
Scientific Bulletin – Economic Sciences, Vol. 9 (15)

- Information technology -

OPTIMIZING QUERIES IN SQL SERVER 2008

Professor Ph.D. Ion LUNGU
1
, Nicolae MERCIOIU

2
, Victor VLĂDUCU

3

1
Academy of Economic Studies, Bucharest, Romania,

2
Prosecutor's Office attached to the High Court of Cassation and Justice

3
Prosecutor's Office attached to Vâlcea Court

Abstract: Starting from the need to develop efficient IT systems, we intend to review the
optimization methods and tools that can be used by SQL Server database administrators
and developers of applications based on Microsoft technology, focusing on the latest
version of the proprietary DBMS, SQL Server 2008. We’ll reflect on the objectives to
be considered in improving the performance of SQL Server instances, we will tackle the
mostly used techniques for analyzing and optimizing queries and we will describe the
“Optimize for ad hoc workloads”, “Plan Freezing” and “Optimize for unknown" new
options, accompanied by relevant code examples.

Keywords: Query, SQL Server 2008, Optimization.

JEL Classification: C88, D80

1. INTRODUCTION

Improving the performance of a DBMS includes identifying bottlenecks and their causes,

using appropriate techniques and tools for solving them and evaluating the added performance

obtained. It is generally accepted that aiming to achieve maximum theoretical performance is

unrealistic and counterproductive, as the investment cost beyond reaching the "good enough"

time increases exponentially with the performance gain.

Most times, efficiency and performance are the last criteria considered when designing and

developing new applications using a database. These criteria become important only after the

system goes into production. Sometimes it appears that the application does not display the

information requested to the database in a reasonable time or completely fails to display it, the

set timeout being exceeded. The reasons may be related to the application design, but in many

cases the DBMS does not return the data quickly enough, due to the nonuse of indexes, deficient

design of the queries and/or database schema, excessive fragmentation, use of inaccurate

statistics, failure to reuse the execution plans or improper use of cursors.

Once the full set of running SQL queries captured, one should identify the queries exerting

high pressure on system resources and those running the slowest. The component dealing with

optimizing queries in SQL Server attempts to determine the most efficient way to execute a

query, taking into account possible plans, and decides which one is the best. The optimization

based on actual cost strategy involves the estimation of a runtime "cost" for every possible plan,

allowing choosing the execution plan with the lowest “cost” in terms of disk I/O operations,

CPU load, memory load etc.

2. GOALS FOR IMPROVING PERFORMANCE OF A SQL SERVER INSTANCE

The elements to be focused on for increasing performance have been found to be, in

ascending order of importance: Windows operation system, SQL Server instance, hardware,

database and application. According to Microsoft, the most important objectives to be considered

in order to improve the performance of SQL Server are:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6508257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ion LUNGU, Nicolae MERCIOIU, Victor VLĂDUCU

 104

- Designing an efficient data schema.

- Optimizing queries.

- Optimizing indexes, stored procedures and transactions.

- Analyzing execution plans and avoiding recompiling them.

- Monitoring access to data.

Designing an efficient data schema requires initial normalization and subsequent de-

normalization (e.g. persons/institutions address), if necessary. A reverse approach would involve

additional activities meant to insure the data consistency. Another issue to be considered is the

use of the declarative referential integrity. This approach is more efficient than using triggers

employing system temporary tables. The use of primary, foreign and unique key constraints

contributes to the creation of effective execution plans. It is also recommended to define data

types as close as possible to the real ones, given that implicit and explicit conversions are

intensive consumers of computational resources.

A very important aspect comes from the need to use indexed views, when the information is

not frequently updated, as indexed views are stored physically as a table.

In optimizing indexes and stored procedures the fact that they allow a rapid response to

selection operations but slow down insert, update and delete operations should be taken into

consideration. Generally, the creation and use of indexes should be balanced among read and

write operations i.e. indexes improve read operations but may positively or negatively alter write

operations. Indexes have to be also created for all foreign keys on tables that are often queried

and do not contain image or bit type fields. As regards transactions, they should be kept as short

as possible. Transactions requiring user intervention are to be avoided and data validation is

recommended before starting the transaction.

Stored procedures must include the SET NOCOUNT ON command. This command

prevents sending the message regarding the number of affected records for each operation

carried out within this procedure.

It is important to analyze and run execution plans on representative data so that the best plan

suggested by the optimizer may be chosen. In this regard, plans involving scanning tables and

indexes should be avoided. Scanning is worthy only for tables containing up to hundreds of

records. Also, major CPU and memory resources consumers are the records sorting and filtering

operations. In general, recompiling execution plans should be avoided due to the loss in

performance. This can be avoided by using parameterized queries and stored procedures and

avoiding cursors over temporary tables. However, recompiling plans may bring benefits when

the optimizer is able create a more efficient execution plan.

It is very important to monitor through statistics (if they are kept up to date) and use the

profiler for queries running a long time, as well as for scanning and monitoring the use of

resources. The queries optimization will be tackled in detail below.

3. QUERY ANALYSIS AND OPTIMIZATION TECHNIQUES

Analysis and optimization techniques require individual approach but also of the whole set

of queries, on the premise that although individual queries can be optimized enough, the whole

set performance may be poor.

First and most important optimization technique is to limit the amount of returned data by

limiting the number of records (the WHERE clause) and fields specified in the SELECT list.

This will lead to an efficient use of the indexes. In principle, a WHERE clause should be

selective as it is the one establishing the use of indexes on columns.

For an efficient use of indexes, according to the utilization requirements for the system, the

SQL Server provides clustered and non-clustered type indexes. Within the Online Transaction

Processing schemes — whose tables are frequently updated — the clustered indexes are

recommended, but on as few columns as possible. A large number of indexes in these systems

Optimizing Queries in SQL Server 2008

 105

will affect the performance of the INSERT, UPDATE, DELETE and MERGE commands, as all

indexes must be accordingly adjusted when data in the tables are modified. Clustered type

indexes are effective when operators like BETWEEN, >, >=, < and <= are used, because after

the record containing the first value is found, subsequent records with indexed values are

physically adjacent. Also, if the query contains clauses like JOIN, ORDER BY or GROUP BY,

the clustered type indexes are most appropriate. Non-clustered indexes use is recommended only

for databases where updates are infrequent and gives the optimal solution for the "exact match"

type queries. Queries can effectively use indexes only if within the WHERE clause functions and

arithmetic operations are as much as possible avoided. For example, using the LIKE clause

instead of the SUBSTRING function will cause the optimizer to use the index on the Name

column:

SELECT Name

FROM AdventureWorks.Production.Location

WHERE SUBSTRING(Name,1,1) ='P'

 The recommended option is:

SELECT Name
FROM AdventureWorks.Production.Location

WHERE Name LIKE 'P%'

Likewise, the exclusion conditions <>, ! =, !>, !<, NOT EXISTS, NOT IN, NOT LIKE IN,

OR or the LIKE example '% <literal>' will determine the DBMS's optimizer not to use the

indexes on columns in the WHERE clause. Instead, the inclusion conditions, BETWEEN and the

LIKE example '<literal>%', allow the optimizer to increase query performance because the SQL

Server will find the record in the index and will return the adjacent records too, as long as the

condition in the WHERE clause remains true.

Another optimization method is using, where possible, the BETWEEN clause instead the IN

or OR conditions. The SQL Server 2008 will resolve the IN condition by accessing the index for

a number of times equal to the number of values by which to search. Using the BETWEEN

clause, the optimizer will turn it into a pair of conditions >= <=, the index being accessed once.

SELECT *

FROM AdventureWorks.Purchasing.PurchaseOrderDetail

WHERE PurchaseOrderID IN (651,652,653)

The recommended option is:

SELECT *

FROM AdventureWorks.Purchasing.PurchaseOrderDetail

WHERE PurchaseOrderID BETWEEN 651 AND 653

While the two previous examples have the same execution plan and use the clustered type

index, in the first case the SQL Server version will resolve the IN clause using three values in

three OR conditions and the index will be accessed three times. In the second option, the index

will be accessed once, from the first to the last record satisfying the condition in the WHERE

clause. In general, using the BETWEEN clause instead of the IN/OR conditions will reduce the

number of logical reads. Using arithmetic operators on a column in the WHERE clause will

make the optimizer not to use the column index.

SELECT PurchaseOrderID

FROM AdventureWorks.Purchasing.PurchaseOrderDetail

WHERE PurchaseOrderID * 3 =1953

 The recommended option is:

SELECT PurchaseOrderID

FROM AdventureWorks.Purchasing.PurchaseOrderDetail

WHERE PurchaseOrderID =1953/3

The difference in actual cost for the previous queries, run on a SQL Server 2008 Express, is

Ion LUNGU, Nicolae MERCIOIU, Victor VLĂDUCU

 106

about 70 percent. The SQL Server 2008 optimizer dynamically determines a query processing

strategy based on the current structure of the table and indexes, as well as on the existing data.

However, this process can be overwritten if the optimizer suggestions are used, its behavior

becoming static as the query processing strategy will not be permanently updated and self-

parametrization will be omitted. In general, the cost-effective strategy based on the data

distribution, indexes and other factors is efficient and it is not recommended to force the

optimizer to execute specific strategies, due to potential loss of performance.

In order to avoid the execution of queries involving intensive resource consumption, it is

recommended to verify the existence of data using the EXISTS () function instead of the

COUNT (*) function. In the first version, the SQL Server 2008 will scan and stop at the first

record meeting the criterion between the EXISTS brackets, while using COUNT (*), the DBMS

will scan all table records. Implicit data type conversion is to be avoided, meaning that variables

declared in the query must be of the same type with the columns to be compared with. In the

SQL Server, implicit data conversion is done following the rules for data types precedence.

Normally, the low precedence data type is converted into a higher precedence data type. Implicit

conversion worsens the query performance duet o the inefficient execution plan, materialized

additional CPU load. An alternative is using the CAST and CONVERT functions.

It is recommended to avoid local variables in scripts containing multiple queries, especially

when the variable values are transmitted from one query to another. The SQL Server optimizer

will generate an inefficient execution plan if the WHERE clause contains local variables.

Between queries in the following script the performance difference is about 50%.

USE AdventureWorks
DECLARE @id INT = 1

SELECT *

FROM Sales.SalesOrderDetail

JOIN Sales.SalesOrderHeader

ON Sales.SalesOrderHeader.SalesOrderID = Sales.SalesOrderDetail.SalesOrderID

WHERE Sales.SalesOrderHeader.SalesOrderID >= @id

SELECT *

FROM Sales.SalesOrderDetail

JOIN Sales.SalesOrderHeader
ON Sales.SalesOrderHeader.SalesOrderID = Sales.SalesOrderDetail.SalesOrderID

WHERE Sales.SalesOrderHeader.SalesOrderID >=1

For each query in an executed stored procedure or script, the SQL Server will return the number

of affected records (2323333 row(s) affected).To save resources, it is preferable to use the SET

NOCOUNT ON <Queries> SET NOCOUNT OFF sequence.

4. NEW OPTIMIZING OPTIONS IN SQL SERVER 2008

Some applications run scripts once in a session (ad hoc workloads). The fact that the SQL

Server stores each execution plan for a possible reuse results in an excessive increase of the used

memory, leading to a lower efficiency of the instance. In order to solve this problem, Microsoft

introduced the option of optimizing this kind of queries — optimize for ad hoc workload — for

all its variants of SQL Server 2008. Once this option activated, when the script is compiled for

the first time, the DBMS will save only a small part of the ad hoc query execution plan. This part

will help in a later phase to determine whether that script has been compiled. If the script is re-

executed, the SQL Server 2008 removes that small part of the originally compiled plan and will

recompile the script in order to get the complete execution plan. On first running of the following

script, the second query will return a single result, showing that the first query execution plan

was memorized.
DBCC FREEPROCCACHE

DBCC DROPCLEANBUFFERS

GO
USE AdventureWorks

GO

Optimizing Queries in SQL Server 2008

 107

SELECT * FROM Person.Contact

GO

SELECT usecounts, cacheobjtype, objtype, text

FROM sys.dm_exec_cached_plans

CROSS APPLY sys.dm_exec_sql_text(plan_handle)

WHERE usecounts > 0 AND

text like '%SELECT * FROM Person.Contact%'
ORDER BY usecounts DESC;

GO

Before re-executing the script, we activate the optimization option and change slightly the

LIKE clause in the second query (text like 'SELECT * FROM Person.Contact%'):

SP_CONFIGURE 'show advanced options',1

RECONFIGURE

GO

SP_CONFIGURE 'optimize for ad hoc workloads',1

RECONFIGURE

GO

In this case, the second query will not return any results, reflecting the fact that no execution

plan has been memorized for the first query. If we went on re-executing the script, we would

notice that the SQL Server 2008 is saving the query execution plan, regardless of the state of the

discussed option. Thus we can conclude that after activating the optimize for ad hoc workload

option only new execution plans are affected and those already memorized are not affected.

Another feature introduced in the SQL Server 2008 version is the one allowing a direct

creation of the guide (Plan Freezing) for any execution plan for a query existing in the SQL

Server memory. This feature adds to the support extension for the execution plans guides for all

DML commands. Note that in the 2005 version of the SQL Server, this feature was available

only for the SELECT command and involved the possibility to specify suggestions (guides) for

the queries that can not be changed directly from the application.

In the following example we will run a query first in order to get the execution plan that will

later be "frozen".

USE AdventureWorks

GO

DBCC FREEPROCCACHE

GO

SET STATISTICS XML ON

EXEC sp_executesql

N'SELECT *

FROM Sales.SalesOrderDetail

 JOIN Sales.SalesOrderHeader

 ON Sales.SalesOrderHeader.SalesOrderID = Sales.SalesOrderDetail.SalesOrderID'

SET STATISTICS XML OFF
GO

Next we will "freeze" the previously created execution plan.

DECLARE @plan_handle varbinary(1000)

SELECT @plan_handle = plan_handle

FROM sys.dm_exec_query_stats qs

cross apply sys.dm_exec_sql_text(qs.sql_handle) sqt

WHERE text like '%SalesOrderDetail%'

SELECT @plan_handle

EXEC sp_create_plan_guide_from_handle 'TEST_Plan_Guide_1', @plan_handle=@plan_handle

The sp_create_plan_guide_from_handle procedure allows us to ensure that the

optimizer will always use the same plan for a specific query. We’ll use the “frozen” execution

plan and run the query again:

SET STATISTICS XML ON
EXEC sp_executesql

N'SELECT *

FROM Sales.SalesOrderDetail

 JOIN Sales.SalesOrderHeader

Ion LUNGU, Nicolae MERCIOIU, Victor VLĂDUCU

 108

 ON Sales.SalesOrderHeader.SalesOrderID = Sales.SalesOrderDetail.SalesOrderID'

SET STATISTICS XML OFF

GO

We can easily see that the plan used is the one previously created.

The Optimize for unknown option causes the optimizer to use a standard algorithm to be

permanently employed to generate a query plan. Instead of using the actual values of the

parameters submitted by the application, the optimizer will consult all the statistical data to

determine which values could be used to generate an effective plan.

The approach known from the earlier versions of SQL Server was to use parameterized

queries which allowed saving and reusing the execution plans, avoiding recompilation. The

problem arose when the parameters values sent in recalling queries were not comparable to those

originally transmitted. On the first execution, the SQL Server would compile and save an

effective plan for those values. Subsequently, the same plan would cause a suboptimal query

execution.
DECLARE @C1 INT
DECLARE @C2 INT

SET @C1 = 5000000

SET @C2 = 400

SELECT * FROM TEST WHERE COL1 > @C1 or COL2 > @C2 ORDER BY COL1;

When the plan created by the previous query is deleted and the non-typical values 1 and 90

are given to the two variables C1 and C2, the optimizer creates, upon the re-execution of the

query, a plan that may be different from the first. In practice, as the query is the same, the

optimizer will keep and use the plan originally created, with the corresponding loss of

performance, for the subsequent values of the C1 and C2 variables. In order to avoid this

situation and benefit of the query parameterization, the previous query may be rewritten as:
SELECT * FROM TEST WHERE COL1 > @C1 or COL2 > @C2 ORDER BY COL1

OPTION (OPTIMIZE FOR (@C1 UNKNOWN, @C2 UNKNOWN))

5. CONCLUSIONS

The optimization process is iterative and includes steps like identifying bottlenecks, solving

them, measuring the impact of changes and reassessing the system from the first step as to

determine if satisfactory performance is achieved. This process allows a gradual improvement of

the performance but we should always keep in mind that performance depends on the amount of

data and the distribution of users’ activities within the application. These elements are dynamic

in time so regular performance review is needed.

There are many aspects that should be addressed in order to achieve optimal performance of

queries and SQL instance.

In principle, superior performance can be obtained by writing an efficient code at the

application level and properly using the design and database development techniques.

Nevertheless, changing the SQL Server configuration will not result in a significant

improvement of the performance.

REFERENCES

[1] G. Fritchey, S. Dam, “SQL Server 2008 Query Performance Tuning Distilled” Apress, 2009.

[2] MSDN, “Data Type Conversion“.

[3] MSDN, “Microsoft Patterns & Practices”.

[4] Pinal Dave, “Journey to SQL Authority ”.

