describes the distribution of the test under H_{0} :

Theorem 6. Under Assumptions 2-6 and H_{0} in (8),

$$
\sup _{\bar{\lambda}_{k} \in \Lambda_{\epsilon}} F_{T}(k ; p) \Rightarrow \frac{1}{k p} \sup _{\bar{\lambda}_{m} \in \Lambda_{\epsilon}} \sum_{i=1}^{k} \frac{\left\|\lambda_{i} B_{p}\left(\lambda_{i+1}\right)-\lambda_{i+1} B_{p}\left(\lambda_{i}\right)\right\|^{2}}{\lambda_{i} \lambda_{i+1}\left(\lambda_{i+1}-\lambda_{i}\right)}
$$

It is worth noting that the distribution of the sup- F test under H_{0} above does not depend on any nuisance parameters. As Bai and Perron (1998) show, the test above is consistent for its alternative. Of course, if autocorrelation is present, this F-test should be replaced with a Wald-type test of equality of parameters across regimes, and we describe such a test in the next section.

5.1.2 A Double Maximum F Test

Next, one can consider testing against an unknown number of breaks $m<M$, M being an upper bound on the number of change-points. To that end, consider testing:

$$
\begin{equation*}
H_{0}: m=0 \quad \text { vs. } \quad H_{A}: \mathrm{m} \text { unknown }, m<M, M \text { fixed. } \tag{10}
\end{equation*}
$$

As Bai and Perron (1998) point out, to test this hypothesis it suffices to take the maximum over weighted versions of the test statistics described in the previous section, where the weights are $\left(a_{1}, \ldots, a_{M}\right)$:

$$
\begin{equation*}
D \max F_{T}\left(M, a_{1}, \ldots, a_{M}\right)=\max _{1 \leq m \leq M} a_{m} \sup _{\bar{\lambda}_{m} \in \Lambda_{\epsilon}} F_{T}(m ; p) \tag{11}
\end{equation*}
$$

The distribution of the test statistic above is:
Corollary to Theorem 6. Under Assumptions 2-6 and H_{0} in (10),

$$
D \max F_{T}\left(M, a_{1}, \ldots, a_{M}\right) \Rightarrow \max _{1 \leq m \leq M} \frac{a_{m}}{m p} \sup _{\bar{\lambda}_{m} \in \Lambda_{\epsilon}} \sum_{i=1}^{m} \frac{\left\|\lambda_{i} B_{p}\left(\lambda_{i+1}\right)-\lambda_{i+1} B_{p}\left(\lambda_{i}\right)\right\|^{2}}{\lambda_{i} \lambda_{i+1}\left(\lambda_{i+1}-\lambda_{i}\right)}
$$

As Bai and Perron (1998) mention, the choice of weights remains an open question. It may reflect the imposition of some priors on the likelihood of various number of breaks. One possibility is to set all weights equal to unity. We denote
this test as:

$$
\begin{equation*}
U D \max F_{T}(M, p)=\max _{1 \leq m \leq M} \sup _{\bar{\lambda}_{m} \in \Lambda_{\epsilon}} F_{T}(m ; p) \tag{12}
\end{equation*}
$$

Note that, for fixed m and break locations, $F_{T}(m ; p)$ is the sum of m dependent χ_{p}^{2} variables, each divided by m. This scaling by m can be viewed as a prior that, as m increases, a fixed sample becomes less informative about the hypotheses that it is confronted with. Since for any fixed p, the critical values of $\sup _{\left(\bar{\lambda}_{k}\right) \in \Lambda_{\epsilon}} F_{T}(m ; p)$ decrease as m increases, this implies that if we have a large number of breaks, we may get a test with low power, because the marginal p-values decrease with m. One way to keep marginal p-values of the tests equal across m is to use weights that depend on p and the significance level of the test, say α. More precisely, let $c(p, \alpha, m)$ be the asymptotic critical value of the test $\sup _{\bar{\lambda}_{m} \in \Lambda_{\epsilon}} F_{T}(m ; p)$. Define, as in Bai and Perron (1998), $a_{1}=1$ and $a_{m}=c(p, \alpha, 1) / c(p, \alpha, m)$ for $1<m \leq M$. The test obtained this way is:

$$
\begin{equation*}
W D \max F_{T}(M, p)=\max _{1 \leq m \leq M} \frac{c(p, \alpha, 1)}{c(p, \alpha, m)} \times \sup _{\bar{\lambda}_{m} \in \Lambda_{\epsilon}} F_{T}(m ; p) \tag{13}
\end{equation*}
$$

For consistency of Dmax tests and critical values of both its versions, UDmax and WDmax, see Bai and Perron (1998).

5.1.3 An \mathbf{F} Test of ℓ Versus $\ell+1$ Breaks

Consider the following hypothesis of interest:

$$
\begin{equation*}
H_{0}: m=\ell \quad \text { vs. } \quad H_{A}: m=\ell+1 \tag{14}
\end{equation*}
$$

One would ideally construct such a test based on the difference between the sum of squared residuals for ℓ breaks and $(\ell+1)$ breaks. Considering the different mismatches in end-points of partial sums obtained this way, it would be hard to describe the limiting behavior of such tests. An easier strategy involves imposing
ℓ breaks and testing each segment for an additional break. The test statistic is:

$$
F_{T}(\ell+1 \mid \ell)=\max _{1 \leq i \leq \ell+1} \frac{1}{\hat{\sigma}_{i}^{2}}\left\{S_{T}\left(\hat{T}_{1}, \ldots, \hat{T}_{\ell}\right)-\inf _{\tau \in \Delta_{i, \ell}} S_{T}\left(\hat{T}_{1}, \ldots, \hat{T}_{i-1}, \tau, \hat{T}_{i}, \ldots, \hat{T}_{\ell}\right)\right\}
$$

where:

$$
\Delta_{i, \ell}=\left\{\tau: \hat{T}_{i-1}+\left(\hat{T}_{i}-\hat{T}_{i-1}\right) \eta \leq \tau \leq \hat{T}_{i}-\left(\hat{T}_{i}-\hat{T}_{i-1}\right) \eta\right\}, \text { and } \hat{\sigma}_{i}^{2} \xrightarrow{p} \sigma_{i}^{2}
$$

The following result is proved in the Appendix:
Theorem 7. Under Assumptions 2-6 and H_{0} in (14), $\lim P\left(F_{T}(\ell+1 \mid \ell) \leq x\right)=$ $G_{p, \eta}^{\ell+1}$, where $G_{p, \eta}$ is the distribution function of $\sup _{\eta \leq \mu \leq 1-\eta} \frac{\left\|B_{p}(\mu)-\mu B_{p}(1)\right\|^{2}}{\mu(1-\mu)}$.

Note that this test allows for heterogeneity in regressors and errors across regimes, including breaks in the distribution of errors and/or regressors occurring simultaneously with the coefficient breaks.

If there are more than ℓ breaks, but we estimated a model with just ℓ breaks, then there must be at least one additional break not estimated. Hence, at least one of the $(\ell+1)$ segments obtained contains a nontrivial break-point, in the sense that both boundaries of this segment are separated from the true break-point by a positive fraction of the total number of observations. For this segment, the $\sup F(1, p)$ test statistic diverges to infinity as the sample size increases, since this test is consistent. Then so does $F_{T}(\ell+1 \mid \ell)$, hence this test is consistent too.

5.2 Tests in the Presence of Autocorrelation

In this section, we provide tests that are robust to types of autocorrelation allowed by Assumption 1. In particular, we extend the tests in Sections 5.1.1-5.1.3; the first two tests were developed for linear models in Bai and Perron (1998), while the last test is proposed for linear models in Hall, Han, and Boldea (2009).

5.2.1 A Wald Test of Zero Versus a Fixed Number of Breaks

The hypothesis in (8) can be re-written as: $H_{0}: R_{k} \theta_{0}^{c}=0$, where R_{k} is the conventional matrix such that $\left(R_{k} \theta_{0}^{c}\right)^{\prime}=\left(\theta_{1}^{0^{\prime}}-\theta_{2}^{0^{\prime}}, \ldots, \theta_{k}^{0^{\prime}}-\theta_{k+1}^{0^{\prime}}\right)$. The corresponding sup Wald test statistic is:

$$
\sup _{\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in \Lambda_{\epsilon}} W_{T}(k ; p)=\sup _{\bar{\lambda}_{k} \in \Lambda_{\epsilon}} \hat{\theta}^{c^{\prime}}\left(\bar{T}_{k}\right) R_{k}^{\prime}\left(R_{k} \hat{\Upsilon}\left(\bar{T}_{k}\right) R_{k}^{\prime}\right)^{-1} R_{k} \hat{\theta}^{c}\left(\bar{T}_{k}\right)
$$

where $\hat{\theta}^{c^{\prime}}\left(\bar{T}_{k}\right)=\left[\hat{\theta}_{1}^{\prime}\left(\bar{T}_{k}\right), \ldots, \hat{\theta}_{k+1}^{\prime}\left(\bar{T}_{k}\right)\right], \hat{\Upsilon}\left(\bar{T}_{k}\right)=\operatorname{diag}\left[\hat{\Upsilon}_{1}\left(\bar{T}_{k}\right), \ldots, \hat{\Upsilon}_{k+1}\left(\bar{T}_{k}\right)\right]$, and $\hat{\Upsilon}_{i}\left(\bar{T}_{k}\right)=T^{-1}\left[\hat{D}_{i}^{-1}\left(\hat{\theta}_{i}\left(\bar{T}_{k}\right)\right)\right]\left[\hat{A}_{i}\left(\hat{\theta}_{i}\left(\bar{T}_{k}\right)\right)\right]\left[\hat{D}_{i}^{-1}\left(\hat{\theta}_{i}\left(\bar{T}_{k}\right)\right)\right]$, recalling that \bar{T}_{k} was a certain k-partition of the sample interval.

To facilitate the presentation of an intuitive form for the distribution of the sup Wald tests, rewrite $R_{k}=\tilde{R}_{k} \otimes I_{p}$, with \tilde{R}_{k} being the conventional $k \times(k+1)$ matrix such that $\left(\tilde{R}_{k} \beta\right)^{\prime}=\left(\beta_{1}-\beta_{2}, \ldots, \beta_{k}-\beta_{k+1}\right)$, where β_{i} the $i^{\text {th }}$ element of some $(k+1) \times 1$ vector β, and I_{p} is the $p \times p$ identity matrix. From the Appendix, it follows that:

Theorem 8. Under Assumptions 1-5, 6(iii)-(iv) and H_{0} in (8),

$$
\sup _{\bar{\lambda}_{k} \in \Lambda_{\epsilon}} W_{T}(k ; p) \Rightarrow \sup _{\bar{\lambda}_{k} \in \Lambda_{\epsilon}} \tilde{B}_{k}\left(\bar{\lambda}_{k}\right)
$$

where: $\tilde{B}_{k}\left(\bar{\lambda}_{k}\right)=B_{p(k+1)}^{\prime}\left\{\left[C_{k}^{-1} \tilde{R}_{k}^{\prime}\left(\tilde{R}_{k} C_{k}^{-1} \tilde{R}_{k}^{\prime}\right)^{-1} \tilde{R}_{k} C_{k}^{-1}\right] \otimes I_{p}\right\} B_{p(k+1)}$, with $B_{p(k+1)}=$ $\left[B_{p}^{\prime}\left(\lambda_{1}\right), B_{p}^{\prime}\left(\lambda_{2}\right)-B_{p}^{\prime}\left(\lambda_{1}\right), \ldots, B_{p}^{\prime}\left(\lambda_{k+1}\right)-B_{p}^{\prime}\left(\lambda_{k}\right)\right]^{\prime}$, a $p(k+1) \times 1$ vector of pairwise independent vector Brownian motions of dimensions $p, C_{k}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}-\right.$ $\left.\lambda_{1}, \ldots, \lambda_{k+1}-\lambda_{k}\right)$ and $\lambda_{k+1}=1$ by convention.

It can be shown that the H_{0} distribution of the $\sup W_{T}(k ; p)$ is a scaled version of the corresponding distribution of the $\sup F_{T}(k ; p)$, with scaling factor $k p$.

5.2.2 Double Maximum Wald Tests

Given the result in Theorem 8 , the $D \max F_{T}\left(M, a_{1}, \ldots, a_{M}\right)$ test has its corresponding autocorrelation-robust version:

$$
\begin{equation*}
D \max W_{T}\left(M, a_{1}, \ldots, a_{M}\right)=\max _{1 \leq m \leq M} \frac{a_{m}}{m p} \sup _{\bar{\lambda}_{m} \in \Lambda_{\epsilon}} W_{T}(m ; p) \tag{15}
\end{equation*}
$$

whose distribution is:

Corollary to Theorem 8. Under Assumptions 1-5, 6(iii)-(iv) and H_{0} in (10),

$$
D \max W_{T}\left(M, a_{1}, \ldots, a_{M}\right) \Rightarrow \max _{1 \leq m \leq M} \frac{a_{m}}{m p} \sup _{\bar{\lambda}_{m} \in \Lambda_{\epsilon}} \tilde{B}_{m}\left(\bar{\lambda}_{m}\right)
$$

The scaling $m p$ is used not only to obtain the same asymptotic distributions as for the corresponding F-tests, but because, in the absence of scaling and equal weights a_{i}, this test will be equivalent to testing zero against M breaks, since $\sup _{\bar{\lambda}_{m} \in \Lambda_{\epsilon}} \tilde{B}_{m}\left(\bar{\lambda}_{m}\right)$ is increasing in m for a fixed p. Given the scaling, the discussion in Section 5.1.2. about picking a_{m} is still valid. Thus, as in Section 5.1.2, we can use the unweighted version of the test, with $a_{m}=1$, or the weighted version of the test, with $a_{m}=c(p, \alpha, 1) / c(p, \alpha, m)$ in (15).

5.2.3 A Wald Test of ℓ Versus $\ell+1$ Breaks

For purposes of sequentially estimating the breaks in the presence of autocorrelation, it is desirable to develop a Wald-type test that is designed for testing ℓ versus $\ell+1$ breaks; under $\ell+1$ breaks, this is equivalent to testing whether, there exists exactly one i such that $\theta_{i}^{0} \neq \theta_{i+1}^{0}$, where $i \in\{1, \ldots, \ell+1\}$.

Under H_{0} in (14), for each index $q \in\{1, \ldots, \ell+1\}$ define the corresponding hypothesis: $R^{*}\left[\theta_{q}^{0^{\prime}}, \theta_{q+1}^{0^{\prime}}\right]^{\prime}=0$, where $R^{*}=\tilde{R}^{*} \otimes I_{p}$ and $\tilde{R}^{*}=[1,-1]$. For simplicity, let $\vartheta_{q}^{0}=\left[\theta_{q}^{0^{\prime}}, \theta_{q+1}^{0^{\prime}}\right]^{\prime}$ and $\hat{\vartheta}_{q}(\mu)=\left[\hat{\theta}_{q}(\mu)^{\prime}, \hat{\theta}_{q+1}(\mu)^{\prime}\right]^{\prime}$, where we first estimated the model with ℓ breaks, imposed them as if they were the true ones, and then defined,
for each feasible break $[T \mu] \in \Delta_{q, \ell}$ - with $\Delta_{q, \ell}$ defined in Section 5.1.3-parameter estimates $\hat{\theta}_{q}(\mu), \hat{\theta}_{q+1}(\mu)$, for before and after the break.

The appropriate Wald test is:

$$
W_{T}(\ell+1 \mid \ell)=\max _{1 \leq q \leq \ell+1} \sup _{\tau \in \Delta_{q, \ell}} W_{T, \ell}(\tau, q)
$$

where $W_{T, \ell}(\tau, q) \equiv W_{T, \ell}(\mu, q)=\hat{\vartheta}_{q}(\mu)^{\prime} R^{*^{\prime}}\left[R^{*} \hat{\Upsilon}_{q}^{*}(\mu) R^{*^{\prime}}\right]^{-1} R^{*} \hat{\vartheta}_{q}(\mu)$, with $\hat{\Upsilon}_{q}^{*}(\mu)=$ $\operatorname{diag}\left[\hat{\Upsilon}_{q, 1}^{*}, \hat{\Upsilon}_{q, 2}^{*}\right]$ with $\Upsilon_{q, j}^{*}=T\left[\hat{D}_{q, j}^{*}(\mu)\right]^{-1} \hat{A}_{q, j}^{*}(\mu)\left[\hat{D}_{q, j}^{*}(\mu)\right]^{-1},(j=1,2)$, and $\hat{D}_{q, 1}^{*}(\mu)=T^{-1} \sum_{t=\hat{T}_{q-1}+1}^{\tau} F_{t, q}(\mu) F_{t, q}(\mu)^{\prime}, \hat{D}_{q, 2}^{*}(\mu)=T^{-1} \sum_{t=\tau+1}^{\hat{T}_{q}} F_{t, q+1}(\mu) F_{t, q+1}(\mu)^{\prime}$, while $\hat{A}_{q, 1}^{*}(\mu)$ and $\hat{A}_{q, 2}^{*}(\mu)$ are HAC estimators of the limiting variances of respectively $T^{-1 / 2} \sum_{t=\hat{T}_{q-1}+1}^{\tau} u_{t, q}(\mu) F_{t, q}(\mu), T^{-1 / 2} \sum_{t=\tau+1}^{\hat{T}_{q}} u_{t, q+1}(\mu) F_{t, q+1}(\mu)$, with $F_{t, s}(\mu)=$ $F_{t}\left(\hat{\theta}_{s}(\mu)\right)$ and $u_{t, s}(\mu)=u_{t}\left(\hat{\theta}_{s}(\mu)\right),(s=q, q+1)$. Even though there exist estimates of the limiting variance of $\hat{\Upsilon}_{q}^{*}(\mu)$ that are easier to compute, for increasing the power of the test, we consider those that would be more relevant if the alternative were true.

Note that this test is useful for performing sequential estimation of breaks in the presence of autocorrelation. Not surprisingly, we find that the distribution of the above Wald test is the same as that of the corresponding F-test, but holds under more general assumptions:

Theorem 9. Under Assumptions 1-5, 6(iii)-(iv) and H_{0} in (14), one can write $\lim P\left(W_{T}(\ell+1 \mid \ell) \leq x\right)=G_{p, \eta}^{\ell+1}$, where $G_{p, \eta}$ is the cdf of $\sup _{\eta \leq \mu \leq 1-\eta} \frac{\left\|B_{p}(\mu)-\mu B_{p}(1)\right\|^{2}}{\mu(1-\mu)}$.

5.3 Sequential Estimation of the Number of Breaks

Using the test statistics presented above, we can suggest a simple sequential method for obtaining an estimator, \hat{m}_{T} say, of the number of breaks.

On the first step of the sequential estimation, use either $\sup F_{T}(1 ; p), \sup W_{T}(1 ; p)$ or $\operatorname{Dmax} F_{T}(M, p), D \max W_{T}(M, p)$, to test the null hypothesis that there are no breaks. If this null is not rejected then set $\hat{m}_{T}=0$; else proceed to the next
step. On the second step, use $F_{T}(2 \mid 1)$ or $W_{T}(2 \mid 1)$ to test the null hypothesis of one against two breaks. If $F_{T}(2 \mid 1)$ or $W_{T}(2 \mid 1)$ does not reject, then $\hat{m}_{T}=1$; else proceed to the next step. On the $\ell^{t h}$ step, by means of $F_{T}(\ell+1 \mid \ell)$ or $W_{T}(\ell+1 \mid \ell)$, test the null hypothesis of ℓ breaks against $\ell+1$ breaks, and if the hypothesis is not rejected, then $\hat{m}_{T}=\ell$; else proceed to the next step. This sequential procedure stops when M, the ceiling on the number of breaks, is reached. If all statistics in the sequence are significant then the conclusion is that there are at least M breaks. Note that this is not a proper sequential procedure, because with each sequential test, the breaks are re-estimated under the null with a global procedure.

6 Simulation Results

There are some clear computational advantages of the Bai and Perron (2003b) method for detecting breaks. As Bai and Perron (2003b) show, even when the number of change-points is large, we need not search over all possible partitions to find the true break. Imposing a minimum length on the segments in each partition, one need not perform more than $T(T+1) / 2$ operations to find the estimated partition.

Here, we implement an algorithm for finding breaks similar to Bai and Perron (2003b). Along with nonlinearity additional issues arise, related to having no closed form for updating the sum of squares and parameter estimates when one more observation is present. Although approximate updating procedures such as an unscented Kalman filter can be useful, for simplicity we recalculate in each segment of the $T(T+1) / 2$ new NLS estimates and sum of squares through global minimization of the concentrated sum of squares by a quasi Gauss-Newton algorithm 9 As starting values for the nonlinear parameters, we use grid searches, Taylor expansions of up to $7^{\text {th }}$ order, as well as interpolations suggested in Gallant

[^6](1987) and Bates and Watts (1988).

We pick data generation processes (DGPs) with $m=1,2$, and a nonlinear function used in Gallant (1987) and Bates and Watts (1988):

$$
f\left(x_{t}, \theta\right)=\theta_{i}^{1}+\theta_{i}^{2} \exp \left(-x_{t} \theta_{i}^{3}\right), \text { with } t \in I_{i}^{0}, \text { for } i=1, \ldots, m+1
$$

The true data was generated such that $x_{t} \sim N(0,1), u_{t} \sim N(0,1)$ and $X \perp U \underline{10}$

Table 1: Relative rejection frequencies of F -statistics

$D G P$	T	sup F		seq F		$U D \max F$
		0:1	0:2	2:1	3:2	
1	100	. 05	. 05	. 01	0	. 05
	200	. 05	. 05	. 01	0	. 05
2	100	1.00	1.00	. 05	0	1.00
	200	1.00	1.00	. 03	0	1.00
3	100	1.00	1.00	. 04	0	1.00
	200	1.00	1.00	. 03	0	1.00
4	100	. 96	. 92	. 04	0	. 96
	200	1.00	1.00	. 04	0	1.00
5	100	. 97	1.00	1.00	. 02	1.00
	200	1.00	1.00	1.00	. 01	1.00
6	100	. 94	1.00	. 99	. 02	1.00
	200	1.00	1.00	1.00	. 01	1.00

Notes: sup F denotes the statistic $\operatorname{Sup} F_{T}(k ; 1)$ and the second tier column heading under it denotes $0: k$; seq F denotes the statistic $F_{T}(\ell+1 \mid \ell)$ and the second tier column beneath it denotes $\ell+1: \ell ; U D \max F$ denotes the statistic $U D \max F_{T}(5,1)$.

Tables $1+3$ are reported for 1000 simulations, an end-of-samples cut-off $\epsilon=$ 15% of the sample size, and 6 DGPs , with $m=0,1,2$. Let ι_{j} be a j-vector of ones. We pick $D G P 1: m=0, \theta_{0}^{c}=\iota_{3} ; D G P 2,3,4: m=1, \theta_{0}^{c^{\prime}}=(1,2) \otimes \iota_{3}^{\prime}$, $(1,1.5) \otimes \iota_{3}^{\prime}$ and $\left(\iota_{3}^{\prime} ;(2,1,1)\right) ; D G P 5,6: m=2, \theta_{0}^{c^{\prime}}=(1,2,1) \otimes \iota_{3}^{\prime},(1,1.5,1) \otimes \iota_{3}^{\prime}$. The empirical coverage of the break-point $99 \%, 95 \%, 90 \%$ confidence intervals are almost 100% in each case. This is consistent with break-point estimates coinciding with the true break-points or being just one observation away. Table 1 shows very

[^7]Table 2: Empirical distribution of the estimated number of breaks

$D G P$	T	sup F				$U D \max F$			
		0	1	2	3,4,5	0	1	2	3,4,5
1	100	. 95	. 05	0	0	. 95	. 05	0	0
	200	. 95	. 05	0	0	. 95	. 05	0	0
2	100	0	. 95	. 05	0	0	. 95	. 05	0
	200	0	. 97	. 03	0	0	. 97	. 03	0
3	100	0	. 96	. 04	0	0	. 96	. 04	0
	200	0	. 96	. 04	0	0	. 96	. 04	0
4	100	. 04	. 93	. 03	0	. 04	. 93	. 03	0
	200	0	. 96	. 04	0	0	. 94	. 04	0
5	100	. 03	0	. 95	. 02	0	0	. 98	. 02
	200	0	0	. 99	. 01	0	0	. 99	. 01
6	100	0	. 96	. 04	0	0	. 96	. 04	0
	200	0	0	. 99	. 01	0	0	. 99	. 01

Notes: The blocks headed sup F or $U D \max F$ give the empirical distribution of \hat{m}_{T}, obtained via the sequential strategy using $\operatorname{Sup} F_{T}(1 ; 1)$ or $\operatorname{UDmax} F_{T}(5,1)$ on the first step with the maximum number of breaks set to five.
good size and power properties of sup F tests; they improve as the sample size increases, for both $m=1, m=2$, and so do the properties of the estimate for number of breaks \hat{m}_{T} in Table 2.

Parameter confidence interval coverages are reported in Table 3 and are in all cases close to the nominal size. Overall, our methodology seems to work well in finite samples.

7 An Application to the US Interest Rate Reaction Function

Several recent theoretical and empirical studies question the assumptions of linearity and/or parameter stability underlying (US) monetary policy rules, see interalia Schaling (2004), Dolado, María-Dolores, and Ruge-Murcia (2004), Bec, Salem, and Collard (2002), Kim, Osborn, and Sensier (2005), Kesriyeli, Osborn, and Sensier (2006) and Florio (2006).

Table 3: Empirical coverage of parameter confidence intervals

$D G P$	T	Confidence Intervals									
		Regime	$\theta_{1}^{\text {O}}$			$\theta_{2}^{\text {U }}$			$\theta_{3}^{\text {U }}$		
			99\%	95 \%	90 \%	99\%	95 \%	90 \%	99\%	95%	90 \%
2	100	$1^{\text {st }}$ regime	. 99	. 95	. 90	. 97	. 93	. 89	. 98	. 94	. 89
		$2^{\text {nd }}$ regime	. 99	. 95	. 89	. 98	. 95	. 89	. 98	. 95	. 89
	200	$1^{\text {st }}$ regime	. 98	. 94	. 89	. 99	. 93	. 88	. 99	. 94	. 88
		$2^{\text {nd }}$ regime	. 98	. 94	. 89	. 99	. 93	. 88	. 99	. 94	. 88
3	100	$1^{\text {st }}$ regime	. 99	95	. 90	. 97	. 93	. 89	. 99	. 94	. 89
		$2^{\text {nd }}$ regime	. 99	. 95	. 89	. 98	. 95	. 89	. 98	. 95	. 89
	200	$1^{\text {st }}$ regime	. 98	. 94	. 89	. 98	. 94	. 89	. 99	. 94	. 90
		$2^{\text {nd }}$ regime	. 99	. 94	. 89	. 98	. 94	. 89	. 98	. 94	. 90
4	100	$1^{\text {st }}$ regime	. 98	. 94	. 87	. 96	. 91	. 86	. 98	. 93	. 86
		$2^{\text {nd }}$ regime	. 98	. 92	. 86	. 96	. 92	. 87	. 96	. 91	. 85
	200	$1^{\text {st }}$ regime	. 98	. 94	. 88	. 97	. 93	. 88	. 99	. 94	. 88
		$2^{\text {nd }}$ regime	. 98	. 93	. 89	. 98	. 94	. 89	. 98	. 93	. 88
5	100	$1^{\text {st }}$ regime	. 96	. 91	. 87	. 94	. 89	. 85	. 97	. 92	. 87
		$2^{\text {nd }}$ regime	. 96	. 91	. 87	. 98	. 93	. 86	. 97	. 92	. 86
		$3^{\text {rd }}$ regime	. 99	. 94	. 90	. 97	. 93	. 89	. 98	. 93	. 88
	200	$1^{\text {st }}$ regime	. 98	. 94	. 89	. 99	. 93	. 88	. 99	. 94	. 88
		$2^{\text {nd }}$ regime	. 98	. 94	. 89	. 98	. 93	. 89	. 98	. 93	. 89
		$3^{\text {rd }}$ regime	. 98	. 94	. 90	. 98	. 94	. 90	. 98	. 94	. 89
6	100	$1^{\text {st }}$ regime	. 96	. 91	. 86	. 93	. 89	. 84	. 97	. 91	. 87
		$2^{\text {nd }}$ regime	. 95	. 88	. 82	. 96	. 90	. 84	. 96	. 90	. 84
		$3^{\text {rd }}$ regime	. 98	. 94	. 89	. 97	. 93	. 89	. 98	. 93	. 88
	200	$1^{\text {st }}$ regime	. 97	. 94	. 89	. 96	. 92	. 88	. 98	. 93	. 86
		$2^{\text {nd }}$ regime	. 98	. 93	. 87	. 97	. 93	. 89	. 98	. 93	. 89
		$3^{\text {rd }}$ regime	. 98	. 94	. 90	. 98	. 94	. 89	. 98	. 94	. 89

Notes: The column headed $100 a \%$ gives the percentage of times the $100 a \%$ confidence intervals for each parameter contains its true value.

In most of these studies, nonlinearity is modeled via switching regimes, threshold behavior or as a smooth transition between (linear) regimes associated with different inflation gaps (deviations of inflation from target), output gaps (deviations of output from their potential) or both.

Threshold models are largely viewed today as a special case of smooth transition models, when the smoothness parameter of the transition function approaches infinity. Similarly, change-point models are viewed as a special case of smooth transition models with the state variable time and the smoothness parameter approaching infinity, see e.g. van Dijk, Teräsvirta, and Franses (2002). However,
such a treatment is not desirable, since it is difficult to develop estimation and inference theory in the presence of parameters approaching infinity; even if these parameters are not the main object of inference, it is likely that their estimation will affect the estimation of other parameters of interest. While this discussion highlights the importance of distinguishing between breaks and time transitions with smoothness parameters close to infinity, it does not preclude the treatment of smooth and sudden change jointly. Our methodology allows for such a treatment, since a large class of smooth transition models are estimated via NLS and are thus nested by our model. Structural stability in these models can be assessed via the testing strategies we proposed. If there is evidence of change points, our methodology allows for modeling them jointly with nonlinearity.

To illustrate this point, we revisit the nonlinear model of the US federal funds rate reaction function considered in Kesriyeli, Osborn, and Sensier (2006). Unlike the tests proposed by Eitrheim and Teräsvirta (1996), our tests are designed specifically against the alternative of structural change, providing further evidence of parameter nonconstancy in the model employed by Kesriyeli, Osborn, and Sensier (2006).

Following evidence of nonlinearity and structural change, Kesriyeli, Osborn, and Sensier (2006) use monthly data from 1984: 1-2002 : 12 to model the US interest rate reaction function, employing the following two-transition model:

$$
r_{t}=x_{t}^{\prime} \beta_{1}+x_{t}^{\prime} \beta_{2} G_{1}\left(\Delta_{3} r_{t-1} ; \gamma_{1}, c_{1}\right)+x_{t}^{\prime} \beta_{3} G_{2}\left(t ; \gamma_{2}, c_{2}\right)+u_{t}
$$

with r_{t} is the federal funds rate, $x_{t}^{\prime}=\left(1, r_{t-1}, r_{t-2}, \pi g_{t-1}, \pi g_{t-2}, \pi g_{t-3}, o g_{t-1}, o g_{t-2}\right.$, $\Delta w c p_{t-3}$), where πg_{t} and $o g_{t}$ denote inflation gap, respectively output gap, while $\Delta w c p_{t}$ stands for the change in the world commodity prices at time $t \|^{11}$ Here, $G_{1}\left(\Delta_{3} r_{t-1} ; \gamma_{1}, c_{1}\right)$ is a logistic transition function associated with a three month

[^8]change in the interest rate, i.e. $s_{t, 1}=\Delta_{3} r_{t-1}=r_{t-1}-r_{t-4}$, and $G_{2}\left(t ; \gamma_{2}, c_{2}\right)$ another logistic transition function associated with time, i.e. $s_{t, 2}=t$:
$$
G_{i}\left(s_{t, i} ; \gamma_{i}, c_{i}\right)=\left\{1+\exp \left[-\gamma_{i}\left(s_{t, i}-c_{i}\right) / \hat{\sigma}\left(s_{t, i}\right)\right]\right\}^{-1}, i=1,2
$$

This model is routinely estimated via NLS, and the smoothness Assumption 3 implicitly holds. The properties of a logistic transition function ensure that the moment conditions in Assumption 4 are satisfied, as long as the implied moments of regressor and error distribution exist. Assumptions prone to violation are possibly Assumptions 1(i),(ii), 6. Potential violations are discussed at the end of this section.

In this model, Kesriyeli, Osborn, and Sensier's (2006) obtain a large estimate of the time smoothness parameter ($\gamma_{2}=1082$, t-value 0.02) which could be indicative of a break rather than a smooth transition. This is confirmed by a time-transition function that lasts only one period. Hence, there is scope to use our tests to detect potential change-points. However, since Kesriyeli, Osborn, and Sensier's (2006) potential 'break' occurs at the beginning of the sample, we test for breaks by enlarging the sample to $1982: 7-2002$: 12 ${ }^{12}$ Because of adding observations, the model specification may change, an issue which we address by step-wise recreating the model specification strategy in Kesriyeli, Osborn, and Sensier (2006).

This strategy involves first selecting a linear model, then assessing the adequacy of this specification by performing on this model separate tests for parameter instability and neglected nonlinearity, and finally using the results from these tests to inform their final model specification. Following the same steps, we start with a linear stable model specification, and by backward selection via AIC and

[^9]BIC arrive at the following model:

$$
r_{t}=x_{t}^{\prime} \beta+u_{t}, \text { with } x_{t}^{\prime}=\left(1, r_{t-1}, r_{t-2}, o g_{t-1}, o g_{t-3}, \pi g_{t-2}\right)
$$

Bai and Perron's (1998) tests indicate one possible break, at 1984:9, evidence supported by a UDmax test $(U D \max =34.855)$ significant at the 1% level but not by a sup F test $\left(\sup F_{T}(1 ; 6)=16.679\right)$, insignificant at the 10% level. On the other hand, tests against nonlinearity proposed in Luukkonen, Saikkonen, and Teräsvirta (1988) indicate possible nonlinearity related to $r_{t-1}, r_{t-2}, \pi g_{t-2}, r_{t-4}$. A single-transition model with r_{t-4} fits worse than one with r_{t-1} and $\Delta_{3} r_{t-1}$ as a state variable. The latter state variable is justified not only by tests and grid searches, but also by the intuition that the Fed should reacts differently to previous positive or negative changes in interest rates on a quarterly (thus smoother) basis.

Thus, with a slightly different model specification, we obtain the same state variable as in Kesriyeli, Osborn, and Sensier (2006), but find evidence of three breaks:
$r_{t}=x_{t}^{\prime} \beta_{1}^{(i)}+x_{t}^{\prime} \beta_{2}^{(i)} G_{1}\left(\Delta_{3} r_{t-1} ; \gamma_{1}^{(i)}, c_{1}^{(i)}\right)+u_{t}, \quad t \in\left[T_{i-1}+1, T_{i}\right] \quad i=1, \ldots, 4$
with $x_{t}^{\prime}=\left(1, r_{t-1}, r_{t-2}, o g_{t-1}, o g_{t-3}, \pi g_{t-2}\right)$. This evidence is supported by the instability tests in Table 4. reported for a cut-off $\epsilon=0.10$.

Table 4: Stability Tests and Critical Values

	α	$p \times$ Sup F 0:1	Sup F 1\|0	Sup F2\|1	Sup F $3 \mid 2$	Sup F 4\|3
Test Statistics		189.154	189.154	52.657	46.255	15.420
Critical Values*	0.01	39.744	41.927	43.293	44.023	44.742
Conclusions	0.01	reject	reject	reject	reject	don't reject

${ }^{*}$ Critical values for $p=14$ for $\epsilon=0.10$ and $\alpha=0.01$ are taken from Hall and Sakkas (2010).

The Akaike information criterion (AIC) in Table 5 confirms that a model with one transition and three breaks in our setting is preferred to a two-transition model

Table 5: AIC and BIC of the Estimated Models

Model	SS	AIC	BIC
Linear	18.154	-2.558	-2.471
STAR One Transition, $m=0$	16.771	-2.572	-2.372
STAR Two Transitions*, $m=0$	11.640	-2.872	-2.559
STAR One Transition, $m=1$	8.977	-3.067	-2.639
STAR One Transition, Restricted**, $m=1$	11.707	-2.866	-2.553
STAR One Transition, $m=2$	7.007	-3.201	-2.574
STAR One Transition, $m=3$	5.585	-3.305	-2.465

The second state variable is time ${ }^{ *}$ Restriction refers to the transition function parameters not breaking across regimes.

Table 6: Estimates for Two and Three Breaks

	$1982: 7-1984: 8$	$1984: 9-1986: 10$	$1986: 11-1989: 3$	$1989: 4-2002: 12$	$1986: 11-2002: 12$
int	$11.289^{* * *}$	$7.332^{* * *}$	$-0.686^{* * *}$	$-0.313^{* * *}$	$-0.210^{* * *}$
r_{t-1}	$-0.297^{* * *}$	-0.164	$1.746^{* * *}$	$1.194^{* * *}$	$1.379^{* * *}$
r_{t-2}	0.022	0.103	$-0.617^{* * *}$	$-0.164^{* * *}$	$-0.349^{* * *}$
$o g_{t-1}$	$0.246^{* * *}$	$0.239^{* * *}$	$0.312^{* * *}$	$0.037^{* * *}$	$0.079^{* * *}$
$o g_{t-3}$	-0.074	$0.821^{* * *}$	$-0.300^{* * *}$	$-0.068^{* * *}$	$-0.110^{* * *}$
$i g_{t-2}$	$0.711^{* * *}$	$-0.761^{* * *}$	$-0.145^{* * *}$	$-0.047^{* * *}$	$-0.049^{* * *}$
$G_{1} \times i n t$	$-11.666^{* * *}$	$-5.424^{* * *}$	$0.073^{* * *}$	$0.934^{* * *}$	$1.268^{* * *}$
$G_{1} \times r_{t-1}$	$1.039^{* * *}$	$2.345^{* * *}$	$-0.396^{* * *}$	$-0.417^{* * *}$	$-0.546^{* *}$
$G_{1} \times r_{t-2}$	$0.301^{* * *}$	$-1.535^{* * *}$	$0.339^{* * *}$	$0.305^{* * *}$	0.363
$G_{1} \times o g_{t-1}^{* * *}$	$-0.341^{* * *}$	$-0.556^{* * *}$	$-0.737^{* * *}$	$0.071^{* * *}$	$-0.212^{* *}$
$G_{1} \times o g_{t-3}$	0.161	$-0.646^{* * *}$	$0.768^{* * *}$	$0.010^{* * *}$	$0.451^{* * *}$
$G_{1} \times i g_{t-2}$	$-0.576^{* * *}$	$1.146^{* * *}$	$0.233^{* * *}$	$0.110^{* * *}$	$0.195^{* * *}$
γ_{1}	11.798	$5.530^{* * *}$	$6.805^{* * *}$	$1.941^{* * *}$	1.729^{*}
c_{1}	$-0.542^{* * *}$	$-0.381^{* * *}$	$0.474^{* * *}$	$0.140^{* * *}$	$0.689^{* * *}$

with no breaks, as well as to a linear model. 13 The global estimates of the three breaks are located at 1984:8, 1986:10 and 1989:3, all with tight confidence bounds of only one-period before and after.

Residual and residual autocorrelation plots do not show evidence of autocorrelation (Ljung-Box test p-value: 0.1649) or unit roots (Augmented Dickey-Fuller test p-value: 0.0001). Thus, the model in (16) admits a Markov-chain representation, and Assumption 1(i) is satisfied if $\left\{y_{t}, x_{t}, u_{t}\right\}$ is assumed ergodic within each regime.${ }^{14}$ Hence, Assumption 1 is plausible.

[^10]Moreover, Bai and Perron's (1998) tests on the squared residuals, $U D \max =$ 4.375; sup $F(1 \mid 0)=1.555$, do no reject at the 10% level, indicating no breaks in variance, and there does not seem to be much evidence of heteroskedasticity. Hence, Assumption 6(i)-(ii) seems to hold. On the other hand, Assumption 6(iii)-(iv), could be violated, e.g. if, according to Hansen (2000), there are breaks in the marginal distribution of the regressors. Any arguments related to Volcker's disinflation inducing a break in the mean of the inflation gap are refuted by $U \operatorname{Dmax} F_{T}(5,6)=1.244$, sup $F_{T}(1: p)=0.044$, both insignificant at the 10%, perhaps due to few observations before disinflation was completed. There could be breaks in the volatility of output gap, consistent with the 'Great Moderation' dated by Stock and Watson (2002) around 1984 (even though these are breaks in conditional variances of an AR process modeling output growth). Since this potential break is at the beginning of the sample and it does not affect consistency of break-point estimates, the power of tests is not affected; the size of the sequential test $F(3 \mid 2)$ may be affected, but one can run Wald tests instead. 15

Table 6 shows the estimates we obtain in the various regimes. The conclusions of the period 1989:4-2002:12 are similar to Kesriyeli, Osborn, and Sensier's (2006) findings with respect to different regimes, since we obtain a similar threshold. However, we find evidence of more than one break; additional breaks are suggested in Kesriyeli, Osborn, and Sensier (2006) by an Eitrheim and Teräsvirta (1996) parameter constancy test p-value of 0.042 , but our sequential sup F-test, designed specifically against for breaks, detects them at the 1% level. We find that the first break occurs close to the one found in Kesriyeli, Osborn, and Sensier's (2006), and can be linked to recovery from the deep recession of 1981-1982, start of Reagan's second term and Volcker's era of disinflation. We also find that the period 1989:4-
the 1% critical value boundary, so one could pick three regimes instead of four. From Table 6, one can note from the small smoothness parameter that the third regime is close to linear; in the latter case, ergodicity is no longer of concern.
${ }^{15}$ Due to invertibility issues in the setting of our application, the Wald tests are not reported.

2002:12, an Alan Greenspan period, favors smoother transition periods.

8 Conclusions

In this paper, a nonlinear method for estimating and testing in NLS models with multiple breaks is developed. In our framework, the break-dates are estimated simultaneously with the parameters via minimization of the residual sum of squares. Using nonlinear asymptotic theory, we derive the asymptotic distributions of both break-point and parameter estimates and propose several instability tests. Our estimation procedure is similar to that of Bai and Perron (1998), but the proofs are different since they require empirical process theory results developed in this paper, results that may be useful in other settings as well. By construction, our method nests nonlinearities and breaks, and is useful in practice both for testing for breaks in the presence of nonlinearity, and for jointly modeling breaks and nonlinearity, should evidence for both be present.

Our method can be a powerful tool for empirical macroeconomic modeling. Our empirical illustration shows how to test for breaks in the context of nonlinear models such as the ones used for modeling the federal funds rate. If there is evidence for breaks, we show that imposing a break rather than a time-transition model may not lead to the same conclusions. Moreover, imposing a break - if justified - leads to computational ease and more accurate estimates when compared to estimating a smoothness parameter approaching infinity. The empirical usefulness of our model is not limited to testing for breaks in smooth transition models, but can be equally applied to other settings such as partially linear models, functional coefficient autoregressive models, nonlinear GARCH models.

Many other issues can be important for modeling nonlinearity jointly with breaks. Important macroeconomic applications that use structural equation models with endogeneity can be dealt with by extending the methodology in the current
paper to multivariate, more general nonlinear models, as well as to partial structural change. On the other hand, developing primitive conditions along with new uniform convergence results for more general nonlinear time series processes which are close to stationary but not necessarily strictly stationary or geometrically ergodic is certainly of interest, and we leave this to future research.

References

Anderson, G. J., and Mizon, G. E. (1983). 'Parameter Constancy Tests: Old and New', Discussion Paper 8325, Economics Department, University of Southampton.

Andreou, E., and Ghysels, E. (2002). 'Detecting Multiple Breaks in Financial Market Volatility Dynamics', Journal of Applied Econometrics, 17: 579-600.

Andrews, D. W. K. (1993). 'Tests for Parameter Instability and Structural Change with Unknown Change Point', Econometrica, 61: 821-856.
_- (2003). 'End-of-Sample Instability Tests', Econometrica, 71: 1661-1694.

Andrews, D. W. K., and Fair, R. C. (1988). 'Inference in Nonlinear Econometric Models with Structural Change', The Review of Economic Studies, 55: 615-639.

Bai, J. (1994). 'Least Squares Estimation of a Shift in Linear Processes', Journal of Time Series Analysis, 15: 453-472.
(1995). 'Least Absolute Deviation Estimation of a Shift', Econometric Theory, 11: 403-436.
-_ (1997). 'Estimation of a Change Point in Multiple Regression Models', Review of Economics and Statistics, 79: 551-563.

Bai, J., and Perron, P. (1998). 'Estimating and Testing Linear Models with Multiple Structural Changes', Econometrica, 66: 47-78.
__ (2003a). 'Critical Values for Multiple Structural Change Tests', The Econometrics Journal, 6: 72-78.
__ (2003b). 'Multiple Structural Change Models: A Simulation Analysis', in Econometric Theory and Practice, pp. 212-237. Cambridge Univ. Press, Cambridge.

Banerjee, A., and Urga, G. (2005). 'Modeling Structural Breaks, Long Memory and Stock Market Volatility: An Overview', Journal of Econometrics, 129: 1-34.

Bates, D. M., and Watts, D. (1988). Nonlinear Regression Analysis and Its Applications. John Wiley and Sons, New York.

Bec, F., Salem, M., and Collard, F. (2002). 'Asymmetries in Monetary Policy Reaction Function: Evidence for the US, French and German Central Banks', Studies in Nonlinear Dynamics and Econometrics, 6: Art. 3.

Bhattacharya, P. K. (1994). 'Some Aspects of Change-Point Analysis', in E. Carlstein, H.-G. Müller, and D. Siegmund (eds.), Change-Point Problems, vol. 23 of IMS Lecture Notes Monograph Series, pp. 28-56. Institute of Mathematical Statististics.

Caner, M. (2007). 'Boundedly Pivotal Structural Change Tests in Continuous Updating GMM with Strong, Weak identification and Completely Unidentified Cases', Journal of Econometrics, 137: 28-67.

Carrasco, M., and Chen, X. (2002). 'Mixing and Moment Properties of Various GARCH and Stochastic Volatility Models', Econometric Theory, 18: 17-39.

Chan, K. S., and Tong, H. (1986). 'On Estimating Thresholds in Autoregressive Models', Journal of Time Series Analysis, 7: 179-190.

Csörgö, M., and Horváth, L. (1997). Limit Theorems for Change Point Analysis. Chichester-Wiley, Chichester.

Davidson, J. (2002). 'Establishing Conditions for the Functional Central Limit Theorem in Nonlinear and Semiparametric Time Series Processes', Journal of Econometrics, 106: 179-190.

Davis, R. A., Lee, T. C. M., and Rodriguez-Yam, G. A. (2006). 'Structural Break Estimation for Nonstationary Time Series Models', Journal of the American Statistical Association, 101: 223-239.

Dolado, J., María-Dolores, R., and Ruge-Murcia, M. (2004). 'Nonlinear Monetary Policy Rules: Some New Evidence from US', Studies in Nonlinear Dynamics and Econometrics, 8: Art. 2.

Dufour, J.-M., and Ghysels, E. (1996). 'Editor's Introduction. Recent Developments in the Econometrics of Structural Change', Journal of Econometrics, 70: 1-8.

Eitrheim, Ø., and Teräsvirta, T. (1996). 'Testing the Adequacy of the Smooth Transition Autoregressive Models', Journal of Econometrics, 74: 59-75.

Elliott, G., and Müller, U. (2007). 'Confidence Sets for the Date of a Single Break in Linear Time Series Regressions', Journal of Econometrics, 141: 1196-1218.

Fan, J., and Yao, Q. (2003). Nonlinear Time Series: Nonparametric and Parametric Methods. Springer Series in Statistics, New York.

Florio, A. (2006). 'Asymmetric Interest Rate Smoothing: The Fed Approach', Economic Letters, 93: 190-195.

Gallant, A. R. (1987). Nonlinear Statistical Models, Wiley Series in Probability and Mathematical Statistics. John Wiley and Sons, New York.

Gallant, A. R., and White, H. (1988). A Unified Theory of Estimation and Inference for Nonlinear Dynamic Models. Basil Blackwell, Oxford, UK.

Ghysels, E., and Hall, A. R. (1990). 'A Test for Structural Stability of Euler Conditions Parameters Estimated via the Generalized Method of Moments Estimator', International Economic Review, 31: 355-364.

Hall, A. R., Han, S., and Boldea, O. (2009). ‘Inference Regarding Multiple Structural Changes in Linear Models with Endogenous Regressors', Discussion Paper, Department of Economics, North Carolina State University.
-_ (2010). 'Asymptotic Distribution Theory for Break Point Estimators in Models Estimated via 2SLS', Discussion Paper, Department of Economics, North Carolina State University.

Hall, A. R., and Sakkas, N. (2010). 'Approximate p-values of Certain Tests Involving Hypotheses about Multiple Breaks', work in progress.

Hall, A. R., and Sen, A. (1999). 'Structural Stability Testing in Models Estimated by Generalized Method of Moments', Journal of Business $8 \mathcal{E}$ Economic Statistics, 17: 335-348.

Hansen, B. E. (2000). 'Testing for Structural Change in Conditional Models', Journal of Econometrics, 97: 93-115.

Kesriyeli, M., Osborn, D., and Sensier, M. (2006). 'Nonlinearity and Structural Change in Interest Rate Reaction Functions for the US, UK and Germany', in C. Milas, D. van Dijk, and P. Rothman (eds.), Nonlinear Time Series Analysis of Business Cycles, pp. 283-310.

Kim, D., Osborn, D., and Sensier, M. (2005). 'Nonlinearity in the Fed's Monetary Policy Rule', Journal of Applied Econometrics, 20: 621-639.

Kokoszka, P., and Leipus, R. (2000). 'Change-point Estimation in ARCH models', Bernoulli, 6: 513-539.

Krishnaiah, P. R., and Miao, B. Q. (1988). 'Review about Estimation of Change Points', in P. R. Krishnaiah and C. P. Rao (eds.), Handbook of Statistics, vol. 7, pp. 375-402. New York: Elsevier.

Lavielle, M., and Moulines, E. (2000). 'Least-Squares Estimation of an Unknown Number of Shifts in a Time Series', Journal of Time Series Analysis, 21: 33-59.

Lucas, R. (1976). 'Econometric Policy Evaluation: A Critique', in K. Brunner and A. Melzer (eds.), The Phillips Curve and Labor Markets, vol. 1 of CarnegieRochester Conference Series on Public Policy, pp. 19-46.

Luukkonen, R., Saikkonen, P., and Teräsvirta, T. (1988). 'Testing Linearity Against Smooth Transition Autoregressive Models', Biometrika, 75: 491-499.

Mokkadem, A. (1985). 'Le Modele Non Linéaire AR(1) Général. Ergodicité et Ergodicité Geometrique', Comptes Rendus de l'Académie des Sciences. Série I. Mathématique, 331: 889-892.

Perron, P., and Qu, Z. (2006). 'Estimating Restricted Structural Change Models', Journal of Econometrics, 134: 373-399.

Qu, Z., and Perron, P. (2007). 'Estimating and Testing Multiple Structural Changes in Multivariate Regressions', Econometrica, 75: 459-502.

Quandt, R. E. (1958). 'The Estimation of the Parameters of a Linear Regression System Obeying Two Separate Regimes', Journal of the American Statistical Association, 53: 873-880.
—— (1960). 'Tests of the Hypothesis that a Linear Regression System Obeys Two Separate Regimes', Journal of the American Statistical Association, 55: 324-330.

Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry, vol. 15 of World Scientific Series in Computer Science. World Scientific Publishing, Teaneck, NJ.

Rosenblatt, M. (1971). Markov processes: Structure and Asymptotic Behavior. Springer, New York.

Schaling, E. (2004). 'The Nonlinear Phillips Curve and Inflation Forecast Targeting: Symmetric versus Asymmetric Monetary Policy Rules', Journal of Money, Credit and Banking, 36: 361-386.

Sowell, F. (1996). 'Optimal Tests for Parameter Instability in the Generalized Method of Moments Framework', Econometrica, 64: 1085-1107.

Stock, J. H., and Watson, M. W. (2002). 'Has the Business Cycle Changed and Why?', NBER Macroeconomics Annual, pp. 159-218.
van Dijk, D., Teräsvirta, T., and Franses, P. (2002). 'Smooth Transition Autoregressive Models: A Survey of Recent Developments', Econometric Reviews, 21: 1-47.

Yao, Y.-C. (1988). 'Estimating the Number of Change-Points via Schwarz' Criterion', Statistics and Probability Letters, 6: 181-189.

Zacks, S. (1983). 'Survey of Classical and Bayesian Approaches to the ChangePoint Problem: Fixed Sample and Sequential Procedures of Testing and Estimation', in Recent Advances in Statistics, pp. 245-269. Academic Press, New York.

9 Appendix

This Appendix only contains a complete proof of Lemma 1. For the rest, an outline is given; for complete proofs, see Supplemental Appendix, available from
the authors upon request. As a matter of notation, we will use $\|\cdot\|$ to denote the Euclidean vector norm, as well as the matrix norm $\|A\|=\left[\operatorname{tr}\left(A^{\prime} A\right)\right]^{1 / 2}$, and let $\psi_{t}(\theta)=u_{t} f_{t}(\theta)$, respectively $\Psi_{t}(\theta)=u_{t} F_{t}(\theta)$.

Proof of Lemma 1 .

For simplicity, we only consider the cases $m^{*}=0$ and $m^{*}=1$; the extension to $m^{*}>1$ is immediate and omitted for simplicity.

Case $m^{*}=0$. In this case, we need to prove uniform tightness in $\theta \times r$ of properly scaled partial sums of geometrically ergodic β-mixing processes, i.e. we need to show that for any $\epsilon>0$, there exists a $\eta_{\epsilon}>0$ and a $T_{\epsilon}>0$ such that for any $T \geq T_{\epsilon}$, we have:

$$
\begin{equation*}
P\left(\sup _{\theta \times r}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{[T r]} \psi_{t}(\theta)\right|>\eta_{\epsilon}\right)<\epsilon \tag{17}
\end{equation*}
$$

Since this result was shown under Assumptions 1,2,3(i),(ii) by Caner (2007) for strictly stationary processes ${ }^{16}$, our strategy is to show that the difference between the distribution function of $\frac{1}{\sqrt{T}} \sum_{t=1}^{[T r]} \psi_{t}(\theta)$ started at $\psi_{0}(\theta)$ and the distribution function of the same process started at the stationary distribution is $o_{p}(1)$ uniformly in $\theta \times r$. To that end, define a sequence $\left\{b_{T}\right\}$ of positive integers such that $b_{T} \rightarrow \infty$ and $b_{T} / \sqrt{T} \rightarrow 0$. Then $P\left(\sup _{\theta \times r}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{[T r]} \psi_{t}(\theta)\right|>\eta_{\epsilon}\right)$ is less than:

$$
\begin{aligned}
& P\left(\sup _{\theta}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{b_{T}} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{2}\right)+P\left(\sup _{\theta \times r}\left|\frac{1}{\sqrt{T}} \sum_{t=b_{T}+1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{2}\right) \\
\leq & P\left(\sup _{\theta}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{b_{T}} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{2}\right)+Q\left(\sup _{\theta \times r}\left|\frac{1}{\sqrt{T}} \sum_{t=b_{T}+1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{2}\right)
\end{aligned}
$$

[^11]\[

$$
\begin{aligned}
& +\left\{\left|P\left(\sup _{\theta \times r}\left|\frac{1}{\sqrt{T}} \sum_{t=b_{T}+1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{2}\right)-Q\left(\sup _{\theta \times r}\left|\frac{1}{\sqrt{T}} \sum_{t=b_{T}+1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{2}\right)\right|\right\} \\
& =I+I I+\{I I I\}
\end{aligned}
$$
\]

respectively, where here Q denotes the distribution started at a stationary draw. Now, $I \leq P\left(\sup _{\theta, t} \frac{b_{T}}{\sqrt{T}}\left|\psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{2}\right)=o(1)$, uniformly in $\theta \times r$, by Assumption 3(ii). On the other hand,

$$
\begin{aligned}
I I & \leq Q\left(\sup _{\theta}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{b_{T}} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{4}\right)+Q\left(\sup _{\theta \times r}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{4}\right) \\
& \leq Q\left(\sup _{\theta, t} \frac{b_{T}}{\sqrt{T}}\left|\psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{4}\right)+\epsilon=o(1)+\epsilon
\end{aligned}
$$

where this holds for any $\epsilon>0$ and $T \geq T_{\epsilon}$, by Caner (2007), Lemma 1, pp.36, while the $o(1)$ term is uniform in $\theta \times r$. It remains to show that $I I I=o(1)$ uniformly in $\theta \times r$. To that end, in Assumption 1(i), let $\mu(A)=|P(A \mid B)-Q(A)|$. Since P and Q are probability measures, $P-Q$ is a signed measure μ_{*}, and by the HahnJordan decomposition, there exist two positive measures μ_{*}^{+}and μ_{*}^{-}such that $\mu_{*}=$ $\mu_{*}^{+}-\mu_{*}^{-}$. Hence, $\mu=\left|\mu_{*}\right|=\mu_{*}^{+}+\mu_{*}^{-}$. Since $\mu(\varnothing)=0$ it follows that μ is a measure, therefore sub-additivity holds. Let $E_{1}=\left[\sup _{\theta \times r}\left|\frac{1}{\sqrt{T}} \sum_{t=b_{T}+1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{2}\right], E_{2}=$ $\left[\sup _{r} \sum_{t=b_{T}+1}^{[T r]} \sup _{\theta}\left|\psi_{t}(\theta)\right|>\eta_{\epsilon} \sqrt{T} / 2\right], E_{3}=\left[\sum_{t=b_{T}+1}^{T} \sup _{\theta}\left|\psi_{t}(\theta)\right|>\eta_{\epsilon} \sqrt{T} / 2\right]$ and $E_{4}=\cup_{t=b_{T}+1}^{T}\left[\sup _{\theta}\left|\psi_{t}(\theta)\right|>\eta_{\epsilon} \sqrt{T} /\left[2\left(T-b_{T}\right)\right]\right]$. Letting the superscript c denote the complement of a set, we have:

$$
\begin{aligned}
E_{1} & =\left(E_{1} \cap E_{2}\right) \cup\left(E_{1} \cap E_{2}^{c}\right)=E_{1} \cap E_{2} \subseteq E_{2}=E_{3}=\left(E_{3} \cap E_{4}\right) \cup\left(E_{3} \cap E_{4}^{c}\right) \\
& =E_{3} \cap E_{4} \subseteq E_{4}
\end{aligned}
$$

Using the sub-additivity property of μ, and noting that $A_{t}=\left[\sup _{\theta}\left|\psi_{t}(\theta)\right|>\frac{\eta_{\epsilon} \sqrt{T}}{2\left(T-b_{T}\right)}\right]$
$\in \mathcal{F}_{t}^{\infty}$ is an event started at $B \in \mathcal{F}_{-\infty}^{0}$, we have:

$$
\begin{aligned}
I I I & =\mu\left(E_{1}\right) \leq \mu\left(E_{4}\right)=\mu\left(\bigcup_{t=b_{T}+1}^{T}\left[\sup _{\theta}\left|\psi_{t}(\theta)\right|>\frac{\eta_{\epsilon} \sqrt{T}}{2\left(T-b_{T}\right)}\right]\right) \\
& \leq \sum_{t=b_{T}+1}^{T} \mu\left(\sup _{\theta}\left|\psi_{t}(\theta)\right|>\frac{\eta_{\epsilon} \sqrt{T}}{2\left(T-b_{T}\right)}\right) \\
& \leq \sum_{t=b_{T}+1}^{T}\left|P\left(A_{t} \mid B\right)-Q\left(A_{t}\right)\right| \leq g(B) \rho^{b_{T}} \frac{1-\rho^{T-b_{T}}}{1-\rho}=o(1)
\end{aligned}
$$

uniformly in $\theta \times r$, where $g(\cdot)$ is the common value of $g_{j}(\cdot)$ for $m^{*}=0$, and where the last inequality and the last equality follow from Assumption 1(i) since $\sup _{\theta}\left|\psi_{t}(\theta)\right|$ is also geometrically ergodic due to continuity of $f_{t}(\cdot)$ by Assumption 2. Hence, $I I I=o(1)$ uniformly in $\theta \times r$, which completes the proof of Lemma 1 a) for the case $m^{*}=0$.

Case $m^{*}=1$. By similar arguments as for $m^{*}=0, P\left(\sup _{\theta \times r}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{[T r]} \psi_{t}(\theta)\right|>\eta_{\epsilon}\right)$ is less than:

$$
\begin{aligned}
& P\left(\sup _{\theta}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{b_{T}} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{2}\right)+P\left(\sup _{\theta \times r}\left|\frac{1}{\sqrt{T}} \sum_{t=b_{T}+1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{2}\right) \\
\leq & P\left(\sup _{\theta \times\left(0 \leq r \leq \lambda_{1}^{*}\right)}\left|\frac{1}{\sqrt{T}} \sum_{t=b_{T}+1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{2}\right)+P\left(\sup _{\theta \times\left(\lambda_{1}^{*}<r \leq 1\right)}\left|\frac{1}{\sqrt{T}} \sum_{t=b_{T}+1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{2}\right) \\
+ & o(1) \leq I V+V+o(1)
\end{aligned}
$$

with the $o(1)$ term not depending on $\theta \times r$. Also,

$$
\begin{aligned}
I V & \leq o(1)+Q_{1}\left(\sup _{\theta \times\left(0 \leq r \leq \lambda_{1}^{*}\right)}\left|\frac{1}{\sqrt{T}} \sum_{t=b_{T}+1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{2}\right) \\
& \leq o(1)+Q_{1}\left(\frac{b_{T}}{\sqrt{T}} \sup _{\theta}\left|\psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{4}\right)+Q_{1}\left(\sup _{\theta \times\left(0 \leq r \leq \lambda_{1}^{*}\right)}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{4}\right)
\end{aligned}
$$

$$
\begin{align*}
I V & \leq o(1)+Q_{1}\left(\sup _{\theta \times\left(0 \leq r \leq \lambda_{1}^{*}\right)}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{4}\right) \\
& \leq o(1)+Q_{1}\left(\sup _{\theta \times\left(0 \leq r \leq \lambda_{1}^{*}\right)}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{8}\right) \tag{18}
\end{align*}
$$

We also have:

$$
\begin{align*}
V & \leq P\left(\sup _{\theta}\left|\frac{1}{\sqrt{T}} \sum_{t=b_{T}+1}^{\left[T \lambda_{1}^{*}\right]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{4}\right)+P\left(\sup _{\theta \times\left(\lambda_{1}^{*}<r \leq 1\right)}\left|\frac{1}{\sqrt{T}} \sum_{t=\left[T \lambda_{1}^{*}\right]+1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{4}\right) \\
& =V I+V I I \tag{19}
\end{align*}
$$

By the results from the case $m^{*}=0$,

$$
\begin{align*}
V I \leq & \left|P\left(\sup _{\theta}\left|\frac{1}{\sqrt{T}} \sum_{t=b_{T}+1}^{\left[T \lambda_{1}^{*}\right]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{4}\right)-Q_{1}\left(\sup _{\theta}\left|\frac{1}{\sqrt{T}} \sum_{t=b_{T}+1}^{\left[T \lambda_{1}^{*}\right]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{4}\right)\right| \\
& +Q_{1}\left(\sup _{\theta}\left|\frac{1}{\sqrt{T}} \sum_{t=b_{T}+1}^{\left[T \lambda_{1}^{*}\right]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{4}\right) \\
\leq & o(1)+Q_{1}\left(\sup _{\theta}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{b_{T}} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{8}\right)+Q_{1}\left(\sup _{\theta}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{\left[T \lambda_{1}^{*}\right]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{8}\right) \\
& \leq o(1)+Q_{1}\left(\frac{b_{T}}{\sqrt{T}} \sup _{\theta}\left|\psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{8}\right)+Q_{1}\left(\sup _{\theta}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{\left[T \lambda_{1}^{*}\right]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{8}\right) \\
& \leq o(1)+Q_{1}\left(\sup _{\theta}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{\left[T \lambda_{1}^{*}\right]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{8}\right) \\
& \leq o(1)+Q_{1}\left(\sup _{\theta \times\left(0 \leq r \leq \lambda_{1}^{*}\right)}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{8}\right) \tag{20}
\end{align*}
$$

Also, by similar arguments as to the case $m^{*}=0$,

$$
\begin{align*}
V I I & \leq o(1)+Q_{2}\left(\sup _{\theta \times\left(\lambda_{1}^{*}<r \leq 1\right)}\left|\frac{1}{\sqrt{T}} \sum_{t=\left[T \lambda_{1}^{*}\right]+1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{4}\right) \\
& \leq o(1)+Q_{2}\left(\sup _{\theta \times\left(\lambda_{1}^{*}<r \leq 1\right)}\left|\frac{1}{\sqrt{T}} \sum_{t=\left[T \lambda_{1}^{*}\right]+1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{8}\right) \tag{21}
\end{align*}
$$

Putting (18)-(21) together, it follows that $P\left(\sup _{\theta \times r}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{[T r]} \psi_{t}(\theta)\right|>\eta_{\epsilon}\right)$ is less or equal to:

$$
\begin{aligned}
& o(1)+2 Q_{1}\left(\sup _{\theta \times\left(0 \leq r \leq \lambda_{1}^{*}\right)}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{8}\right)+Q_{2}\left(\sup _{\theta \times\left(\lambda_{1}^{*}<r \leq 1\right)}\left|\frac{1}{\sqrt{T}} \sum_{t=\left[T \lambda_{1}^{*}\right]+1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{8}\right) \\
& \leq 2 \max \left\{2 Q_{1}\left(\sup _{\theta \times\left(0 \leq r \leq \lambda_{1}^{*}\right)}\left|\frac{1}{\sqrt{T}} \sum_{t=1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{8}\right) ; Q_{2}\left(\sup _{\theta \times\left(\lambda_{1}^{*}<r \leq 1\right)}\left|\frac{1}{\sqrt{T}} \sum_{t=\left[T \lambda_{1}^{*}\right]+1}^{[T r]} \psi_{t}(\theta)\right|>\frac{\eta_{\epsilon}}{8}\right)\right\} \\
& +o(1)<o(1)+2 \max \left\{2 \epsilon_{1} / 2, \epsilon_{2}\right\}=o(1)+\epsilon
\end{aligned}
$$

where the $o(1)$ term does not depend on ϵ, θ, r and the last inequality holds for any $\epsilon_{1}>0, \epsilon_{2}>0$, therefore for any $\epsilon \equiv 2 \max \left\{\epsilon_{1}, \epsilon_{2}\right\}$ and any $T \geq T_{\epsilon} \equiv \max \left\{T_{\epsilon_{1}}, T_{\epsilon_{2}}\right\}$ for some $T_{\epsilon_{1}}>0, T_{\epsilon_{2}}>0$. This completes the proof of Lemma $1 .{ }^{17}$

Let $\hat{I}_{i} \equiv\left[\hat{T}_{i-1}+1, \hat{T}_{i}\right]$ and $I_{i}^{0} \equiv\left[T_{i-1}^{0}+1, T_{i}^{0}\right],(i=1, \ldots, m+1)$. To prove Lemma 2, we use the uniform law of large numbers (ULLN) in Gallant and White (1988), pp. 34. Note that their assumptions encompass our Assumption 1-3(i),(ii). 18

Proof of Lemma 2.

[^12]Part (i). This part follows directly from Lemma 1.
Part (ii). Consider $\eta>0$ such that $[T \eta]$ is an integer. Let 1^{*} and 2^{*} denote summing over the sets $I_{1}(\eta)=\left\{\left[T \lambda_{j}^{0}\right]-T \eta+1, \ldots,\left[T \lambda_{j}^{0}\right]\right\}$, respectively $I_{2}(\eta)=$ $\left\{\left[T \lambda_{j}^{0}\right]+1, \ldots,\left[T \lambda_{j}^{0}\right]+T \eta\right\}$. If $\hat{\lambda}_{j} \xrightarrow{p} \lambda_{j}^{0}$ for at least one j, then there is an η such that with positive probability, $\hat{\theta}_{k}$ will be estimating θ_{j}^{0} on $I_{1}(\eta) \in \hat{I}_{k}$, but θ_{j+1}^{0} on $I_{2}(\eta) \in \hat{I}_{k}$. Hence, with positive probability greater than $\epsilon>0$,

$$
\begin{equation*}
T^{-1} \sum_{t=1}^{T} d_{t}^{2} \geq T^{-1} \sum_{1^{*}} d_{t}^{2}\left(\hat{\theta}_{k}, \theta_{j}^{0}\right)+T^{-1} \sum_{2^{*}} d_{t}^{2}\left(\hat{\theta}_{k}, \theta_{j+1}^{0}\right) \geq \inf _{\theta} H_{T}(\theta) \tag{22}
\end{equation*}
$$

where $d_{t}\left(\theta_{A}, \theta_{B}\right)=f_{t}\left(\theta_{A}\right)-f_{t}\left(\theta_{B}\right)$, with $\theta_{A}, \theta_{B} \in \Theta$, and for $i=1,2, H_{T, i}(\theta)$ $=T^{-1} \sum_{i^{*}} d_{t}^{2}\left(\theta, \theta_{j-1+i}^{0}\right)$, and $H_{T}(\theta)=\sum_{i=1,2} H_{T, i}(\theta)$.

To prove $T^{-1} \sum_{t=1}^{T} d_{t}^{2}>C$ with probability $>\epsilon$ and establish Lemma(2)(ii), it is sufficient to prove uniform convergence in θ of $H_{T}(\theta)$ to a positive quantity $H(\theta)$. Uniform convergence can be established using the ULLN mentioned above, under Assumptions 1-4. It remains to show that $\inf _{\theta} H(\theta)>0$. This can be establish by showing - see Supplemental Appendix:

$$
E\left[H_{T}(\theta)\right] \geq\left\|\theta_{j}^{0}-\theta_{j+1}^{0}\right\|^{2} \operatorname{tr}\left\{\inf _{t} \inf _{\theta} E\left[F_{t}(\theta) F_{t}^{\prime}(\theta)\right]\right\}>C
$$

where the last inequality follows from Assumption 4(iii).

Proof of Theorem 2.

The proof follows in three steps. The first step redefines the proof objective and introduces some notation. In the second step two distinct terms are analyzed and compared to finalize the proof.

Step 1. As in Bai and Perron (1998), without loss of generality, we assume only three breaks. We will focus on proving Theorem 2 for $\hat{\lambda}_{2}$; the analyses for $\hat{\lambda}_{1}$ and $\hat{\lambda}_{3}$ are similar. For any $\epsilon>0$, define $V_{\epsilon}=\left\{\left(T_{1}, T_{2}, T_{3}\right):\left|T_{i}-T_{i}^{0}\right| \leq \epsilon T(i=1,2,3)\right\}$. Since $\hat{\lambda}_{i} \xrightarrow{p} \lambda_{i}^{0}, \lim P\left\{\left(\hat{T}_{1}, \hat{T}_{2}, \hat{T}_{3}\right) \in V_{\epsilon}\right\}=1$. Hence, we need only examine the
behavior of break-points contained in V_{ϵ}. Consider, without loss of generality, the case $\hat{T}_{2}<T_{2}^{0}$; the case $\hat{T}_{2} \geq T_{2}^{0}$ can be handled by a symmetric argument. For $C>0$, define: $V_{\epsilon}(C)=\left\{\left(T_{1}, T_{2}, T_{3}\right):\left|T_{i}-T_{i}^{0}\right| \leq \epsilon T(i=1,2,3) ; T_{2}^{0}-T_{2}>C\right\}$. Note that $V_{\epsilon}(C) \subset V_{\epsilon}$. We will show that the probability that the break-points are contained in $V_{\epsilon}(C)$ is very small. Hence, with large probability, $\left|\hat{T}_{i}-T_{i}^{0}\right| \leq C$, for $i=1,2,3$, confirming the content of Theorem 2. So, for proving the latter, it suffices to show that the break-points will not be contained in $V_{\epsilon}(C)$ with large probability.

To that end, denote by $S_{T}\left(T_{1}, T_{2}, T_{3}\right)$ the minimized sum of squared residuals for a given 3-break-partition $\left(1, T_{1}, T_{2}, T_{3}, T\right)$ of the sample interval. By definition of minimized sum of squared residuals, $S_{T}\left(\hat{T}_{1}, \hat{T}_{2}, \hat{T}_{3}\right) \leq S_{T}\left(\hat{T}_{1}, T_{2}^{0}, \hat{T}_{3}\right)$. Let $\Delta_{2}=$ $T_{2}-T_{2}^{0}$. We will show that for any $\eta>0$, we can pick ϵ and C such that on $V_{\epsilon}(C)$, we have:

$$
\begin{equation*}
P\left\{\min _{V_{\epsilon}(C)}\left(\Delta_{2}\right)^{-1}\left[S_{T}\left(T_{1}, T_{2}, T_{3}\right)-S_{T}\left(T_{1}, T_{2}^{0}, T_{3}\right)\right]<0\right\}<\eta, \text { for } T \geq T(\eta) \tag{23}
\end{equation*}
$$

Equation (23) implies that for large T, with probability $\geq 1-\eta, S_{T}\left(\hat{T}_{1}, \hat{T}_{2}, \hat{T}_{3}\right)$ $>S_{T}\left(\hat{T}_{1}, T_{2}^{0}, \hat{T}_{3}\right)$, contradicting the sum of squares minimization definition; thus, $\hat{T}_{2} \notin V_{\epsilon}(C)$, completing the proof.

Define $S S R_{1}=S_{T}\left(T_{1}, T_{2}, T_{3}\right), S S R_{2}=S_{T}\left(T_{1}, T_{2}^{0}, T_{3}\right)$ and introduce $S S R_{3}=$ $S_{T}\left(T_{1}, T_{2}, T_{2}^{0}, T_{3}\right)$. Then $S_{T}\left(T_{1}, T_{2}, T_{3}\right)-S_{T}\left(T_{1}, T_{2}^{0}, T_{3}\right)=\left(S S R_{1}-S S R_{3}\right)-\left(S S R_{2}-\right.$ $S S R_{3}$). This approach helps carry out the analysis in terms of two problems involving a single structural change: the first imposing an additional break at T_{2}^{0} between T_{2} and T_{3}, and the second introducing an additional break at T_{2} between T_{1} and T_{2}^{0}. Let $\left(\theta_{1}^{*}, \theta_{2}^{*}, \theta_{3}^{* *}, \theta_{4}^{*}\right),\left(\theta_{1}^{*}, \theta_{2}^{* *}, \theta_{3}^{*}, \theta_{4}^{*}\right)$ and $\left(\theta_{1}^{*}, \theta_{2}^{*}, \theta_{2}^{\delta}, \theta_{3}^{*}, \theta_{4}^{*}\right)$ be the NLS parameter estimates based on partitions $\left(1, T_{1}, T_{2}, T_{3}, T\right)$, respectively $\left(1, T_{1}, T_{2}^{0}, T_{3}, T\right)$ and $\left(1, T_{1}, T_{2}, T_{2}^{0}, T_{3}, T\right)$. Note that $\theta_{2}^{*}, \theta_{2}^{\delta}, \theta_{2}^{* *}$ are all estimating θ_{2}^{0}, while $\theta_{3}^{*}, \theta_{3}^{* *}$ are both estimators of θ_{3}^{0}.

In the light of proving (23), we need to locate the dominating terms in $\left(S S R_{1}-\right.$ $S S R_{2}$) and show that we can pick ϵ and C such that they are positive with large probability for large T. To that end, let $V_{\epsilon}(C)$ be the domain on which some quantity $q_{T}(\cdot)$ is defined. We will denote $q_{T} \sim O_{p}\left(T^{b}\right) P\left(\left|q_{T}\right|>T^{b}\right)<\bar{\eta}$ for $T \geq T(\bar{\eta})$ for some $b \in \mathbb{R}$ and any $\bar{\eta}>0$, where T as defined here is large. Note that the statement above depends on the choice of C and ϵ. We will write $q_{T} \sim O_{p}^{+}\left(T^{b}\right)$ if plim q_{T} is positive (or positive definite for matrices). Similarly, let $q_{T} \sim O_{p}\left(T^{b}\right)+a_{T}$, if $q_{T}-a_{T} \sim O_{p}\left(T^{b}\right)$ for some a_{T}, and $q_{T} \sim O_{p}^{+}\left(T^{b}\right)+a_{T}$, if $q_{T}-a_{T} \sim O_{p}^{+}\left(T^{b}\right)$. Under this notation, equation (23) is equivalent to:

$$
\begin{equation*}
\Delta_{2}^{-1}\left(S S R_{1}-S S R_{2}\right) \sim O_{p}^{+}(1) \tag{24}
\end{equation*}
$$

because then the probability that $\left(S S R_{1}-S S R_{2}\right)$ is negative is small. So, for proving Theorem 2, a proof of (24) suffices.

Step 2: To further simplify the notation, let $I_{1}=\left[1, T_{1}\right], I_{2}=\left[T_{1}+1, T_{2}\right]$, $I_{2}^{\Delta}=\left[T_{2}+1, T_{2}^{0}\right], I_{3}=\left[T_{2}^{0}+1, T_{3}\right], I_{4}=\left[T_{3}+1, T\right]$. Recall that $\Delta_{2}=T_{2}^{0}-T_{2}>C$, and denote $e_{t}^{2}\left(\theta_{A}, \theta_{B}\right) \equiv u_{t}^{2}\left(\theta_{A}\right)-u_{t}^{2}\left(\theta_{B}\right)$. Consider $S S R_{1}-S S R_{3}$ first:

$$
\Delta_{2}^{-1}\left(S S R_{1}-S S R_{3}\right)=\Delta_{2}^{-1} \sum_{I_{2}^{\Delta}} e_{t}^{2}\left(\theta_{3}^{* *}, \theta_{2}^{\delta}\right)+\Delta_{2}^{-1} \sum_{I_{3}} e_{t}^{2}\left(\theta_{3}^{* *}, \theta_{3}^{*}\right)=D_{1}+D_{2}
$$

Heuristically speaking, D_{1} involves a "mismatch" in estimators, because $\theta_{3}^{* *}$ is estimating θ_{3}^{0}, while θ_{2}^{δ} is estimating θ_{2}^{0}. This "mismatch" is not present in D_{2}, because $\theta_{3}^{* *}$ and θ_{3}^{*} are both estimating θ_{3}^{0}. Hence, D_{1} should be dominating D_{2} for a large enough $\Delta_{2}>C$. To see this, note that,for $i=1, \ldots, 4$, in an interval where θ_{i}^{0} is the true parameter value, and $\theta \in \Theta$, it can be shown that: $u_{t}^{2}(\theta)-u_{t}^{2}=$ $d_{t}^{2}\left(\theta, \theta_{i}^{0}\right)-2 u_{t} d_{t}\left(\theta, \theta_{i}^{0}\right)$. Also, the true parameter value on I_{2}^{Δ} is θ_{2}^{0}. Then for any $\theta_{A}, \theta_{B} \in \Theta$ and $t \in I_{2}^{\Delta}, e_{t}^{2}\left(\theta_{A}, \theta_{B}\right)=d_{t}^{2}\left(\theta_{A}, \theta_{2}^{0}\right)-d_{t}^{2}\left(\theta_{B}, \theta_{2}^{0}\right)-2 u_{t} d_{t}\left(\theta_{A}, \theta_{B}\right)$.

According to the above, we have:

$$
D_{1}=\Delta_{2}^{-1} \sum_{I_{2}^{\Delta}} d_{t}^{2}\left(\theta_{3}^{* *}, \theta_{2}^{0}\right)-\Delta_{2}^{-1} \sum_{I_{2}^{\Delta}} d_{t}^{2}\left(\theta_{2}^{\delta}, \theta_{2}^{0}\right)+2 \Delta_{2}^{-1} \sum_{I_{2}^{\Delta}} u_{t} d_{t}\left(\theta_{2}^{\delta}, \theta_{3}^{* *}\right)=\sum_{j=1}^{3} D_{1, j}
$$

We will find the order of each of the terms above. In the proof of Lemma 2, we have shown that processes such as $\left\{d_{t}^{2}\left(\theta, \theta_{2}^{0}\right)\right\}$ satisfy the ULLN. In other words, if we pick C large enough, $D_{1,1}-\operatorname{plim} \Delta_{2}^{-1} \sum_{I_{2}^{\Delta}}\left[d_{t}^{2}\left(\theta_{3}^{* *}, \theta_{2}^{0}\right)\right] \sim o_{p}(1)$. To find this limit, note - from the supplemental Appendix - that $\theta_{3}^{* *}-\theta_{3}^{0} \sim O_{p}\left(T^{-1 / 2}\right)$. So, by similar arguments as in the proof of Lemma 2(ii), we obtain:

$$
D_{1,1}=\Delta_{2}^{-1} \sum_{I_{2}^{\Delta}} d_{t}^{2}\left(\theta_{3}^{* *}, \theta_{2}^{0}\right) \sim O_{p}^{+}(1)
$$

This will be the only positive dominating term in $S S R_{1}-S S R_{2}$. For analyzing $D_{1,2}$, if we pick C big enough, $\theta_{2}^{\delta}-\theta_{2}^{0} \sim o_{p}(1)$. Hence, $D_{1,2} \sim o_{p}(1)$. Also, $D_{1,3} \sim o_{p}(1)$ by Lemma 1. It follows that for large C and small $\epsilon, D_{1} \sim O_{p}^{+}(1)$.

Note that D_{2} is different than D_{1} given that we are summing over a different interval. For deriving the order of D_{2}, we have to consider two cases, $T_{3}<T_{3}^{0}$ and $T_{3} \geq T_{3}^{0}$ - see supplemental Appendix. For both cases, $D_{2} \sim C^{-1} O_{p}(1)$. Since D_{1} and D_{2} determine the order of $S S R_{1}-S S R_{3}$, for small ϵ and large $C, \Delta_{2}^{-1}\left(S S R_{1}-S S R_{3}\right)=D_{1}+D_{2} \sim O_{p}^{+}(1)+C^{-1} O_{p}(1)=O_{p}^{+}(1)$. By similar arguments as for D_{2}, it can be shown that $\Delta_{2}^{-1}\left(S S R_{2}-S S R_{3}\right)=C^{-1} O_{p}(1)$, if we pick C large enough and ϵ small enough. Hence, $\Delta_{2}^{-1}\left(S S R_{1}-S S R_{2}\right) \sim$ $O_{p}^{+}(1)-C^{-1} O_{p}(1)=O_{p}^{+}(1)$, provided that C is large enough and ϵ small enough, for large T. This is in fact (24), completing the proof.

Proof of Theorem 3.

As usual for nonlinear consistency proofs, we need to show uniform convergence of the minimand, and then use uniqueness to establish consistency of parameter estimates. As a matter of notation, consider some partition of the interval $[1, T]$,
denoted $\left(1, T_{1}, \ldots, T_{m}, T\right)$. Let $S_{T, I_{i}}(\theta)=T^{-1} \sum_{t=T_{i-1}}^{T_{i}} u_{t}^{2}(\theta)$ be the partial sum of squares in interval $I_{i}=\left[T_{i-1}+1, T_{i}\right]$, for $i=1, \ldots, m+1$, and let $I_{i}^{0}=\left[T_{i-1}^{0}+1, T_{i}^{0}\right]$, respectively $\hat{I}_{i}=\left[\hat{T}_{i-1}+1, \hat{T}_{i}\right]$. Moreover, let $\hat{I}_{i} \nabla I_{i}^{0}=\left(\hat{I}_{i} \backslash I_{i}^{0}\right) \cup\left(I_{i}^{0} \backslash \hat{I}_{i}\right)$, and define as indicator function $\iota_{i}: \hat{I}_{i} \nabla I_{i}^{0} \rightarrow\{-1,1\}$, where $\iota_{i}(t)=\iota_{i, t}=1$, if $t \in \hat{I}_{i} \backslash I_{i}^{0}$, and $\iota_{i, t}=-1$, if $t \in I_{i}^{0} \backslash \hat{I}_{i}$. Then $S_{T, \hat{I}_{i}}(\theta)-S_{T, I_{i}^{0}}(\theta)$ is equal to $\sum_{\hat{I}_{i} \nabla I_{i}^{0}} \iota_{i, t}\left[T^{-1} u_{t}^{2}\right]+\sum_{\hat{I}_{i} \nabla I_{i}^{0}} \iota_{i, t}\left[T^{-1} d_{t}^{2}\left(\theta, \theta_{i}^{0}\right)\right]+\sum_{\hat{I}_{i} \nabla I_{i}^{0}} \iota_{i, t}\left[T^{-1} 2 u_{t} d_{t}\left(\theta, \theta_{i}^{0}\right)\right]$. By Theorem 2, there can be no more than $2 C$ integer values contained in $\hat{I}_{i} \nabla I_{i}^{0}$. By ULLN, $S_{T, \hat{I}_{i}}(\theta)-S_{T, I_{i}^{0}}(\theta)=o_{p}(1)$. Since we replaced the estimated break-points with the true breaks, standard nonlinear analysis tells us that under Assumptions $1-4, \hat{\theta}_{i} \xrightarrow{p} \theta_{i}^{0}$, for $i=1, \ldots, m$. One can also show - see Supplemental Appendix that mean value expansions $T^{1 / 2} \partial S_{T, \hat{I}_{i}} / \partial \theta$ around θ_{i}^{0} are uniformly within $o_{p}(1)$ of the mean-value expansions using the true break-point estimates. Hence, standard nonlinear asymptotics shows that $\hat{\theta}_{i}$ have indeed the distribution given in Theorem 3. Asymptotic independence of $\hat{\theta}_{i}$ and $\hat{\theta}_{j}$ for $i \neq j$ follows from Assumption 1, completing the proof.

Proof of Theorem 4.

The distribution of \hat{k} depends on the distribution of $\operatorname{argmin}_{\theta_{1}, \theta_{2}} V_{T}\left(k, \theta_{1}, \theta_{2}\right)$. Assume $k<k_{0}$; the case $k \geq k_{0}$ can be handled similarly.

$$
\begin{align*}
V_{T}\left(k, \hat{\theta}_{1}(k), \hat{\theta}_{2}(k)\right) & =\sum_{t=1}^{k}\left[u_{t}^{2}\left(\hat{\theta}_{1}(k)\right)-u_{t}^{2}\left(\theta_{1}^{0}\right)\right]+\sum_{t=k+1}^{k_{0}}\left[u_{t}^{2}\left(\hat{\theta}_{2}(k)\right)-u_{t}^{2}\left(\theta_{1}^{0}\right)\right]+ \\
& +\sum_{t=k_{0}+1}^{T}\left[u_{t}^{2}\left(\hat{\theta}_{2}(k)\right)-u_{t}^{2}\left(\theta_{2}^{0}\right)\right]=\Sigma_{1}+\Sigma_{2}+\Sigma_{3} \tag{25}
\end{align*}
$$

Since we know the convergence rates of \hat{k} and $\hat{\theta}_{i}(k)$, the minimization problem is defined over a neighborhood of $\left(k, \theta_{1}, \theta_{2}\right)$. Note that the asymptotic distributions of Σ_{1} and Σ_{3} do not depend on v, since the difference between the summations involving the true breaks and the estimated breaks is asymptotically negligible, uniformly in v. Hence, we can write $V_{T}\left(k, \hat{\theta}_{1}(k), \hat{\theta}_{2}(k)\right)=\mathfrak{D}+\Sigma_{2}+o_{p}(1)$, where
\mathfrak{D} is a distribution that does not depend on v, and the $o_{p}(1)$ term is uniform in v. On the other hand, it can be shown that:

$$
\Sigma_{2}=\sum_{t=k+1}^{k_{0}} d_{t}^{2}\left(\theta_{2}^{0}, \theta_{1}^{0}\right)+\sum_{t=k+1}^{k_{0}} u_{t} d_{t}\left(\theta_{2}^{0}, \theta_{1}^{0}\right)+o_{p}(1)
$$

with the $o_{p}(1)$ term uniform in v. Continuity of $f_{t}(\theta)$ guarantees that the maximum of $J^{*}(v)$ is unique almost surely, and we can use the Continuous Mapping Theorem (CMT) to express the distribution of \hat{k} as stated in Theorem 4.

To prove Theorem 5, we need to show consistency of the break-fractions at a certain rate, as well as asymptotic normality of parameter estimates. Consistency is summarized by the following theorem.

Theorem A 1. Under Assumptions 1-5 and $\mathbb{8}, \hat{\lambda}_{i} \xrightarrow{p} \lambda_{i}^{0}$, for $i=1, \ldots, m$.

Proof of Theorem A1.

The proof of Theorem A1 is similar to that of Theorem 1, but modifications are required to avoid the possibility that $T^{-1} \sum_{t=1}^{T} d_{t}^{2} \xrightarrow{p} 0$ even if a break-fraction is not consistently estimated. Under Assumptions 1 5 or Lemma 1 and Assumptions 2-5, we have: $\sum_{t=1}^{T} u_{t} d_{t} \leq O_{p}\left(T^{1 / 2+\nu}\right)$, uniformly over the space of all partitions and parameters $\left(T_{1}, \ldots, T_{m}\right) \times \theta$, with $\nu \geq 0$. On the other hand, by arguments similar to before, if at least one break-fraction is not consistently estimated, $\sum_{t=1}^{T} d_{t}^{2} \geq\left\|\theta_{j}^{0}-\theta_{j+1}^{0}\right\|^{2} O_{P}(T)>C T w_{T}^{2}$. By Assumption 8, this term dominates $2 T^{-1} \sum_{t=1}^{T} d_{t} u_{t}$, and $T^{-1} \sum_{t=1}^{T} d_{t}^{2}+2 T^{-1} \sum_{t=1}^{T} d_{t} u_{t} \leq 0 \xrightarrow{p} \infty$. The latter contradicts equation (5), thus the break-points are consistent.

Next, we state the rate of convergence for the break-fractions:

Theorem A 2. Under Assumptions 1-5 and 8, for any $\eta>0$, there is a $C>0$ such that, for large $T, P\left(T w_{T}^{2}\left|\hat{\lambda}_{k}-\lambda_{k}^{0}\right|>C\right)<\eta$, for any $k=1, \ldots, m$.

Proof of Theorem A, 2.

The proof of Theorem A2 proceeds in the same fashion as the proof of Theorem 2, except for convergence rates which are different given shrinking shifts; see Supplemental Appendix for proof.

Theorem A 3. Under Assumptions $1-5$ and $8, T^{1 / 2}\left(\hat{\theta}-\theta^{0}\right) \xrightarrow{d} \mathcal{N}\left(0, \Phi_{i}\left(\theta_{i}^{0}\right)\right)$.

Proof of Theorem A 3 . The Proof of Theorem A 3 is similar to that of Theorem 3 and can be found in the Supplemental Appendix.

Proof of Theorem 5. Let $k<k_{0}$, the proof for $k \geq k_{0}$ is similar. Also let $v=k_{0}-k, 0<v \leq C / v_{T}^{2}$; by similar arguments as for fixed shifts, using Theorems A1-A3, $V_{T}\left(k, \hat{\theta}_{1}(k), \hat{\theta}_{2}(k)\right)=\mathfrak{D}+o_{p}(1)+\Sigma_{2}$, where the $o_{p}(1)$ term is uniform in v and \mathfrak{D} is a distribution that does not depend on v. So, even in this case, Σ_{2} will govern the distribution of the minimand for shrinking shifts. It can be shown that, uniformly in $v, \Sigma_{2}=|v| \varpi_{2,1}-2 \varpi_{1,1}^{1 / 2} W_{1}(-v)+o_{p}(1)$, for $v \leq 0$., where $\varpi_{1,1}=\left(\theta_{2}^{0}-\theta_{1}^{0}\right)^{\prime} A_{1}\left(\theta_{1}^{0}\right)\left(\theta_{2}^{0}-\theta_{1}^{0}\right)$ and $\varpi_{2,1}=\left(\theta_{2}^{0}-\theta_{1}^{0}\right)^{\prime} D_{1}\left(\theta_{1}^{0}\right)\left(\theta_{2}^{0}-\theta_{1}^{0}\right)$. Since $C / v_{T}^{2} \rightarrow \infty$, it follows that:

$$
\begin{equation*}
\hat{k}-k_{0}=\underset{v \leq 0}{\operatorname{argmax}}\left[\varpi_{1,1}^{1 / 2} W_{1}(-v)-0.5|v| \varpi_{2,1}\right]+o_{p}(1) \tag{26}
\end{equation*}
$$

Note that the limiting Brownian motions can only be obtained under Assumption $6\left(\right.$ iii)-(iv), that is, when $\left\{u_{t} F_{t}(\theta)\right\}$ is second-order stationary within regimes, and $F_{t}(\theta)$ as well. Breaks in the variance of regressors are excluded, unless they coincide with the true value. By a change in variable in (26) - see Supplemental Appendix, we obtain the desired result.

To prove Theorem 6, we need two additional Theorems. Denote by $\hat{\theta}_{i}$ and $\hat{\theta}_{1, i}$ the $\left[T_{i-1}+1, T_{i}\right]$, respectively the $\left[1, T_{i}\right]$ - sub-sample estimators of θ^{0} where T_{i} is the $i-t h$ break belonging to a certain partition \bar{T}^{k} on which $\hat{\theta}_{i}$ were defined as well. Then:

Theorem A 4. Under Assumptions [24 and $H_{0}: m=0$, $T^{1 / 2}\left(\hat{\theta}_{1, i}-\theta^{0}\right) \Rightarrow \sigma \lambda_{i}^{-1} D^{-1 / 2}\left(\theta^{0}\right) B_{p}\left(\lambda_{i}\right)$, where $D(\theta)$ is the common value of $D_{i}(\theta)$ in Assumption 4(iii), under H_{0}.

Theorem A 5. Under Assumptions 园6] and $H_{0}: m=0$, $T^{1 / 2}\left(\hat{\theta}_{i}-\theta^{0}\right) \Rightarrow \sigma\left[\lambda_{i}-\lambda_{i-1}\right]^{-1} D^{-1 / 2}\left(\theta^{0}\right)\left[B_{p}\left(\lambda_{i}\right)-B_{p}\left(\lambda_{i-1}\right)\right]$.

Proof of Theorem A4.

First, $\hat{\theta}_{1, i} \xrightarrow{p} \theta^{0}$ because it is just a sub-sample NLS estimator of θ^{0} in stable models. Using the mean value theorem, the desired result follows from Assumptions 2,3,4 and 6. The latter is essential for the limit to be a Brownian motion; thus, no breaks in the variance of regressors and errors are allowed. The proof of Theorem A5 follows the same steps and is omitted for simplicity.

Proof of Theorem 6.

First, under Assumptions 2-6 and $H_{0}, S S R_{k} /(T-(k+1) p) \xrightarrow{p} \sigma^{2}$, an immediate consequence of Lemma 2. On the other hand, it can be shown:

$$
S S R_{0}-S S R_{k}=\sum_{i=1}^{k} F_{T, i}^{*}, \text { with } F_{T, i}^{*}=D^{R}(1, i+1)-D^{R}(1, i)-D^{U}(i+1, i+1)
$$

where the sum subscript $1, i$ indicates summing over interval $\left[1, T_{i}\right]$, while i indicates, as before, summing over $\left[T_{i-1}+1, T_{i}\right]$, and $D^{R}(1, i)=\sum_{1, i}\left[u_{t}^{2}\left(\hat{\theta}_{1, i}\right)-u_{t}^{2}\right]$ and $D^{U}(i, i)=\sum_{i}\left[u_{t}^{2}\left(\hat{\theta}_{i}\right)-u_{t}^{2}\right]$. Using the last two theorems, it can be shown - see Supplemental Appendix - that under Assumptions 2-6, $D^{R}(1, i) \Rightarrow-\sigma^{2}\left\|B_{p}\left(\lambda_{i}\right)\right\|^{2} / \lambda_{i}$, $D^{R}(1, i+1) \Rightarrow-\sigma^{2}\left\|B_{p}\left(\lambda_{i+1}\right)\right\|^{2} / \lambda_{i+1}$ and $D^{U}(i+1, i+1) \Rightarrow-\sigma^{2} \| B_{p}\left(\lambda_{i+1}\right)-$ $B_{p}\left(\lambda_{i}\right) \|^{2} /\left[\lambda_{i+1}-\lambda_{i}\right]$, yielding:

$$
F_{T, i}^{*} \Rightarrow \sigma^{2} \frac{\left\|\lambda_{i} B_{p}\left(\lambda_{i+1}\right)-\lambda_{i+1} B_{p}\left(\lambda_{i}\right)\right\|^{2}}{\lambda_{i} \lambda_{i+1}\left[\lambda_{i+1}-\lambda_{i}\right]}
$$

Proof of Theorem 7.

Under $H_{0}: m=\ell$, compute the estimated break-points, and let $\operatorname{SSR}\left(\hat{T}_{i}, \hat{T}_{j}\right)$ be the minimized sum of squared residuals for the segment containing observations in the interval $\left[\hat{T}_{i}+1, \hat{T}_{j}\right], i<j$. We can write:

$$
\begin{equation*}
F_{T}(\ell+1 \mid \ell)=\max _{1 \leq i \leq \ell} \sup _{\tau \in \Delta_{i, \eta}} F_{T, i}^{*}(\ell+1 \mid \ell) / \hat{\sigma}_{i}^{2} \tag{27}
\end{equation*}
$$

$$
\text { where } F_{T, i}^{*}(\ell+1 \mid \ell)=S S R\left(\hat{T}_{i-1}, \hat{T}_{i}\right)-S S R\left(\hat{T}_{i-1}, \tau\right)-S S R\left(\tau, \hat{T}_{i}\right)
$$

Using similar arguments to the previous theorem - see Supplemental Appendix:

$$
\begin{equation*}
\frac{F_{T, i}^{*}(\ell+1 \mid \ell)}{\sigma_{i}^{2}} \Rightarrow\left[\sup _{\eta \leq \mu \leq 1-\eta} \frac{\left\|B_{p}(\mu)-\mu B_{p}(1)\right\|^{2}}{\mu(1-\mu)}\right] \tag{28}
\end{equation*}
$$

Since the regimes considered in $S S R(\cdot, \cdot)$ are non-overlapping, $F_{T, i}^{*}(\ell+1 \mid \ell)$ are asymptotically independent for different i by Assumption 6. Hence, the result in Theorem 7 .

Proof of Theorem 8. Recall that $H_{0}: R_{k} \theta_{0}^{c}=0$, implying that $\theta_{1}^{0}=\ldots=$ $\theta_{k+1}^{0}=\theta^{0}$. Let $\Delta \lambda_{i}=\lambda_{i}-\lambda_{i-1}$, for $i=1, \ldots, k+1$. By the uniform convergence statements in Assumption 6(iii) and (iv), it follows that $\hat{D}_{i}\left(\hat{\theta}_{i}\left(\bar{T}_{k}\right)\right) \xrightarrow{p} \Delta \lambda_{i} D\left(\theta^{0}\right)$ and $\hat{A}_{i}\left(\hat{\theta}_{i}\left(\bar{T}_{k}\right)\right) \xrightarrow{p} \Delta \lambda_{i} A\left(\theta^{0}\right)$, where $D(\cdot), A(\cdot)$ are the common value of $D_{i}(\cdot)$, respectively $A_{i}(\cdot)$ under H_{0}. For simplicity, let $A\left(\theta^{0}\right) \equiv A_{0}$ and $D\left(\theta^{0}\right) \equiv D_{0}$. Then:

$$
\begin{aligned}
& T \hat{\Upsilon}\left(\bar{T}_{k}\right) \xrightarrow{p}\left[C_{k}^{-1} \otimes D_{0}^{-1}\right] \times\left[C_{k} \otimes A_{0}\right] \times\left[C_{k}^{-1} \otimes D_{0}^{-1}\right] \\
& T^{1 / 2}\left(\hat{\theta}_{i}\left(\bar{T}_{k}\right)-\theta^{0}\right) \Rightarrow\left(\Delta \lambda_{i}\right)^{-1} D_{0}^{-1} A_{0}^{1 / 2}\left[B_{p}\left(\lambda_{i}\right)-B_{p}\left(\lambda_{i-1}\right)\right]
\end{aligned}
$$

Putting the last two equations together completes the proof of Theorem 8. The proof of Theorem 9 is similar - see Supplemental Appendix.

[^0]: *We are grateful to Philippe Berthet, Mehmet Caner, Manfred Deistler, John Einmahl, Atsushi Inoue, Denise Osborn, James Stock and Qiwei Yao for their comments, as well as for the comments of participants at the presentation of this paper at the Conference on Breaks and Persistence in Econometrics, London, UK, December 2006, Inference and Tests in Econometrics, Marseille, France, April 2008, European Meetings of the Econometric Society, Milan, Italy, August 2008, NBER-NSF Time Series Conference, Aarhus, Denmark, September 2008, Fed St. Louis Applied Econometrics and Forecasting in Macroeconomics Workshop, St. Louis, October 2008, and at the seminars in Tilburg University, University of Manchester, University of Exeter, University of Cambridge, University of Southampton, Tinbergen Institute, UC Davis and Institute for Advanced Studies, Vienna. The second author acknowledges the support of ESRC grant RES-062-23-1351.
 ${ }^{\dagger}$ Corresponding author. Tilburg University, Dept. of Econometrics and Operations Research, Warandelaan 2, 5000 LE Tilburg, Netherlands, Email: O.Boldea@uvt.nl
 \ddagger University of Manchester, Email: Alastair.Hall@ manchester.ac.uk

[^1]: ${ }^{1}$ For statistical literature surveys, see Zacks (1983), Krishnaiah and Miao (1988), Bhattacharya (1994), Csörgö and Horváth (1997); for recent developments in econometrics, see Dufour and Ghysels (1996) and Banerjee and Urga (2005).

[^2]: ${ }^{2}$ We use superscript c to distinguish between $(m+1) p \times 1$ parameter vectors and the $p \times 1$ parameter vectors at which $f_{t}(\cdot)$ is evaluated.
 ${ }^{3}$ Note that an extension to more general settings such as generalized method of moments (GMM) is non-trivial because minimizing a GMM criterion over all possible partitions does not yield consistent estimates of the break-fractions indexing the break-points even for linear models and one break under reasonable conditions, see Hall, Han, and Boldea (2009).

[^3]: ${ }^{4}$ Allowing for these types of changes is important in many settings. For example, when estimating a possibly asymmetric (nonlinear) interest rate reaction function, regressors such as output gap or inflation gap may exhibit changes in variance, due to a period of Great Moderation - see e.g. Stock and Watson (2002) - and these changes may occur at different locations than those in the parameters of the equation of interest.

[^4]: ${ }^{5}$ Note that m^{*} as well as λ_{j}^{*} are taken as given and are not objects of inference here, unless all breaks in $\left\{v_{t}\right\}$ either are aligned or coincide with the breaks the parameters of (1), depending on whether $\left\{x_{t}\right\}$ contains lagged dependent variables or not. When the breaks in $\left\{v_{t}\right\}$ are neither aligned nor coincide with the parameter breaks, knowledge of λ_{j}^{*} is irrelevant as far as asymptotic distribution results are concerned, but may be of course crucial for both getting consistent estimates of certain asymptotic variances, as well as obtaining the null distribution of stability tests - see Hansen (2000) and Section 5.
 ${ }^{6}$ In the absence of lagged dependent variables, we need piece-wise ergodicity of $f_{t}(\theta)$, which we ensure by augmenting $\left\{v_{t}\right\}$ with y_{t}. Alternatively, one could verify piece-wise ergodicity of y_{t} on a case by case basis by specifying a functional form for $f_{t}(\theta)$; see e.g. Chan and Tong (1986), Davidson (2002) or Fan and Yao (2003) for certain classes of nonlinear functions of empirical interest. For our empirical application, we verify ergodicity rather than impose it.

[^5]: ${ }^{7}$ Part (iv) is implicit from (ii)-(iii) given (i), but is used explicitly without (ii) for Theorems

[^6]: ${ }^{9}$ The Levenberg-Marquardt algorithm provides similar results.

[^7]: ${ }^{10} \mathrm{We}$ also ran simulations with $x_{t} \sim N(1,1)$. The results are similar and are available upon request.

[^8]: ${ }^{11}$ For details on how these series are constructed at a monthly frequency, see Kesriyeli, Osborn, and Sensier (2006).

[^9]: ${ }^{12}$ Our dataset starts at 1982: 3, but after constructing different lags we lose 4 periods. We choose to cut the sample where Kesriyeli, Osborn, and Sensier (2006) do for minimal comparability purposes.

[^10]: ${ }^{13}$ According to the Bayesian information criterion (BIC), one would pick only one break, but this is in contrast to both AIC and the outcome of the stability tests, so we pick a model with three breaks.
 ${ }^{14}$ Ergodicity is a common assumption for smooth transition models. For sufficient conditions, see e.g. Chan and Tong (1986) and Davidson (2002); these sufficient conditions are satisfied here for the first two regimes with a slight violation for the third and fourth. If one would be more conservative with the sequential testing, one would note that the $\sup F(4 \mid 3)$ statistic is close to

[^11]: ${ }^{16}$ Caner (2007) also indicates that the weak limit of $\frac{1}{\sqrt{T}} \sum_{t=1}^{[T r]} \psi_{t}(\theta)$ is a Kiefer process in $\theta \times r$ under an appropriate semi-metric.

[^12]: ${ }^{17}$ Extending this result to $m^{*}>1$, as long as m^{*} is finite, can be proven by similar arguments as above.
 ${ }^{18}$ We could alternatively use Lemma 1, but piece-wise ergodicity seems to be needed only for Lemma 2 (i).

