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Abstract

This note reassesses the basic result in Mukhopadhaya (2003) that, when jurors

may acquire costly signals about a defendant’s guilt, with a larger jury size the prob-

ability of reaching a correct verdict may in fact fall, contrary to the Condorcet Jury

Theorem. We show that if the jurors coordinate on any one of a number of (equally

plausible) asymmetric equilibria other than the symmetric equilibrium considered by

Mukhopadhaya, the probability of accuracy reaches a maximum for a particular jury

size and remains unchanged with larger juries, thus mitigating Mukhopadhaya’s re-

sult somewhat. However, the case for limiting the jury size – a recommendation by

Mukhoapdhaya – gains additional grounds if one shifts the focus from maximizing

the probability of reaching a correct verdict to the maximization of the overall social

surplus, measured by the expected benefits of jury decisions less the expected costs of

acquiring signals.
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1 Introduction

In a recent paper, Mukhopadhaya (2003) makes an interesting observation: when jurors

may incur information gathering costs relating to a defendant’s possible guilt, the Con-

dorcet Jury Theorem that a larger jury is more likely to reach a correct verdict is not

necessarily true. Because the information gathered by an individual juror is a public

good, the associated free-rider problem may motivate each juror to invest less in informa-

tion gathering costs and result in a lower probability of jury accuracy when there are more

jurors involved. This argument prompts Mukhopadhaya to counter a recent argument by

the judges in the United States that 6-person juries are inferior to 12-person juries.

Underlying Mukhopadhaya’s analysis, three assumptions are particularly noteworthy:

(1) the optimal jury size should maximize the probability of an accurate verdict; (2) each

juror’s payoff when no juror pays any attention is φ(0) = 0; and (3) the jurors play a

symmetric mixed strategy equilibrium in a binary-decision, information gathering game –

pay attention or don’t pay attention.

The first assumption, motivated by the Condorcet Jury Theorem, turns out to be

equivalent to the maximization of expected benefits of accurate verdicts less expected costs

of inaccurate verdicts (type I and type II errors), given Mukhopadhaya’s assumption that

the accurate verdicts yield payoffs equal to 1 and inaccurate verdicts yield zero payoffs.

But if such welfaristic interpretation is to be imposed, the implicit social objective in

Mukhopadhaya would still be incomplete as it ignores the jurors’ information gathering

costs. Since information gathering costs are likely to vary with jury size, a priori it is

not clear that the jury size that maximizes the probability of an accurate verdict would

necessarily maximize the expected social welfare of verdict decisions (net of the information

gathering costs). Similarly, it is not clear how social welfare would change with the increase

in jury size. We address these issues.

Mukhopadhaya justifies the second assumption by claiming that a positive valued

φ(0) “would bias results toward more free riding, but would not qualitatively change the

findings” (see page 30 of Mukhopadhaya’s article).1 This claim is not straightforward:

while the Mukhopadhaya-noted increased free riding tendency is definitely true for any

1φ(0) can be positive if the defendant is declared guilty with probability 1/2, when the number of signals

indicating guilt equals the number of signals indicating innocence.
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given number of jurors, hence each juror pays attention with a lower probability for both

small and large juries, whether this necessarily implies relatively greater reduction (due to

positive φ(0)) in the probability of reaching a correct verdict for larger juries is unclear;

thus, the implication of such an assumption for the optimal jury size question should be

properly examined.

The argument in favor of symmetric mixed strategy equilibrium is standard. However,

ruling out possible asymmetric mixed strategy equilibria, where some jurors play mixed

strategies and others play pure strategies (i.e., pay no attention), would have been more

acceptable if one can show that the symmetric equilibrium would Pareto dominate the

asymmetric equilibria. We examine this possibility.

Our results are as follows. We start by showing that asymmetric mixed strategy equi-

libria exist, and the best such equilibrium (in terms of the probability of reaching a correct

verdict) for any given jury size is equivalent to a symmetric equilibrium corresponding to

a smaller jury. Thus, by varying the jury size and comparing across the best asymmetric

equilibria, we find that the probability of reaching a correct verdict is maximized for a par-

ticular jury size and this probability will remain unchanged with further increases in jury

size. Thus, Mukhopadhaya’s main result about larger juries strictly lowering the probabil-

ity of accuracy is somewhat mitigated if one focuses on the best asymmetric equilibrium.2

Importantly, the asymmetric equilibria neither Pareto dominate, nor are Pareto domi-

nated by, the symmetric equilibrium of Mukhopadhaya. Thus, our asymmetric equilibria

are no less compelling as a plausible description of equilibrium.

Next, focusing exclusively on the symmetric equilibrium we show two things: (i)

with the probability of reaching a correct verdict as the primary social objective (as in

Mukhopadhaya), a more plausible assumption of φ(0) = 1
2 would add to Mukhopadhaya’s

argument that the jury size should be restricted; (ii) a broader social objective by consid-

ering the information gathering costs would also strengthen Mukhopadhaya’s suggestion

about the jury size restriction. While both points (i) and (ii) accentuate the basic find-

ings of Mukhopadhaya, it will be shown that arriving at our second conclusion (point

(ii)) is not intuitively that obvious, especially for φ(0) = 1
2 . Thus, while Mukhopadhaya’s

assumption that φ(0) = 0 turns out not to matter in the core recommendation of jury

2This remains true whether φ(0) = 0 (Mukhopadhaya’s assumption) or φ(0) positive.
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size restriction, to fully understand the underlying economic reasons it would be better to

assume φ(0) = 1
2 instead.

The next section presents the model. In section 3, we take another look at the sym-

metric mixed strategy equilibrium of Mukhopadhaya. In section 4, we analyze asymmetric

mixed strategy equilibria and compare with the symmetric equilibrium. Section 5 consid-

ers the issue of social efficiency, and section 6 concludes.

2 The Model

Consider the model of jury trial as in Mukhopadhaya (2003), with n risk-neutral jurors.

The state of the world is that the defendant is either guilty or nor guilty, {G, NG}.

The outcome of the trial is that the defendant is liable or not liable, {L, NL}. The

uncertainty about the true state is denoted by a common prior probability p = 1
2 that

the true state is NG. Each juror’s payoffs over outcomes and states, the same as the

society’s (or the mechanism designer’s) payoffs, are U(L, G) = U(NL, NG) = 1 and

U(L, NG) = U(NL, G) = 0.

During the trial a juror who pays attention receives a private signal S0 or S1 about

the true state of the world where Pr[S1|G] = Pr[S0|NG] = q ∈ (1
2 , 1] is the precision

of a signal. There is a fixed cost c ∈ (0, 1) of paying attention. The jurors choose an

alternative by majority voting.3 In the case of a tie, the decision to convict or acquit

is chosen with probability 1/2. With these assumptions sincere and informative voting

(i.e., expected utility maximizing voting in accordance with the signal received) is rational

(Austin-Smith and Banks, 1996). Jurors who do not pay attention simply abstain from

voting and the majority voting rule applies to the actual votes cast.4

During the trial a juror who pays attention receives a private signal S0 or S1 about

the true state of the world where Pr[S1|G] = Pr[S0|NG] = q ∈ (1
2 , 1] is the precision

of a signal. There is a fixed cost c ∈ (0, 1) of paying attention. The jurors choose an

3We are not interested in the question of optimal voting rule; see Persico (2004) for such an analysis.
4Abstention as an option in this note differs from Mukhopadhaya’s assumption that the uninformed

jurors can simply follow the majority voting of informed jurors. Since Mukhopadhaya does not specify the

voting rule to be sequential, it is not clear how uninformed jurors can observe informed jurors’ votes. Even

with sequential voting, the observability problem remains unless one also assumes that all uninformed

jurors will vote only after the informed jurors have voted.
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alternative based on the majority of realized signals, declaring the defendant liable if the

majority receives signal S1 and not liable if the majority receives S0; in the event of a tie,

the decision to convict or acquit is chosen with probability 1/2.

We will consider two alternative objectives to assess the question of optimal jury size:

(1) maximization of the probability of an accurate verdict; (2) maximization of the overall

social welfare measured by the expected benefits of jury decisions less the expected costs

of acquiring signals. Mukhopadhaya focused exclusively on the first objective.

3 Symmetric Mixed-Strategy Nash Equilibrium

Our analysis in this section will be based mostly on Mukhopadhaya’s analysis, with some

difference. Let

b(m; k, q) =
k!

m!(k − m)!
qm(1 − q)k−m (1)

denote the binomial probability that out of k independent signals m ≤ k are correct,

given the precision of the signal. Then the probability of a n-person jury reaching a

correct decision when k ≥ 1 jurors pay attention is given by

φ(k) =
k

∑

m=[ k

2
]+1

b(m; k, q), if k is odd

=
k

∑

m= k

2
+1

b(m; k, q) +
1

2
b (k/2; k, q) , if k is even (2)

where [x] denotes the greatest integer less than x.

Note that (2) applies to k ≥ 1. When no jurors pay attention and receive no signals

Mukhopadhaya assumes that the payoff is zero; i.e., φ(0) = 0. An alternative assumption

is that they vote according to their prior of 1
2 so that φ(0) = 1

2 . Note that b(0; 0, q) =

0!
0!0!q

0(1 − q)0 = 1 so that with this assumption (2) still applies with k = 0, treating zero

as even.

Let

B(k, q) = φ(k) − φ(k − 1) (3)

be the benefit to the kth juror from paying attention when exactly k − 1 other jurors

pay attention gross the cost of paying attention. Then an extremely useful result for the
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analysis is given in Lemma 1 in Mukhopadhaya, reproduced below:

B(k, q) =







0,

(q − 1
2)b((k − 1)/2; (k − 1), q) ,

if k is even;

if k is odd.
(4)

If we assume φ(0) = 0 as in Mukhopadhaya then (4) does not hold for k = 1 and

B(1, q) = 1. However if we assume φ(0) = 1
2 , then (4) holds for k = 1 as well. In what

follows we will pursue the consequences of both assumptions regarding φ(0).

The net benefit to a juror of paying attention when every other juror pays a mixed

strategy ‘attention’ with probability σ and ‘no attention’ with probability 1 − σ is given

by

Π = Π(n, σ; c, q) =
n

∑

k=1

b(k − 1; n − 1, σ)B(k, q) − c

=
n

∑

k=1,3,...

b(k − 1; n − 1, σ)B(k, q) − c if n is odd;

n−1
∑

k=1,3,...

b(k − 1; n − 1, σ)B(k, q) − c if n is even. (5)

If we assume φ(0) = 1
2 then Π can be written as

Π(n, σ; c, q) = (q − 1
2)

[n−1

2
]

∑

m=0

(n − 1)!(σq)m(σ(1 − q))m(1 − σ)(n−1−2m)

(m!)2(n − 1 − 2m)!
− c. (6)

If we follow Mukhopadhaya in assuming that φ(0) = 0 then we need to add an extra term

(1−σ)n−1

2 to the net benefit in (6).

The symmetric mixed strategy Nash equilibrium σ∗(n; c, q) is derived by solving

Π(n, σ; c, q) = 0, (7)

for σ ∈ (0, 1) and the probability of the jury making a correct decision is

Φ = Φ(n; c, q) =
n

∑

j=0

b(j; n, σ∗(n; c, q))φ(j). (8)

Note that if φ(0) 6= 0, then the summation must include a j = 0 term, unlike the case

considered in Mukhopadhaya.

Figures 1 and 2 show numerical results for σ∗ and Φ using MATLAB.5 Mukhopadhaya

reports results for parameter values c = 0.1 and q = 0.65, q = 0.7 and q = 0.95. We

5All MATLAB files can be made available on request.

5



can reproduce his results but in this note we confine ourselves to one intermediate value,

q = 0.75. Furthermore, we compare results assuming φ(0) = 0, with our alternative

assumption φ(0) = 1
2 . Clearly the assumption that φ(0) = 0 is not innocuous as it heavily

penalizes no attention by all jurors and so biases the mixed equilibrium towards paying

attention. The result is that whereas with φ(0) = 0 jury accuracy is maximized at a jury

size n = 3, with φ(0) = 1
2 accuracy increases monotonically as n decreases from n = 12

to n = 1. Using jury accuracy as the measure of social benefit then sees our alterative

assumption regarding φ(0) further undermine the Condorcet Jury Theorem. As we will

see in a latter section, it is undermined still further when we rank different jury sizes using

social welfare as our measure.

4 Asymmetric Mixed-Strategy Nash Equilibria

We now explore asymmetric mixed-strategy equilibria where k out of n jurors play the

symmetric mixed-strategy σ∗(k : c, q) and the remaining jurors pay no attention with

probability 1. The probability of a correct decision is then

Φ(k; c, q) =
k

∑

j=0

b(j; k, σ∗(k; c, q))φ(j), (9)

and the net payoff for each attentive juror is Φ − c and for each non-attentive juror Φ.

The condition for this to be an equilibrium is that, the net payoff when the (k+1)th juror

pays attention must be less than when she does not; i.e.,

Φ =
k

∑

j=0

b(j; k, σ∗(k; c, q))φ(j) >
k

∑

j=0

b(j; k, σ∗(k; c, q))φ(j + 1) − c. (10)

(10) says that the probability of a correct decision when only k jurors pay attention with

probability σ∗ must exceed the increased probability when one more juror pays attention

net of the cost of doing so. Write this as

∆Φ ≡

k
∑

j=0

b(j; k, σ∗(k; c, q))φ(j + 1) −

k
∑

j=0

b(j; k, σ∗(k; c, q))φ(j) < c. (11)

Figure 3 shows that this condition is satisfied for the same parameter values as before

and for both assumptions regarding φ(0). We have therefore shown that alongside the

symmetric equilibrium (SE), there exist asymmetric mixed-strategy equilibria (AE) for
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which k = 2, 3, . . . out of n jurors play a mixed strategy with probability σ∗(k; c, q) of

paying attention at a fixed c, and the remaining n − k pay no attention with probability

1 and zero cost. Now in an AE, the overall probability of accuracy stops being increasing

in jury size as more inattentive jurors are added. Put differently, if one were to focus

on the best asymmetric equilibrium (best in terms of the overall probability of accuracy)

corresponding to each jury size, then the probability of accuracy will be maximized for a

particular jury size and will remain stationary for any further jury additions.

Next we turn to a particular equilibrium selection test, that of Pareto ranking, to see

if any of the equilibria, SE and AE, is more plausible. For the following analysis, fix the

jury size n.

First note that, for the fixed jury size n there are n possible equilibria to choose from,

one symmetric equilibrium and n−1 asymmetric equilibria with k = 1, 2, . . . n−1 attentive

jurors. An AE with 1 < k ≤ n− 1 attentive jurors, AE(k) say, is essentially equivalent to

a SE with jury size k, SE(k) say. The probability of accuracy and the costs incurred by

the jurors are identical in AE(k) and SE(k). Thus figures 1 and 2 for SE(n) also apply

to asymmetric equilibria as well.

Now consider the two groups of jurors, non-attentive and attentive. For the former

they incur no attention costs and so prefer equilibria that maximize the probability of

accuracy, Φ. From figure 2 this occurs when 3 jurors pay attention if φ(0) = 0 and when

1 juror pays attention if φ(0) = 1
2 . Now consider the attentive jurors. Figure 4 plots their

expected utility as the size of the group k increases. Two opposite effects are at work

here: as k increases, the probability of accuracy first rises and then falls monotonically

with k for the case φ(0) = 0 as we have seen in figure 2 (since the SE(k) is equivalent to

AE(k)), and falls monotonically for the case φ(0) = 1
2 . However, this effect that reduces

the expected utility of an attentive juror is more than cancelled out by a reduction in his

attention costs owing to the free-rider effect. The net result is that the expected utility

of an attentive juror rises as k increases reaching a maximum at k = n, the symmetric

equilibrium. We conclude from this that we cannot establish Pareto dominance of any of

the multiple equilibria.
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5 Social Welfare

We now return to the symmetric equilibrium and examine the question of social welfare

maximization. Figure 5 plots the expected social cost of a symmetric equilibrium with

n jurors defined as C = nσ∗c. For φ(0) = 0, as jury size decreases the expected social

costs fall and as we have seen the expected accuracy of the jury rises. This provides a

further argument for limiting the size of a jury. However the same figure shows that this

result is sensitive to the assumption regarding φ(0). If we assume that φ(0) = 1
2 then

the improvement in accuracy of the jury comes at an increasing social cost as jury size

decreases from n = 12 to n = 3, but a further decrease in size sees social costs falling as

before.

Figure 6 assesses the net benefit of reducing jury size by plotting the expected social

surplus Φ − C against jury size. Whereas for φ(0) = 0 the probability of accuracy is

maximized at n = 3, social surplus is maximized at n = 1. Social efficiency considerations

therefore adds weight to the case for a smaller jury.

With our alternative assumption φ(0) = 1
2 we arrive at the same qualitative conclusion,

though social surplus rises by less as jury size decreases. Thus for both assumptions and

for this numerical example social surplus rises monotonically as n decreases and suggests

that, owing to the free-rider problem, any jury may yield less benefit than a decision

arrived by a single judge or magistrate.

6 Conclusions

We have investigated whether the results in Mukhopadhaya are strengthened or weakened

by the assumption regarding the payoff φ(0) when no jurors pay attention. In Mukhopad-

haya φ(0) = 0 is assumed, and our first numerical result is that whereas with φ(0) = 0

jury accuracy is maximized at a jury size n = 3, with φ(0) = 1
2 accuracy increases mono-

tonically as n decreases from n = 12 to n = 1. Using jury accuracy as the measure of

social benefit then sees our alterative assumption regarding φ(0) strengthen the result of

Mukhopadhaya.

Our second numerical result is that using social surplus as the criterion for comparing

different jury sizes further strengthens his result in that with both assumptions regarding
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φ(0), social surplus is maximized at a jury size n = 1.

Finally, we show the existence of asymmetric equilibria for which the probability of

a jury making correct decisions does not decline with jury-size. None of the n possible

equilibria (one symmetric and n − 1 asymmetric) can be Pareto-ranked. To rule out

asymmetric equilibria would therefore be ad hoc and this mitigates the case for restricting

the jury size somewhat. Of course one final and obvious reason to limit the jury size, in

addition to the free-rider problem and social welfare considerations, that would work for

both symmetric and asymmetric equilibria is, if there is some fixed cost of summoning

a juror irrespective of whether the particular juror pays attention or not to the judicial

proceedings.

References

[1] Austen-Smith, David, and Jeffrey S. Banks. 1996. “Information Aggregation, Ra-

tionality, and the Condorcet Jury Theorem,” American Political Science Review,

vol. 90, 34–45.

[2] Mukhopadhaya, Kaushik. 2003. “Jury Size and the Free Rider Problem,” Journal

of Law, Economics and Organization, vol. 19, 24–44.

[3] Persico, Nicola. 2004. “Committee Design with Endogenous Information,” Review

of Economic Studies, vol. 71, 165–191.

9



1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SIZE¬OF JURY n

S
Y

M
M

E
T

R
IC

 M
IX

E
D

 S
T

R
A

T
E

G
Y

  σ
*

φ(0)=0 

φ(0)=1/2 
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0.75, c = 0.1. φ(0) = 0 compared with φ(0) = 1
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q = 0.75, c = 0.1. φ(0) = 0 compared with φ(0) = 1
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Figure 3: Condition for an asymmetric mixed-strategy Nash equilibrium with k

out of n jurors playing σ∗, and the remaining n-k paying no attention, as k ≥ 1

increases. q = 0.75, c = 0.1. φ(0) = 0 compared with φ(0) = 1
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