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Abstract

We reassess the gains from monetary policy coordination within the confines of

the canonical NOEM in the light of three issues. First, the literature uses a number

of cooperative and non-cooperative equilibrium concepts that do not always clearly

distinguish commitment and discretionary outcomes, and in some cases adopts inap-

propriate concepts. Second, our analysis is welfare based. Moreover, as with much

of this literature, we adopt a linear-quadratic approximation of the actual non-linear

non-quadratic stochastic optimization problem facing the monetary policymakers. Our

second objective then is to re-assess welfare gains using an accurate approximation

for such a problem, a feature that for the most part is lacking in previous studies.

Finally, we examine the issue where the monetary authority is restricted to rules that

are operational in two senses: first, the zero lower bound constraint is imposed on the

optimal rule and second, we study simple Taylor-type commitment rules that unlike

fully optimal rules are easily monitored by the public.
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1 Introduction

Following the seminal contribution of Obstfeld and Rogoff (1996), chapter 10, New Keyne-

sian open economy DSGE modelling, the ’New Open Economy Macroeconomics’, has been

a highly active area.1 Obstfeld and Rogoff developed a non-stochastic, perfect foresight

two-country general equilibrium model with first flexible prices, and then price-rigidity.

This model formed the basis for the emergence of a wave of New Open Economy stochas-

tic general equilibrium models that have been used to examine the potential welfare gains

from monetary policy coordination. The earlier of these studies were based on a very ba-

sic New Open Economy Model (NOEM) that assumed perfect financial markets, complete

exchange rate pass-through, the absence of a traded sector, wage flexibility and other

features that kept the analysis reasonably tractable (though ultimately the reliance on

numerical simulations to quantify the gains from cooperation still remained).2

The more recent papers have seen a reassessment of these gains using more empirical

and more developed DSGE models incorporating various persistence mechanisms, incom-

plete financial markets, incomplete exchange rate pass-through and a non-traded sector.3In

the words of Canzoneri et al. (2005), “what is yet to come” is the reassessment of welfare

gains from coordination using empirical DSGE models that embody these features.

This paper does not attempt this ambitious goal. Our aim instead is to remain more

or less within the confines of the canonical NOEM and to examine the no gains result

in the light of three issues. First, the literature uses a number of cooperative and non-

cooperative equilibrium concepts that do not always clearly distinguish commitment and

discretionary outcomes, and in some cases adopts inappropriate concepts. Second, our

analysis is welfare based. Moreover, as with much of this literature, we adopt a linear-

quadratic approximation of the actual non-linear non-quadratic stochastic optimization

problem facing the monetary policymakers. Our second objective then is to re-assess

welfare gains using an accurate approximation for such a problem, a feature that for the

most part is lacking in previous studies. Finally, we examine the issue where the monetary

authority is restricted to rules that are operational in two senses: first, the zero lower bound

1See also Obstfeld and Rogoff (2000) and a survey by Lane (2001).
2See, for example, Benigno and Benigno (2001), Obstfeld and Rogoff (2002) Clarida et al. (2002) and

Pappa (2004a).
3See, in particular, Sutherland (2004), Batini et al. (2005), Liu and Pappa (2005), Coenen et al. (2007).
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constraint is imposed on the optimal rule and second, we study simple Taylor-type rules

that unlike fully optimal rules are easily monitored by the public.

2 The Model

In this section set out a standard model, similar to Pappa (2004b).4 In her model there

is no non-traded sector, complete financial markets, only PCP setting, flexible wages, no

government spending, no habit, no indexation and only productivity shocks. Her model

allows for home bias and a non-unitary elasticity of substitution in the choice of domestic

and imported goods. We generalize to include external habit in consumption, government

spending, preference shocks, an oil shock and price indexing. Details of the model are as

follows.

2.1 Households

There are ν households in the ‘home’ bloc and ν∗ households in the ‘foreign’ bloc. A

representative household r in the home bloc maximizes

E0

∞∑

t=0

βtUC,t




(Ct(r) − HC,t)
1−σ

1 − σ
+ UM,t

(
Mt(r)

Pt

)1−ϕ

1 − ϕ
− UL,t

Lt(r)
1+φ

1 + φ
+ u(Gt)


 (1)

where Et is the expectations operator indicating expectations formed at time t, β is the

household’s discount factor, UC,t, UM,t and UL,t are preference shocks Ct(r) is an index

of consumption, Lt(r) are hours worked, HC,t represents the habit in consumption, or

desire not to differ too much from other households, and we choose HC,t = hCt−1, where

Ct = 1
ν

∑ν
r=1 Ct(r) is the average consumption index, h ∈ [0, 1). When h = 0, σ > 1 is the

risk aversion parameter (or the inverse of the intertemporal elasticity of substitution)5.

Mt(r) are end-of-period nominal money balances and Gt is exogenous per capita real

government spending assumed to be exclusively on non-traded domestic output. An anal-

ogous symmetric intertemporal utility is defined for the ‘foreign’ representative household

and the corresponding variables (such as consumption) are denoted by C∗

t (r), etc.

4Clarida et al. (2002) is a special case of her model. At various places in the paper we indicate how

their model and results can be obtained.
5When h 6= 0, σ is merely an index of the curvature of the utility function.
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The representative household r must obey a budget constraint:

PtCt(r) + Et[Qt,t+1Dt+1(r)] + Mt(r) = (1 − Tt)Wt(r)Lt(r) + Dt(r) + Mt−1(r)

+ (1 − Tt)Γt(r) + TRt (2)

where Pt is a Dixit-Stiglitz CPI price index defined in (4) below, Dt+1(r) is a random

variable denoting the payoff of the portfolio purchased at time t and Qt,t+1, the stochastic

discount factor, is the period-t price of an asset that pays one unit of domestic currency in

a particular state of period t + 1 divided by the probability of an occurrence of that state

given information available in period t. Wt(r) is the wage rate, Tt the income tax rate

and Γt(r) are dividends from ownership of firms.6 Finally TRt are lump-sum transfers to

households by the government net of lump-sum taxes

Assume the existence of nominal one-period riskless bonds denominated in domestic

currency with nominal interest rate It over the interval [t, t + 1]. Then arbitrage consid-

erations imply that Et[Qt,t+1] = 1
1+It

. In addition, if we assume that households’ labour

supply is differentiated with elasticity of supply η, then (as we shall see below) the demand

for each consumer’s labor supplied by ν identical households is given by

Lt(r) =

(
Wt(r)

Wt

)
−η

Lt (3)

where Wt =
[

1
ν

∑ν
r=1 Wt(r)

1−η
] 1

1−η and Lt =
[

1
ν

∑ν
r=1 Lt(r)

η−1

η

] η
η−1

are the average wage

index and average employment respectively.7

Let the number of differentiated goods produced in the home and foreign blocs be nH

and nF respectively. Each good is produced by a single firm and we assume that the the

ratio of households to firms are the same in each bloc, i.e., ν
n = ν∗

n∗
. It follows that n and

n∗ (or ν and ν∗) are measures of size. Then the per capita consumption index in the home

bloc is given by

Ct(r) =
[
w

1

µ CH,t(r)
µ−1

µ + (1 − w)
1

µ CF,t(r)
µ−1

µ

] µ
µ−1

; µ 6= 1

= w−w(1 − w)−(1−w)CH,t(r)
wCF,t(r)

1−w ; µ = 1 (4)

6The tax rate Tt can be interpreted as a total tax wedge (see Levine et al. (2006)).
7Note that if we normalize ν = 1 then as is more customary in the literature we can write Wt ≃[∫ 1

0
Wt(r)

1−ηdr
] 1

1−η
. However here we allow for different sized blocs with the foreign number of households

ν∗ 6= ν.
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where µ is the elasticity of substitution between home and foreign traded goods,

CH,t(r) =



(

1

nH

) 1

ζ
nH∑

f=1

CH,t(f, r)(ζ−1)/ζ




ζ/(ζ−1)

(5)

CF,t(r) =



(

1

nF

) 1

ζ
nF∑

f=1

CF,t(f, r)(ζ−1)/ζ)




ζ/(ζ−1)

(6)

CH,t(f, r) and CF,t(f, r) denote the home consumption of traded variety f produced in

blocs H and F respectively, ζ is the elasticities of substitution between varieties in each

bloc (note that we impose equality between blocs for this traded elasticity, i.e., ζ∗ = ζ),

and

w =
nHω

nHω + nF (1 − ω)
(7)

In (7) ω ∈ [12 , 1] is a parameter that captures the degree of ‘bias’ in the home bloc. If

ω = 1 we have autarky, while the lower extreme of ω = 1
2 gives us the case of no home bias

(perfect integration). If blocs are of equal size then nH = nF , w = ω and consumption only

favours home consumption if there is home bias.8 In the absence of home bias w = nH

nH+nF
,

w + w∗ = 1 and domestic/foreign consumption decisions depend only on relative size.

If PH,t(f), PF,t(f) are the prices in domestic currency of the good produced by firm

f in the relevant bloc, then the optimal intra-temporal decisions are given by standard

results:

CH,t(r, f) =

(
PH,t(f)

PH,t

)
−ζ

CH,t(r) ; CF,t(r, f) =

(
PF,t(f)

PF,t

)
−ζT

CF,t(r) (8)

CH,t(r) = w

(
PH,t

PT,t

)
−µ

Ct(r) ; CF,t(r) = (1 − w)

(
PF,t

Pt

)
−µ

Ct(r) (9)

where aggregate price indices for domestic and foreign consumption bundles of traded

goods are given by, respectively,

PH,t =


 1

nH

nH∑

f=1

PH,t(f)1−ζ




1

1−ζ

(10)

PF,t =


 1

nF

nF∑

f=1

PF,t(f)1−ζ




1

1−ζ

(11)

8The case µ → 1 without home bias is studied in Clarida et al. (2002). The effect of home bias in open

economies is also examined in Corsetti et al. (2002) and De Fiore and Liu (2002).
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and the aggregate price indices Pt, P ∗

t are given by

Pt = UOIL,t

[
w(PH,t)

1−µ + (1 − w)(PF,t)
1−µ
] 1

1−µ ; µ 6= 1

= UOIL,t(PH,t)
w(PF,t)

1−w ; µ = 1 (12)

P ∗

t = UOIL,t

[
w∗(P ∗

F,t)
1−µ∗

+ (1 − w∗)(P ∗

H,t)
1−µ∗

] 1

1−µ∗

= UOIL,t(P
∗

F,t)
w∗

(P ∗

H,t)
1−w∗

; µ∗ = 1 (13)

where UOIL,t is an oil price shock. Aggregate nominal consumption is then given by

PtCt = PH,tCH,t + PF,tCF,t (14)

It now follows that relative CPI prices
StP ∗

t

Pt
, the ‘real exchange rate’, and the terms

of trade, defined as the domestic currency relative price of imports to exports, Tt =
PF,t

PH,t
,

are related by the relationship

RERt ≡
StP

∗

t

Pt
=

[
w∗(Tt)

1−µ∗

+ (1 − w∗)1−µ∗
] 1

1−µ∗

[
w + (1 − w)T 1−µ

t

] 1

1−µ

; µ 6= 1, µ∗ 6= 1

= T w+w∗
−1

t ; µ = µ∗ = 1, (15)

Thus if µ = µ∗, then the law of one price applies to the CPI price indices iff w∗ = 1 − w.

The latter condition holds if there is no home bias. If there is home bias, the real exchange

rate,
StP ∗

t

Pt
, rises (a depreciation) as the terms of trade, T , rises (a depreciation).9

Now consider the consumption, money demand and labour supply decisions of the

representative household. We first consider the case of flexible wages. Then maximizing (1)

subject to (2) and (3), treating habit as exogenous, and imposing symmetry on households

(so that Ct(r) = Ct, etc) yields standard results:

Qt,t+1 = β
MUC

t+1

MUC
t

Pt

Pt+1
(16)

MUM
t = MUC

t

[
It

1 + It

]
(17)

Wt(1 − Tt)

Pt
= −

1(
1 − 1

η

)MUL
t

MUC
t

≡
1(

1 − 1
η

)MRSt (18)

9Clarida et al. (2002) assumed no bias and µ = µ∗ = 1 in which case RERt = 1 (law of one price for

CPI indices).
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where MUC
t , MUM

t and −MUL
t are the marginal utility of consumption, money holdings

and the marginal disutility of work respectively. Taking expectations of (16) we arrive at

the following familiar Keynes-Ramsey rule:

1 = β(1 + It)Et

[
MUC

t+1

MUC
t

Pt

Pt+1

]
(19)

In (17), the demand for money balances depends positively on consumption relative to

habit and negatively on the nominal interest rate. Given the central bank’s setting of the

latter and ignoring seignorage in the government budget constraint, (17) is completely

recursive to the rest of the system describing our macro-model and will be ignored in the

rest of the paper. In (18) the real disposable wage is proportional to the marginal rate

of substitution between consumption and leisure, −
MUL

t

MUC
t

, this constant of proportionality

reflecting the market power of households that arises from their monopolistic supply of a

differentiated factor input with elasticity η.

2.2 Producers

In the domestic sector, each good differentiated good f is produced by a single firm f

using only differentiated labour with another constant returns CES technology:

Yt(f) = At

[(
1

ν

) 1

η
ν∑

r=1

Li,t(f, r)(η−1)/η

]η/(η−1)

≡ AtLt(f) (20)

where Lt(f, r) is the labour input of type r by firm f and At is an exogenous shock captur-

ing shifts to trend total factor productivity in this sector. Minimizing costs
∑ν

f=1 Wt(r)Lt(f, r)

gives the demand for each household’s labour by firm f as

Lt(f, r) =

(
Wt(r)

Wt

)
−η

Lt(f) (21)

and aggregating over firms leads to the demand for labor as shown in (3).10

In a equilibrium of equal households, all wages adjust to the same level Wt. For later

analysis it is useful to define the real marginal cost (MC) as the wage relative to domestic

10Note that in a symmetric equilibrium of identical firms and households, total demand for labour of

type r by firms is Lt(r) =
∑nH

f=1
Lt(f, r). Hence Lt =

∑nH

f=1
Lt(f) =

∑nH

r=1
Lt(r), nHLt(f) = νLt(r). Such

a symmetric equilibrium applies to the flexi-price case of our model, but not to the sticky-price case where,

at each point in time, some firms are locked into price and wage contracts, but others are re-optimizing

these contracts.
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producer price. Using (18) this can be written as

MCt ≡
Wt

AtPH,t
=

ηUL,t

(η − 1)(1 − Tt)At
Lφ

t (Ct − HC,t)
σ

(
Pt

PH,t

)
(22)

Turning to price-setting we assume that there is a probability of 1− ξH at each period

that the price of each good f is set optimally to P̂H,t(f). If the price is not re-optimized,

then it is indexed to last period’s aggregate producer price inflation.11 With indexation

parameter γH ≥ 0, this implies that successive prices with no re-optimization are given by

P̂H,t(f), P̂H,t(f)
(

PH,t

PH,t−1

)γH

, P̂H,t(f)
(

PH,t+1

PH,t−1

)γH

, ... . For each producer f the objective

is at time t to choose P̂H,t(f) to maximize discounted profits

Et

∞∑

k=0

ξk
HQt,t+kYt+k(f)

[
P̂H,t(f)

(
PH,t+k−1

PH,t−1

)γH

− PH,t+kMCt+k

]
(23)

where Qt,t+k is the discount factor over the interval [t, t + k], subject to a common12

downward sloping demand from domestic consumers and foreign importers of elasticity ζ

as in (8). The solution to this is

Et

∞∑

k=0

ξk
HQt,t+kYT,t+k(f)

[
P̂H,t(f)

(
PH,t+k−1

PH,t−1

)γH

−
ζ

(ζ − 1)
PH,t+kMCt+k

]
= 0 (24)

and by the law of large numbers the evolution of the price index is given by

P 1−ζ
H,t+1 = ξH

(
PH,t

(
PH,t

PH,t−1

)γH
)1−ζ

+ (1 − ξH)(P̂H,t+1(f))1−ζ (25)

The first-order condition (24) is cumbersome to manipulate. However it is possible

to express this price-setting rule in terms of difference equations that are far easier to

manipulate. To do this first note that

Yt+k(j) =

(
P̂H,t

PH,t+k

)
−ζ

Yt+k (26)

and multiplying both sides of (24) by (
P̂H,t

PH,t
)ζMUC

t and in addition noting that PH,t+k/PH,t =

ΠH,t+k...ΠH,t+1, the firms’ staggered price setting can be succinctly described by

QH,t = Λt/Ht (27)

11Thus we can interpret 1

1−ξH
as the average duration for which prices are left unchanged.

12Recall that we have imposed a symmetry condition ζ = ζ∗ at this point; i.e., the elasticity of substi-

tution between differentiated goods produced in any one bloc is the same for consumers in both blocs.
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where we have defined variables ΠH,t, Π̃H,t, QH,t, Ht and Λt by

ΠH,t ≡
PH,t

PH,t−1
(28)

Π̃H,t ≡
ΠH,t

ΠγH

H,t−1

(29)

QH,t ≡
P̂H,t

PH,t
(30)

Ht − ξβEt[Π̃
ζ−1
H,t+1Ht+1] = Yt MUC

t (31)

Λt − ξβEt[Π̃
ζ
H,t+1Λt+1] =

Yt MCt MUC
t

(1 − 1/ζ)
=

Yt
Wt

AtPt
MUC

t

(1 − 1/ζ)
(32)

and from (25) aggregate inflation is given by

1 = ξHΠ̃ζ−1
H,t + (1 − ξH)Q1−ζ

H,t (33)

This completes the supply-side in the home bloc. Analogous results hold for the foreign

bloc.

2.3 Price Dispersion

The impact of price dispersion arises from labour input being the same for each individual,

but dependent on demand for each good:

Lt =

∫ 1

0
Lt(j)dj =

Yt

At

∫ 1

0

Yt(j)

Yt
dj =

Yt

At

∫ 1

0

(
PH,t(j)

PH,t

)
−ζ

dj (34)

Now define price dispersion ∆t =
∫ 1
0 (

PH,t(j)
PH,t

)−ζdj ≥ 1. Equality is reached only when

prices are flexible and therefore the same, as all firms are identical except in their timing

of price changes. Now we can write down aggregate output as

Yt =
AtLt

∆t
≤ AtLt (35)

which clearly highlights the output distortion caused by price dispersion ∆t ≥ 1.

Price dispersion is linked to inflation as follows. Assuming as before that the number

of firms is large we obtain the following dynamic relationship:

∆t = ξΠ̃ζ
H,t∆t−1 + (1 − ξ)Q−ζ

H,t (36)

8



2.4 The Equilibrium

In equilibrium, goods markets, money markets and the bond market all clear. Equating

the supply and demand of the home consumer good we obtain

Yt =
AtLt

∆t
= CH,t +

ν∗

ν
C∗

H,t + Gt (37)

(38)

Fiscal policy is rudimentary: a balanced government budget constraint13

PH,tGt + TIt = Tt(PH,tCH,t +
ν∗

ν
StP

∗

H,tC
∗

H,t + PH,tGt) ≡ Tt GDPt (39)

where GDPt is nominal GDP, completes the model. As in Coenen et al. (2005) we further

assume that changes in government spending are financed exclusively by changes in lump-

sum taxes with the tax rates Tt, held constant at its steady-state value.

From (16) and its foreign counterpart we have

Qt,t+1 = β
MUC

t+1

MUC
t

Pt

Pt+1
= β

MUC ∗

t+1

MUC ∗

t

P ∗

t St

P ∗

t+1St+1
(40)

Let zt =
StP ∗

t

Pt

MUC
t

MUC ∗

t

. Then assuming identical holdings of initial wealth in the two blocs,

(40) implies that zt+1 = zt = z0 where initial relative consumption in prices denominated

in the home currency reflects different initial wealth in the two blocs. Therefore14

MUC
t

MUC ∗

t

=
z0Pt

StP ∗

t

=
z0

RERt
(41)

Given nominal interest rates It, I
∗

t the money supply is fixed by the central banks to

accommodate money demand. By Walras’ Law we can dispense with the bond market

equilibrium condition. Then the equilibrium is defined at t = 0 as stochastic sequences

Ct, CH,t, CF,t, PH,t, PF,t, Pt, Mt, Wt, YH,t, Lt, , Lt, P̂H,t, 16 foreign counterparts C∗

t , etc,

RERt, and Tt, given past price indices and exogenous processes UC,t, UM,t, UL,t, At, TRt,

Gt and foreign counterparts.

13In this cashless economy, we ignore seignorage and consistent with this we later ignore the utility from

money balances in the household welfare function.
14(41) is the risk-sharing condition for consumption, because it equates marginal rate of substitution

to relative price, as would be obtained if utility were being jointly maximized by a social planner (see

Sutherland (2002)). Note that (79) and (41) together imply the stochastic UIP condition (see Benigno and

Benigno (2001)).
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2.5 Steady State

A deterministic zero-inflation steady state, denoted by variables without the time sub-

scripts, UC,t = UOIL,t = 1 and UL,t = κ is given by

CH = w

(
PH

P

)
−µ

C (42)

CF = (1 − w)

(
PF

P

)
−µ

C (43)

P =
[
wP 1−µ

H + (1 − w)P 1−µ
F

] 1

1−µ
; µ 6= 1

= Pw
H P 1−w

F ; µ = 1 (44)

W (1 − T )

P
=

κLφ((1 − h)C)σ

1 − 1
η

(45)

1 = β(1 + I) (46)

∆ = 1 (47)

Y = AL (48)

PH = P̂H =
W

A
(
1 − 1

ζT

) (49)

PF = SP ∗

F (50)

Y = CH +
ν∗

ν
C∗

H + G (51)

T =
PHG + TR

GDP
=

PHG + TR

PC + PHG
(52)

plus the 11 foreign counterparts and

T =
PF

PT
(53)

RER =
SP ∗

P
=

[
w∗T 1−µ∗

+ 1 − w∗
] 1

1−µ∗

[w + (1 − w)T 1−µ]
1

1−µ

; µ 6= 1, µ∗ 6= 1

= T w+w∗
−1 ; µ = µ∗ = 1 (54)

C(1 − h)

C∗(1 − h∗)
=

(
RERt

z0

) 1

σ

(55)

We now have gives 25 equations to determine the steady state of 27 endogenous vari-

ables: C, CH , CF , P , W , L, I, ∆, Y , PH = P̂H , PF , T , 12 foreign counterparts C∗ etc,

T , S, and RER given G, TR and z0.
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To pin down price levels we need to re-introduce money equate money demand and

its foreign counterpart with exogenously set money supplies in the two blocs, which then

gives us a determinate steady state of the model. It is convenient to assume that money

supplies in our steady state are set so as to result in S = 1 and dispense with the money

demand equations. Furthermore, as is standard in general equilibrium models, we choose

units of output appropriately so that steady-state prices of the two goods in their own

currencies are unity; i.e, PH = P ∗

F = 1. With this normalization and the fact that the law

of one price holds in the steady state, we have that P = PF = T = RER = 1. Similarly

for the foreign bloc P ∗ = P ∗

H = 1. Thus in the steady state we can normalize all prices at

unity, an extremely convenient property when it comes to the linearization.

2.5.1 The Inefficiency of the Steady State

In our model there are three sources of inefficiency: the tax wedge, labour and output

market power, and external habit. Later in the LQ approximation of the policymakers’

optimization problems these inefficiencies in the steady state play a prominent role. In a

symmetric model of two identical economies the steady state trade balance is zero and we

can appeal to results from Choudhary and Levine (2006). Then the zero-inflation steady

state output in the market economy above and the steady state of the social optimum are

given respectively by

Y φ+σ =
A1+φ(1 − T )(1 − 1

ζ )(1 − 1
η )

κ(1 − h)σ(1 − gy)σ
(56)

Ŷ φ+σ =
A1+φ(1 − βh)

κ(1 − h)σ(1 − gy)σ
(57)

It follows that we can measure the net effect of distortions by

Φy ≡

(
1 −

Y

Ŷ

)
= 1 −

(1 − T )
(
1 − 1

ζ

)(
1 − 1

η

)

(1 − hβ)
≥ or ≤ 0 (58)

In the case where there is no habit persistence (h = 0), then Φy > 0. Then tax distortions

and market power in the output and labour markets, captured by the elasticities η ∈ (0,∞)

and ζ ∈ (0,∞) respectively, drive the market equilibrium output below the efficient level.

If h = T = 0 and η = ζ = ∞, tax distortions and market power both disappear, Φy = 0 and

the steady state market equilibrium is efficient. But if h > 0, this leads to the possibility

that Φy < 0 and then the market equilibrium output is actually above the efficient level
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(see Choudhary and Levine (2006)). Then the household’s consumption-leisure choose

leads to excessive levels of work effort and consumption and insufficient leisure relative to

the social optimum.

2.6 Linearized Model

Linearizing about the steady state set out in section 2.5 we obtain the following state-space

representation. All variables are expressed in deviation form15

at+1 = ρaat + ǫa,t+1

a∗t+1 = ρ∗aa
∗

t + ǫ∗a,t+1

uC,t+1 = ρCuC,t + ǫC,t+1

u∗

C,t+1 = ρ∗Cu∗

C,t + ǫ∗C,t+1

gt+1 = ρggt + ǫg,t+1

g∗t+1 = ρ∗gg
∗

t + ǫ∗g,t+1

et+1 = ρeet + ǫe,t+1

e∗t+1 = ρ∗ee
∗

t + ǫ∗e,t+1

oilt+1 = ρooilt + ǫo,t+1

EtmuC
t+1 = muC

t − (it − Etπt+1)

EtmuC ∗

t+1 = muC ∗

t − (i∗t − Etπ
∗

t+1)

βEtπH,t+1 = πH,t − γHπH,t−1 − λHmct − et

βEtπ
∗

F,t+1 = π∗

F,t − γ∗

F πF,t−1 − λ∗

F mc∗t − e∗t

Non-state-space variables, ot, are given by

mrst = muL
t − muC

t

mrs∗t = muL ∗

t − muC ∗

t

15That is, for a typical variable Xt, xt = Xt−X

X
≃ log

(
Xt

X

)
where X is the baseline steady state. For

variables expressing a rate of change over time, πt and it, xt = Xt − X. Since steady-state inflation is

zero πt is the actual inflation rate, but it = It − I . Since Xt−X
X

≃ log
(

Xt

X

)
a log-linearization leads to

practically the same linear form of the dynamic model, but, as we will see, to quite different quadratic

approximations of the loss function.
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πH,t, π∗

F,t producer price inflation over interval [t − 1, t]

πF,t, π∗

H,t imported price inflation over interval [t − 1, t]

πt, π∗

t CPI inflation over interval [t − 1, t]

it, i∗t nominal interest rate over interval [t, t + 1]

mct, mc∗t marginal cost

muC
t , muC ∗

t marginal utility of consumption

muL
t , muL ∗

t marginal utility of labour supply

ct, c∗t consumption

yt, y∗t output

lt, l∗t employment

at, a∗t total factor productivity shock

gt, g∗t government spending shock

uC,t, u∗

C,t, uL,t, u∗

L,t preference shocks

et, e∗t mark-up shock

oilt oil shock

rert real exchange rate

τ = −τ∗ terms of trade

β discount parameter

γH , γ∗

F indexation parameter

h, h∗ habit parameters

λH = (1−βξH)(1−ξH )
ξH

Phillips Curve Parameter in H Country

λ∗

F =
(1−βξ∗F )(1−ξ∗F )

ξ∗
F

Phillips Curve Parameter in F Country

1 − ξH , 1 − ξ∗F probability of a price re-optimization

σ, σ∗ risk-aversion parameter

φ, φ∗ disutility of labour supply parameter

w − 1
2 , w∗ − 1

2 degree of home bias

Table 1: Summary of Notation (Variables in Deviation Form)
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σ

(1 − h)
ct = −muC

t + uC,t +
hσ

(1 − h)
ct−1

σ

(1 − h)
c∗t = −muC ∗

t + u∗

C,t +
h∗σ∗

(1 − h∗)
c∗t−1

muL
t = φlt + uL,t

muL ∗

t = φ∗l∗t + u∗

L,t

mct ≡ mrst − at + pt − pH,t

mc∗t ≡ mrs∗t − a∗t + p∗t − p∗F,t

cH,t = ct − µ(pH,t − pt) = ct + µ(1 − w)τt

c∗H,t = c∗t − µ∗(p∗H,t − p∗t ) = c∗t + w∗µ∗τt

cF,t = ct − µ(pF,t − pt) = ct − µwτt

c∗F,t = c∗t − µ∗(p∗F,t − p∗t ) = c∗t − µ∗(1 − w∗)τt

yt = αHcH,t + αF c∗H,t + (1 − αH − αF )gt

y∗t = α∗

F c∗F,t + α∗

HcF,t + (1 − α∗

F − α∗

H)g∗t

lt = yt − at

l∗t = y∗t − a∗t

πt ≡ pt − pt−1 = wπH,t + (1 − w)πF,t + oilt

π∗

t = w∗π∗

F,t + (1 − w∗)π∗

H,t + oilt

π∗

H,t ≡ p∗H,t − p∗H,t−1 = πH,t + π∗

t − πt − ∆rert

πF,t ≡ pF,t − pF,t−1 = ∆rert + πt − π∗

t + π∗

F,t

Etπt+1 = wEtπH,t+1 + (1 − w)EtπF,t+1 + ρooilt

Etπ
∗

t+1 = w∗Etπ
∗

F,t+1 + (1 − w∗)Etπ
∗

H,t+1 + ρooilt

Etπ
∗

H,t+1 = EtπH,t+1 + Etπ
∗

t+1 − Etπt+1 − (Etrert+1 − rert)

EtπF,t+1 = Etrert+1 − rert + Etπt+1 − Etπ
∗

t+1 + Etπ
∗

F,t+1

Etrert+1 = EtmuC ∗

t+1 − EtmuC
t+1

rert = muC ∗

t − muC
t

(w∗ + w − 1)τt = rert

14



The flexi-price zero expected inflation economy and output gap are given by

Etm̂uC
t+1 = m̂uC

t − r̂t ( determines r̂t)

Etm̂uC ∗

t+1 = m̂uC ∗

t − r̂∗t ( determines r̂∗t )

m̂ct = 0 = ŵrt − at − (1 − w)τ̂t ( determines ŵrt)

m̂c∗t = 0 = ŵr∗t − a∗t + (1 − w∗)τ̂t ( determines ŵr∗t )

m̂rst = ŵrt = m̂uL
t − m̂uC

t ( determines m̂uC
t )

m̂rs∗t = ŵr∗t = m̂uL ∗

t − m̂uC ∗

t ( determines m̂uC ∗

t )

σ

(1 − h)
ĉt = −m̂uC

t + uC,t +
hσ

(1 − h)
ĉt−1

σ

(1 − h)
ĉ∗t = −m̂uC ∗

t + u∗

C,t +
h∗σ∗

(1 − h∗)
ĉ∗t−1

m̂uL
t = φl̂t + uL,t + uC,t

m̂uL ∗

t = φ∗ l̂∗t + u∗

L,t + u∗

C,t

r̂ert = m̂uC ∗

t − m̂uC
t

l̂t = ŷt − at

l̂∗t = ŷ∗t − a∗t

ŷt = αH ĉt + αF ĉ∗t + [αHµ(1 − w) + αF µ∗w∗]τ̂t

ŷ∗t = α∗

F ĉ∗t + α∗

H ĉt − [α∗

F µ∗(1 − w∗) + α∗

Hµw]τ̂t

(w∗ + w − 1)τ̂t = r̂ert

ogapt = ŷt − yt

ogap∗

t = ŷ∗t − y∗t

The whole model can now be written in the required state space form as


 zt+1

Etxt+1


 = A


 zt

xt


+ Bot + C


 it

i∗t


+ Dǫt+1 (59)

Fot = H


 zt

xt


 (60)

where zt = [shocks at, a
∗

t etc, πH,t−1, π∗

F,t−1] is a vector of predetermined variables and

xt = [muC
t ,muC ∗

t , πH,t, πF,t] is a vector of non-predetermined or ‘jump’ variables.
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3 Equilibrium Concepts

3.1 Cooperation, Non-Cooperation, Commitment and Discretion

Optimal policy can be formulated independently by each monetary authority. However In

addition to the time-inconsistency problem there is a second classical problem first raised

by Hamada (1976): in an open economy, rules designed for the single economy may perform

badly in a world Nash equilibrium when all countries pursue similar optimal policies. In

the open economy the optimal monetary policy requires all policymakers to cooperate,

maximizing an agreed global welfare, and to be able to commit not just with respect to

each other but collectively with respect to the private sector too. These considerations

lead to a number of possible equilibria depending on whether policymakers cooperate and

can commit to the private sector and whether they can commit with respect to each other

(i.e., can cooperate).

Consider symmetrical equilibria in the sense that all authorities can either commit or

not with respect to the private sector. In the absence of any commitment mechanism for

players all authorities must independently pursue discretionary policies (non-cooperation

with discretion (ND)). If authorities can cooperate (i.e., can commit to each other) and can

commit with respect to the private sector, then the socially optimal policy with respect

to an agreed global objective function can be achieved (cooperation with commitment

to the private sector, CC). The remaining possible equilibria are those where (for some

reason) authorities can commit to each other but not to the private sector (cooperation

with discretion, CD) or vice versa, they can commit to the private sector but not to each

other (non-cooperation with commitment to the private sector, NC). Table 6 summarizes

these four possibilities.

Commitment Discretion

Cooperation CC CD

Non-cooperation NC ND

Table 2. Possible Equilibria

For linear-quadratic dynamic games, these equilibria are formulated in Levine and Cur-

rie (1987a), Levine and Currie (1987b), Currie and Levine (1993), Currie et al. (1996)) and

summarized in Appendix A. General procedures, not specific to any one model, for their
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calculation and software for their computation have been developed (see Kemball-Cook

et al. (1995).) In a two-bloc model the potential gains from commitment in the absence of

coordination can be quantified by comparing the welfare in equilibria NC and ND. These

‘gains’ can be negative: as in Levine and Currie (1987b), for an ad hoc ‘Old Keynesian’

model commitment without coordination may be counterproductive. Similarly one can as-

sess the potential gains from coordination in the absence of commitment by comparing

equilibria CD and ND and revisit the possibility of counterproductive cooperation found

by Rogoff (1985).

To realize the full potential gain from monetary policy coordination between the two

blocs requires a combination of commitment and coordination; i.e., equilibrium CC and

this can be be quantified by comparing CC with the non-cooperative alternatives, NC or

ND. The first wave of the new Keynesian open economy models that revisited this old

issue in the literature cited above suggested that these gains are not substantial compare

with the gains from stabilization. Referring to table 6, Clarida et al. (2002) compare CD

and ND and show there exists gains from CC if and only if σ 6= 1. Pappa (2004a) and

Benigno and Benigno (2001) compare CC and NC. Pappa (2004a) shows gains are small

and Benigno and Benigno (2001) show that CC can be sustained as an NC equilibrium by

delegation to a central bank with an appropriate loss function. Finally Currie and Levine

(1993) compare CC and ND, but using an ad hoc model and utility function.

3.2 Welfare-Based Versus Real World Equilibria

In most of the recent literature the policymaker pursues the welfare-based objective based

on the underlying utility function of the household. Then the gains from coordination are

calculated as the increase in welfare. However Svensson (2003) proposes a totally different

equilibrium concept: central banks in reality adopt a loss function of the form

∞∑

t=0

βt
[
o2
t + wππ2

t + wii
2
t

]
(61)

for the home bloc, where ot = yt − ŷt is the output gap.
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What we observe is not (61) but reaction functions of various possible forms:

it = ρit−1 + θππH,t + θyogapt (62)

it = ρit−1 + θππH,t + θyyt (63)

it = ρit−1 + θππH,t + θy∆yt (64)

Then armed with estimates ρ, θπ and θy we can reverse-engineer the implied coefficients wπ

and wi from the non-cooperative Nash equilibrium in such rules. This is computationally

expensive but possible, at least for the simple model in this section. Having obtained wπ

and wi the corresponding cooperative equilibrium can be calculate. Finally the welfare

gains can be evaluated using the welfare-based utility function.

4 LQ Approximation

This section sets out the two forms of linear-quadratic approximation of the non-linear

stochastic optimization problems that characterize the welfare-based equilibria concepts

set out in the previous section. We distinguish between an equilibrium of social planners

and Ramsey planners.

4.1 Social Planners

Without cooperation the home policymaker be her a social or Ramsey planners at time

t = 0 maximizes an expected loss function

Ω0 = E0

∞∑

t=0

βtUC,t

[
(Ct − hCt−1)

1−σ

1 − σ
−

UL,t

1 + φ
L1+φ

t

]
≡ E0

∞∑

t=0

βtŴt (65)

subject to the resource constraint

Yt =
AtLt

∆t
= CH,t + C∗

H,t + Gt = w

(
PH,t

Pt

)
−µ

Ct + (1 − w∗)

(
P ∗

H,t

P ∗

t

)−µ∗

C∗

t

= UOIL,t

([
w + (1 − w)T 1−µ

t

] µ
1−µ

Ct +
[
w∗T

1−µ
t + (1 − w∗)

] µ∗

1−µ∗

C∗

t

)
+ Gt

(µ 6= 1, µ∗ 6= 1) (66)

and the risk-sharing condition

UC,t(C
∗

t − hC∗

t−1)
σ∗

U∗

C,t(Ct − hCt−1)σ
= RERt =

[
w∗(Tt)

1−µ∗

+ (1 − w∗)1−µ∗
] 1

1−µ∗

[
w + (1 − w)T 1−µ

t

] 1

1−µ

(µ 6= 1, µ∗ 6= 1)

(67)
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Since staggered price-setting is absent, ∆t = 1 and these are the only constraints facing the

home social planner. In a non-cooperative social planner’s equilibrium, given the foreign

social planner’s allocation C∗

t , L∗

t , the terms of trade are pinned down by the risk-sharing

condition leaving the home planner able to choose Ct, Lt to maximize (65) subject to the

resource constraint (66). For the foreign bloc we define an analogue of (65) denoted by

Ω∗

0, its resource constraint

Y ∗

t =
A∗

t L
∗

t

∆∗

t

= C∗

F,t + CF,t + G∗

t = w∗

(
P ∗

F,t

P ∗

t

)−µ∗

C∗

t + (1 − w)

(
PF,t

Pt

)
−µ

Ct

= UOIL,t

([
w∗ + (1 − w∗)T µ∗

−1
t

] µ∗

1−µ∗

C∗

t +
[
wT

µ−1
t + (1 − w)

] µ
1−µ

Ct

)
+ G∗

t

(µ 6= 1, µ∗ 6= 1) (68)

with ∆∗

t = 1.

In the cooperative social planners equilibrium the two policymakers jointly maximize

some agreed linear combination αΩ0 + (1 − α)Ω∗

0, α ∈ [0, 1], with respect to Ct, Lt and

C∗

t , L∗

t subject to (66), (68) and (67).

We restrict our results to the case of a symmetric equilibrium of identical economies

with a unitary elasticity µ = µ∗ = 1. Then for the non-cooperative and cooperative steady

states we have, respectively

(Ŷ NC)φ+σ =
A1+φ(1 − βh)w

(
2(1 − w)(1 − βh) + 2w−1

σ (1 − h)
)

κ(1 − h)σ(1 − gy)σ
(
4w(1 − w)(1 − βh) + (2w−1)2

σ (1 − h)
) (69)

(Ŷ C)φ+σ =
A1+φ(1 − βh)

κ(1 − h)σ(1 − gy)σ
(70)

For later use we require the Taylor series second-order expansions, about these two steady

states, of the single-period loss functions, Wt and W ∗

t in the non-cooperative equilibrium,

and W C
t ≡ Wt + W ∗

t for the symmetric cooperative equilibrium. These are given respec-
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tively by

Ŵ NC
t = wc(ct − hct−1)

2 + wyy
2
t + wyaytat + wNC

τ τ2
t + wNC

cτ ctτt + wNC
hτ (ct − hct−1)τt

+ wNC
gτ τtgt + wNC

cc (ct − hct−1)uC,t + wNC
oc oiltct + wNC

ya ytat

+ wNC
yl yt(uC,t + uL,t) + wNC

hC∗
(ct − hct−1)u

∗

C,t + wNC
τC∗

τtu
∗

C,t + wNC
oy oiltyt + wNC

oτ oiltτt

+ (t.i.p)NC + third order terms (71)

Ŵ C
t = wc((ct − hct−1)

2 + (c∗t − hc∗t−1)
2) + wy(y

2
t + (y∗t )

2) + wya(ytat + yta
∗

t ) + wC
τ τ2

t

+ wC
cc(uC,t(ct − hct−1) + u∗

C,t(c
∗

t − hc∗t−1)) + wC
ocoilt(ct + c∗t )

+ wC
ya(ytat + y∗t a

∗

t ) + wC
yl(yt(uC,t + uL,t) + y∗t (u

∗

C,t + u∗

L,t))

+ (t.i.p)C + third order terms (72)

where weights wy etc are derived in Appendix B. Note that cooperative quadratic form is

not a simple sum of the non-cooperative forms; in particular the contribution of the terms

of trade and shock processes are different in these two cases.

4.2 Ramsey Planners

Ramsey planners in both non-cooperative and cooperative games have the same objectives

as their social planing counterpart, but without the ability to plan consumption and labour

supply paths. Instead they face a decentralized economy given by resource constraints,

the market-sharing condition plus the price-setting behaviour of firms and the households’

Euler equations. Gathering up previous results the former, for the home bloc, are given

by

QH,t = Λt/Ht (73)

Ht − ξβEt[Π̃
ζ−1
H,t+1Ht+1] =

PtYt

PH,t
MUC

t (74)

Λt − ξβEt[Π̃
ζ
H,t+1Λt+1] =

Yt MCt MUC
t

(1 − 1/ζ)
=

Yt
Wt

AtPH,t
MUC

t

(1 − 1/ζ)
(75)

where ΠH,t, Π̃H,t and QH,t are defined by

ΠH,t ≡
PH,t

PH,t−1
(76)

Π̃H,t ≡
ΠH,t

ΠγH

H,t−1

(77)

1 = ξHΠ̃ζ−1
H,t + (1 − ξH)Q1−ζ

H,t (78)
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and the Euler equation is

1 = β(1 + It)Et

[
(Ct+1 − hCt)

−σ

(Ct − hCt−1)−σ∗

1

(1 + Πt+1)

]
(79)

Analogous results apply to the foreign bloc.

Much of the literature (for example, Clarida et al. (2002), Pappa (2004a)) now assumes

that the Ramsey planners can use tax instruments Tt and T ∗

t to bring the zero-inflation

steady state of the decentralized economies in line with the social optima. For the non-

cooperative and cooperative games this require respectively, tax wedges

TNC = 1 −
(1 − hβ)w

(
2(1 − w)(1 − βh) + 2w−1

σ (1 − h)
)

4w(1 − w)(1 − βh) + (2w−1)2

σ (1 − h))
(
1 − 1

ζ

)(
1 − 1

η

) (80)

TC = 1 −
(1 − hβ)(

1 − 1
ζ

)(
1 − 1

η

) (81)

Then Φy = 0 and the zero-inflations, zero-trade-balance steady state of section 2.6 is

efficient. Note first, that TNC > TC : in a Nash equilibrium of social planners, the

incentive to improve the terms of trade by restricting output leads each planner to choose

a higher distortionary tax wedge. Second, as w increases from w = 1
2 , for the case of

no bias, to w = 1 for two closed economies then TNC falls from TNC = 1
2(1 + TC) to

TNC = TC .

We have calibrated our symmetric two-bloc model to US data and in particular chosen

15% and 20% mark-ups in the product and labour markets respectively. This gives ζ =

7.674 and η = 5. With the habit and discount factor calibrated at h = 0.5 and β = 0.99

(both on a quarterly basis), it follows that the optimal cooperative tax wedge is TC =

0.274 and the non-cooperative rate can be as high as TNC = 0.637. We have chosen the

calibrated value w = 0.75 for which TNC = 0.533. Interestingly, these tax rates compares

with a total tax wedge (consisting of taxes on consumption and income plus social security

contribution) of T = 0.373 for the US and T = 0.641 for the euro area, reported in Coenen

et al. (2007).

The nature of the game is a two-stage process which we refer to as the two-stage

Ramsey game. At stage 1 tax wedges are chosen so as to bring the steady state of the

decentralized economy in line with the socially optimal allocation. In a non-cooperative

game, each social planner’s choice of consumption and leisure is a best response to the

choice of the other; i.e., a Nash equilibrium in the individual blocs’ social optima. In the
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quadratic approximation (71), terms independent of policy (t.i.p), involve outcomes in the

other bloc and are t.i.p only for this particular game.

In the second stage the monetary instruments are used to achieve, as far as possible,

the outcome of the first stage, but now there is staggered price-setting, inflation and costs

of inflation from price dispersion. From Appendix B, the Ramsey loss functions can now

be shown to take the approximate quadratic form

W NC
t = Ŵt + wπ(πH,t − γHπH,t−1)

2 (82)

(W ∗

t )NC = (Ŵ ∗

t )NC + w∗

π(π∗

F,t − γ∗

F π∗

F,t−1)
2 (83)

W C
t = Ŵ C

t + wπ(πH,t − γHπH,t−1)
2 + w∗

π(π∗

F,t − γ∗

F π∗

F,t−1)
2 (84)

where wπ and w∗

π are defined in that Appendix.

The Nash equilibrium at this stage depends on the monetary instrument; these could

be inflation targets with nominal interest rates subsequently chosen to exactly achieve

these targets; or they can be the nominal interest rates themselves. The Nash equilibria

in nominal interest rates can be open-loop with the authorities responding to each other’s

interest rate paths. More appropriate in a stochastic environment with commitment are

closed-loop Nash equilibria with each authority choosing their best response to each other’s

feedback commitment rule.

Since we are interested in the gains from monetary policy coordination with indepen-

dent central banks we need to consider the Ramsey planner as a monetary authority with

only monetary but not fiscal instruments available. We refer to this as a single-stage

Ramsey game. Then tax wedges are given in the monetary policy game. Under what cir-

cumstances are the quadratic approximations (82) and (84) then appropriate for Ramsey

games? If the fiscal authorities have set their tax wedges close to TNC then (82) is a

good ‘small distortions’ approximation. But then the tax wedge is far higher than that

for cooperation and (84) is not a good ‘small distortions’ approximation for that game.

A similar argument holds if the fiscal authorities have set their tax wedges close to TC .

In short, (82) and (84) cannot both be good ‘small distortions’ approximations if the tax

wedge is given to the monetary authority.

Given the game we are interested in we now consider two Ramsey planners choosing

monetary instruments to maximize household welfare in an environment consisting of a

decentralized economy with possibly large distortions in the zero-inflation steady state..
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We show in Levine et al. (2007), the procedure for achieving an accurate LQ approximation

for each equilibrium concept is as follows16:

1. Define the optimization problem for the Ramsey planner. For the cooperative this is

a standard problem. For non-cooperative games we need to define the appropriate

equilibrium concept. Our ultimate aim is to obtain an accurate quadratic approx-

imation of welfare for the state-space representation of the game, (59) and (60).

Since interest-rates are given in this representation, we choose an open-loop Nash

equilibrium in interest rate paths.

2. Set out the deterministic non-linear form of each Ramsey problem, to maximize the

representative agents utility subject to non-linear dynamic constraints.

3. Write down the single Lagrangian for the cooperative problem, and the Lagrangians

for the two blocs for the non-cooperative problem. Associated with each Lagrangian

is a Hamiltonian consisting of the utility and a sum of all appropriately expressed

constraints for the decentralized economy time multipliers.

4. Calculate the first order conditions. We do not require the initial conditions for

an optimum since we ultimately only need the steady-state about which we are

approximating.

5. Calculate the steady state of the first-order conditions. The terminal condition

implied by this procedure is that the system converges to this steady state.

6. Calculate a second-order Taylor series approximation, about the steady state, of the

Hamiltonian associated with the Lagrangian or Lagrangians in 2.

7. Calculate a first-order Taylor series approximation, about the steady state, of the

first-order conditions and the original constraints.

8. Use 4. to eliminate the steady-state Lagrangian multipliers in 5. By appropriate

elimination both the Hamiltonian and the constraints can be expressed in minimal

form.

16MATLAB software to implement this procedure is in preparation and will be available on request from

the authors.
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This then gives us the accurate LQ approximation of the original non-linear optimization

problem in the form of a minimal linear state-space representation of the constraints and

a quadratic form of the utility expressed in terms of the states. The quadratic form of

the utility function obtained for the cooperative Ramsey planners is then appropriate for

games CC and CD irrespective of the monetary instrument; that obtained for the non-

cooperative Ramsey planners is appropriate for games NC and ND, but only where interest

rates are the instruments.

We have now set out two quite distinct procedures for obtaining a LQ state-space rep-

resentation for different equilibria. In the two-stage Ramsey games the planner has access

to a fiscal instrument and uses monetary policy to minimize a quadratic approximation of

the loss function that the social planner would choose. In the single-stage Ramsey game

the monetary authority must deal with an economy that is distorted in the steady state

and minimizes a quadratic approximation of loss function appropriate for decentralized

economy with the nominal interest rate as the instrument. It should be emphazized that

these lead to quite different non-cooperative equilibria concepts even in the case where all

labour market, output market, external habit and distortionary taxes disappear.

5 The Zero Lower Bound Constraint

We can impose an interest rate ZLB in a straightforward way by modifying the LQ opti-

mization problemsi. As in Woodford (2003), chapter 6, this is implemented by modifying

the home bloc welfare loss function to

Ωt =
1

2
Et

∞∑

t=0

βt[y′tQyt + wii
2
t ] (85)

with an analogous adjustment for the foreign bloc. As explained in Levine et al. (2006), the

policymaker’s optimization problem is to choose an unconditional distribution for it (i.e.,

the steady-state variance) shifted to the right about a new non-zero steady-state inflation

rate and a higher nominal interest rate, such that the probability, p, of the interest rate

hitting the lower bound is very low. This is implemented by calibrating the weight wi for

each of our policy rules so that z0(p)σi < R where z0(p) is the critical value of a standard

normally distributed variable Z such that prob (Z ≤ z0) = p, R = 1
β −1+ π̄ is the steady-

state nominal interest rate, σi is the unconditional variance and π̄ is the new steady-state
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inflation rate. Given σi the steady-state positive inflation rate that will ensure it ≥ 0 with

probability 1 − p is given by

π̄ = max[z0(p)σi −

(
1

β
− 1

)
× 100, 0] (86)

6 Gains from Coordination and Commitment

We now turn to numerical results. We assume symmetrical blocs with the calibration set

out in Appendix C. Only two-stage Ramsey games, with tax wedges chosen to eliminate

the distortions in the zero-inflation steady state, are considered.

6.1 Results with no ZLB Constraint

First let us ignore the ZLB constraint. Table 3 presents results for this case. The simple

commitment rules feed back on current domestic (GDP price deflator) inflation in each

bloc and take the form

it = ρit−1 + θππH,t (87)

i∗t = ρ∗it−1 + θ∗ππ∗

F,t (88)

SIMCC is the coordinated rule whilst SIMNC is chosen in a Nash game between the

countries. ce is the percentage consumption permanent equivalent gain from CC compared

with each alternative given by ce =
Ω0−ΩCC

0

(1−h) × 10−2. var(it) is the steady-state conditional

variance of the nominal interest rate. The welfare loss functions are given by (82)-(84) for

the non-cooperative and cooperative games with additional terms penalizing interest rate

variabilities, as in (85). In these simulations we have set the penalty on the interest rate

variability at wi = 1.5.17 Figure 1 compares the impulse responses for the regimes CC,

CD, ND and SIMCC following a 1% negative shock to the productivity parameter At at

t = 0.

17For wi < 1.5 we found that our iterative procedure for the non-cooperative equilibrium with discretion,

NCD, did not converge.
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Regime Rule Ω0 ce(%) var(it) π̄ prob ZLB

CC complex 11.20 0 1.54 0 0.21

CD not applicable 17.16 0.12 5.00 0 0.33

ND not applicable 16.62 0.11 5.60 0 0.34

SIMCC (ρ, θπ) = (1.00, 3.32) 11.64 0.008 1.87 0 0.23

SIMNC (ρ, θπ) = (1.00, 4.17) 11.71 0.010 2.19 0 0.25

Table 3. Gains from Coordination and Commitment: no ZLB Constraint.18

A number of features stand out from these results. First, comparing the cooperative

regime with commitment, CC, with the cooperative regime with discretion we see there

are small, but not insignificant gains from commitment of 0.1% permanent increase in

consumption about the steady state. But comparing cooperation and non-cooperation

under discretion the gains are actually negative (but very small); i.e., ND dominates CD

or, in other words, cooperation without commitment can be counterproductive. This result

was first found by Rogoff (1985), but here the cooperative loss arises purely from the

stabilization problem.

Comparing the optimized Taylor rule under cooperative and non-cooperation, SIMCC

and SIMNC, we see the gains are very small, of the order of 0.002% permanent increase

in consumption.. However the conclusion that cooperative brings small benefits needs to

be qualified by a consideration of the steady state variances. These are all high especially

with the discretionary regimes CD and ND with a high probability of hitting the ZLB on

the interest rate. This indicates that the rules we have designed are not operational. The

next subsection addresses this shortcoming.

6.2 Imposing the ZLB Constraint

In our linear-quadratic framework we can write the intertemporal expected welfare loss

at time t = 0 as the sum of stochastic and deterministic components, Ω0 = Ω̃0 + Ω̄0.

By increasing wi we can lower σi thereby decreasing π̄, given by (86), and reducing the

18In order to compare cooperative and non-cooperative outcomes, although the latter equilibria are

calculated using the single-period loss function W NC
t , given by (82), the value for the expected welfare per

country, Ω0, reported in the table then uses W C
t in (84).
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deterministic component. But this welfare improvement in the deterministic component

of the welfare loss comes about at the expense of increasing the stochastic component. By

exploiting this trade-off, we then arrive at the optimal policy that, in the vicinity of the

steady state, imposes the ZLB constraint, it ≥ 0 with probability 1 − p.

Table 4 shows the results of this optimization procedure under commitment using the

loss functions given by (82)-(84). We choose p = 0.025. Given wi, denote the expected

inter-temporal loss (stochastic plus deterministic components) at time t = 0 by Ω0(wi).

This includes a term penalizing the variance of the interest rate which does not contribute

to utility loss as such, but rather represents the interest rate lower bound constraint.

Actual utility, found by subtracting the interest rate term, is given by Ω0(0). The steady

state inflation rate, π̄, that will ensure the lower bound is reached only with probability

p = 0.025 is computed using (86). Given π̄, we can then evaluate the deterministic

component of the welfare loss, Ω̄0. Since in the new steady state the real interest rate is

unchanged, the steady state involving real variables is also unchanged, so from (82)-(84)

we can write19

Ω̄0(0) = wπ(1 − γH)2π̄2 (89)

for the home bloc with an analogous result for the foreign bloc.

From the table we see that the optimal way of imposing the ZLB constraint is to

shift the distribution to the right by choosing a small steady state inflation rate in both

countries of 0.10% per quarter and to reduce the variance of the nominal interest rate to

σ2
i = σ∗ 2

i = 0.30 by choosing a weight wi = w∗

i . Figures 2 and 3 illustrate this optimization

procedure.

19Both the ex-ante optimal and the optimal time-consistent deterministic welfare loss that guide the

economy from a zero-inflation steady state to π = π̄ differ from Ω̄0(0) (but not by much because the

steady state contribution by far outweighs the transitional contribution).
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wi var(it) Ω̃0(wi) Ω̃0(0) π̄ Ω̄0(0) Ω0(0)

1 1.77 10.82 9.94 1.60 57.67 67.61

5 0.85 13.17 11.07 0.80 14.37 25.44

10 0.51 14.79 12.25 0.40 3.59 15.84

15 0.36 15.85 13.19 0.17 0.64 13.83

16 0.34 16.02 13.36 0.13 0.39 13.75

17 0.32 16.18 13.52 0.10 0.22 13.74

18 0.30 16.33 13.67 0.04 0.10 13.77

20 0.27 16.61 13.96 0.01 0.00 13.96

Table 4. Optimal Commitment with a Nominal Interest Rate ZLB.

6.2.1 Cooperation with Discretion (CD)

Turning to the regime cooperation with discretion (CD) we follow the same procedure as

for CC to arrive at the optimal choice of σ2
i = σ∗ 2

i = 0.30 and wi = w∗

i that achieves

the ZLB constraint. Figures 4 and 5 show the result. As before, to achieve the ZLB

constraint requires a non-zero steady state inflation, but now under discretion it is far

higher than under commitment. Whereas under commitment the trade-off between a

high steady-state inflation rate and a smaller stochastic welfare loss can be exploited to

drastically reduce the ultimate loss, this is not the case under discretion and highlights an

important difference between stabilization policy under commitment and discretion. For

the latter we see that the steady-state inflation – stochastic welfare loss trade-off is far

less favourable. As the weight on interest rate variability increases beyond wi = w∗

i = 9,

both the unconditional variance of the interest rate, and the steady-state inflation rate

needed to reduce the probability of hitting the ZLB to p = 0.025 increase. Now the

optimal choice of the weight is wi = w∗

i = 7 with a optimal steady state inflation rate at

π̄ = 2.76%. This is a somewhat counterintuitive result that can be explained in general by

the fact that under discretion, a policymaker lacks the leverage to manage the economy

she would enjoy under commitment. More specifically, the constraint on using the interest

rate, captured by increasing the weight wi beyond a certain point, simply results in a more

volatile economy including interest rate volatility.
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6.2.2 Non-Cooperation with Discretion

Turning to non-cooperation with discretion, the home country policymaker now chooses a

weight wi and a steady-state inflation rate π̄ to achieve its ZLB constraint. In a Nash game

the corresponding choice of w∗

i and π̄ by the foreign policymaker is taken as given. This

leads to a reaction function in (wi, w
∗

i ) space shown in figure 6. If policymakers were to

cooperate just in the choice of (wi, w
∗

i ) it turns out that they would choose wi = w∗

i = 8.1

and achieve welfare outcomes in the subsequent non-cooperative and discretionary setting

of interest rates of Ω0 = Ω∗

0 = 207.75. However in the full non-cooperative game each

policymaker would try for rules that are more aggressive than the other with a lower

weight on interest rate variability. The intention given the setting of the other country

is to manipulate the exchange rate in the face of shocks. However, this is a beggar-thy-

neighbour strategy and in equilibrium each ends up with a sub-optimally low choice of

the weights at the intersection of the reaction functions at wi = w∗

i = 7.6 with Ω0 = Ω∗

0 =

208.29. At this equilibrium π̄ = π̄∗ = 2.82 and σ2
i = σ∗ 2

i = 3.82. The outcomes under the

three regimes CC, CD and ND are summarized below in table 5. With the ZLB constraint

imposed we now observe that with discretion there are small but not insignificant gains

from cooperation of ce = 0.06%, compared with counter-productive coordination found

previously.

6.2.3 Current Inflation Commitment Rules

The results for the current inflation commitment rule wirh commitment (SIMCC) are

shown in figures 7 and 8 and summarized in the table below. The main feature is that

with the ZLB constraint, the costs of simplicity rise substantially from ce = 0.008% to

ce = 0.07%. The optimal choice of weight is wi = w∗

i = 29 with a steady state inflation

rate π̄ = 0.20%. For SIMNC the interest rate variance rises a little with a corresponding

increase in the steady state inflation rate to π̄ = 0.27%. Gains from cooperation with

current inflation commitment rules rise from ce = 0.002% without a ZLB to ce = 0.005%

with a ZLB, a more than doubling of a rather small effect.
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Regime Rule Ω0 ce(%) var(it) π̄(%) prob ZLB

CC complex 13.74 0 0.32 0.10 0.025

CD not applicable 205.47 3.83 3.75 2.76 0.025

ND not applicable 208.29 3.89 3.82 2.82 0.025

SIMCC (ρ, θπ) = (1.000, 0.574) 17.11 0.0674 0.382 0.20 0.025

SIMNC (ρ, θπ) = (1.000, 0.622) 17.35 0.0722 0.418 0.27 0.025

Table 5. Gains from Coordination and Commitment with a ZLB Constraint.

6.2.4 Summary

The results of all five regimes with a ZLB are summarized in table 5 which should be

compared with table 3 without a zero lower bound. The main result that emerges is

that gains from commitment and cooperation rise substantially with ZLB considerations,

though the cooperative gains with commitment rules are still small. The cost of simplicity

in pursuing a simple current inflation rule, rather than its fully optimal counterpart also

rise substantially with a ZLB constraint imposed, but the gains still remain. Gains from

cooperation where policymakers cannot commit to the private sector are significant with

ZLB considerations.

7 Conclusions

The main conclusion from our numerical results is that studies that concludes gains from

monetary policy coordination, but ignore the ZLB constraint on nominal interest rates,

may be misleading. We have shown that with ZLB considerations cooperative gains in-

crease substantially, and in discretionary equilibria the gain is significant.

This result was obtained using a rudimentary New Keynesian model with a unitary

elasticity of substitution between home and imported goods, complete financial markets,

complete exchange rate pass-through and no non-traded sector. Relaxing these assump-

tions is known to increase gains from monetary policy. Future research will pursue this

path in a two-bloc model estimate by Bayesian methods. We also intend to examine the

case of large distortions in one-stage Ramsey games, examine the policy regime NC and

pursue the implications of ‘real world equilibria’.
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A The Policy Rules

Consider first the deterministic problem. Substituting out for outputs, the state-space

representation is: [
zt+1

xe
t+1,t

]
= A

[
zt

xt

]
+ Bwt (A.1)

where zt is an (n − m) × 1 vector of predetermined variables including non-stationary

processes, z0 is given, wt = [it, i
∗

t ]
T is a vector of policy variables, xt is an m× 1 vector of

non-predetermined variables and xe
t+1,t denotes rational (model consistent) expectations

of xt+1 formed at time t. Then xe
t+1,t = xt+1 and letting yT

t = [zt, xt]
T , (A.1) becomes

yt+1 = Ayt + Bwt (A.2)

Define target variables st by

st = Myt + Hwt (A.3)
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and the policymakers’ loss function under cooperation at time t by

Ωt =
1

2

∞∑

i=0

λt[sT
t+iQ1st+i + wT

t+iQ2wt+i] (A.4)

which we rewrite as

Ωt =
1

2

∞∑

i=0

λt[yT
t+iQyt+iQyt+i + 2yT

t+iUwt+i + wT
t+iRwt+i] (A.5)

where Q = MT Q1M , U = MT Q1H, R = Q2 + HT Q1H, Q1 and Q2 are symmetric

and non-negative definite R is required to be positive definite and λ ∈ (0, 1) is discount

factor. The procedures for evaluating the three policy rules are outlined in the rest of this

appendix (or Currie and Levine (1993) for a more detailed treatment).

A.1 The Optimal Policy: Cooperation with Commitment (CC)

Consider the policy-maker’s ex-ante optimal policy at t = 0. This is found by minimizing

Ω0 given by (A.5) subject to (A.2) and (A.3) and given z0. We proceed by defining the

Hamiltonian

Ht(yt, yt+1, µt+1) =
1

2
λt(yT

t Qyt + 2yT
t Uwt + wT

t Rwt) + µt+1(Ayt + Bwt − yt+1) (A.6)

where µt is a row vector of costate variables. By standard Lagrange multiplier theory we

minimize

L0(y0, y1, . . . , w0, w1, . . . , µ1, µ2, . . .) =
∞∑

t=0

Ht (A.7)

with respect to the arguments of L0 (except z0 which is given). Then at the optimum,

L0 = Ω0.

Redefining a new costate vector pt = λ−1µT
t , the first-order conditions lead to

wt = −R−1(λBT pt+1 + UT yt) (A.8)

λAT pt+1 − pt = −(Qyt + Uwt) (A.9)

Substituting (A.8) into (A.2)) we arrive at the following system under control

[
I λBR−1BT

0 λ(AT − UR−1BT )

][
yt+1

pt+1

]
=

[
A − BR−1UT 0

−(Q − UR−1UT I

][
yt

pt

]
(A.10)

To complete the solution we require 2n boundary conditions for (A.10). Specifying z0

gives us n−m of these conditions. The remaining condition is the ‘transversality condition’

lim
t→∞

µT
t = lim

t→∞

λtpt = 0 (A.11)
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and the initial condition

p20 = 0 (A.12)

where pT
t =

[
pT
1t pT

2t

]
is partitioned so that p1t is of dimension (n − m) × 1. Equation

(A.3), (A.8), (A.10) together with the 2n boundary conditions constitute the system under

optimal control.

Solving the system under control leads to the following rule

wt = −F

[
I 0

−N21 −N22

][
zt

p2t

]
(A.13)

[
zt+1

p2t+1

]
=

[
I 0

S21 S22

]
G

[
I 0

−N21 −N22

][
zt

p2t

]
(A.14)

N =

[
S11 − S12S

−1
22 S21 S12S

−1
22

−S−1
22 S21 S−1

22

]
=

[
N11 N12

N21 N22

]
(A.15)

xt = −
[

N21 N22

] [ zt

p2t

]
(A.16)

where F = −(R + BT SB)−1(BT SA + UT ), G = A − BF and

S =

[
S11 S12

S21 S22

]
(A.17)

partitioned so that S11 is (n − m) × (n − m) and S22 is m × m is the solution to the

steady-state Ricatti equation

S = Q − UF − F T UT + F T RF + λ(A − BF )T S(A − BF ) (A.18)

The cost-to-go for the optimal policy (OP) at time t is

ΩOP
t = −

1

2
(tr(N11Zt) + tr(N22p2tp

T
2t)) (A.19)

where Zt = ztz
T
t . To achieve optimality the policy-maker sets p20 = 0 at time t = 0. At

time t > 0 there exists a gain from reneging by resetting p2t = 0. It can be shown that

N22 < 0, so the incentive to renege exists at all points along the trajectory of the optimal

policy. This is the time-inconsistency problem.

A.2 Optimized Simple Rules (SIMCC and SIMNC)

We now consider simple sub-optimal rules of the form

wt = Dyt = D

[
zt

xt

]
(A.20)
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where D is constrained to be sparse in some specified way. Rule (A.20) can be quite

general. By augmenting the state vector in an appropriate way it can represent a PID

(proportional-integral-derivative)controller (though the paper is restricted to a simple pro-

portional controller only).

First consider the design of cooperative simple rules. Substituting (A.20) into (A.5)

gives

Ωt =
1

2

∞∑

i=0

λty
T
t+iPt+iyt+i (A.21)

where P = Q+ UD + DTUT + DT RD. The system under control (A.1), with wt given by

(A.20), has a rational expectations solution with xt = −Nzt where N = N(D). Hence

yT
t Pyt = zT

t Tzt (A.22)

where T = P11 − NT P21 − P12N + NT P22N , P is partitioned as for S in (A.17) onwards

and

zt+1 = (G11 − G12N)zt (A.23)

where G = A + BD is partitioned as for P . Solving (A.23) we have

zt = (G11 − G12N)tz0 (A.24)

Hence from (A.25), (A.22) and (A.24) we may write at time t

ΩSIM
t =

1

2
zT
t V zt =

1

2
tr(V Zt) (A.25)

where Zt = ztz
T
t and V satisfies the Lyapunov equation

V = T + HT V H (A.26)

where H = G11 − G12N . At time t = 0 the optimized simple rule is then found by

minimizing Ω0 given by (A.25) with respect to the non-zero elements of D given z0 using

a standard numerical technique. An important feature of the result is that unlike the

previous solution the optimal value of D is not independent of z0. That is to say

D = D(z0)

For the non-cooperative case, in a closed-loop Nash equilibrium we assume each poli-

cymaker chooses rules wt = Dyt and w∗

t = D∗yt independently taking the rule of the other

bloc as given. The equilibrium is then computed by iterating between the two countries

until the solutions converge.
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A.3 The Stochastic Case

Consider the stochastic generalization of (A.1)

[
zt+1

xe
t+1,t

]
= A

[
zt

xt

]
+ Bwt +

[
ut

0

]
(A.27)

where ut is an n × 1 vector of white noise disturbances independently distributed with

cov(ut) = Σ. Then, it can be shown that certainty equivalence applies to all the policy

rules apart from the simple rules (see Currie and Levine (1993)). The expected loss at

time t is as before with quadratic terms of the form zT
t Xzt = tr(Xzt, Z

T
t ) replaced with

Et

(
tr

[
X

(
ztz

T
t +

∞∑

i=1

λtut+iu
T
t+i

)])
= tr

[
X

(
zT
t zt +

λ

1 − λ
Σ

)]
(A.28)

where Et is the expectations operator with expectations formed at time t.

Thus for the optimal policy with commitment (A.19) becomes in the stochastic case

ΩOP
t = −

1

2
tr

(
N11

(
Zt +

λ

1 − λ
Σ

)
+ N22p2tp

T
2t

)
(A.29)

For the simple rule, generalizing (A.25)

ΩSIM
t = −

1

2
tr

(
V

(
Zt +

λ

1 − λ
Σ

))
(A.30)

The optimized cooperative simple rule is found at time t = 0 by minimizing ΩSIM
0

given by (A.30). Now we find that

D∗ = D∗

(
z0 +

λ

1 − λ
Σ

)
(A.31)

or, in other words, the optimized rule depends both on the initial displacement z0 and on

the covariance matrix of disturbances Σ. The non-cooperative rule for the stochastic case

follows as before.

A.4 Non-Cooperation with Commitment (NC)

In Liu and Pappa (2005) a NC regime with commitment is used which is open-loop in

character. For stochastic environments a closed-loop equilibrium is more appropriate.

Suppose country 1 assumes w∗

t = 0 (no control) or some other initial rule and calculates

an optimal rule with reputation. Following the analysis in the CC regime this will take

the form

wt = D

[
zt

p2t

]
(A.32)

with

p2t+1 = H21zt + H22p2t (A.33)
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and p20 = 0. Now consider the response of country 2 which faces a system under control

of the form




zt+1

p2t+1

xe
t+1,t


 =




A11 + E11

H21

A21 + E21

E12 A12

H21 0

E22 A22







zt

p2t

xt


+ B2w

∗

t (A.34)

where E = B1D is partitioned as for A. The optimal responses will now be a rule of the

form

w∗

t = D∗




zt

p2t

p∗2t


 (A.35)

p∗2t+1 = C∗

21

[
zt

p2t

]
+ C22p

∗

2t (A.36)

and p∗20 = 0.

Now replace the initial rule of country 2 with (A.35) and recalculate wt for country 1.

The new optimal response will be of the form

wt = D




zt

p2t

p∗2t

p̂2t




(A.37)

p2t is then up-dated with p̂2t and country 2 responds in a similar way. Iterating in this

fashion we arrive at stationary rules of the form

wt = D




zt

p2t

p∗2t


 : w∗

t = D∗




zt

p2t

p∗2t


 (A.38)

provided the algorithm converges. The expected welfare losses in equilibrium are then

given by an expression analogous to (A.19) for both countries.

A.5 Cooperation with Discretion (CD)

As for CC we only give the outline solution. This is given by the iterative scheme

Jt = −(A22 + Nt+1A21)
−1(Nt+1A11 + A21) (A.39)

Kt = −(A22 + Nt+1A21)
−1(Nt+1B

1 + B2) (A.40)

Nt = −Jt + KtFt (A.41)

Ft = (Rt + λB
T
t St+1Bt)(U t + λB

T
t St+1At) (A.42)

Qt = Q11 + JT
t Q21 + Q12Jt + JT

t Q22Jt (A.43)

U t = U1 + Q12Kt + JT
t U2 + JT

t Q22Jt (A.44)

Rt = R + KT
t Q22Kt + U2tKt + KT

t U2 (A.45)
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St = Qt − U tFt − F T
t U

T
t + F T

t RtFt + λ(At − BtF )T St+1(At − BtFt) (A.46)

where, to ease the notational burden, the subscript c has been dropped in Cc, Uc and Rc.

If these converge to stationary values J,K,N,F,Q,U,R and S then the solution is given

by

wt = −Fzt (A.47)

xt = −Nzt (A.48)

where

zt+1 = [A11 + A12J − (B1 + A12K)F ]zt + ut (A.49)

with z0 given. The expected welfare loss from time t onwards is given by

Ω0 =
1

2
tr(S(ztz

T
t + Σ/(1 − λ))) (A.50)

A.6 Non-cooperative Equilibria with Discretion (ND)

Regime ND is a Nash equilibrium found by iterating between the two policy-makers to-

gether and the private sector in a Cournot-like adjustment process. For the case of two

countries acting independently we now have three players. There are a number of ways in

which the iteration may now proceed. The method we chose is to pass from country 1 to

the private sector to country 2 to the private sector and so on. Then given initial values

for D,D∗ and N , provided the iteration converges, we arrive at the ND equilibrium.

B Quadratic Approximation of Utility Function

We use a small distortions approximation to the utility function
∞∑

t=0

βt

[
Ct − hCt−1)

1−σ

1 − σ
−

κ

1 + φ

(
Yt

At

)1+φ

∆1+φ
t

]
(B.1)

where we use the resource constraints rather than full set of constraints that involve price

setting. For the purposes of this paper we set the elasticity µ between home and foreign

goods to 1, and also assume that home bias w is the same in each bloc. Inflation does

not enter any of the resource constraints, and it is easy to show that the second order

approximation involving inflation stems directly from (B.1), and is given by 1
2wπ(πH,t −

γH,tπH,t−1)
2 where wπ = ξζ

(1−βξ)(1−ξ) in (82) of the main text. The remaining terms of the

quadratic approximation are then obtained as the second-order expansion to the stationary

point of the Lagrangian involving (B.1) and the resource constraints:

∞∑

t=0

βt

[
(Ct − Zt)

1−σ

1 − σ
−

κ

1 + φ

(
Yt

At

)1+φ

+ λ1t(T
2w−1

σ
t (C∗

t − Z∗

t )U
∗
−1

σ

C,t − (Ct − Zt)U
−1

σ

C,t )

+ λ2t(Zt − hCt−1) + λ3t(Yt − Uoil,t(wT 1−w
t Ct + (1 − w)Tw

t C∗

t ) − Gt) (B.2)

+ λ4t(Y
∗

t − Uoil,t((1 − w)T−w
t Ct + wTw−1

t C∗

t ) − Gt) + λ5t(Z
∗

t − hC∗

t−1)

]
(B.3)
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In the first order conditions we set G = gyY , and obtain the equilibrium value for the

Nash solution as in the main text. Other relevant steady state values for the second order

approximation are

C = (1 − gy)Y λ3 = κ
Y φ

A1+φ
λ1 = λ3

2(1 − w)

2(1 − βh)(1 − w) + 2w−1
σ (1 − h)

λ4 = λ3
(1 − w)(2w(1 − βh) − (2w−1)

σ (1 − h))

w(2(1 − βh)(1 − w) + 2w−1
σ (1 − h))

(B.4)

The second-order approximation (apart from the inflation contribution described above)

is then given by

Ŵ NC
t = −

σ

2
C1−σ(1 − h)−1−σ(ct − hct−1)

2 −
κφ

2

(
Y

A

)1+φ

y2
t + κ(1 + φ)

(
Y

A

)1+φ

ytat

−
C

2

(
(2w − 1)2

σ2
(1 − h)λ1 + 2w

2w − 1

σ
(1 − h)λ1 + (λ3 + λ4)w(1 − w)

)
τ2
t

+ C(λ3 − λ4)w(2w − 1)ctτt + C
2w − 1

σ
λ1(ct − hct−1)τt − C(λ3 − λ4)wτtyt

−
λ1

2w(1 − w)
(ytoilt +

(2w − 1)2

σ
(1 − h)oiltct + 2w(1 − w)oiltτt − gyoiltgt)

+ C(λ3 − λ4)wgyτt +
λ1(1 − h)

σ
Cτt(u

∗

C,t − uC,t) + (
λ3 + λ4

1 − βh
+

λ1

σ
)(ct − hct−1)uC,t

− κ

(
Y

A

)1+φ

yt(uC,t + uL,t) (B.5)

For the cooperative case the problem is much simpler; the welfare function of course

includes welfare from both home and foreign blocs, and the risk-sharing condition is re-

dundant. We then obtain

Ŵ C
t = −

σ

2
C1−σ(1 − h)−1−σ[(ct − hct−1)

2+](c∗t − hc∗t−1)
2] −

κφ

2

(
Y

A

)1+φ

(y2
t + y∗2t )

+ κ(1 + φ)

(
Y

A

)1+φ

(ytat + y∗t a
∗

t ) − C1−σ(1 − h)−σ [(ct − hct−1)uC,t + (c∗t − hc∗t−1)u
∗

C,t]

−
Y φC

A1+φ
oilt(ct + c∗t ) −

Y 1+φ

A1+φ
[yt(uC,t + uL,t) + yt(u

∗

C,t + u∗

L,t)] − w(1 − w)
Y φC

A1+φ
τ2
t (B.6)

Finally the steady state expressions for can be used to eliminate the unobservable

parameter κ and obtain the quadratic expressions (71) and (72) in the main text.

C Calibration

Our empirical US-Euro model will be estimated and calibrated without imposing sym-

metry on any parameters with the following exceptions. As we have noted ζ∗ = ζ. In
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addition, in order to formulate optimal cooperative policies we need to impose a com-

mon discount factor β = β∗. This also ensures that the zero-inflation steady state sees a

common nominal interest rate in the two blocs

The following fundamental parameters need to be estimated or calibrated:

1. Disturbances , ρa, ρ
∗

a, ρg, ρ
∗

g, ρe, ρ
∗

e and corresponding standard deviations.

2. Preference Parameters h, h∗, σ, σ∗, β = β∗, φ, φ∗, µ, µ∗,

(Note: unidentified ζ∗ = ζ, are only needed later for the welfare analysis; ω, ω∗ are

derived below are not really needed.)

3. Bloc Size n, n∗, ν, ν∗ (Note n∗ = 1 − n, ν∗ = 1 − ν and n∗

n = ν∗

ν , so we only need

to calibrate n, the relative population size of the H-bloc.)

4. Pricing γH , ξH , γ∗

F , ξ∗F

5. Labour Market Elasticities of Substitution η, η∗.

The remaining parameters to estimate are the bias parameters ω and ω∗. In principle

these can be treated as any other parameter. However we adopt an alternative procedure

is to use trade data so as to equate

PF CF

PT CT
= (1 − w) = import share of traded consumption in H bloc (C.7)

P ∗

HC∗

H

P ∗

T C∗

T

= (1 − w∗) = import share of traded consumption in F bloc (C.8)

which calibrate w and w∗. We also need to calibrate: C
Y , C∗

Y ∗
, and Y

Y ∗
.

We now have the following derived parameters as functions of estimated or cali-

brated parameters

• αH = wC
Y

• αF = (1 − w∗)n∗C∗

nY = (1 − w∗)n∗C∗

nY ∗

Y ∗

Y

• α∗

F = w∗ C∗

Y ∗

• α∗

H = (1 − w) nC
n∗Y ∗

= (1 − w) nC
n∗Y

Y
Y ∗

Note if TB = 0 in the steady state (which we have assumed in the linearization

above), then Y = C + TB = C and Y ∗ = C∗, so C
Y = C∗

Y ∗
= 1 in the expressions for

αH , etc.

• λH = (1−βξH)(1−ξH )
ξH
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• λ∗

F =
(1−βξ∗

F
)(1−ξ∗

F
)

ξ∗
F

• ω =
wn∗

n

1−w(1−n∗

n )
=w if n = n∗

• ω∗ =
w∗ n

n∗

1−w∗(1− n
n∗ )

=w∗ if n = n∗

From the linearization it is apparent that parameters β = β∗, ζ = ζ∗, η and η∗ are not

identified and are therefore calibrated along with w, w∗ and the relative bloc sizes.

In the results reported in the present version of the paper we assume symmetric blocs

with n = n∗ and all parameters identical. The oil shock is common, the technology shocks

can be correlated in principle, but not in these results. Other shocks are independent.

ρi = 0.7 for all shocks i = a, g etc, all standard deviations are 1%. There is no government

sector (cy = 1). φ = 1.7, µ = 1, ξH = ξF = 2/3 corresponding to a 3-quarter Calvo price

contract, ζ = 7.674 corresponding to a 15% mark-up, h = 0.5, σ = 2, β = 0.99 and there

is no indexation. Import shares are assumed to be 25% so w = w∗ = 0.75.

42



0 2 4 6 8 10 12
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

TIME IN QUARTERS

O
U

T
P

U
T

TECHNOLOGY SHOCK

 

 

CC
CD
NCD
SIMCC

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

TIME IN QUARTERS

LA
B

O
U

R
 S

U
P

P
LY

TECHNOLOGY SHOCK

 

 

CC
CD
NCD
SIMCC

0 2 4 6 8 10 12
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

TIME IN QUARTERS

C
O

N
S

U
M

P
T

IO
N

TECHNOLOGY SHOCK

 

 

CC
CD
ND
SIMCC

0 2 4 6 8 10 12
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

TIME IN QUARTERS

R
E

A
L 

E
X

C
H

A
N

G
E

 R
A

T
E

TECHNOLOGY SHOCK

 

 

CC
CD
NCD
SIMCC

0 2 4 6 8 10 12
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

TIME IN QUARTERS

D
O

M
E

S
T

IC
 (

G
D

P
 D

E
F

LA
T

O
R

) 
IN

F
LA

T
IO

N

TECHNOLOGY SHOCK

 

 

CC
CD
NCD
SIMCD

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TIME IN QUARTERS

N
O

M
IN

A
L 

IN
T

E
R

E
S

T
 R

A
T

E

 

 

CC
CNR
NCD
SIMCC

Figure 1: Responses to a Negative Technology Shock: No ZLB Constraint Im-

posed.
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Figure 2: Cooperation with Commitment: Imposing the ZLB
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Figure 3: Cooperation with Commitment: Imposing the ZLB
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Figure 4: Cooperation with Discretion: Imposing the ZLB
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Figure 5: Cooperation with Discretion: Imposing the ZLB
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Figure 6: Non-Cooperation with Discretion: Imposing the ZLB
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Figure 7: Cooperation with a Commitment Current Inflation Rule: Imposing

the ZLB
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Figure 8: Cooperation with a Commitment Current Inflation Rule: Imposing

the ZLB
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