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Abstract:

In this paper, we develop continuous-time methods for solving dynamic principal-agent problems in

which the agent’s privately observed productivity shocks are persistent over time. We characterize the

optimal contract as the solution to a system of ordinary differential equations and show that, under

this contract, the agent’s utility converges to its lower bound—immiserization occurs. Unlike under

risk-neutrality, the wedge between the marginal rate of transformation and a low-productivity agent’s

marginal rate of substitution between consumption and leisure will not vanish permanently at her

first high-productivity report; also, the wedge increases with the duration of a low-productivity report.

We apply the methods to numerically solve the Mirrleesian dynamic taxation model, and find that the

wedge is significantly larger than that in the independently and identically distributed (i.i.d.) shock case.
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1. Introduction

A common assumption in the dynamic mechanism design literature is that the agent’s privately

observed shocks are independently and identically distributed (i.i.d.). As pointed out by Fernandes and

Phelan (2000), this assumption is merely for the sake of tractability. It implies that, at the beginning

of a given date, an agent’s forward-looking utility of following a given strategy when facing a given

contract is independent of past histories.1

However, in many economic environments with hidden information, the agent’s shocks are highly

persistent. For example, in the design of optimal health insurance, a customer’s health condition today is

strongly correlated with her previous condition. And in unemployment insurance where an unemployed

worker’s searching effort is hidden, it is reasonable to conjecture that the worker’s chance of finding a

new job depends not only on her current effort but also on her searching effort in the past.

In this paper, we develop continuous-time methods for solving dynamic contracting problems and

apply them to an optimal taxation model in which the agent’s privately observed productivity shocks

are persistent over time. Productivity process is modeled as a finite-state Markov chain with transitions

arriving as a Poisson process. A key technique that we develop is that, in continuous time, the incentive

constraints are transformed into a system of differential equations and inequalities. This system of

equations connects the principal’s choice variables and the evolution of the promised utilities, thus

allows us to rewrite the contracting problem as a stochastic control problem. We then study the

stochastic control problem and obtain a sharp characterization of the optimal contract.

We find that the cost of delivering a utility vector is increasing in the promised utility but decreasing

in the transitional utility. We also find that for each level of promised utility to the low-productivity

agent, there is an efficient (cost-minimizing) level of transitional utility. However, when the agent

reports low productivity, the principal has to move the transitional utility strictly below the efficient

level, since the high-productivity type has an incentive to misreport and reduce her effort. This feature

makes the persistent shock contract open to renegotiation, because moving back to the efficiency level

makes the agent indifferent and the principal strictly better off. This is different from the i.i.d. shock

case, where the contract is always renegotiation proof.

There are many features that persistent shock models share with i.i.d. shock models. The agent’s

promised utility moves up with a high report and moves down with a low report. The consumption and

output levels for a high report are both higher than those for a low report when compared at similar

levels of promised utilities. The immiserization result continues to hold in persistent shock models,

because the martingale property (associated with the inverse Euler equation) remains valid.2

1This notion of common knowledge about preferences was first discussed in Fudenberg, Holmstrom, and Milgrom

(1990).
2Farhi and Werning (2007) show that immiserization is avoided when the principal is more patient than the agent.
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Based on these findings, we conclude that, qualitatively, the persistent shock models are similar to

i.i.d. shocks. However, quantitatively, persistence is still an important issue that should not be ignored.

Through a numerical example, we find that the distortions in the persistent shock model are much larger

than in the i.i.d. shock model. Thus, using i.i.d. shocks as an approximation to the true productivity

shocks would seriously underestimate the role of the tax system in a Mirrleesian model.

1.1 Related Literature

Our formulation of the problem is based largely on ideas in Fernandes and Phelan (2000). They

developed a recursive formulation for contracting problems in which private types are serially corre-

lated. In these situations, different types of agents derive different continuation utilities from the same

continuation contract due to type-specific priors. When the agent chooses between truth-telling and

lying, she compares the continuation utility as a truth-teller and the continuation utility as a liar. Thus,

the principal finds it necessary to enforce a vector of utilities for all the potentially different types. They

showed that this vector of continuation utilities is the state variable in their recursive formulation. Our

work provides an analytical characterization of the optimal contract, which is different from Fernandes

and Phelan (2000), who solved the optimal contract by numerical iteration following Abreu, Pearce,

and Staccheti (1990).

This paper is motivated by the literature on continuous-time contracting with hidden actions (Holm-

strom and Milgrom (1987), Schattler and Sung (1993), Cvitanic, Wan, and Zhang (2007), Williams

(2006), Westerfield (2006), Sannikov (2007a,b)). The literature shows that setting principal-agent mod-

els in continuous time could allow for more explicit characterization of the solution. The novelty in

this paper involves our modeling of the random process. Since the traditional continuous-time methods

with diffusion process cannot be readily adopted to study hidden information models with persistent

shocks (see Section 7 for an explanation), we model the agent’s type as a finite-state Markov chain,

which introduces techniques that are different from, but complementary to, the above literature.

There are a few recent papers studying dynamic contracts with private and persistent shocks.

Kapicka (2007) studied an optimal taxation model with a continuum of productivity shocks in a discrete-

time model. By assuming the validity of the first-order approach, he reduced the infinite-dimensional

state variable to a vector of two numbers: promised utility and its derivative. This simplification allows

him to numerically compute a taste-shock model, which sheds light on the properties of the tax system

in dynamic taxation models. Williams (2008) also studied persistent shocks with a continuum of shocks,

but in continuous time. He considered a related first-order approach, but by using the continuous-time

techniques he had developed in Williams (2006), he provided sufficient conditions to check whether the

solution from the first-order approach is fully incentive compatible. Furthermore, he found that the
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inverse Euler equation does not hold in his environment and the immiserization property disappears.3

Finally, our paper is closely related to the literature on dynamic social insurance and taxation

(Albanesi (2006), Albanesi and Sleet (2006), Atkeson and Lucas (1992), Golosov, Kocherlakota, and

Tsyvinski (2003), Golosov and Tsyvinski (2006, 2007), Kocherlakota (2005), Kapicka (2006)). Our

model is a simplified version (with neither aggregate resource constraint nor capital accumulation) of

Golosov, Kocherlakota, and Tsyvinski (2003) and Kocherlakota (2005). However, our research focuses

more on developing a methodology and understanding the analytical properties of the optimal contract.

Battaglini and Coate (2003) studied a persistent shock dynamic taxation model with risk-neutral agents.

The distortion in their model eventually vanishes in two senses. First, it vanishes permanently with

any high-productivity report. Second, the distortion decreases to zero for an agent who always reports

low productivity. We can apply the continuous-time methods to study their model and confirm their

findings. However, when we study risk-averse utilities, we find that the distortion increases with the

low-productivity report and never vanishes. These differences suggest that risk aversion is critical for

the patterns of the distortion.

The remainder of the paper is organized as follows. Section 2 lays out the economic environment and

sets up the social planner’s contracting problem. In Section 3, we derive the continuous-time evolution

of the state variable as differential equations and inequalities. The resulting differential equations are

put to use in Section 4 to characterize the set of implementable utility pairs and in Section 5 to study

the long-run dynamics of the optimal contract. In Section 6, through a numerical example, we show

that the models with persistent shocks imply significantly larger wedges than the models with i.i.d.

shocks. The last section concludes. All proofs are collected in the Appendices.

2. A Dynamic Contracting Problem

2.1 The Environment and the Shock Process

Time is continuous. Consider a risk-neutral principal and a risk-averse agent who engage in long-

term contracting at time 0. Both the principal and the agent are able to commit. The preferences of

the agent are

E

[∫ ∞

0

e−rt [u(ct)− v(yt)/θt] dt

]
,(1)

where ct and yt are the agent’s consumption and output at time t, r is her discount rate, θt is her

private taste shock, and E is an expectations operator. The principal has the same discount rate r and
3The first-order approach is able to reduce the dimension of the state variable to a small number, but its validity is

still unestablished. Williams (2008) provided sufficient conditions for the first-order approach, but these conditions may

either be overly stringent or fail to hold.
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minimizes

E

[∫ ∞

0

e−rt [ct − yt] dt

]
,(2)

which is the expected discounted cost of the consumption-output plan. We assume that u : [0, c̄] → [0, ū]

is twice continuously differentiable, increasing, and strictly concave (u′ > 0 and u′′ < 0). The disutility

function v : [0, ȳ] → [0, v̄] is twice continuously differentiable, increasing, and strictly convex (v′ > 0 and

v′′ > 0). The agent’s privately observed taste shock θt can be re-interpreted as a productivity shock if

v(y) = yγ , γ > 1. Define φ = θ1/γ as the agent’s productivity. She is able to transform one unit of labor

into φ units of output. Her disutility depends on the amount of labor l = y/φ she spends to produce y,

thus the disutility is v(l) = v(y)/θ.

The shock process (θt)t≥0 is a time-homogeneous, continuous-time Markov chain with a finite state

space Θ = {θ1, θ2, ..., θN}, where 0 < θ1 < θ2 < ... < θN , and a generator matrix Q = (qij)1≤i,j≤N .

Let N = {1, 2, ..., N} be the set of indices. A probability space (Ω, F , P ) is described as follows. Let

sample space Ω be

{
ω : [0,∞) → N

∣∣∣ ω is right continuous, has a finite number of jumps in any interval [0, t], t ≥ 0
}

.

Each ω ∈ Ω describes a complete sample path of random indices. For t ≥ 0, the random variable

ιt(ω) = ω(t) describes the state at t. To keep track of information, endow Ω with a filtration, i.e., a

nondecreasing family {Ft}t≥0 of σ-fields, where Ft = σ((ιs)0≤s≤t) and F = σ (∪t≥0Ft). Ft denotes

the information from 0 up to t, including the number of jumps up to t, the timing, and the destinations

of these jumps. The generator matrix Q satisfies the following conditions:

(i) −qii > 0 for all i; (For convenience, we use qi to denote −qii)

(ii) qij > 0 for all i 6= j;

(iii)
∑

j qij = 0 for all i.

Each entry qij (i 6= j) is the rate of moving from state i to state j, and qi =
∑

j 6=i qij > 0 is the rate of

leaving state i. For all t, h ≥ 0, conditional on ιt = i,

Pr(ιt+h = j|ιt = i) = δij + qijh + o(h),

where δij is 1 if i = j, and 0 otherwise. An equivalent way to describe the continuous-time Markov

chain is that, conditional on ιt = i, the holding time S (which records the duration that the chain stays

in i before a transition) is an exponential random variable of parameter qi, and once a transition occurs,

it jumps to state j (j 6= i) with probability qij/qi. We can always endow the measurable space (Ω, F )

with a probability measure P such that under P , (ιt)t≥0 is a Markov chain with the generator matrix

Q and the properties mentioned above (see, for example, Norris (1997, Chapter 2)).
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2.2 The Contracting Problem

The agent knows her initial type and privately observes (ιt)t≥0 afterwards, while the principal cannot

observe the realizations and holds a belief that the agent’s initial type is i with probability pi, 1 ≤ i ≤ N .

At time 0, the principal offers a contract, which the agent may either accept or reject. If the agent

rejects, then she gets the outside option Ūi if her initial type is i. Otherwise, she sequentially reports the

newly observed shocks to the principal, and the principal implements the contract based on reported

histories.

In each period t, based on realized shocks (ιs)0≤s≤t, the agent makes a report σt to the principal.

Collectively, with sample path ω realized, the agent’s reported history is σ = (σt)t≥0. Therefore, we

define the agent’s reporting strategy to be a measurable function σ : (Ω,F ) → (Ω, F ). Moreover,

at time t, since an agent is unable to distinguish between two sample paths ω1, ω2, where ω1(s) =

ω2(s), ∀s ∈ [0, t], the reported paths have to satisfy σ(ω1)(s) = σ(ω2)(s),∀s ∈ [0, t]. This means that

σ should also be measurable from (Ω,Ft) to (Ω, Ft) for any t ≥ 0. We could write σt(ω) = σt(ω[0,t]),

where ω[0,t] is the restriction of ω on [0, t]. Notice that this definition of a reporting strategy implicitly

imposes restrictions on the agent’s reports; when the reports at different t are pieced together, the

reported history σ(ω) has to be right continuous and admits finite jumps in finite time. This restriction

is innocuous. Since the true sample paths have these properties, if the agent cheats and, for example,

her reports fail to be right continuous, then cheating will be identified by the principal. Intuitively, right

continuity prohibits the agent from immediately reverting to truth-telling after misreporting at t, and

the finite-jump condition prohibits her from switching between truth-telling and cheating too often. A

reporting strategy σ is truth-telling if σ(ω) = ω, for all ω ∈ Ω. We use σ∗ to denote the truth-telling

strategy.

The principal offers a contract C = (ct, yt)t≥0 at time 0, where the measurable functions ct :

(Ω,Ft) → [0, c̄] and yt : (Ω,Ft) → [0, ȳ] specify the agent’s consumption and output at t, respectively.

We use Ω to denote both the set of true realizations and the set of reports. As a collection of subsets that

contain reports, the algebra Ft describes the principal’s information structure; while as a collection of

subsets that contain the true shocks, it describes the agent’s information structure. When the reporting

strategy is σ, the principal’s information in the space of true shocks, σ−1(Ft) = {A ⊆ Ω : σ(A) ∈ Ft},
is weakly coarser than that of the agent. Here for the principal, Ω is the set of reports and the

measurability condition requires that ct and yt be based only upon the reports available from 0 up to

(and including) t. We assume that a contract is progressively measurable; in other words, the mapping

(s, ω) → (cs(ω), ys(ω)) : ([0, t] × Ω,B([0, t]) ⊗ Ft) → (R2,B(R2)) is measurable for all t ≥ 0.4 Note

that the information structure here is similar to that in the discrete-time literature. Within a period
4This technical condition requires the joint measurability of the contract as a function of (s, ω) in the product space,

which, together with the measurability of σ, guarantees that the following promised utilities are well-defined.
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(or instant), the timing is that an agent first makes her report then receives her compensation. In both

cases, consumption and output under the contract are allowed to jump instantaneously with the arrival

of a new report, rather than being required to be predictable functions of past reports.

It is useful to study the agent’s promised utility vector based on different histories, which turns

out to be the state variable in a recursive formulation. Denote the set of possible histories before the

realization of ιt by

N t− =
{

ιt− : [0, t) → N
∣∣∣ ιt− is right continuous, has a finite number of jumps

}
.

An agent’s future discounted utility when she has a history of reports ht− ∈ N t−, her realization of ιt

is i and she follows a strategy σ is

wi(ht−;σ, C )

= Et

[∫ ∞

t

e−r(s−t)
[
u(cs(ht−, (σ(ω))[t,∞)))− v(ys(ht−, (σ(ω))[t,∞)))/θω(s)

]
ds

∣∣∣ω(t) = i

]
,

where (σ(ω))[t,∞) is the restriction of the report σ(ω) on [t,∞), and (ht−, (σ(ω))[t,∞)) denotes a sample

path (or report) where ht− is followed by (σ(ω))[t,∞). In particular, if σ = σ∗,

wi(ht−; σ∗,C )(3)

= Et

[∫ ∞

t

e−r(s−t)
[
u(cs(ht−, ω[t,∞)))− v(ys(ht−, ω[t,∞)))/θω(s)

]
ds

∣∣∣ω(t) = i

]

= Et

[∫ ∞

t

e−r(s−t)
[
u(cs(ht−, ω[t,s]))− v(ys(ht−, ω[t,s]))/θω(s)

]
ds

∣∣∣ω(t) = i

]
.

It will be crucial to distinguish between persistent promised utility and transitional promised utilities.

The report at an instant t may either be the same as previous reports or indicate a transition. Accord-

ingly, there are two types of promised utilities: the utility associated with no transition and the utilities

associated with all possible transitions. More precisely, let i∗t = lims↑t ht−(s) be the report of type

immediately before t. Then wi∗t (ht−; σ∗,C ) is called the persistent promised utility and wi(ht−; σ∗, C ),

(i 6= i∗t ), are called the transitional promised utilities. When the agent’s current report is the same as

the previous reports, she receives the persistent promised utility; otherwise, if there is a transition to

state i, she receives wi(ht−; σ∗,C ). Detailed discussion of the promised utilities is provided in the next

section.

A contract C is said to be incentive compatible (I.C.) if for any t, any ht− ∈ N t−, and any strategy

σ,

wi(ht−; σ∗, C ) ≥ wi(ht−;σ,C ), for all i.(4)

In this environment with commitment, it follows from the revelation principle that we could restrict
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attention to I.C. contracts. The principal’s problem can then be written as

minC

N∑

i=1

piE

[∫ ∞

0

e−rt [ct(ω)− yt(ω)] dt
∣∣∣ω(0) = i

]
(5)

subject to C is I.C.,

wi(∅; σ∗, C ) ≥ Ūi, for all i,

where ∅ denotes an empty history and Ūi is the type i agent’s outside option.

3. Incentive Constraints and the Evolution of (wi(h
t−))1≤i≤N

In this section, we show that (wi(ht−; σ∗, C ))1≤i≤N is the state variable for a dynamic programming

problem, and that the incentive constraints can be simplified as differential equations (and inequalities)

that describe the evolution of the state variable.

In the following discussion, the discounted utility wi(ht−;σ∗, C ) will be simplified to wi(ht−) when

σ∗ and C are well understood. i[t,s) denotes a sample path (or report) of type i from t to s (not

including s).

Fix an I.C. contract C . First, consider the continuity property of wi(ht−) as a function of t. Recall

that i∗t denotes the report immediately before t. When limits are taken from the left, wi∗t is the persistent

promised utility and other wi (i 6= i∗t ) are transitional promised utilities. Things become complicated

when limits are taken from the right, since there are N possible paths of reports. Starting from t,

the agent might report i = i∗t , which the principal interprets as no transition, or she might report

i 6= i∗t , which the principal interprets as a transition to i. Following history (ht−, (i∗t )[t,s)), wi∗t is still

the persistent promised utility. However, following (ht−, i[t,s)) (i 6= i∗t ), wi would replace wi∗t to be the

persistent promised utility.

The following lemma shows that the persistent promised utility is continuous, while the transitional

promised utilities have both left and right limits but allow for downward jumps.

Lemma 1 If C is I.C., then

(i) For right-hand limits,

wi(ht−) = lim
s↓t

wi(ht−, i[t,s)), for all i,(6)

wj(ht−) ≥ lim
s↓t

wj(ht−, i[t,s)), for all j 6= i.(7)

(ii) For left-hand limits, let hs− denote the restriction of ht− on [0, s) (s < t),

wi∗t (ht−) = lim
s↑t

wi∗t (hs−),(8)

wj(ht−) ≤ lim
s↑t

wj(hs−), for all j 6= i∗t .(9)
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It is useful to understand the meaning of equation (7) with various values of i and j. If j 6= i∗t (she

has a transition to j), then she could not gain by delaying the transition report and reporting i∗t for a

short time (followed by truth-telling), or by reporting a transition to a different state i (i 6= j, i 6= i∗t )

for a short time (followed by truth-telling). If j = i∗t (she does not have a transition), then she could

not gain by reporting a transition to i (i 6= i∗t ) for a short time (followed by truth-telling).5 Similarly,

equation (9) simply means that an agent with a transition to j before t would not delay the transition

report until t.

Next we will obtain a sharper characterization of the evolution of utility wi along any reported

history. Fix a report ht−. It follows from the definition of N t− that there exists a finite collection of

jump times t0 = 0 < t1 < t2 < ... < tn < tn+1 = t and a finite history of past types (i0, i1, ..., in), such

that ht−(s) = ik, if s ∈ [tk, tk+1), 0 ≤ k ≤ n. In the interval [tk, tk+1), wik
is the persistent promised

utility and, in addition to being continuous, its evolution is described by a differential equation. wi

(i 6= ik) is a transitional promised utility in [tk, tk+1). Although it could have a countable number of

downward jumps, its evolution is described by a differential inequality (an upper bound on dwi/dt is

found). These differential equations (and inequalities) are both necessary and sufficient conditions for

a contract to be I.C. We turn next to this key characterization result.

Theorem 1 Let C be a contract, and (wi(ht−))1≤i≤N , (wi(ht−) : N t− → R, for all t ≥ 0), be an

arbitrary stochastic process.

(i) (necessity) If C is I.C., and (wi(ht−))1≤i≤N are the promised utilities defined in (3), then for

any history ht− with the form (t0, t1, ..., tn, tn+1; i0, i1, ..., in), wi(hs−) is differentiable for all i

and almost every (a.e.) s ∈ [0, t). If i = ik, then for a.e. s ∈ [tk, tk+1),

dwi(hs−)
ds

= (r + qi)wi(hs−)−
∑

j 6=i

qijwj(hs−)− (u(c(hs))− v(y(hs))/θi).(10)

If i 6= ik, then for a.e. s ∈ [tk, tk+1),

dwi(hs−)
ds

≤ (r + qi)wi(hs−)−
∑

j 6=i

qijwj(hs−)− (u(c(hs))− v(y(hs))/θi).(11)

(ii) (sufficiency) Assume (wi(ht−))1≤i≤N is a bounded process and for any history ht− with the

form (t0, t1, ..., tn, tn+1; i0, i1, ..., in), wi(hs−) is differentiable for all i and a.e. s ∈ [0, t). If

(wi(ht−))1≤i≤N and C satisfy (10) and (11), then (wi(ht−))1≤i≤N satisfies (3), and contract C

is I.C.
5Notice that, strictly speaking, a type j agent at time t may not be the same person as a type j agent at s, (s > t), but

when explaining the intuition, we implicitly assume that the agent has no transition between t and s, since the probability

of having a transition is small when s is close to t.
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It is helpful to understand the meanings of (10) and (11), because all of our remaining results are

derived from this system of differential equations and inequalities. Equation (10) is a promise-keeping

condition. We can rewrite the right side of equation (10) as

[
rwi(hs−)− (u(c(hs))− v(y(hs))/θi)

]
+


∑

j 6=i

qij(wj(hs−)− wj(hs−))


 ,

where the first term is the natural (instantaneous) rate of change of promised utility wi(hs−) when

there is no uncertainty. For j 6= i, each term qij(wi(hs−) − wj(hs−)) captures the additional rate of

change of wi(hs−) due to the transition to state j at arrival rate qij . The promise-keeping condition in

discrete time is

wi(s) = (u(c(s))− v(y(s))/θi)dt + e−rdt


∑

j 6=i

(qijdt)wj(s + dt) + e−qidtwi(s + dt)


 ,(12)

where s and s + dt denote two periods in discrete time and qijdt is the transitional probability in short

time dt. Equation (10) can be informally derived by taking limit dt → 0 in (12). (The formal proof can

be found in APPENDIX A.) Inequality (11) is an incentive compatibility condition, the intuition for

which is similar to that of (10). If (11) holds as equality, then type i obtains wi(hs−) by reporting ik,

thus she is indifferent between truth-telling and reporting ik; otherwise, if wi(hs−)/ds is less than the

right side of (11), then reporting ik makes her strictly worse off.

With the conditions on the derivatives of (wi(ht−))1≤i≤N , the principal’s problem is transformed

into a dynamic stochastic control problem. With truth-telling, (wi(ιt−))1≤i≤N and ιt are endogenous

and exogenous state variables, respectively, and (ct, yt) are control variables. Given the current report i

and before the next transition, the system evolves according to a differential inclusion (in the following

discussion, wi(ht−), c(ht), and y(ht) will be simplified to wi(t) (or wi), ct, and yt when ht− and ht are

well understood):

dwi

dt
= (qi + r)wi −

∑

j 6=i

qijwj − u(ct) + v(yt)/θi,

dwj

dt
∈


−∞, (qj + r)wj −

∑

k 6=j

qjkwk − u(ct) + v(yt)/θj


 , j 6= i.

Introducing (N − 1) slack control variables µj , µj ≥ 0, j 6= i, the system is

dwi

dt
= (qi + r)wi −

∑

j 6=i

qijwj − u(ct) + v(yt)/θi,

dwj

dt
= (qj + r)wj −

∑

k 6=j

qjkwk − u(ct) + v(yt)/θj − µj , j 6= i.

When a downward jump of wj happens, we interpret it as µj = ∞. Given initial states i and (wj)1≤j≤N ,

if (ct(ω[0,t]), yt(ω[0,t]), µi(ω[0,t]))t≥0,1≤i≤N is the optimal policy for the stochastic control problem, then

10



the cost Vi((wj)1≤j≤N ) is

Vi((wj)1≤j≤N ) = E

[∫ ∞

0

e−rt
[
ct(ω[0,t])− yt(ω[0,t])

]
dt

∣∣∣ω(0) = i

]
.

(Vi)1≤i≤N can be directly used to solve the principal’s problem in (5). If the prior belief is degenerate,

(pi = 1, pj = 0, ∀j 6= i, i.e., initial type is known to the principal), then the principal can pick an initial

state (wj)1≤j≤N to start the optimal control problem; except the participation constraint wi ≥ Ūi,

the other states wj(j 6= i) are transitional utilities, and are free to be chosen by the principal. When

the prior belief is not degenerate, the principal can choose a type-dependent state variable to start the

optimal control problem: when the initial report is i, the principal picks an initial state (wi
j)1≤j≤N . To

prevent a type i agent from misreporting j and immediately reporting a transition to i, and obtaining

the transitional promised utility wj
i , the incentive constraints wi

i ≥ wj
i must be imposed. To summarize

the above discussion, the principal’s problem in (5) is equivalent to

min
(wi

j)1≤i,j≤N

N∑

i=1

piVi((wi
j)1≤j≤N )

subject to wi
i ≥ Ūi,

wi
i ≥ wj

i , for all i, j.

Remark 1 The conditions in (10) and (11) are still necessary when the instantaneous utility function

is unbounded. However, for sufficiency, some form of transversality condition is needed. One sufficient

condition is that, for any reporting strategy σ,

lim
t→∞

e−rtE
[
wιt((σ(ω))[0,t))

]
= 0.

4. The Set of Implementable Utilities

To simplify the exposition, in the remainder of the paper we will consider only the case in which

N = 2. This section studies the set of implementable utilities, defined as,

W =
{
(w1(∅; σ∗, C ), w2(∅; σ∗, C )) ∈ R2 : C is I.C.

}
,

which is the domain of the value functions. In the next section, we examine the properties of the value

functions and the long-run dynamics implied by them.6

6Both of these sections use the differential equations we developed earlier heavily; however, there is not much depen-

dence between them, and either one could be read first. In the next section, we focus mainly on unbounded utility and

disutility functions, and W with unbounded utilities is much easier to obtain than with bounded utilities (in the next

section, W is the whole set R2), as explained in the following Remark 2. The reader interested in the dynamics of the

optimal contract could skip most of this section, and proceed to Remark 2 and the next section.
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The common approach in the literature is to compute this set by iteration. Following Abreu, Pearce,

and Staccheti (1990), begin with an initial guess that contains W , then iterate until the sequence of sets

converges to W , which is the largest fixed point of the operator. However, using continuous-time meth-

ods, we will show that this set can be obtained directly. In fact the boundary of W can be characterized

by differential equations. The remainder of this section will be devoted to this characterization.

We first study some simple contracts. If the contract always specifies maximal consumption c̄ and

minimal output 0, regardless of reports (i.e., ct(ht) = c̄, yt(ht) = 0, ∀ht ∈ N t), then the contract can

implement the pair (ū/r, ū/r), which is the upper-right corner of W . If consumption 0 and output ȳ

are always specified, then the lower-left corner is implemented. We denote it by −(x1v̄, x2v̄), where

x1 = ((q2 + r)/θ1 + q1/θ2)/(r(q1 + q2 + r)), x2 = (q2/θ1 + (q1 + r)/θ2)/(r(q1 + q2 + r)). Similarly, the

“consumption 0, output 0” contract implements the utility pair (0, 0), while the “consumption c̄, output

ȳ” contract implements (−x1v̄ + ū/r,−x2v̄ + ū/r).

Next consider four families of contracts. The first two families are indexed by c∗ ∈ (0, c̄). A contract

C 1c∗ in the first family is (c1c∗
t (ht), y1c∗

t (ht)) = (c∗, 0), for all ht ∈ N t, which implements the utility

pair

(u(c∗)/r, u(c∗)/r), c∗ ∈ (0, c̄).(13)

A contract C 2c∗ in the second family is (c2c∗
t (ht), y2c∗

t (ht)) = (c∗, ȳ), for all ht ∈ N t, which implements

the utility pair

(−x1v̄ + u(c∗)/r,−x2v̄ + u(c∗)/r), c∗ ∈ (0, c̄).(14)

The third and fourth families of contracts are indexed by t∗ ∈ (0,∞). A contract C 3t∗ in the third

family is

(c3t∗
t (ht), y3t∗

t (ht)) =





(0, 0), t ≤ t∗

(0, ȳ), t > t∗,

while in the fourth family, a contract C 4t∗ is

(c4t∗
t (ht), y4t∗

t (ht)) =





(c̄, ȳ), t ≤ t∗

(c̄, 0), t > t∗.

The utility pair (w3t∗
1 , w3t∗

2 ) implemented by C 3t∗ can be solved in the following way. Under contract

C 3t∗ , and when t ≤ t∗, the promised utility evolves according to the differential equation system

dw1

dt
= (q1 + r)w1 − q1w2

dw2

dt
= (q2 + r)w2 − q2w1,

12



and (w1, w2) will hit (−x1v̄,−x2v̄) at time t∗. Therefore, solving the differential equations together

with the boundary condition yields

w3t∗
1 = −v̄

[
q1(1/θ1 − 1/θ2)

(q1 + q2)(q1 + q2 + r)
e−(q1+q2+r)t∗ +

q2/θ1 + q1/θ2

(q1 + q2)r
e−rt∗

]
,(15)

w3t∗
2 = −v̄

[
q2(1/θ2 − 1/θ1)

(q1 + q2)(q1 + q2 + r)
e−(q1+q2+r)t∗ +

q2/θ1 + q1/θ2

(q1 + q2)r
e−rt∗

]
.(16)

Similarly,

w4t∗
1 = v̄

[
q1(1/θ1 − 1/θ2)

(q1 + q2)(q1 + q2 + r)
e−(q1+q2+r)t∗ +

q2/θ1 + q1/θ2

(q1 + q2)r
e−rt∗

]
− x1v̄ + ū/r,(17)

w4t∗
2 = v̄

[
q2(1/θ2 − 1/θ1)

(q1 + q2)(q1 + q2 + r)
e−(q1+q2+r)t∗ +

q2/θ1 + q1/θ2

(q1 + q2)r
e−rt∗

]
− x2v̄ + ū/r.(18)

It turns out that the utility pairs delivered by (C 1c∗ , C 2c∗ ,C 3t∗ , C 4t∗) form the boundary of W (see

Figure 1).
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W

(−x1v̄,−x2v̄)

line 1

line 2

(0, 0)

curve 3

curve 4

(−x1v̄ + ū/r,−x2v̄ + ū/r)

(ū/r, ū/r)

Figure 1: The set of implementable utility pairs.

Theorem 2 The boundaries of W consist of the four points (ū/r, ū/r), (−x1v̄,−x2v̄), (0, 0), and

(−x1v̄ + ū/r,−x2v̄ + ū/r), and the four pieces of curves that connect these points. The lower boundary

is specified in equations (13), (15), and (16), while the upper boundary is specified in equations (14),

(17), and (18).
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It is intuitive that curves in (14), (17), and (18) specify the upper boundary. Since for a fixed w1, in

order to increase w2, the principal could increase consumption and output in a way that makes the

low-productivity agent indifferent but the high-productivity agent better off, it is not surprising to see

that, at curves on the upper boundary, output is maintained at the maximum level ȳ. Similarly, output

is at the minimum level 0 on the lower boundary.

Remark 2 When utility is unbounded, it is typically easier to determine W . For example, when utility

and disutility can take any real number, consider the no-information contract, where constant c∗ and

y∗ are specified regardless of reports. This is trivially I.C. and delivers utility

 w1

w2


 =


 1/r −x1

1/r −x2





 u(c∗)

v(y∗)


 ,

where x1 =
(q2 + r)/θ1 + q1/θ2

r(q1 + q2 + r)
, x2 =

q2/θ1 + (q1 + r)/θ2

r(q1 + q2 + r)
.

Since the matrix has full rank, any (w1, w2) ∈ R2 can be implemented by choosing the appropriate

u(c∗) and v(y∗). Therefore, W = R2 in this case.

5. Dynamics of the Optimal Contract

In previous sections, we simplified the incentive constraints and used them to characterize the set

of implementable utility pairs. In this section, we address the question of the dynamic behavior of the

state variables under the optimal contract. To simplify the analysis, we focus on a special case where

the shock space consists of two elements, Θ = {θ1, θ2}, θ1 < θ2, and the agent has logarithmic utility

and disutility functions, u(c) = log(c), c > 0, and v(y) = − log(−y), y < 0. We assume that the value

functions V1 and V2 in this case are twice differentiable and an optimal contract always exists for any

utility pair (w1, w2). We use Vi,1, Vi,2, Vi,11, Vi,12, Vi,22 to denote ∂Vi

∂w1
, ∂Vi

∂w2
, ∂2Vi

∂w1∂w1
, ∂2Vi

∂w1∂w2
, ∂2Vi

∂w2∂w2
,

respectively, for i = 1, 2.

It is helpful to first preview this lengthy section. We find two parallel efficiency lines, which separate

the state space R2 into three regions. We then show that the bottom region is absorbing. With a

high-productivity report, the state variable moves upward and along the efficiency line, while with

a low-productivity report, the state variable moves downward and enters the interior of the region.

The dynamics of the system are described by an ordinary differential equation (ODE) system, and by

studying the system, we derive many sample path properties, which are summarized in Theorem 3.

Consider first the homogeneity of the value functions. It follows from log(exp(λ)c) = λ+log(c) that

a contract C = (ct, yt)t≥0 implements (w1, w2), if and only if (exp(λ)ct, exp(λ)yt)t≥0 implements

(w1 + (1/r + x1)λ,w2 + (1/r + x2)λ) , for all λ ∈ R,
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where x1 = ((q2 + r)/θ1 + q1/θ2)/(r(q1 + q2 + r)), x2 = (q2/θ1 +(q1 + r)/θ2)/(r(q1 + q2 + r)). Therefore,

(c∗t , y∗t )t≥0 is the optimal contract to implement (w1, w2) if and only if (exp(λ)c∗t , exp(λ)y∗t )t≥0 is the

optimal contract at (w1 + (1/r + x1)λ,w2 + (1/r + x2)λ). Moreover, the speed vectors of the time paths

starting from these two initial conditions are identical, i.e., for (w′1, w
′
2) = (w1 + (1/r + x1)λ,w2 + (1/r + x2)λ),

dw1(i[0,t))
dt

=
dw′1(i

[0,t))
dt

,
dw2(i[0,t))

dt
=

dw′2(i
[0,t))

dt
, i = 1, 2.(19)

The next lemma states this homogeneity and uses it to establish other elementary properties of V1

and V2.

Lemma 2 The value functions V1, V2 have the following properties:

(i) (Homogeneity) For any λ ∈ R,

Vi (w1 + (1/r + x1)λ,w2 + (1/r + x2)λ) = exp(λ)Vi(w1, w2), i = 1, 2;(20)

(ii) V1 and V2 are weakly convex;

(iii) (Monotonicity) V1,2 ≤ 0, V1,1 > 0, V2,1 ≤ 0, V2,2 > 0.

Part (iii) of the above lemma states that value functions are monotonic, increasing in the persistent

promised utility but decreasing in the transitional utility. The transitional utility is used as a threat:

it is what a cheater can hope to get if she pretends to be the reported type but immediately reports a

transition to her true type afterwards. For this reason, the transitional utility is also called the threat

utility. The monotonicity in the persistent promised utility is straightforward because the principal

needs to give more consumption to (and require less output from) the agent if he promises more

expected utility to her. The intuition for V1,2 ≤ 0 is as follows. The principal can instantaneously and

freely lower the transitional utility and keep a tighter threat at zero cost; however, once the transitional

utility is moved to a lower level, it is not I.C. to jump back immediately. Thus the cost function

cannot be increasing in the transitional utility. Next we will show that it is strictly decreasing when

the transitional utility is sufficiently low, i.e., for a w1, V1,2 < 0 if w2 is sufficiently low.

Lemma 3 For all w1 ∈ R, {w2 ∈ R : V1,2(w1, w2) < 0} 6= ∅, {w2 ∈ R : V1,2(w1, w2) = 0} 6= ∅. And for

all w2 ∈ R, {w1 ∈ R : V2,1(w1, w2) = 0} 6= ∅, {w1 ∈ R : V2,1(w1, w2) < 0} 6= ∅.

Since V1,2 ≤ 0, V1, as a function of w2, could be strictly decreasing forever or be flat forever. The above

lemma rules out these two possibilities and, together with the convexity of V1, it implies that there is

an intermediate level of w2, below which the value function V1 is strictly decreasing and above which it

is flat. Formally, we can define two curves, f1 and f2 :

f1(w1) = min{w2 ∈ R : V1,2(w1, w2) = 0},
f2(w2) = min{w1 ∈ R : V2,1(w1, w2) = 0}.
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Since V1,2(w1, w2) = 0 if and only if V1,2(w1 + (1/r + x1)λ,w2 + (1/r + x2)λ) = 0, it follows that f1

and f2 are parallel straight lines with slope (1/r + x2)/(1/r + x1). We call f1 and f2 the efficiency

lines, because for each level of promised utility, they indicate the optimal level of transitional utility to

minimize the cost. For example, if initially the principal holds the belief p1 = 1 and he wants to deliver

utility w1 to the agent, then he needs to choose a transitional promised utility as one of the initial state

variables. The optimal level to choose is w2 = f1(w1).

These lines are also critical for the study of the dynamics. Starting from above f1, the state variable

will jump downward to the efficiency line f1 with a report 1, and starting from below f2, the state

variable will jump leftward to f2 with a report 2. We further show that, although the transitional

utility might make downward jumps contingent on the report of a transition, it never jumps when

the report remains unchanged. When it jumps with a report of transition, it always jumps onto the

efficiency lines and stays below them until another transition occurs. The fact that the time path is

smooth when there is no transition is intuitive; since the utility function is strictly concave, making

abrupt changes in transitional utilities without arrival of new information increases the cost for the

principal. The properties of the time path of the state variable are summarized in the following lemma.

Lemma 4 For a reported history ht−, if w2(ht−) > f1(w1(ht−)),

lim
s↓t

w2(ht−, 1[t,s)) = f1(w1(ht−)).

Furthermore, w2(ht−, 1[t,s)) is a continuous function of s ∈ (t,∞), so that both w1 and w2 are continuous

following the path of (ht−, 1[t,s)). Similarly, if w1(ht−) > f2(w2(ht−)),

lim
s↓t

w1(ht−, 2[t,s)) = f2(w2(ht−)).

The definition of efficiency lines and the immediate jumps make it clear that

V1(w1, w2) = V1(w1,min(w2, f1(w1))),

V2(w1, w2) = V2(min(w1, f2(w2)), w2).

In the region below the efficiency lines, no further jumps occur in the state variable. Since the evolution

of the state variable is controlled by differential equations in this region, one can lay out the Hamilton–

Jacobi–Bellman (HJB) equations that the value functions satisfy.7 For any (w1, w2) with w2 ≤ f1(w1),

V1 satisfies

(q1 + r)V1(w1, w2) = min
c
{c− (V1,1 + V1,2)u(c)}+ min

y
{−y + (V1,1/θ1 + V1,2/θ2)v(y)}

+ q1V2(w1, w2) + V1,1((q1 + r)w1 − q1w2)

+ min
µ2≥0

{V1,2((q2 + r)w2 − q2w1 − µ2)}.(21)

7See, for example, Fleming and Soner (2006, equation (7.13), p.134), or see Wälde (2006) for a general reading on

continuous-time methods in economics.
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Similarly, for (w1, w2) with w1 ≤ f2(w2),

(q2 + r)V2(w1, w2) = min
c
{c− (V2,1 + V2,2)u(c)}+ min

y
{−y + (V2,1/θ1 + V2,2/θ2)v(y)}

+ q2V1(w1, w2) + min
µ1≥0

{V2,1((q1 + r)w1 − q1w2 − µ1)}
+ V2,2((q2 + r)w2 − q2w1).

In addition, notice that µ2 (µ1) can be non-zero only if V1,2 = 0 (V2,1 = 0). Therefore, if w2 < f1(w1),

we can rewrite the HJB equation as

(q1 + r)V1(w1, w2) = min
c
{c− (V1,1 + V1,2)u(c)}+ min

y
{−y + (V1,1/θ1 + V1,2/θ2)v(y)}

+ q1V2(w1, w2) + V1,1((q1 + r)w1 − q1w2)

+ V1,2((q2 + r)w2 − q2w1).

Totally differentiating (21) with respect to w1 and applying the envelop theorem yield

(q1 + r)V1,1 = −(V1,11 + V1,12)u(c) + (V1,11/θ1 + V1,12/θ2)v(y)

+q1V2,1 + V1,1(q1 + r) + V1,11((q1 + r)w1 − q1w2)

−V1,2q2 + min
µ2≥0

{V1,12((q2 + r)w2 − q2w1 − µ2),

which is simplified as

0 = V1,11((q1 + r)w1 − q1w2 − u(c) + v(y)/θ1)

+ V1,12((q2 + r)w2 − q2w1 − u(c) + v(y)/θ2 − µ2) + q1V2,1 − q2V1,2.

Using dw1/dt = ((q1+r)w1−q1w2−u(c)+v(y)/θ1), and dw2/dt = ((q2+r)w2−q2w1−u(c)+v(y)/θ2−µ2),

we get

dV1,1

dt
= V1,11

dw1

dt
+ V1,12

dw2

dt
= q2V1,2 − q1V2,1.

Similarly, totally differentiating (21) with respect to w2 yields

dV1,2

dt
= q1V1,1 − q1V2,2 + (q1 − q2)V1,2.

The above equations together with dw1/dt = ((q1 + r)w1 − q1w2 − u(c) + v(y)/θ1), dw2/dt = ((q2 +

r)w2 − q2w1 − u(c) + v(y)/θ2 − µ2) constitute an ODE system to describe the dynamics with report 1:

dw1

dt
= (q1 + r)w1 − q1w2 − u(c) + v(y)/θ1(22)

dw2

dt
= (q2 + r)w2 − q2w1 − u(c) + v(y)/θ2 − µ2(23)

dV1,1

dt
= q2V1,2 − q1V2,1(24)

dV1,2

dt
= q1V1,1 − q1V2,2 + (q1 − q2)V1,2,(25)

where c = (V1,1 + V1,2), y = −(V1,1/θ1 + V1,2/θ2).(26)
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Notice that (26) comes from the minimization problems minc{c − (V1,1 + V1,2)u(c)} and miny{−y +

(V1,1/θ1 + V1,2/θ2)v(y)} and the assumption of logarithmic utility and disutility functions. Similarly,

the ODE system with report 2 is

dw1

dt
= (q1 + r)w1 − q1w2 − u(c) + v(y)/θ1 − µ1(27)

dw2

dt
= (q2 + r)w2 − q2w1 − u(c) + v(y)/θ2(28)

dV2,1

dt
= q2V2,2 − q2V1,1 + (q2 − q1)V2,1(29)

dV2,2

dt
= q1V2,1 − q2V1,2,(30)

where c = (V2,1 + V2,2), y = −(V2,1/θ1 + V2,2/θ2).(31)

Below f1 (or above f2), the slack control variable µ2 (or µ1) would be 0; i.e., V1,2 < 0 implies µ2 = 0,

and V2,1 < 0 implies µ1 = 0.

By studying the evolution of partial derivatives of the value functions (we may call them the shadow

prices of promised utilities), these two ODE systems provide plenty of information about the dynamics

of the state variable. In the next step, we use them to show that the two efficiency lines do not coincide.

In fact, line f1 is above f2, and they split the state space into three regions.

Lemma 5 Line f1 is strictly above f2, i.e., f1(w1) > (f2)−1(w1).

The following lemma characterizes how the state variable evolves with the two reports.

Lemma 6 With report 2, the time path starting from f2 will remain on f2 and move toward (∞,∞)

(see Figure 3). With report 1, the time path starting from f1 will move below f1 (see Figure 2). If the

Markov chain is symmetric (q1 = q2), then the region below f2 is absorbing. More precisely, starting

from f2 and with report 1, (w1, w2) enters the interior of the region.

Intuitively, as long as the agent claims that her productivity is low, the contract specifies a low

level of output, but in order to prevent a high-productivity agent from lying, the contract necessarily

lowers the utility of a potential liar. On one hand, this keeps incentive compatibility; on the other hand,

maintaining a low threat moves w2 below the efficient level f1(w1).8

In the absorbing region below f2, the dynamics could be summarized as a clockwise triangle. With

a high report, the state variable moves up along the efficiency line f2. It starts moving below the line
8The dynamics of the time path with a low report also imply that the optimal contract with commitment is no longer

renegotiation-proof in the environment with persistent shocks. To see this, suppose the contract starts from the line

f1, and the agent experiences a period of low shocks, then the time path moves below f1, which is w2 < f1(w1) and

V1(w1, w2) > V1(w1, f1(w1)). Should the principal have the chance to renegotiate with the agent, he would be willing

to move the state from (w1, w2) to (w1, f1(w1)); doing this makes the agent indifferent and lowers the principal’s cost.

However it violates the ex ante incentive constraints that prevent the high-productivity agent from lying.

18



−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

6

7

8

w1

w
2

f1

f2

Figure 2: The dynamics with report 1.
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when a low shock arrives. It will keep moving down toward (−∞,−∞), until another high shock arrives,

which moves the state back to the efficiency line f2 by an immediate jump to the left. Then the state

variable moves up again and starts the next triangle. The next main theorem focuses on the optimal

policies along the time paths in the absorbing region.

Theorem 3 If the Markov chain is symmetric,9 i.e., q1 = q2 = q, then in the region below f2, the

following properties hold.

(i) The dynamics with a report 1 is described by an ODE system.

dw1

dt
= (q + r)w1 − qw2 − u(c) + v(y)/θ1(32)

dw2

dt
= (q + r)w2 − qw1 − u(c) + v(y)/θ2(33)

dV1,1

dt
= qV1,2(34)

dV1,2

dt
= qV1,1 − qV2,2(f2(w2), w2),(35)

where c = (V1,1 + V1,2), y = −(V1,1/θ1 + V1,2/θ2).(36)

(ii) V1(w1, w2) ≥ V2(w1, w2).

(iii) (Monotonicity of the policy functions and promised utilities) Following a report 1, both the per-

sistent and the transitional promised utilities fall, consumption falls, and output increases. The

opposite happens when following a report 2.

(iv) At a transition from 2 to 1, consumption jumps downward and output jumps downward. The

opposite happens at a transition from 1 to 2.

(v) With a report 1, the agent’s consumption-leisure decision is distorted (regardless of her previous

reports), and the distortion increases with the duration of report 1. With a report 2, there is no

consumption-leisure distortion.

(vi) (Immiserization) The inverse Euler equation holds, i.e., 1/u′(c(ιt)) = c(ιt) is a martingale. Im-

miserization still holds; consumption converges to its lower bound, and output converges to its

upper bound almost surely (a.s.).

The implications that we derive are similar to the i.i.d. case. The low-productivity agent receives

subsidy, and her future utility moves downward; while the high-productivity agent pays tax and she is

promised to be treated better in the future. The principal distorts the consumption-leisure decision of

a low-productivity agent to obtain better incentives, since in the system, a high-productivity agent has
9If the chain is asymmetric, then we cannot prove that the bottom region is absorbing. Little is known about the

dynamics of the contract in this case.
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an incentive to misreport. The optimal system makes the high-productivity agent indifferent between

truth-telling and cheating, because in equation (33), µ2 is 0.

Most of these findings are consistent with those in Williams (2008). In his private and persistent

income model, a positive innovation in the reported endowment leads to an increase in the promised

utility and vice versa. However, because the inverse Euler equation is no longer valid in Williams (2008),

the immiserization does not hold and consumption has a positive drift and increasing variability.

Remark 3 It is interesting to compare the results of this paper to those of Battaglini and Coate (2003).

Our continuous-time method can be used to study the risk-neutral utility function as well. With u(c) =

c, the value function satisfies a different type of homogeneity, i.e., Vi(w1 + λ,w2 + λ) = Vi(w1, w2) + λ,

which implies that Vi,1 + Vi,2 = 1, for i = 1, 2. A key feature in their model is that for certain pairs

of persistent and transitional promised utilities, the full information contract is implementable. This

means that there are two 45-degree lines similar to f1 and f2 (we can call them g1 and g2, and g1 is

above g2) that split the state space into three regions. In the region between the two lines, the full

information contract is implementable. However, in the region below g2, for a level w1 promised to

the low-productivity type, the transitional promised utility is forced to be below the efficiency level

(V1,2 < 0) to prevent the high-productivity agent from misreporting. Battaglini and Coate (2003)

studied the optimal contract starting from this region. They showed that once the low-productivity

agent has a transition, the contract becomes efficient by jumping leftward to line g2. Even with report

1, the state variable will eventually approach the efficiency line, implying the consumption-leisure

distortion disappears in the long run. These implications can be easily derived with continuous-time

methods. In the bottom region, V1,1 > 1, V1,2 < 0. Equation (24) implies that V1,1 is decreasing.

Since homogeneity implies that V1,1 ≥ 1 in this case, it has to be that limt→∞ V1,1(t) = 1, which

implies that the time path approaches g2. These patterns are in sharp contrast with our model with

risk-averse utility functions. In Battaglini and Coate (2003), the efficiency line g2 is absorbing, while

in Lemma 6, we show that with report 1, the state leaves the efficiency line f2 and moves farther

below it. This difference generates different implications for distortions. While they showed that the

distortion is eliminated permanently after the agent’s first report of type 2 and decreases even when the

agent always reports 1, in our model, the distortion always exists with report 1 and increases with the

duration of the report. Battaglini and Coate (2003) showed that the distortion vanishes is robust to the

introduction of small amounts of risk aversion; however, we have shown that this conclusion is reversed

when the risk aversion is large enough (in our model, we choose the log function as both utility and

disutility functions, implying that the utilities in consumption and leisure have similar risk aversions).

Risk aversion seems to be critical for the pattern of distortions, but exploring the correlation of these

two is beyond the scope of this paper and left for future research.

The monotonicity and immiserization results of the optimal contract are similar to an i.i.d. shock
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model. This suggests that, qualitatively, incentive constraints work similarly in these two models. The

difference lies in the quantitative effects of persistence. To study these effects concretely, we turn to a

numerical example.

6. A Numerical Example

In this section, we numerically solve the model with hidden productivity shocks. First we choose the

parameters so that they match observed empirical facts. Then we artificially decrease the persistence

of the productivity process (by increasing the value of q) to approach the i.i.d. shocks, and keep all

the other elements of the model fixed. We shall make comparisons between the implications of the

persistent shock model and the i.i.d. shock model.

We assume that the agent’s preferences are

E

[∫ ∞

0

e−rt

(
c1−σ
t

1− σ
− κ

y1+γ
t

1 + γ
/θt

)
dt

]
.(37)

We set r to 0.0408 to match an annual discount factor of 0.96. We follow Albanesi and Sleet (2006) in

setting σ and κ to be 1.461 and 1.1840 respectively, and follow Chari, Kehoe, and McGrattan (1998) in

setting γ to be 2. This implies that the elasticity of the labor supply is 0.5. We choose parameter values

for θ1, θ2, and q to match the unconditional mean, unconditional variance, and the covariance (between

period t and t+1) of the skill process described in Golosov and Tsyvinski (2007). This implies values of

0.2652, 7.4094, and 0.0249 for θ1, θ2, and q, respectively. The productivity process is highly persistent,

which is the driving force of the pattern of wedges shown below. Notice that by i.i.d. shock model, we

specifically mean a discrete-time model with independent shocks in which one period corresponds to one

unit of time in continuous time (i.e., the discount factor β is e−r). The i.i.d. shock model will match

our continuous-time model when q = 0.5, because then the average holding times (of a productivity

state) will be equal in the two models.

6.1 The Wedges

We first define three wedges discussed in Albanesi and Sleet (2006). For a given reported history

ht−, if the agent makes a report of type i at time t, then denote consumption by ct(ht−, i) and output

by yt(ht−, i).

(i) The insurance wedge u′(ct(h
t−,1))

u′(ct(ht−,2))−1 measures the consumption smoothing implied by the optimal

contract.

(ii) The consumption-leisure wedge u′(ct(h
t−,i))

v′(yt(ht−,i))/θi
− 1, i = 1, 2, measures the ratio of marginal utility

to marginal disutility for the type i agent at time t.
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Table 1: The Wedges in the Taxation Model

persistent i.i.d.

Insurance wedge 0.35 0.19× 10−1

Consumption-Leisure wedge (0.55 ,−0.32× 10−3) (0.9× 10−2, 0)

Intertemporal wedge (0.65× 10−2, 0.87× 10−2) (0.25× 10−3, 0.46× 10−3)

(iii) The intertemporal wedge Et[u
′(ct+1)|ιt=i]

u′(ct(ht−,i)) −1, i = 1, 2, measures the ratio of marginal utility at t+1

to marginal utility at t for the type i agent. In the above, ct+1 denotes the uncertain consumption

at t + 1, which depends on the realization of types at t + 1.

The wedges defined above measure the degree of insurance from different dimensions. It is easy to see

that in the full-information allocation, all the wedges should be 0. The larger the wedge, the worse the

insurance is, and the larger the distortion is in the allocation.

6.2 Numerical Results

In order to study the wedge patterns in the model, we pick an endogenous state variable (w1, w2) =

(−60.9024,−59.5591), and then report values of the three wedges at this point. This particular choice of

the state is not essential for the pattern reported in Table 1.10 We can see from the table that the per-

sistent shock model implies a much larger insurance wedge and consumption-leisure wedge (with report

1). It is also helpful to draw these wedges as functions of q. The insurance wedge and consumption-

leisure wedge both decrease rapidly with the decrease in persistence (see Figure 4).11 These findings

are broadly consistent with those in Williams (2008). In a hidden income model, he found that the

agent’s exposure to risk depends positively on the persistence of the information. With less persistence

(bigger q), the exposure is smaller, and the consumption is better smoothed (i.e., smaller wedges).

A distinctive feature of the results from the i.i.d. shock model is that all the wedges are close to zero.

This implies that the allocation with the i.i.d. shocks is close to the full information (the first-best)

allocation. The intuition for the results is as follows. Given that the discount factor e−r is close to 1,

the agent cares about her utility as the long-run average. If the shocks are i.i.d. and thus transitory,
10The state is chosen to match the utility level that the agent can achieve in autarky in the i.i.d. case. Choosing other

levels of promised utilities would not change the results reported in Table 1 significantly. Alternatively, we could calculate

averages of the wedges in the long run. Because of the immiserization result, the system does not imply a steady-state

distribution of the state variable, so we need to impose a lower bound on the state variable to obtain a steady state. Using

the averages would not change the pattern of the wedges either. See Zhang (2006).
11Since the consumption-leisure wedge with report 2 and the intertemporal wedge remain small for all levels of q, we

do not draw them in the figure.

23



0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

q

W
ed

g
es

Insurance Wedge
C-L Wedge with report θ1

Figure 4: The wedges as functions of q.

the effect of any productivity shock at t is small and will be smoothed into many periods in the future.

If the agent has a bad shock, the principal will still provide the consumption level close to that of the

high-productivity agent but will lower the discounted utility from t + 1 on. In the long run, by the law

of large numbers, the effects of high- and low-productivity shocks cancel out, and the agent does not

experience large deviations from the first-best allocation. The intertemporal taxation and subsidy play

an essential role in the optimal contract to smooth consumption.

The patterns of wedges with persistent shocks are significantly different from the i.i.d. shock model.

We see that the insurance wedge is more than ten times bigger than the wedge in the i.i.d. case,

implying that the consumption smoothing is far from being perfect. The consumption-leisure wedge

is also quantitatively large, meaning that the low-productivity agent is distorted in her consumption-

leisure decision. Despite this, the persistent shock model does not imply a large intertemporal wedge.

To understand these patterns, it would be helpful to consider the permanent-shock model, which is the

opposite extreme of the i.i.d. shocks. Suppose that the agent initially has a permanent productivity

shock that is only privately observed. Then the optimal allocation requires a type-specific but constant

stream of consumption and output for each type. It is well known that the optimal allocation implies

consumption-leisure distortion only for the low-productivity agent. The intertemporal wedge is 0 simply
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because the consumption process is deterministic. Our results show that the pattern of wedges with

persistent shocks is similar to a permanent shock model. Quantitatively, this is driven by the low value

of q. The productivity process is so persistent that it is almost permanent.12

7. Concluding Remarks

This paper studies a continuous-time version of the dynamic taxation model with persistent shocks.

Merely putting the problem in continuous time rather than in discrete time would not generate new

economic implications; however, many implications that are difficult to obtain in a discrete-time model

can be derived in its continuous-time analogue. The differential equations in Section 3 and the phase-

diagram analysis in Section 5 provide a lot of information about the properties of the optimal contract.

The advantages of the continuous-time method come from the fact that the phase-diagram analysis is

traditionally carried out using differential equations, thus there are more mathematical tools available.

Our results are derived under several restrictive assumptions. First, since we use the recursive

formulation in Fernandes and Phelan (2000), the dimension of the state vector is equal to the number of

states in the agent’s private information process. If the process is a diffusion process (with a continuum of

possible states), then our state variable will be infinite dimensional, thus making it extremely difficult to

study the dynamics of the contract. In this paper, we limit our attention to the case of two shocks, where

the phase-diagram analysis is still tractable. Second, we use logarithmic utility and disutility functions.

In APPENDIX C, we extend our results to functional forms including c1−σ

1−σ and − exp(−σc), but some

form of homogeneity is indispensable (note that the qualitative analysis in the i.i.d. case also assumes

some form of homogeneity; for example, see Atkeson and Lucas (1992)). With the homogeneity property,

the efficiency curves f1 and f2 are straight lines (see Figures 2, 3), thus we can easily show that f1 is

above f2 and they split the state space into three regions. This greatly simplifies the analysis. Without

the homogeneity property, f1 and f2 could be curves and (in principle) could intersect multiple times

and separate the state space into many small regions, making the phase-diagram analysis intractable.

Third, when we show that the bottom region is absorbing, an additional assumption of symmetry is

used. This assumption helps us to show that, when the system starts on f2 with report 1, dw1 < 0

and the slope of the path (dw2
dw1

) is bigger than that of f2, thus the region below f2 absorbs this path.

It is still unclear whether the bottom region is absorbing when the Markov chain is asymmetric. We

view our paper as the first step toward understanding the implication of persistent shocks and leave

this question and further generalizations for future research.
12Similar effects of persistent shocks can be observed in other dynamic models as well. For example, in incomplete

market model with idiosyncratic income shocks, a persistent shock changes future expected income more than a temporary

shock does, thus has a greater effect on a consumer’s consumption-saving behavior.
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APPENDIX A: Proofs of Main Results

Proof of Lemma 1: We prove only the right-hand limits, since the proofs for the left-hand limits

are similar. Let −B be a lower bound on the instantaneous disutility; for example, we could define

B = v̄/θ1. We first prove a preliminary result,

wi(ht−) ≥ wi(ht−, j[t,s))e−r(s−t)e−qi(s−t) − B

r

(
1− e−r(s−t)e−qi(s−t)

)
, 1 ≤ i ≤ N.(38)

Consider a type i agent who reports j from time t to s and tells the truth from s onward if her type is

still i. Her strategies in other contingencies need not be specified. The payoff from this strategy is at

least
∫ s

t

e−r(x−t)(−B)dx + e−r(s−t)

[
e−qi(s−t)wi(ht−, j[t,s)) + (1− e−qi(s−t))

−B

r

]
,

since with probability e−qi(s−t), her type remains i, and with probability (1− e−qi(s−t)), she obtains at

least the lower bound. The above is the right side of (38), and since the contact is I.C., utility from

truth-telling is higher.

Conditional on ιt = i, the holding time S1 (it first leaves state i at time t + S1) is an exponential

random variable of parameter qi. Let A = {ω ∈ Ω : ω(t) = i, t + S1 ≥ s}, AC = {ω ∈ Ω : ω(t) =

i, t + S1 < s},

wi(ht−) = Et

[∫ ∞

t

e−r(x−t)
[
u(cx(ht−, ω[t,x]))− v(yx(ht−, ω[t,x]))/θω(x)

]
dx

∣∣∣ω(t) = i

]

= Et

[∫ ∞

t

e−r(x−t)
[
u(cx(ht−, ω[t,x]))− v(yx(ht−, ω[t,x]))/θω(x)

]
dx

∣∣∣A
]

.Pr(A|i)

+ Et

[∫ ∞

t

e−r(x−t)
[
u(cx(ht−, ω[t,x]))− v(yx(ht−, ω[t,x]))/θω(x)

]
dx

∣∣∣AC

]
.Pr(AC |i)

=
[∫ s

t

e−r(x−t)
[
u(cx(ht−, i[t,x]))− v(yx(ht−, i[t,x]))/θi

]
dx + e−r(s−t)wi(ht−, i[t,s))

]
.Pr(A|i)

+ Et

[∫ ∞

t

e−r(x−t)
[
u(cx(ht−, ω[t,x]))− v(yx(ht−, ω[t,x]))/θω(x)

]
dx

∣∣∣AC

]
.Pr(AC |i).

Since Pr(A|i) = exp(qi(s−t)), Pr(AC |i) = 1−exp(qi(s−t)), letting s ↓ t, we see that lims↓t wi(ht−, i[t,s))

exists and equals wi(ht−). The inequality (7) follows directly from the inequality (38). The only issue left

is the existence of lims↓t wj(ht−, i[t,s)), when j 6= i. By contradiction, suppose lim sups↓t wj(ht−, i[t,s)) >

lim infs↓t wj(ht−, i[t,s)). Then there is a ε > 0, such that for all δ > 0, we can find t < s1 < s2 < t + δ,

such that wj(ht−, i[t,s1)) < wj(ht−, i[t,s2)) − ε. But this would be a contradiction to inequality (38)

when s2 is close to s1. Q.E.D.

Proof of Theorem 1:

(i) (necessity) The proof is divided into three steps: in step (a), we show that wi(hs−) is differentiable

a.e.; in step (b), we derive equation (39) as a continuous-time analog of equation (12); in step (c),

we take limits in equation (39) to finish the proof.
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(a) We first show that wi(hs−) has, at most, countable discontinuous points, is of bounded

variation, and thus is differentiable a.e. Define

V +(x) = sup

{
n∑

k=1

(wi(htk−)− wi(htk−1−))+ : P = {t0, ..., tn} is a partition of [0, x)

}
,

V −(x) = sup

{
n∑

k=1

(wi(htk−)− wi(htk−1−))− : P = {t0, ..., tn} is a partition of [0, x)

}
.

We show that V +(x) < ∞. Recall from equation (38),

wi(htk−1−) ≥ wi(htk−)e−(r+qi)(tk−tk−1) − B

r
(1− e−(r+qi)(tk−tk−1)).

Hence

(wi(htk−)− wi(htk−1−))+ ≤
((

wi(htk−) +
B

r

) (
1− e−(r+qi)(tk−tk−1)

))+

≤ 2B

r
(r + qi)(tk − tk−1).

Therefore, V +(x) ≤ 2B
r (r + qi)x. Since V +(x) − V −(x) = wi(hx−) − wi(h0−), V −(x)

is also finite. It is easy to verify that both V + and V − are monotonic functions, and

V + is continuous. Although V − could be discontinuous, Theorem 29.7 in Aliprantis and

Burkinshaw (1990) asserts that a monotonic function has, at most, countable discontinuities.

Since the difference of two monotonic functions is of bounded variation, wi(hs−) has bounded

variation and, by Theorem 29.11 in Aliprantis and Burkinshaw (1990), wi is differentiable

on path ht− a.e.

(b) Pick s ∈ [tk, tk+1), such that wj is differentiable for all 1 ≤ j ≤ N at s. Conditional on

ω(s) = i = ik, the holding time S1 (it first leaves state i at time s + S1) is an exponential

random variable of parameter qi. For any a > s,

wi(hs−)

= Es

[∫ ∞

s

e−r(x−s)
[
u(c(hs−, ω[s,x]))− v(y(hs−, ω[s,x]))/θω(x)

]
dx

∣∣∣ω(s) = i

]

= Es

[∫ (s+S1)∧a

s

e−r(x−s)
[
u(c(hs−, i[s,x]))− v(y(hs−, i[s,x]))/θi

]
dx

∣∣∣ω(s) = i

]

+Es

[∫ ∞

(s+S1)∧a

e−r(x−s)
[
u(c(hs−, ω[s,x]))− v(y(hs−, ω[s,x]))/θω(x)

]
dx

∣∣∣ω(s) = i

]
.

By Fubini’s theorem, the first term on the right is

Es

[∫ (s+S1)∧a

s

e−r(x−s)
[
u(c(hs−, i[s,x]))− v(y(hs−, i[s,x]))/θi

]
dx

∣∣∣ω(s) = i

]

= Es

[∫ a

s

χ{S1≥(x−s)}e−r(x−s)
[
u(c(hs−, i[s,x]))− v(y(hs−, i[s,x]))/θi

]
dx

∣∣∣ω(s) = i

]
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=
∫ a

s

e−r(x−s)
[
u(c(hs−, i[s,x]))− v(y(hs−, i[s,x]))/θi

]
Es

[
χ{S1≥(x−s)}

∣∣∣ω(s) = i
]
dx

=
∫ a

s

e−(r+qi)(x−s)(u(c(hs−, i[s,x]))− v(y(hs−, i[s,x]))/θi)dx,

where χ in the second line is the indicator function. Let A = {ω ∈ Ω : ω(s) = i, s + S1 ≥ a},
AC = {ω ∈ Ω : ω(s) = i, s + S1 < a}, then the second term is

Es

[∫ ∞

(s+S1)∧a

e−r(x−s)
[
u(c(hs−, ω[s,x]))− v(y(hs−, ω[s,x]))/θω(x)

]
dx

∣∣∣ω(s) = i

]

= Es

[∫ ∞

a

e−r(x−s)
[
u(c(hs−, ω[s,x]))− v(y(hs−, ω[s,x]))/θω(x)

]
dx

∣∣∣A
]

. Pr(A|i)

+Es

[
χAC

∫ ∞

s+S1

e−r(x−s)
[
u(c(hs−, ω[s,x]))− v(y(hs−, ω[s,x]))/θω(x)

]
dx

∣∣∣ω(s) = i

]

= e−r(a−s)wi(hs−, i[s,a))e−qi(a−s) + Es


χAC e−rS1

∑

j 6=i

qij

qi
wj(hs−, i[s,s+S1))

∣∣∣ω(s) = i




= e−(r+qi)(a−s)wi(hs−, i[s,a)) +
∫ a

s

e−(r+qi)(x−s)
∑

j 6=i

qijwj(hs−, i[s,x))dx.

It follows that

wi(hs−) =
∫ a

s

e−(r+qi)(x−s)(u(c(hs−, i[s,x]))− v(y(hs−, i[s,x]))/θi)dx

+e−(r+qi)(a−s)wi(hs−, i[s,a)) +
∫ a

s

e−(r+qi)(x−s)
∑

j 6=i

qijwj(hs−, i[s,x))dx.(39)

(c) By assumption, lima→s
wi(h

s−,i[s,a))−wi(h
s−)

a−s exists, and lima→s wj(hs−, i[s,a)) = wj(hs−),

for all j. Furthermore, since c(hs−, i[s,x]) and y(hs−, i[s,x]) are measurable functions of x,

Theorem 29.4 in Aliprantis and Burkinshaw (1990) states

lim
a→s

1
a− s

∫ a

s

e−(r+qi)(x−s)(u(c(hs−, i[s,x]))−v(y(hs−, i[s,x]))/θi)dx = u(c(hs))−v(y(hs))/θi,

for a.e. s. We now have

lim
a→s

wi(hs−, i[s,a))− wi(hs−)
a− s

= lim
a→s

1− e−(r+qi)(a−s)

a− s
wi(hs−, i[s,a))− lim

a→s

1
a− s

∫ a

s

e−(r+qi)(x−s)
∑

j 6=i

qijwj(hs−, i[s,x))dx

− lim
a→s

1
a− s

∫ a

s

e−(r+qi)(x−s)(u(c(hs−, i[s,x]))− v(y(hs−, i[s,x]))/θi)dx

= (r + qi)wi(hs−)−
∑

j 6=i

qijwj(hs−)− (u(c(hs))− v(y(hs))/θi), for a.e. s.

If i 6= ik, the proof for inequality (11) is similar to the above. Since a type i agent could misreport
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ik up to (s + S1) ∧ a, and starts truth-telling after (s + S1) ∧ a, I.C. implies

wi(hs−) ≥
∫ a

s

e−r(x−s)e−qi(x−s)(u(c(hs−, ik
[s,x]))− v(y(hs−, ik

[s,x]))/θi)dx

+ e−(r+qi)(a−s)wi(hs−, ik
[s,a)) +

∫ a

s

e−(r+qi)(x−s)
∑

j 6=i

qijwj(hs−, ik
[s,x))dx.

Taking limit yields

lim
a→s

wi(hs−, ik
[s,a))− wi(hs−)
a− s

≤ (r + qi)wi(hs−)−
∑

j 6=i

qijwj(hs−)− (u(c(hs))− v(y(hs))/θi).

(ii) (sufficiency) By using Dynkin’s formula (see, for example, Fleming and Soner (2006, Appendix B)),

we first represent the state variable wi(ht−) as the sum of the discounted value of (u(c)− v(y)/θ)

and the discounted value of slack control variable µ. Then we show that for truth-telling, the

discounted value of µ is 0, thus truth-telling achieves wi(ht−).

The Dynkin formula states that for a stochastic process w(t) (possibly multidimensional) driven

by

dw(t)
dt

= f(t, w(t), ιt),

and for a real-valued smooth function Φ(t, w, ιt), the following equality holds

Et [Φ(s, w(s), ιs)] = Φ(t, w(t), ιt) + Et

[∫ s

t

AΦ(x,w(x), ιx)dx

]
, s > t,

where

AΦ(x, w(x), ιx) =
∂Φ
∂x

+ f(x,w(x), ιx)
∂Φ
∂w

+
∑

j 6=ιx

qιxj [Φ(x,w(x), j)− Φ(x,w(x), ιx)].

Given the current state (wi(ht−))1≤i≤N and a strategy σ, according to equations (10) and (11),

the process w(σ(ht−, ω[t,s))) evolves as

dwi(σ(ht−, ω[t,s)))
ds

= (r + qi)wi(σ(ht−, ω[t,s)))−
∑

j 6=i

qijwj(σ(ht−, ω[t,s)))

− (u(c(σ(ht−, ω[t,s])))− v(y(σ(ht−, ω[t,s])))/θi)− µi(σ(ht−, ω[t,s])),

where µi(σ(ht−, ω[t,s])) = 0, if σs(ht−, ω[t,s]) = i. Define Φ(s, w, ιs) = e−r(s−t)wιs . By Dynkin’s

formula,

Et [Φ(s, w(s), ιs)] = Φ(t, w(t), ιt) + Et

[∫ s

t

AΦ(x,w(x), ιx)dx

]
.

Taking limit s →∞ and using the fact that w is bounded, we have

0 = wιt(h
t−) + Et

[∫ ∞

t

AΦ(x,w(σ(ht−, ω[t,x))), ιx)dx

]
,
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where

AΦ = −re−r(x−t)wιx
(σ(ht−, ω[t,x))) + e−r(x−t)

(
dwιx

(σ(ht−, ω[t,x)))
dx

)

+
∑

j 6=ιx

e−r(x−t)qιxj [wj(σ(ht−, ω[t,x)))− wιx
(σ(ht−, ω[t,x)))]

= −e−r(x−t)(u(c(σ(ht−, ω[t,x])))− v(y(σ(ht−, ω[t,x])))/θιx)− e−r(x−t)µιx(σ(ht−, ω[t,x])).

Thus,

wιt
(ht−) = Et

[∫ ∞

t

e−r(x−t)(u(c(σ(ht−, ω[t,x])))− v(y(σ(ht−, ω[t,x])))/θιx
)dx

]

+ Et

[∫ ∞

t

e−r(x−t)µιx
(σ(ht−, ω[t,x]))dx

]
.

Since µ is nonnegative, the payoff from any strategy σ is weakly below wιt(h
t−). If σ = σ∗, then

the second term is 0, and truth-telling achieves wιt
(ht−).

Q.E.D.

Proof of Theorem 2: We verify two things. First, any point between the two boundaries can

be implemented by some contract. Second, any point either above the upper boundary or below the

lower boundary cannot be implemented by any contract.

From the definition of boundary curves, any point on the boundary can be implemented. To

implement a point (w1, w2) between the two boundaries, the principal may start with the policy

(ct, yt) = (0, 0), and let the promised utilities evolve according to the following differential equations,

dw1

dt
= (q1 + r)w1 − q1w2

dw2

dt
= (q2 + r)w2 − q2w1,

until time s∗, the time when the path hits some point (w∗1 , w∗2) on the boundary. Then starting from

s∗, the principal implements (w∗1 , w∗2) using the contracts that define the boundary curves.

Second, we will show that any point below the lower boundary cannot be implemented by any

contract. The proof for points above the upper boundary is analogous. Let function g : [−x1v̄, ū/r] →
[−x2v̄, ū/r] be the lower boundary of W . Pick a point (w1, w2) with w2 < g(w1) and a contract C . We

will prove that the continuation utility will eventually be impossible to implement under the history of

reporting type 1 for a long time. To see this, let us calculate the distance between the lower boundary

and the continuation utility (w1(1[0,t)), w2(1[0,t))) under contract C . Recall

dw1

dt
= (q1 + r)w1 − q1w2 − u(ct) + v(yt)/θ1,

dw2

dt
= (q2 + r)w2 − q2w1 − u(ct) + v(yt)/θ2 − µ2.
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The distance between w2 and g(w1) satisfies

d(g(w1)− w2)
dt

≥ dg(w1)
dw1

((q1 + r)w1 − q1w2 − u(ct) + v(yt)/θ1)

− ((q2 + r)w2 − q2w1 − u(ct) + v(yt)/θ2)

=
dg(w1)
dw1

((q1 + r)w1 − q1w2)− ((q2 + r)w2 − q2w1)

+
(

dg(w1)
dw1

/θ1 − 1/θ2

)
v(yt) +

(
1− dg(w1)

dw1

)
u(ct).

Since θ1
θ2
≤ dg(w1)

dw1
≤ 1 and w2 ≤ g(w1),

d(g(w1)− w2)
dt

≥ dg(w1)
dw1

((q1 + r)w1 − q1g(w1))− ((q2 + r)w2 − q2w1)

= ((q2 + r)g(w1)− q2w1)− ((q2 + r)w2 − q2w1)

= (q2 + r)(g(w1)− w2).

Therefore, the distance is increasing exponentially and, in finite time, w2 will be less than −x2v̄. This is

a contradiction because the worst scenario for the θ2 type agent is “consumption 0 and maximal output

ȳ,” which provides utility −x2v̄. Q.E.D.

Proof of Lemma 2: We give a proof only for V1, since the proof for V2 is the same.

(i) It is because (c∗t , y∗t )t≥0 is the optimal contract to implement (w1, w2) if and only if (exp(λ)c∗t , exp(λ)y∗t )t≥0

is the optimal contract for (w1 + (1/r + x1)λ, w2 + (1/r + x2)λ).

(ii) This follows from the fact that the contracting problem has a convex objective function and a

linear constraint set when the control variables are u and v. For λ ∈ [0, 1], pick two implementable

pairs (w1, w2), (w′1, w
′
2). Suppose C , C ′ implement (w1, w2) and (w′1, w

′
2), respectively; then the

convex combination of C and C ′ will implement λ(w1, w2) + (1 − λ)(w′1, w
′
2). The new contract

(λu(c(ht))+(1−λ)u(c′(ht)), λv(y(ht))+(1−λ)v(y′(ht))) will still be I.C., because the differential

equation conditions in Theorem 1 hold after the convex combination.

(iii) We show V1,2 ≤ 0 first. Pick (w1, w2) and (w′1, w
′
2) with w1 = w′1, w2 < w′2. Notice that initially

the type is 1, so the evolution of (w′1, w
′
2) is controlled by

dw′1
dt

= (q1 + r)w′1 − q1w
′
2 − u(ct) + v(yt)/θ1,

dw′2
dt

= (q2 + r)w′2 − q2w
′
1 − u(ct) + v(yt)/θ2 − µ2.

By picking µ2(0) = ∞, the system could jump to (w1, w2) immediately, and then follow the

consumption-output plan starting from (w1, w2). Thus V1(w′1, w
′
2) ≤ V1(w1, w2). To see that

V1,1 > 0, differentiating equation (20) at λ = 0, we have

V1(w1, w2) = V1,1(w1, w2)(1/r + x1) + V1,2(w1, w2)(1/r + x2).(40)

It follows from V1 > 0, V1,2 ≤ 0 that V1,1 > 0.
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Q.E.D.

Proof of Lemma 3: We give a proof only for V1, since the proof for V2 is the same. We will

need several preliminary results. First, let V̄i(wi) be the first-best cost function if the shock is public

information and the agent starts with initial state i and promised utility wi, i = 1, 2. It is obvious that

for all w1, w2,

V1(w1, w2) ≥ V̄1(w1), V2(w1, w2) ≥ V̄2(w2).

Second, using the same proof as that in proving equation (39), we can show, for t > 0,

V1(w1, w2) =
∫ t

0

e−(r+q1)s(c(1[0,s])− y(1[0,s]))ds + e−(r+q1)tV1(w1(1[0,t)), w2(1[0,t)))

+
∫ t

0

e−(r+q1)sq1V2(w1(1[0,s)), w2(1[0,s)))ds,(41)

where c(1[0,s]), y(1[0,s]) are the optimal control variables and w1(1[0,s)), w2(1[0,s)) are the time paths of

the state variables under the optimal control. Both the control variables and the time paths implicitly

depend the initial state (w1, w2).

Third, if a > 0, b > 0 are two numbers, and B > 0 is an upper bound for
∫ t

0
e−asc(s)ds, then

∫ t

0

e−bsu(c(s))ds ≤
∫ t

0

e−bsc(s)ds ≤ e(a+b)tB.(42)

Similarly, if B > 0 is an upper bound for
∫ t

0
e−as(−y(s))ds, then

∫ t

0

e−bsv(c(s))ds ≥
∫ t

0

e−bsy(s)ds ≥ −e(a+b)tB.(43)

(i) To show {w2 ∈ R : V1,2(w1, w2) < 0} 6= ∅, it suffices to show that limw2→−∞ V1(w1, w2) = ∞,

since V1 is a (weakly) convex and decreasing function of w2. By contradiction, assume that there

is B > 0, such that limw2→−∞ V1(w1, w2) ≤ B. Starting at (w1, w2), the evolution with report 1

is 


dw1
dt

dw2
dt


 =


 q1 + r −q1

−q2 q2 + r





 w1

w2


 +


 −u(ct) + v(yt)/θ1

−u(ct) + v(yt)/θ2 − µ2


 .

Since


 q1 + r −q1

−q2 q2 + r


 =


 − q2

q1+q2

q2
q1+q2

q2
q1+q2

q1
q1+q2



−1 

 q1 + q2 + r 0

0 r





 − q2

q1+q2

q2
q1+q2

q2
q1+q2

q1
q1+q2


,

we can solve the equation and obtain

w1(1[0,t)) =
q1

q1 + q2
w1e

(q1+q2+r)t +
q2

q1 + q2
w1e

rt − q1

q1 + q2
w2(e(q1+q2+r)t − ert)

+
q1

q1 + q2

∫ t

0

e(q1+q2+r)(t−s)(1/θ1 − 1/θ2)v(y(1[0,s]))ds(44)

+
∫ t

0

er(t−s)

(
−u(c(1[0,s])) +

(
q2/θ1

q1 + q2
+

q1/θ2

q1 + q2

)
v(y(1[0,s]))

)
ds

+
q1

q1 + q2

∫ t

0

(e(q1+q2+r)(t−s) − er(t−s))µ2(1[0,s])ds.
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Fix t and w1, and let w2 → −∞. Equation (41) and supw2
V1(w1, w2) ≤ B imply that

∫ t

0
e−(r+q1)s(c(1[0,s])−

y(1[0,s]))ds is uniformly (when w2 varies) bounded by B. Using (42),(43), we see that the fourth

and fifth terms on the right of (44) are bounded from below. Since the first and second terms are

fixed, and the last term is nonnegative, taking limit in (44) yields

lim
w2→−∞

w1(1[0,t)) = ∞.

Using (41), we see that, as w2 → −∞,

V1(w1, w2) ≥ e−(r+q1)tV1(w1(1[0,t)), w2(1[0,t))) ≥ e−(r+q1)tV̄1(w1(1[0,t))) →∞.

(ii) To show that {w2 ∈ R : V1,2(w1, w2) = 0} 6= ∅, by contradiction, suppose V1,2(w1, w2) < 0 for all

w2. Then with report 1, the slack variable µ2 = 0, the system is

dw1

dt
= (q1 + r)w1 − q1w2 − u(ct) + v(yt)/θ1,

dw2

dt
= (q2 + r)w2 − q2w1 − u(ct) + v(yt)/θ2.

Fix t and w1. Pick w∗2 and B such that e−(r+q1)tV̄1(B) ≥ V1(w1, w
∗
2). If w2 ≥ w∗2 , then

V1(w1, w2) ≤ V1(w1, w
∗
2) and equation (41) imply that

sup
w2∈[w∗2 ,∞)

sup
s∈[0,t]

w1(1[0,s)) ≤ B.(45)

We can solve the differential equation and obtain, for s ∈ [0, t],

q2w1(1[0,s)) + q1w2(1[0,s)) = (q2w1 + q1w2)ers −
∫ s

0

er(s−x)(q1 + q2)u(c(1[0,x]))dx

+
∫ s

0

er(s−x)(q2/θ1 + q1/θ2)v(y(1[0,x]))dx.

Since
∫ s

0
e−(r+q1)x(c(1[0,x])− y(1[0,x]))dx ≤ V1(w1, w2) ≤ V1(w1, w

∗
2), (42) and (43) imply

−
∫ s

0

er(s−x)(q1 + q2)u(c(1[0,x]))dx ≥ −ert(q1 + q2)e(2r+q1)tV1(w1, w
∗
2),

∫ s

0

er(s−x)(q2/θ1 + q1/θ2)v(y(1[0,x]))dx ≥ −ert(q2/θ1 + q1/θ2)e(2r+q1)tV1(w1, w
∗
2).

The above two inequalities and (45) yield

q1w2(1[0,s)) ≥ (q2w1 + q1w2)ers − ert(q1 + q2)e(2r+q1)tV1(w1, w
∗
2)

− ert(q2/θ1 + q1/θ2)e(2r+q1)tV1(w1, w
∗
2)− q2B,

thus infs∈[0,t] w2(1[0,s)) →∞ as w2 →∞. This and (41) imply, as w2 →∞,

V1(w1, w2) ≥
∫ t

0

e−(r+q1)sq1V2(w1(1[0,s)), w2(1[0,s)))ds

≥
∫ t

0

e−(r+q1)sq1V̄2(w2(1[0,s)))ds →∞,

which contradicts our assumption that V1,2(w1, w2) < 0 for all w2.
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Q.E.D.

Proof of Lemma 4: (41) implies that

V1(w1(ht−), w2(ht−)) = lim
s↓t

V1(w1(ht−, 1[t,s)), w2(ht−, 1[t,s)))(46)

= V1(w1(ht−), lim
s↓t

w2(ht−, 1[t,s))).

When w2(ht−) > f1(w1(ht−)),

V1(w1(ht−), f1(w1(ht−))) = V1(w1(ht−), w2(ht−)) = V1(w1(ht−), lim
s↓t

w2(ht−, 1[t,s))).

Thus lims↓t w2(ht−, 1[t,s)) ≥ f1(w1(ht−)). If lims↓t w2(ht−, 1[t,s)) > f1(w1(ht−)), then the contracts

starting from (w1(ht−), w2(ht−)) and (w1(ht−), f1(w1(ht−))) cannot be equal to each other almost surely

(a.s.). Convex combination can be used to lower the cost at (w1(ht−), w2(ht−)/2+f1(w1(ht−))/2). This

contradicts the fact that V1(w1, w2) = V1(w1, f1(w1)), for all w2 ≥ f1(w1).

Next we show that for all s > t, w2(ht−, 1[t,s)) ≤ f1(w1(ht−, 1[t,s))). This implies that, once the state

variable jumps onto the efficiency line, it stays on or below it forever, unless a new transition occurs,

which may require the state variable to jump to the other efficiency line. By contradiction, suppose for

some s > t, w2(ht−, 1[t,s)) > f1(w1(ht−, 1[t,s))). Since lims′↑s w2(ht−, 1[t,s′)) ≥ w2(ht−, 1[t,s)), and w2 is

continuous a.e., we can find an s′ < s, such that

w2(ht−, 1[t,s′)) > f1(ht−, 1[t,s′)) and w2 is continuous at s′.

At s′, the time path is continuous and above the efficiency line f1, thus does not immediately jump

onto it, which is a contradiction to what we have shown in the first step.

Last, we show that w2(ht−, 1[t,s)) = lims′↓s w2(ht−, 1[t,s′)). Now the state is below the efficiency line

and, by definition, V1,2 < 0 in this region. w2(ht−, 1[t,s)) > lims′↓s w2(ht−, 1[t,s′)) contradicts equation

(46). Q.E.D.

Proof of Lemma 5: By contradiction, first suppose that f2 is above f1, i.e., f1(w1) < (f2)−1(w1).

Lemma 7 in APPENDIX B implies that V1,1(w1, w2)−V2,2(w1, w2) is strictly decreasing in w2, which

implies

V1,1(w1, f1(w1))− V2,2(w1, f1(w1)) > V1,1(w1, (f2)−1(w1))− V2,2(w1, (f2)−1(w1)),

which contradicts Lemma 8 in APPENDIX B.

Next, suppose that f1 and f2 coincide, i.e., f1(w1) = (f2)−1(w1). At (w1, f1(w1)), the definition

of the efficiency lines and Lemma 8 imply that V1,2 = V2,1 = 0, V1,12 = V1,22 = V2,11 = V2,12 = 0,

V1,1 = V2,2 > 0. Using equation (24),(25) with report 1, we find

V1,11
dw1

dt
= V1,11

dw1

dt
+ V1,12

dw2

dt
=

dV1,1

dt
= q2V1,2 − q1V2,1 = 0

V1,22
dw2

dt
= V1,21

dw1

dt
+ V1,22

dw2

dt
=

dV1,2

dt
= q1V1,1 − q1V2,2 + (q1 − q2)V1,2 = 0,
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therefore dw1(1
[0,t))

dt |t=0 = dw2(1
[0,t))

dt |t=0 = 0. Similarly, with report 2, the state variable does not move

either. However, we know that V1,1 + V1,2 = V2,1 + V2,2 and V1,1/θ1 + V1,2/θ2 > V2,1/θ1 + V2,2/θ2 on

f1. Using (26),(31), we see that c1 = c2,−y1 > −y2, which gives a contradiction,

0 =
dw2(1[0,t))

dt
|t=0 = (q2 + r)w2 − q2w1 − u(c1) + v(y1)/θ2 − µ2

≤ (q2 + r)w2 − q2w1 − u(c1) + v(y1)/θ2

< (q2 + r)w2 − q2w1 − u(c2) + v(y2)/θ2

=
dw2(2[0,t))

dt
|t=0 = 0.

Q.E.D.

Proof of Lemma 6: We first show that starting from (f2(w2), w2), with report 2, w1(2[0,t)) =

f2(w2(2[0,t))), for all t ≥ 0. Lemma 10 in APPENDIX B states that V1,1 = V2,2 on f2. Lemma 7 in

APPENDIX B implies that V1,1 < V2,2 if w1 < f2(w2). If the state moves to the left of f2, solving

equation (29) yields

V2,1(w1(2[0,t)), w2(2[0,t)))− e(q2−q1)tV2,1(f2(w2), w2)

=
∫ t

0

e(q2−q1)(t−s)q2(V2,2(w1(2[0,s)), w2(2[0,s)))− V1,1(w1(2[0,s)), w2(2[0,s))))ds > 0,

which contradicts V2,1 ≤ 0 from part (iii) in Lemma 2. Therefore, the state variable remains on the

efficiency line f2 with report 2. Furthermore, equation (30) and the fact that V2,1 = 0, V1,2 < 0 on f2,

imply that

V2,22
dw2

dt
= V2,21

dw1

dt
+ V2,22

dw2

dt
=

dV2,2

dt
= q1V2,1 − q2V1,2 > 0,

therefore dw2/dt > 0 and the state moves up along f2.

Lemma 10 in APPENDIX B states that V1,1 < V2,2, V1,2 = 0 on f1. With report 1 and starting

from the line f1, equation (25) implies that

dV1,2

dt
= q1V1,1 − q1V2,2 + (q1 − q2)V1,2 < 0,

which means that the time path leaves f1 and moves below f1.

To understand the pattern when the report is θ1 and the state starts from f2, assume that q1 =

q2 = q > 0. Equation (25) is

V1,21
dw1

dt
+ V1,22

dw2

dt
=

dV1,2

dt
= qV1,1 − qV2,2 = 0.

Therefore, starting from f2, dw2
dw1

= −V1,21/V1,22. Substituting into equation (24), we find

0 > qV1,2 =
dV1,1

dt
= V1,11

dw1

dt
+ V1,12

dw2

dt
= V1,11

dw1

dt

(
1− V1,12V1,21

V1,11V1,22

)
.
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It follows from the convexity of V1 (V1,12V1,21 ≤ V1,11V1,22) that dw1/dt < 0. Equation (48) and V1,2 < 0

on f2 imply that −V1,21/V1,22 > (1/r + x2)/(1/r + x1), thus dw2/dw1 is larger than the slope of f2

((1/r + x2)/(1/r + x1)). So the time path of (w1, w2) will move southwest, and be below f2, and thus

will enter the interior of the region. Q.E.D.

Proof of Theorem 3:

(i) This follows from the system described in equations (22), (23), (24), (25), (26). Notice that in the

region below f2, V2,1(w1, w2) = 0 and V2,2(w1, w2) = V2,2(f2(w2), w2). That µ2 = 0 follows from

V1,2 < 0.

(ii) This follows from Lemma 9 and Lemma 10 in APPENDIX B.

(iii) We provide a proof only for a report 1. Since V1,2 < 0 and V1,1 > V2,2, equations (34),(35) imply

that V1,1 decreases and V1,2 increases. Now we show that dw2/dt < 0 for all t. Suppose this is not

the case, since initially dw2/dt < 0, there is some t∗, dw2(t)
dt

∣∣∣
t=t∗

= 0. Equation (34) and V1,11 > 0

imply that dw1(t)
dt

∣∣∣
t=t∗

< 0. If f denotes the straight line that passes (w1(t∗), w2(t∗)) and is below

but parallel to f2, then this implies that the time path moves leftward and crosses f from below.

Since the time path starts from f2, it has to cross f from above at least once before. The time

path crosses f from different directions twice, contradicting equation (19). A similar argument

shows that dw1/dt < 0 for all t.

Next, we will show that V1,1(t) + V1,2(t) is strictly decreasing in t. Adding (34) and (35) yields

d(V1,1 + V1,2)
dt

= qV1,2 + qV1,1 − qV2,2(f2(w2), w2).(47)

Thus it suffices to show that V1,1(t) + V1,2(t) < V2,2(f2(w2(t)), w2(t)), for all t ≥ 0. By contradic-

tion, suppose at some time t∗, V1,1(t∗) + V1,2(t∗) ≥ V2,2(f2(w2(t∗)), w2(t∗)). For t∗∗ > t∗, solving

(47) yields

(V1,1 + V1,2)(t∗∗) = eq(t∗∗−t∗)(V1,1 + V1,2)(t∗)−
∫ t∗∗

t∗
eq(t∗∗−s)V2,2(f2(w2(s)), w2(s))ds

> eq(t∗∗−t∗)(V1,1 + V1,2)(t∗)−
∫ t∗∗

t∗
eq(t∗∗−s)V2,2(f2(w2(t∗)), w2(t∗))ds

= eq(t∗∗−t∗)((V1,1 + V1,2)(t∗)− V2,2(f2(w2(t∗)), w2(t∗)))

+V2,2(f2(w2(t∗)), w2(t∗))

> V2,2(f2(w2(t∗∗)), w2(t∗∗)),

where the inequalities follow from that V2,2(f2(w2), w2) is strictly increasing in w2 and dw2(t)
dt < 0.
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Now for t > t∗∗,

(V1,1 + V1,2)(t) = eq(t−t∗∗)(V1,1 + V1,2)(t∗∗)−
∫ t

t∗∗
eq(t−s)V2,2(f2(w2(s)), w2(s))ds

> eq(t−t∗∗)(V1,1 + V1,2)(t∗∗)−
∫ t

t∗∗
eq(t−s)V2,2(f2(w2(t∗∗)), w2(t∗∗))ds

= eq(t−t∗∗)((V1,1 + V1,2)(t∗∗)− V2,2(f2(w2(t∗∗)), w2(t∗∗)))

+V2,2(f2(w2(t∗∗)), w2(t∗∗)).

Since (V1,1 +V1,2)(t∗∗) > V2,2(f2(w2(t∗∗)), w2(t∗∗)), it is easily seen that limt→∞(V1,1 +V1,2)(t) =

∞. This contradicts the fact that dV1,1
dt < 0 (from equation (34)) and V1,1 + V1,2 < V1,1.

We further know that V1,1(t)/θ1 + V1,2(t)/θ2 = V1,1(t)(1/θ1 − 1/θ2) + (V1,1(t) + V1,2(t))/θ2 is

strictly decreasing in t. These and (36) imply that consumption falls and output increases with

duration of the report 1. The properties with report 2 are obvious.

(iv) Part (iii) and equation (40) imply that

V1,1(1/r + x1) + V1,2(1/r + x2) ≥ V2,1(1/r + x1) + V2,2(1/r + x2) = V2,2(1/r + x2).

Since (1/r + x2)/(1/r + x1) < (1/θ2)/(1/θ1) and V1,2 < 0, we have

V1,1(w1, w2)/θ1 + V1,2(w1, w2)/θ2 > V2,2(f2(w2), w2)/θ2.

We also know from part (iii),

V1,1(w1, w2) + V1,2(w1, w2) < V2,2(f2(w2), w2).

Equations (26) and (31) thus imply that, given a certain level of promised utilities, consumption

and output are always lower with report 1. (Of course, consumption in state 1 could be higher

than that in 2 if compared at different promised utilities.)

(v) u′(c)/(v′(y)/θ1) is the ratio of marginal utility of consumption to marginal disutility of production.

With a report 1, since V1,2 < 0, we have u′(c)/(v′(y)/θ1) = (V1,1 + θ1/θ2V1,2)/(V1,1 + V1,2) > 1.

With a report 2, since V2,1 = 0, we have u′(c)/(v′(y)/θ2) = (θ2/θ1V2,1+V2,2)/(V2,1+V2,2) = 1. To

show that the distortion increases with report 1, it is sufficient to show that V1,2/V1,1 is decreasing

along the time path. By convexity, V1,2/V1,1 is an increasing function of w2, because

∂(V1,2/V1,1)
∂w2

=
V1,22V1,1 − V1,2V1,12

V 2
1,1

=
V1,22((1/r + x1)V1,11 + (1/r + x2)V1,12)

V 2
1,1

− V1,12((1/r + x1)V1,21 + (1/r + x2)V1,22)
V 2

1,1

=
(1/r + x1)(V1,22V1,11 − V 2

1,12)
V 2

1,1

> 0.
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For any straight line f that is below but parallel to f2, the time path can cross f at most once;

otherwise suppose the time path crosses f from different directions twice, it contradicts equation

(19). Therefore, with a report 1, the time path moves farther and farther away from the line f2,

i.e., w2(t)− (1/r + x2)/(1/r + x1)w1(t) is decreasing, which implies that

V1,2(w1(t), w2(t))
V1,1(w1(t), w2(t))

=
V1,2(0, w2(t)− w1(t)(1/r + x2)/(1/r + x1))ew1(t)/(1/r+x1)

V1,1(0, w2(t)− w1(t)(1/r + x2)/(1/r + x1))ew1(t)/(1/r+x1)

=
V1,2(0, w2(t)− w1(t)(1/r + x2)/(1/r + x1))
V1,1(0, w2(t)− w1(t)(1/r + x2)/(1/r + x1))

is decreasing in t.

(vi) Equations (24), (25), (29), and (30) imply that

d(V1,1 + V1,2)
dt

= q((V1,1 + V1,2)− (V2,1 + V2,2)),

d(V2,1 + V2,2)
dt

= q((V2,1 + V2,2)− (V1,1 + V1,2)).

Define Φ(t, w, ιt) = Vιt,1(w1, w2) + Vιt,2(w1, w2). Using the Dynkin’s formula stated in the proof

of Theorem 1, since

AΦ(t, w, 1) =
d(V1,1 + V1,2)

dt
+ q((V2,1 + V2,2)− (V1,1 + V1,2)) = 0,

AΦ(t, w, 2) =
d(V2,1 + V2,2)

dt
+ q((V1,1 + V1,2)− (V2,1 + V2,2)) = 0,

we see that Et[(Vιs,1 + Vιs,2)] = (Vιt,1 + Vιt,2), i.e., Vιt,1(w1, w2) + Vιt,2(w1, w2) is a martingale.

By the martingale convergence theorem and equations (26) and (31), consumption converges to

0 a.s. Next we show that output converges to its upper bound a.s. Since V2,1 = 0,

lim
t→∞

χ{ιt=2}V2,2(w1(t), w2(t)) = 0, a.s.,

where χ is the indicator function. This implies limt→∞ χ{ιt=1}V1,1(w1(t), w2(t)) = 0, a.s., because

V1,1 equals V2,2 on f2 and falls with the duration of report 1. It follows that limt→∞ χ{ιt=1}V1,2(w1(t), w2(t)) =

0. Therefore,

lim
t→∞

Vιt,1(w1(t), w2(t))/θ1 + Vιt,2(w1(t), w2(t))/θ2 = 0, a.s.,

which, with equations (26) and (31), implies that the output converges to its upper bound.

Q.E.D.

APPENDIX B: Auxiliary Results

Lemma 7 V1,11 > 0, V1,22 ≥ 0, V1,12 ≤ 0, V2,11 ≥ 0, V2,22 > 0, V2,12 ≤ 0.
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Proof of Lemma 7: We only prove for V1. That V1,22 ≥ 0 follows from the convexity of V1.

Differentiating (40) with respect to w2 yields

V1,2(w1, w2) = V1,12(w1, w2)(1/r + x1) + V1,22(w1, w2)(1/r + x2).(48)

Since V1,2 ≤ 0, V1,22 ≥ 0, we find that V1,12 ≤ 0. Differentiating (40) with respect to w1 yields

V1,1(w1, w2) = V1,11(w1, w2)(1/r + x1) + V1,12(w1, w2)(1/r + x2).

Since V1,1 > 0, V1,12 ≤ 0, we find that V1,11 > 0. Q.E.D.

Lemma 8 On efficiency lines,

V1,1(w1, f1(w1)) ≤ V2,2(w1, f1(w1)), V1,1(f2(w2), w2) ≥ V2,2(f2(w2), w2).

Proof of Lemma 8: We only prove the first inequality. At (w1, w2), w2 > f1(w1), the optimal

control is µ2 = ∞, and the system immediately jumps. If we restrict µ2 = 0, we will have an inequality

version of the HJB equation (see, for example, Fleming and Soner (2006, equation (7.3), p.132)),

0 ≤ min
c
{c− (V1,1 + V1,2)u(c)}+ min

y
{−y + (V1,1/θ1 + V1,2/θ2)v(y)}+ q1V2(w1, w2)

+ V1,1((q1 + r)w1 − q1w2) + V1,2((q2 + r)w2 − q2w1)− (q1 + r)V1(w1, w2).

When w2 = f1(w1), the right side is 0 (according to the HJB equation) and V1,2 = V1,22 = V1,12 = 0.

We have

0 ≤ ∂(the right side)
∂w2

∣∣∣
w2=f1(w1)

= q1(V2,2(w1, f1(w1))− V1,1(w1, f1(w1))).

Q.E.D.

Lemma 9 If V1,1 < V2,2 on f1, then V1 ≥ V2 for all w2 ≤ f1(w1). Similarly, if V1,1 > V2,2 on f2, then

V1 ≤ V2 for all w1 ≤ f2(w2).

Proof of Lemma 9: If V1,1 < V2,2 on f1, then starting from (w1, f1(w1)), the time path with report

1 moves below f1 because (25) implies

dV1,2

dt
= q1V1,1 − q1V2,2 + (q1 − q2)V1,2 < 0.

This means that on the time path, the slack control variable µ2 is 0. But V2 is the cost of controlling

the process with one more slack variable (µ1), and having more control variables always lowers the cost.

Thus V2(w1, w2) ≤ V1(w1, w2), for w2 ≤ f1(w1). Q.E.D.

Lemma 10 On efficiency lines,

V1,1(w1, f1(w1)) < V2,2(w1, f1(w1)), V1,1(f2(w2), w2) = V2,2(f2(w2), w2).
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Proof of Lemma 10: There are four possibilities, and we will rule out three of them.

(i) If V1,1 = V2,2 on both f1 and f2, since V1,1(w1, w2) − V2,2(w1, w2) is strictly decreasing in w2, it

is a contradiction to the fact that f1 is above f2.

(ii) If V1,1 = V2,2 on f1, and V1,1 > V2,2 on f2, then Lemma 9 states that V2(w1, w2) ≥ V1(w1, w2),

for w1 ≤ f2(w2). In particular, since f1 is to the left of f2, we know that

V1(w1, f1(w1)) ≤ V2(w1, f1(w1)).

But the assumption that V1,1 = V2,2 on f1 yields

V1(w1, f1(w1)) = V1,1(w1, f1(w1)) (1/r + x1)

> V2,2(w1, f1(w1)) (1/r + x2)

> V2,1(w1, f1(w1)) (1/r + x1) + V2,2(w1, f1(w1)) (1/r + x2)

= V2(w1, f1(w1)),

where the first line follows from (40) and V1,2 = 0 on f2, the second line from x1 > x2, the third

line from V2,1 < 0 on f2, and the last line from (40) again. Thus there is a contradiction.

(iii) If V1,1 < V2,2 on f1, and V1,1 > V2,2 on f2, then Lemma 9 implies that V1(w1, w2) = V2(w1, w2)

if f−1
2 (w1) ≤ w2 ≤ f1(w1). But then V2,1 = V1,1 > 0 contradicts part (iii) in Lemma 2.

Q.E.D.

APPENDIX C: Extensions to Other Homogeneous Utilities

In Section 5 we derive the results on the dynamics of the optimal contract with logarithmic utility

and disutility functions. These results can be generalized to include functional forms as c1−σ

1−σ and

− exp(−σc), as long as some form of homogeneity exists. Although the exact form of homogeneity

varies in each case, all the interesting results (including efficiency lines, absorbing region, dynamic

properties of policy functions, and immiserization) remain unchanged. We will briefly lay out results

from the following three extensions, most of which can be proved by the same techniques used for the

logarithmic case.

(i) σ > 0: u(c) = − exp(−σc), c ∈ R, and v(y) = exp(σy), y ∈ R.

(ii) σ > 1: u(c) = c1−σ

1−σ , c > 0, and v(y) = − (−y)1−σ

1−σ , y < 0.

(iii) 0 < σ < 1: u(c) = c1−σ

1−σ , c > 0, and v(y) = − (−y)1−σ

1−σ , y < 0.
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Different from the logarithmic case, here the sets of implementable utilities W are proper subsets

of R2. Although utility and disutility functions are unbounded here, we can still use the four families

of contracts discussed in Section 4 to find boundaries of W . (Note that some of the boundaries are

degenerate, and W is no longer compact.) For each of the above three cases, we get

(i) W =
{

(w1, w2) ∈ R2 : w1 < w2 < θ1
θ2

w1 < 0
}

.

(ii) W =
{

(w1, w2) ∈ R2 : w1 < w2 < θ1
θ2

w1 < 0
}

.

(iii) W =
{

(w1, w2) ∈ R2 : 0 < θ1
θ2

w1 < w2 ≤ w1

}
∪ {(0, 0)}.

The homogeneity properties for the logarithmic case in Lemma 2 are modified as

(i) For any λ > 0,

Vi (λw1, λw2) = − log(λ)
σr

+ Vi(w1, w2), i = 1, 2.(49)

(ii) For any λ > 0,

Vi (λw1, λw2) = λ
1

1−σ Vi(w1, w2), i = 1, 2.(50)

(iii) For any λ > 0,

Vi (λw1, λw2) = λ
1

1−σ Vi(w1, w2), i = 1, 2.(51)

As to Lemma 2, the monotonicity properties

V1,2 ≤ 0, V1,1 > 0, V2,1 ≤ 0, and V2,2 > 0

still hold, but the proofs for them need modifications.

(i) To see that V1,1 > 0, differentiating equation (49) at λ = 1, we have

V1,1w1 + V1,2w2 = − 1
σr

.(52)

It follows from w1 < 0, w2 < 0, and V1,2 ≤ 0 that V1,1 > 0.

(ii) To see that V1,1 > 0, differentiating equation (50) at λ = 1, we have

V1,1w1 + V1,2w2 = (
1

1− σ
− 1)V1.(53)

It follows from ( 1
1−σ − 1) < 0, V1 > 0, w1 < 0, w2 < 0, and V1,2 ≤ 0 that V1,1 > 0.

(iii) To see that V1,1 > 0, differentiating equation (51) at λ = 1, we have

V1,1w1 + V1,2w2 = (
1

1− σ
− 1)V1.(54)

It follows from ( 1
1−σ − 1) > 0, V1 > 0, w1 > 0, w2 > 0, and V1,2 ≤ 0 that V1,1 > 0.
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The definitions of the two efficiency lines remain unchanged; however, the domains of the lines

are restricted to be (−∞, 0) in case (i), (−∞, 0) in case (ii), and [0,∞) in case (iii). They still are

straight lines, but are no longer parallel to each other. Instead, f1 and f2 will have an intersection

point at (0, 0). Lemmas 3 and 4 still hold and can be proved using the same proofs. The two HJB

equations remain unchanged. The ODE system is still valid, except that the optimal policies from

minc{c − (V1,1 + V1,2)u(c)} and miny{−y + (V1,1/θ1 + V1,2/θ2)v(y)} depend on particular functional

forms (they are no longer c = (V1,1 + V1,2), y = −(V1,1/θ1 + V1,2/θ2)).

Away from the intersection point (0, 0), line f1 is still strictly above f2, thus Lemma 5 remains valid

and can be proved using the same proof. The set of W is again split into three regions. Lemma 6 is

still valid, and when the Markov chain is symmetric, the region between f2 and the lower boundary of

W is absorbing. Because the proof of Lemma 6 uses the homogeneity property of logarithmic utilities,

we need to modify the proof to utilize equations (49), (50), and (51). (The procedure is routine and

details are omitted.)

Last, all the implications from Theorem 3 remain valid.
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