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Abstract

The literature on statistical test of stochastic dominance has thus far
been concerned with univariate distributions. This paper presents non-
parametric statistical tests for multivariate distributions. This allows a
nonparametric treatment of multiple welfare indicators. These test are
applied to a time series of cross-section datasets on household level to-
tal expenditure and non labour market time in the UK. This contrasts
the welfare inferences which might be drawn from looking at univariate
(marginal) distributions with those which consider the joint distribution.
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1 Introduction

There are doubtless many economic and social attributes which combine to de-

termine an individual’s and a society’s overall welfare. However, most of both

the theoretical and applied literature on the measurement of economic and social

welfare has been concerned with unidimensional indicators of economic status

(often equivalised net or gross income). This paper makes straightforward exten-

sions to Anderson’s (1996) work on nonparametric statistical tests of stochastic

dominance to allow tests of differences in social welfare based directly upon

multivariate distributions of economic and other factors.

One approach to the problem of how to assess multi-dimensional distribu-

tions is to aggregate them into a single index. For example, a vector of household

demands and demographic characteristics is typically aggregated using market

prices as weights for the marketed goods and adjusted by an equivalence scale

to reflect demographic differences such that the household’s total budget mul-

tiplied by the relative equivalence scale serves as a measure of its welfare. This

is the standard way of performing real income comparisons1. Assuming that

the relative equivalence scale can be calculated, this approach still only works

if the relevant prices are observed, if they correctly indicate consumers’ rela-

tive valuations of the goods which enter their utility function, and if they do

not vary across households. Even assuming that prices are observed, one set of

problems arise for instance if households are rationed (e.g. with respect to their

consumption of public goods, or by involuntary unemployment). In this case,

the appropriate price is not the market price but the price plus a term reflecting

the dis-utility of the ration2. Another set of problems occur if the prices faced

by different households vary (e.g. regionally or because of differences in pro-

ductivity3 or attitudes to risk). Finally, even when household utilities can be

1See Sen (1979a) or Deaton and Muellbauer (1980).
2Hicks (1940), Rothbath (1941), Neary and Roberts (1980)
3Ulph (1978).
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aggregated in the traditional way using market prices, it may still be desirable to

allow for non-utility information such as life-span, health etc.4 . In each of these

cases a multi-dimensional approach may be more appropriate than aggregation.

The notion of stochastic dominance in multivariate distributions has been

suggested in this context by Atkinson and Bourguignon (1982). Stochastic dom-

inance criteria are essentially conditions linking differences in the empirical joint

distributions of the arguments of social welfare, with the ranking of those distri-

butions in terms of social welfare. The benefit of this approach is that it allows

us to work directly with the distributions of covariates rather than requiring that

they first be aggregated into some welfare function. The drawback is that the

requirements placed on the comparison distributions such that welfare ranking

can be made are typically strong but these can be weaken by placing restric-

tions on the class of utility functions considered. The literature proceeds by

progressively strengthening the assumptions on the welfare function, whilst re-

laxing the empirical requirements necessary to rank distributions. This exercise

terminates with the choice of a particular welfare function at which point the

comparison of distributions becomes trivial.

A useful statistical basis for stochastic dominance criteria has been provided

by Anderson (1996) who describes a simple nonparametric framework for com-

paring univariate distributions directly. This allows straightforward tests of sto-

chastic dominance to be formulated. This paper extends Anderson’s goodness-

of-fit based method to the multivariate dominance criteria set out in Atkinson

and Bourguignon (1982). There are a number of other, somewhat more recent,

approaches to testing univariate stochastic dominance which might also be use-

fully extended to multivariate settings. One is the Davidson and Duclos’s (2000)

incomplete moments approach to the univariate case - it has been suggested (by

Barrett and Donald (2003)) that this approach has superior asymptotic proper-

ties to Anderson’s method. Other alternatives include the Kolmogorov-Smirnov

based approaches to univariate dominance test (Barrett and Donald (2003)) al-

4Atkinson and Bourguignon (1982).
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though extensions of this approach to multivariate situations would be much

more difficult.

The plan of the paper is as follows. Section 2 briefly sets out stochastic

dominance criteria for bivariate distributions — the application to higher di-

mensional problems is postponed until later because the notational burden of

dealing with several dimensions is considerable and the main ideas can be more

clearly and simply expressed in a two-dimensional setting5. The bivariate condi-

tions have been described for first and second order dominance by Atkinson and

Bourguignon (1982) and this paper simply extends the criteria to third order

dominance (the highest order typically discussed in the inequality literature)

for the joint distribution. Section 3 describes suitable estimators and tests of

dominance for all of the functions of interest of the underlying joint distribu-

tion. These are based on Anderson’s (1996) procedures which are themselves

straightforward nonparametric analogues of Pearson’s goodness of fit tests. Sec-

tion 4 outlines and illustrates the extension of these ideas to higher dimensional

problems. Section 5 applies these tests to the joint distribution of expenditure

and non labour market time in the UK using household level data budget survey

data from 1975, 1980, 1985, 1990 and 1995. This contrasts the welfare inferences

which might be drawn from looking solely at one or other of the univariate (mar-

ginal) distributions with those which consider the joint distribution. Section 6

draws some conclusions.

2 Multivariate Stochastic Dominance Criteria

Suppose that social outcomes can be represented by a joint cumulative distrib-

ution function F (x1, x2) and a joint density function f (x1, x2) defined by

f (x1, x2) =
∂2F (x1, x2)

∂x1∂x2
. (1)

5The most appropriate way of writing down the higher dimensional problems is to use
tensor notation. The use of partitioned matrices is much more cumbersome on the page, but
is more immediately useful for anyone wishing to programme up these tests. As a result the
material showing how these tests can be extended to higher dimensions uses matrix notation.
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If we want to be able to rank distributions in terms of social welfare then we need

a way of ranking distributions drawn from the set of all possible distributions

F where

F =

⎧⎨⎩ F : R2 → [0, 1] ;
F nondecreasing and continuous;

F (0, 0) = 0; F (a1, a2) = 1

⎫⎬⎭ (2)

where the range space of xi is assumed to be [0, ai] . It is assumed that the social

welfare functional is drawn from the general class ω where

ω =

½
W (F ) |W (F ) =

Z Z
ψ (x1, x2) dF (x1, x2)

¾
(3)

where ψ
¡
xh1 , x

h
2

¢
: R2 → R is the contribution to social welfare from each

household. This restricts the social welfare functional to be sum-ranking but

is still quite general in that this is a flexible specification with much room

for disagreement over the ranking of different social states. For example, if we

define ψ (x1, x2) ≡ u (x1, x2) , where u represents the indiviual’s utility function,

then we have a utilitarian social welfare function. In this case the disutility

of inequality is generated by the concavity of the household utility functions.

However, this formulation also covers ψ (x1, x2) ≡ ψ (u (x1, x2)) where ψ is

an increasing transformation of u. If the transformation is concave then this

introduces concerns for inequality directly into the social welfare function. If a

specific choice of ψ can be arrived at, then all social states can be ranked and

the differences between them quantified. This may be very useful but the act

of choosing any particular cardinal representation of social welfare will rule out

other maybe equally plausible/reasonable functions which may give different

rankings. Another approach is to look for conditions under which all ψ’s with

similar canonical properties will unanimously rank social states.

Stochastic dominance criteria have been suggested as a way of ranking distri-

butions. The ideas are parallel to those for ranking uncertain choices in decision

theory and have been extended up to second order dominance to comparisons of

multi-dimensional distributions by Atkinson and Bourguignon (1982). For ex-

ample, suppose we wish to rank the joint distributions of x1 and x2: FA (x1, x2)

and FB (x1, x2). This is ranking is based upon the difference between social wel-
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fare in each distribution as defined by equation 4

∆W =

Z a1

0

Z a2

0

ψ (x1, x2)∆f (x1, x2) dx2dx1 (4)

where ∆f (x1, x2) = fA (x1, x2)− fB (x1, x2). Following the notation in Atkin-

son and Bourguignon (1982) let F1 (x1) and F2 (x2) denote the marginal dis-

tributions of F (x1, x2), let K (x1, x2) ≡ − [F (x1, x2) − F (x1) − F (x2)], let

H (x1, x2) =
R x1
0

R x2
0

F (s, t) dsdt, let Hi (xi) =
R xi
0

Fi (s) ds and let L (x1, x2) =R x1
0

R x2
0

K (s, t) dsdt.

First order dominance corresponds to dominance of monotonic social wel-

fare functions (i.e. those for which ψ1, ψ2 ≥ 0). This set is denoted by

Ψ = {ψ : ψi ≥ 0}. In the bivariate case there are two subsets according to

the assumed sign of the cross-partial: Ψ− =
©
ψ : ψi ≥ 0 and ψij ≤ 0

ª
and

Ψ+ =
©
ψ : ψi ≥ 0 and ψij ≥ 0

ª
. Both subsets require ∆F1 (x1) ,∆F2 (x2) ≤ 0

(that is, first order dominance in the marginal distributions).

∀ x1 and x2, F
A
1 (x1)− FB

1 (x1) ≤ 0 and FA
2 (x2)− FB

2 (x2) ≤ 0 (5)

Dominance for the class Ψ− additionally requires ∆F (x1, x2) ≤ 0;

∀ x1 and x2, F
A (x1, x2)− FB (x1, x2) ≤ 0 (6)

(Hadar and Russel (1974))6.

Dominance for the class Ψ+ additionally requires ∆K (x1, x2) ≤ 0;

∀ x1 and x2,K
A (x1, x2)−KB (x1, x2) ≤ 0 (7)

(Levy and Paroush (1974)).

Second order dominance corresponds to a preference for mean-preserving

inequality reducing changes in the distribution function. For extensions of the

classes Ψ− and Ψ+ denoted by Ψ−− and Ψ++ and defined below, both require

6∆F1 (x1) ≤ 0 and ∆F2 (x2) ≤ 0 are both implied by ∆F (x1, x2) ≤ 0.
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∆H1 (x1) ,∆H2 (x2) ≤ 0 (that is, second order dominance in the marginal dis-

tributions).

∀ x1 and x2,H
A
1 (x1)−HB

1 (x1) ≤ 0 and HA
2 (x2)−HB

2 (x2) ≤ 0 (8)

The conditions for Ψ−− are those for Ψ− plus ψ11, ψ22 ≤ 0 and ψ112, ψ122 ≥

0;ψ1122 ≤ 0. This additionally requires ∆H (x1, x2) ≤ 0;

∀ x1 and x2,H
A (x1, x2)−HB (x1, x2) ≤ 0 (9)

(Atkinson and Bourguignon (1982).

The conditions for Ψ++ are those for Ψ+ plus ψ11, ψ22 ≤ 0 and ψ112, ψ122 ≤

0;ψ1122 ≥ 0. This additionally requires ∆L (x1, x2) ≤ 0;

∀ x1 and x2, L
A (x1, x2)− LB (x1, x2) ≤ 0 (10)

(Atkinson and Bourguignon (1982).

Third order dominance corresponds to a preference for inequality reducing

changes in the lower end of the distribution function. The class of ψ functions

considered here are straightforward extensions of Ψ−− and Ψ++. These are

denoted by Ψ−−− and Ψ+++ and are defined below.

First let J (x1, x2) =
R x1
0

R x2
0

H (s, t) dsdt, let Ji (xi) =
R xi
0

Hi (s) ds and let

M (x1, x2) =
R x1
0

R x2
0

L (s, t) dsdt. For Ψ−−− and Ψ+++ both require ∆J1 (x1) ,

∆J2 (x2) ≤ 0 (that is, third order dominance in the marginal distributions).

∀ x1 and x2, J
A
1 (x1)− JB1 (x1) ≤ 0 and JA2 (x2)− JB2 (x2) ≤ 0 (11)

The conditions forΨ−−− are those forΨ−− plus ψ1112, ψ1122 ≥ 0 and ψ11122,

ψ11222 ≥ 0;ψ111222 ≤ 0. This additionally requires ∆J (x1, x2) ≤ 0 :

∀ x1 and x2, J
A (x1, x2)− JB (x1, x2) ≤ 0 ; (12)

The conditions for Ψ+++ are those for Ψ++ plus ψ1112, ψ1122 ≥ 0 and ψ11122,

ψ11222 ≥ 0;ψ111222 ≥ 0. This additionally requires ∆M (x1, x2) ≤ 0
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∀ x1 and x2,M
A (x1, x2)−MB (x1, x2) ≤ 0 (13)

Given these conditions linking social welfare rankings to characteristics of

the underlying distributions, the general approach is to construct estimates of

∆Fi (.), ∆F (.),∆K (.), ∆Hi (.), ∆H (.),∆L (.), ∆Ji (.), ∆J (.) and∆M (.), and

to check conditions (5) to (13) to see if stochastic dominance can be established

and of what order, and to check the class of social welfare functions for which

such dominance is established.

3 Estimation and Inference

Let the joint rangespace of x1 and x2 be partitioned into s and t mutually

exclusive and exhaustive categories respectively7. Denote by nij the number

of observations falling into the ijth category and denote the total number of

observations by n. The probability of falling into the ijth cell is

pij = Prob
n
x ∈ (xi−11 , xi1] ∩ (x

j−1
2 , xj2]

o
(14)

where these probabilities are defined by the unknown distribution F (x1, x2) (i.e.

pij = F (xi, xj)− F (xi, xj−1)− F (xi−1, xj) + F (xi−1, xj−1)).

Let bn be the (s× t) matrix of empirical cell counts. This empirical frequency

matrix is asymptotically distributed N (µ,Ω) (Kendall and Stewart (1979))

where

1

n
µ =

⎡⎢⎢⎢⎣
p11 p12 . . . p1t
p21 p22 . . . p2t
...

...
. . .

...
ps1 ps2 . . . pst

⎤⎥⎥⎥⎦ (15)

1

n
Ω =

⎡⎢⎢⎢⎣
p11 (1− p11) −p11p12 . . . −p11pst
−p12p11 p12 (1− p12) . . . −p12pst

...
...

. . .
...

−pstp11 −pstp12 . . . pst (1− pst)

⎤⎥⎥⎥⎦ (16)

Now suppose we wish to compare two distributions. Let the sample sizes be

nA and nB. Let the matrices of empirical frequencies be bnA and bnB and the
7There are two ways to proceed: either choose partition points and allow the cell frequencies

to be determined by the unknown distribution, or choose the cell frequencies and allow the
intervals between the partition points to be determined.

8



estimated cell probabilities be bpA = ¡nA¢−1 bnA and bpB = ¡nB¢−1 bnB. Denote
the difference between the estimated cell probabilities by

bv = ¡bpA − bpB¢ . (17)

Under the null hypothesis of common distributions then

bv a∼ N (0,mΩ) (18)

where

m =
nA + nB

nAnB
. (19)

If the objects of interest i.e. ∆Fi (.), ∆F (.), ∆K (.), ∆Hi (.), ∆H (.), ∆L (.),

∆Ji (.), ∆J (.) and ∆M (.) can be written as linear transformations of the (nor-

mally distributed) differences in cell probabilities, then nonparametric tests

(analogous to Pearson goodness of fit tests but in which F (.) need not be speci-

fied) of stochastic dominance can be derived in a straightforward manner. This

is shown in Anderson (1996) who then provides a framework for statistical tests

of dominance in univariate distributions up to third order. Ibbott (1998) de-

scribes a test for first order dominance in bivariate distributions. The following

describes tests for first, second and third order dominance in bivariate distri-

butions (the treatment of first order dominance is different to that in Ibbott

(1998)).

Let Lr be a r dimension lower triangular matrix of ones, let ιr be a vector

of ones of length r, let Wr be an (r × (r + 1)) matrix of zeros and ones such

that

Wr =

⎡⎢⎢⎢⎣
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...
...
...

...
...
...

0 0 0 · · · 1 1

⎤⎥⎥⎥⎦ , (20)

let Tr be an ((r + 1) × r) matrix consisting of an (1 × r) row vector of zeros

vertically concatenated above an Ir.Let δ1 be a (1× s) row vector of interval

widths defined on the partition of x1, and let δ2 be a (1× t) row vector of

interval widths defined on the partition of x2.
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The estimates of ∆F1 (x1) and ∆F2 (x2) at the partition points are given by

d∆F1 = Lsbvιtd∆F2 = ι0sbvL0t (21)

and ∆F (x1, x2) can be estimated at the partition points by

d∆F = LsbvL0t. (22)

Similarly ∆K (x1, x2) can be estimated at the partition points by

d∆K = −
∙
Is
...− Is

...− Is
¸⎡⎣ LsbvL0t

ιsι
0
sbvL0t

Lsbvιtι0t
⎤⎦ . (23)

Using the trapezoidal/linear interpolation rule for approximating integrals8 , ap-

proximations of∆H1 (x1) and∆H2 (x2) can be estimated at the partition points

by9 d∆H1 = Ls (0.5δ1 ¯ Is)WsTsLsbvιtd∆H2 = ι0sbvL0tT0tW0
t (0.5δ2 ¯ It)L0t

(24)

and an approximation of ∆H (x1, x2) can be estimated at the partition points

by d∆H = Ls (0.5δ1 ¯ Is)WsTsLsbvL0tT0tW0
t (0.5δ2 ¯ It)L0t. (25)

Similarly an approximation of ∆L (x1, x2) can be estimated at the partition

points using

d∆L = Ls (0.5δ1 ¯ Is)WsTs

µ
−
∙
Is
...− Is

...− Is
¸¶

⎡⎣ LsbvL0t
ιsι

0
sbvL0t

Lsbvιtι0t
⎤⎦T0tW0

t (0.5δ2 ¯ It)L0t.
(26)

Approximations of ∆J1 (x1) and ∆J2 (x2) can be estimated at the partition

points by

c∆J1 = Ls (0.5δ1 ¯ Is)WsTsLs (0.5δ1 ¯ Is)WsTsLsbvιtc∆J2 = ι0sbvL0tT0tW0
t (0.5δ2 ¯ It)L0tT0tW0

t (0.5δ2 ¯ It)L0t
(27)

8The quality of the approximation depends on the shape of the unknown cumulative distri-
bution function and the location and number of nodes. However, locating partitions at equal
quantile points will improve the approximation by linearising the CDF.

9Note that ¯ denotes the Hadamard product (element-by-element multiplication) opera-
tion on two matrices of the same dimensions or (as appropriate) element-row multiplication
of a column vector and a matrix with the same number of rows.
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and an approximation of ∆J (x1, x2) can be estimated at the partition points

by c∆J = Ls (0.5δ1 ¯ Is)WsTsLs (0.5δ1 ¯ Is)WsTsLsbv
L0tT

0
tW

0
t (0.5δ2 ¯ It)L0tT0tW0

t (0.5δ2 ¯ It)L0t.
(28)

Similarly an approximation of ∆M (x1, x2) can be estimated at the partition

points using

d∆M = Ls (0.5δ1 ¯ Is)WsTsLs (0.5δ1 ¯ Is)WsTs

µ
−
∙
Is
...− Is

...− Is
¸¶

⎡⎣ LsbvL0t
ιsι

0
sbvL0t

Lsbvιtι0t
⎤⎦T0tW0

t (0.5δ2 ¯ It)L0tT0tW0
t (0.5δ2 ¯ It)L0t.

(29)

Since all of these estimators are bi-linear with the general form:

d∆Y = AbvB (30)

where bv a∼ N (0,mΩ), it is reasonably straightforward to construct estimates of

the variance-covariance matrix of d∆Y using the fact that bv is mean-zero under
the null and so

V ar(AbvB) = E
¡
(vec (AbvB)) (vec (AbvB))0¢ (31)

and can be written as10

V ar(AbvB) = (B0 ⊗A)V ar (bv) (B⊗A0) (32)

For example

V ar
³d∆F´ = Lt ⊗ LsmΩL0t ⊗ L0s (33)

Forming these estimates and dividing through element-by-element by their stan-

dard errors forms the basis of a test of the null (common distribution) and

alternative (dominance) hypotheses given in table (1). For example, using

the convention adopted in Anderson (1996) and in Bishop, Chakraborti and

Thistle (1989) the hypothesis test of H0 : ∆Fi (.) ,∆F (.) = 0 versus H1F :

∆Fi (.) ,∆F (.) ≤ 0 is essentially that
10Magnus and Neudecker (1988), ⊗ indicates the Kronecker product.
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∀ x1 and x2, FA (x1, x2)− FB (x1, x2) ≤ 0 (34)

and

∃ x1 and x2, FA (x1, x2)− FB (x1, x2) < 0 (35)

i.e. no element of the matrix d∆F is significantly greater than zero, and that at
least one element is significantly less than zero11 .

Note that the marginal distributions (d∆F1,[∆F2, d∆H1,d∆H2, c∆J1,c∆J2), and
the test statistics based on them, correspond exactly to Anderson’s tests of first,

second and third order dominance in the univariate (marginal) distributions.

The null and alternative hypotheses for dominance in the univariate distribu-

tions are given in table (2). The relevant classes of univariate functions (denoted

by Ψ) are Ψ for all functions which increase monotonically (Ψ = {ψ : ψi ≥ 0})

with respect to their single argument, Ψ− which is the subset of Ψ with dimin-

ishing first derivatives (Ψ−= {ψ : ψi ≥ 0, ψii ≤ 0}) and Ψ−− which is the subset

of Ψ− with negative third derivatives (Ψ−−= {ψ : ψi ≥ 0, ψii ≤ 0, ψiii ≤ 0}).

Whilst each element of these matrices can be tested using pointwise proce-

dures, the overall test for the whole matrix will, in each case, involve multi-

ple comparisons of differences in means. Under the null hypothesis (no dom-

inance/common distributions) this involves the use of the critical values from

the studentised maximummodulus (SMM) distribution (Stoline and Ury (1979))

with degrees of freedom equal to the number of cells. Note that these tests are

symmetric. For example if we find that we cannot reject H0 in favour of H1F

then, while we cannot establish first order dominance (for Ψ−) of FA over FB,

at the same time we know that we will able to reject the null in favour of first

order dominance of FB over FA for the same general class of functions.

11 In principle there is a further alternative hypothesis, one of indeterminacy. For example
in the case of first order dominance

H1F : ∆Fi (.) ,∆F (.) £ ∧ ¤ 0⇒ indeterminate

For H1F not to be rejected requires that there exist both significantly positive and significantly
negative elements of d∆F (Anderson (1996)).
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4 Extensions to higher dimensions

The preceeding section discussed how estimators for the objects of interest could

be formed and also how, using the fact that these estimators were bilinear, it

was straightforward to derive estimators for their variance-covariance structures.

These ideas also apply to higher dimensional problems. The extension of these

estimators and tests to higher dimensions is fiddly rather than intrinsically dif-

ficult. Indeed it is slightly easier than it may first appear because the order

of partial differentiation is reversible and once a variable is integrated out (by

parts) it stays out. For a D dimensional case uh = u (x1, x2, ..., xD) the first

order dominance criteria are

∆W = −
DX
i=1

Z ai

0

ψi∆Fidxi (36)

+
D−1X
i=1

DX
j=i+1

Z aj

0

Z ai

0

ψij∆Fijdxidxj

−
D−2X
i=1

D−1X
j=i+1

DX
k=j+1

Z ak

0

Z aj

0

Z ai

0

ψijk∆Fijkdxidxjdxk

...

+(−1)D
Z aD

0

...

Z ai

0

ψi...D∆Fdxi...dxD

In general there are 2D − 1 terms (D first order partials which are assumed

positive — monotonicity — and 2D −D− 1 cross partials to which the signs have

to be assigned) which increases rapidly with the number of dimensions. Taking

the example of D = 4 we have 4 positive first order partial derivatives and 11

higher order partials in the expression for the difference in social welfare. Let x

denote the vector of indicators [w, x, y, z]0 then denote the probability of falling

into the ijkl’th cell by

pijkl = Prob
©
x ∈ (wi−1, wi] ∩ (xj−1, xj ] ∩ (yk−1, yk] ∩ (zl−1, zl]

ª
(37)
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Suppose that the empirical probability matrix is organised as follows

bP =
⎡⎢⎢⎢⎣

Pyz|w≤w1;x≤x1 Pyz|w≤w1;x1<x≤x2 · · · Pyz|w≤w1;xJ<x

Pyz|w1<w≤w2;x≤x1 Pyz|w1<w≤w2;x1<x≤x2 · · · Pyz|w1<w≤w2;xJ<x
...

...
. . .

Pyz|wI<w;x≤x1 Pyz|wI<w;x1<x≤x2 Pyz|wI<w;xJ<x

⎤⎥⎥⎥⎦
(38)

and so the difference between two distributions is given by

bV = bPA − bPB (39)

The estimators for the difference in first order partials are

d∆Fw = (Lw ⊗ ιy) bV (ιz ⊗ ιx)0 d∆Fx = (ιy ⊗ ιw) bV (Lx ⊗ ιz)0d∆Fy = (ιw ⊗ Ly) bV (ιx ⊗ ιz)0 d∆Fz = (ιy ⊗ ιw) bV (ιx ⊗ Lz)0 (40)

The second order partials are

d∆Fwx = (Lw ⊗ ιy) bV (Lz ⊗ Lx)0 d∆Fwy = (Lw ⊗ Ly) bV (ιz ⊗ ιx)0d∆Fwz = (Lw ⊗ ιy) bV (Lz ⊗ ιx)0 d∆Fxy = (Ly ⊗ ιw) bV (Lx ⊗ ιz)0d∆Fxz = (ιy ⊗ ιw) bV (Lx ⊗ Lz)0 d∆Fyz = (ιw ⊗ Ly) bV (ιx ⊗ Lz)0 (41)

The third order partials are

d∆Fwxy = (Lw ⊗ Ly) bV (ιx ⊗ Lz)0 d∆Fwxz = (Lw ⊗ ιy) bV (Lx ⊗ Lz)0d∆Fxyz = (ιw ⊗ Ly) bV (Lx ⊗ Lz)0 d∆Fwyz = (Lw ⊗ Ly) bV (Lx ⊗ ιz)0 (42)

The joint distribution is

d∆F = (Lw ⊗ Ly) bV (Lx ⊗ Lz)0 (43)

Alternative classes of aggregator function (with alternative signs for cross-partials)

can be developed using an identical approach to that in the bivariate case

(see Atkinson and Bourguignon (1987)). Estimation of the required variance-

covariance matrix and inference proceeds in an analogous manner to the bivari-

ate case. For example

V ar(d∆F) = ¡(Lx ⊗ Lz)0 ⊗ (Lw ⊗ Ly)¢V ar ³bV´ ¡(Lx ⊗ Lz)0 ⊗ (Lw ⊗ Ly)0¢
(44)

Whilst this is extension to many dimensions may be feasible in principal it runs

into two major practical problems. The first is interpretability. In the 4D case

there are 11 higher order partials whose signs (and the combination of these
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signs) has to be investigated. Intuition would tend to desert most researchers

and theorists. Note, however, that whenever we write down a social welfare

function all of these cross partials are immediately given signs (often zero) al-

though not as a matter of conscious thought. The second problem is to do with

data requirements. In order to nonparametrically estimate a multidimensional

distribution or density requires a great deal of data in order to maintain preci-

sion. Consider the example of n = 1000 observations distributed uniformly over

a 5d cube [0, 1]5. The expected number of observations in the neighbourhood

of a 0.25 cube is n
¡
0.25

¢
= 0.32 i.e. less than 1 observation. To get 50 points

upon which to base an estimate of a cell frequency you need to average over a

0.555 cube. Hence it is necessary to take very large neighbourhoods, or to have

very large numbers of observations as the number of dimensions rises.

5 Empirical Application

This section applies the ideas outlined above to the analysis of dominance in

the joint distribution of household total expenditure and non labour market

time12. Stochastic dominance criteria may be a fruitful way of approaching

welfare measurement defined over these arguments because of the particular

problems involved in determining the price of non-market time when this may

depend on unobserved cross-sectional productivity differences, or the incidence

of cyclical or sector-specific involuntary unemployment.

Goodman, Johnson and Webb (1997) have shown that inequality in real

equivalised total household expenditure grew over the 1980’s and levelled of in

the early 1990’s. This increase in inequality was less marked than the increase in

income inequality over the same period. They also show that whilst real incomes

amongst the poorest tenth of the population were flat over the period, real

expenditure amongst this group grew. Gregg and Wadsworth (1996) show that,

over roughly the same period, whilst employment in general moved cyclically,

12 Ibbott (1998) looks at first order dominance criteria for this joint distribution amongst
Canadian households.
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the number of households with zero hours work rose steeply in the early 1980’s

but the employment growth (in large part an increase in part-time work) which

occurred subsequently was largely confined to households which already had

positive hours of work. This resulted, by the end of the period, in a situation

in which there were many more multi-worker households and roughly twice as

many households with no workers.

In this section each households’ contribution to social welfare is defined to

be a time separable and increasing function of equivalised current real expendi-

ture13 (ex) and a decreasing function of current hours of work (t), that is14
ψh = ψ

¡exh,−th¢ (45)

is the contribution (or the utility function if ψ
¡exh,−th¢ = u

¡exh,−th¢) of the
hth household, where ψhx ≥ 0 and ψh−t ≥ 0 or equivalently ψht ≤ 0. The as-

sumption of time separability means that a comparison of social welfare between

periods depends only upon difference in the within-period distributions. The ar-

guments of social welfare are chosen to be observable analogues of consumption

and leisure although both are far from perfect proxies. If first order dominance

can be established then there is no need to specify the signs of second derivatives

and cross partials. If first order dominance cannot be established, then the tests

of second order dominance will concentrate on functions drawn from Ψ−− and

Ψ++ (i.e. concave functions). If second order dominance cannot be established

further restrictions are placed on the set of admissible functions and third order

dominance is examined.

5.1 Data

The data are from the Family Expenditure Survey (FES) for the years 1975,

1980, 1985, 1990 and 1995. The FES is an annual random cross section survey

13Note that this includes any expenditures related to the fixed and variable costs of being
in work which (all other things being equal) may not be welfare increasing.
14Household expenditures are normalised by the McClement’s equivalence scale and deflated

by a common Törnqvist price index with weights taken from the all items Retail Prices Index
(1997=1). Hours of work have not been normalised on the basis that the marginal (dis)utility
of an hour’s work is not affected by typical normalisation schemes where leisure is measured
by the household’s total time endowment less the number of hours worked.
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of around 7,000 households (this represents a response rate of around 70% for

most of the period). The FES records data on household structure, employment,

income and the spending over the course of a two week diary period. In the FES

the information is aggregated to the household level and averaged across the two

week period to give weekly expenditure figures for over 300 different goods and

services. In what follows the data on total expenditure is defined in the FES

as total (weekly) household expenditure plus the imputed value of free school

milk and school meals. This is then deflated to 1999 values and equivalised as

described above. Hours of work are total usual weekly hours excluding breaks

and overtime for the household.

Figures 1, 2 and 3 illustrate bp, and bF for 1975, 1985 and 1995 15. These

figures use all of the available data from each year. All the years indicate mass

points in the non-market time distribution at 0, -40 and -80 hours roughly

corresponding to zero hours work and to full-time work for one and two adults

in a household. However these mass points grow less pronounced over time with

increased frequency of observations elsewhere indicating the growth in part-time

work. In the real (equivalised) expenditure dimension there is evidence of an

increased number of observations in the upper tail over time.

5.2 Results

This section reports the results of tests of dominance in the joint distribution

of real equivalised total household expenditure, and non labour market time for

all for the years considered. The joint distribution is partitioned into 10×10

cells with the partitions in each dimension placed at the nine decile points. The

tests reported below are at 95% for both univariate and bivariate distributions

(the critical values from the SMM distribution are 2.8 for the univariate results

and 3.47 for the bivariate results16). The aim is to contrast the different wel-

fare implications drawn when considering each of the univariate distributions in

isolation, with the those which focus on the joint distribution.

15Similar figures for the other years studied are available (grudgingly) from the author.
16 Stoline and Ury (1979).
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5.2.1 Full sample results

Table 3 gives descriptive statistics for the covariates for the entire sample. Mean

real expenditure grew year-on-year over the period, as did inequality in real

spending as measured by its variance also grew up until 1990. However, between

1990 and 1995 the variance of real expenditure fell. Mean non labour market

time increased every year and its variance fell.

The first two blocks of table 4 reports the results of the dominance tests

in each of the univariate distributions. The entries indicate the dominance

hypothesis which rejects the relevant null for the row-year over the column-year.

For example h1 in the row for 1980 and the column for 1975 in the first block

indicates that the null of common distributions is rejected in favour of dominance

of 1980 over 1975 for all ψ
¡exh¢ in Ψ. In the case of non labour market time

later years always first order dominate earlier ones, perhaps unsurprisingly given

data on increase means and reduced variances over the period. The univariate

results for real expenditure follow a roughly similar pattern with first order

dominance established for 1980 over 1975, for 1990 over 1985 and for 1995 over

all years except for 1980.

The bivariate results for these data are reported in the third block in table

4 and are similar to those in the univariate table. Indeed they should be as

rejection of univariate dominance in the marginal distributions would also reject

dominance in the joint distribution. First order dominance is established for

1990 over 1985 and for 1995 over all years except for 1980. However, 1980,

which first order dominated 1975 with respect to both marginal distributions

only first order dominates 1975 for functions within the class Ψ+ (positive cross

partials). Second order dominance, however, is established for Ψ− and hence

for Ψ++ ∪Ψ−−.
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5.2.2 Date-of-birth cohort results

In the section the data are split by date-of-birth cohort17. The first set of results

are for the pre 1930 cohort. The youngest of these households would have been

46 in 1975 and 76 by 1995. The number of observations in this cohort drops

from 3,539 in 1975 to 1,456 in 1995 partly through mortality and partly because

of higher non-response rates in the FES for older households and because people

in retirement homes are not surveyed. The mean age in the cohort will therefore

be dropping over time.

Table 5 reports descriptive statistics and shows increase real spending up

until 1990 followed by a drop, possibly related to retirement in this cohort.

Real expenditure inequality measured by its variance falls between 1975 and

1980 but rises afterwards until 1990. In the 1995 the variance of spending drops.

Non market time in this cohort increases every year with mean hours of work

reaching very low levels by 1995. Its variance falls year-on-year. The dominance

results are summarised in table 6. The univariate results indicate that earlier

years tend to first order dominate later ones in the expenditure distribution,

with the reverse being true for the non market time distribution. In other

words considering each argument on it’s own would give strongly contrasting

pictures of the changes in social welfare. The exception in the case of spending

is the year 1995 which second order dominates 1990 and third order dominates

1985. Given that the univariate results run (for the most part) in opposite

directions the lack of bivariate dominance results is not surprising. There is

little indication of increased welfare for this cohort; second order dominance,

however, is establish for 1995 over 1990, and for 1980 over 1975.

Table 7 report the descriptive statistics for households with a mean date-

of-birth between 1929 and 1940. Mean real spending grows over the period

whilst it variance also grows but not year-on-year: the variance is lower in 1980

than 1975 for example and in 1995 compared to 1990. Non labour market time

increases over the period and the variance drops. The univariate dominance

17The split is based upon mean date of birth for all adults in the household.
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results reported in table 8 for non labour market time are clear cut with first

order dominance established for every year over preceding ones. There is less

of a patterns in the real expenditure (marginal) distribution. The bivariate

results in the third block in table 8 follow the univariate ones in this case with

first order dominance established for the three comparisons for which first order

dominance in both the univariate distributions is established.

The next date-of-birth cohort is made up of households with mean date-

of-birth between 1939 and 1950. Descriptive statistics for this sub-sample are

reported in table 9. This shows increase mean real expenditure for this cohort

year-on-year throughout the period and increase inequality with the now typical

exception of 1995 in which the variance of real spending fell compared to 1990.

Mean non labour market time falls to begin with but then increases and its

variance follows a similar pattern. The univariate results in table 10 show a

broadly similar pattern for both real spending and non market time, with later

years generally dominating. An exception is 1995 in the spending distribution.

Interestingly in the real spending distribution 1990 second order dominates 1995,

whilst 1995 dominate 1990 in the non market time distribution. Despite this first

order dominance is established for 1995 over 1990 in the bivariate distribution.

In general, later years first order dominate in the joint distribution up until

1990 with more mixed results for 1995. 1980 only second order dominates 1975

however. Note that the fact that 1995 first order dominates 1990, and 1990

first order dominates all 1980 and 1985 implies that if social preferences are

transitive then 1995 dominates these years as well. This provides reasonable

evidence of increased welfare for this group.

The final set of results are for cohorts born after 1949 (tables 11, and 12).

Mean real spending increases throughout the period and there is also an in-

crease in non market time. The variance for both covariates generally increase

although not year-on-year. The univariate results are mixed. In the real spend-

ing distribution all years first or second order dominate 1985, however in the

non market time distribution 1985 dominates every other except for 1995. The
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bivariate results reflect this mixed picture with only second order dominance

established for four comparisons out of ten (and only for functions drawn from

Ψ++ for dominance of 1975 over 1980). Again transitivity of social preferences

implies that 1995 second order dominates 1990 and the 1975 second order dom-

inates 1985. This give weak evidence of decreasing welfare for this cohort in the

earlier years and increasing welfare between 1990 and 1995.

6 Conclusions

This paper has extended the test procedures in Anderson (1996) to multivariate

distributions. These tests were applied to UK data on real equivalised household

spending and non labour market time. It was shown that it was possible to

establish dominance of various orders using these techniques. It is also shown

that considering each of the covariates in isolation may sometimes give strongly

contrasting evidence on the changes in social welfare over time and that it may

therefore be important to adopt the multivariate approach. Further, it was

shown that even when the null of no dominance could not be rejected in one

or other marginal distribution, dominance of various order could be established

with respect to the joint distribution. The empirical results indicate that for

the population overall, social welfare increased towards the end of the period

with 1995 first order dominating 1975, 1985 and 1990 indicating unanimous

ranking by all functions increasing in these argument. There is also evidence of

increased social welfare between 1975 and 1980 for concave functions. Results

by date-of-birth cohort indicate that most of the increases in welfare were felt

by the 1939 to 1950 cohort. The youngest cohort (born in 1950 and after) show

some indications of reduced welfare (for concave utility functions) in the earlier

years but a gain in 1995 over 1985.
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Figure 1: Estimated cell probabilities and distribution function, 1975
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Figure 2: Estimated cell probabilities and distribution function, 1985.
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Figure 3: Estimated cell probabilities and distribution function, 1995.

26



Table 1: Bivariate dominance criteria, null and alternative hypotheses.

Null Alternative Class of Ψ
1st Order dominance
H0 : ∆Fi (.) ,∆F (.) = 0 H1F : ∆Fi (.) ,∆F (.) ≤ 0 Ψ−

H0 : ∆Fi (.) ,∆K (.) = 0 H1K : ∆Fi (.) ,∆K (.) ≤ 0 Ψ+

H0 : ∆Fi (.) ,∆F (.) ,∆K (.) = 0 H1 : H1F and H1K Ψ− ∪Ψ+
2nd Order dominance
H0 : ∆Hi (.) ,∆H (.) = 0 H2H : ∆Hi (.) ,∆H (.) ≤ 0 Ψ−−

H0 : ∆Hi (.) ,∆L (.) = 0 H2L : ∆Hi (.) ,∆L (.) ≤ 0 Ψ++

H0 : ∆Hi (.) ,∆H (.) ,∆L (.) = 0 H2 : H2H and H2L Ψ−− ∪Ψ++
3rd Order dominance
H0 : ∆Ji (.) ,∆J (.) = 0 H3J : ∆Ji (.) ,∆J (.) ≤ 0 Ψ−−−

H0 : ∆Ji (.) ,∆M (.) = 0 H3J : ∆Ji (.) ,∆M (.) ≤ 0 Ψ+++

H0 : ∆Ji (.) ,∆J (.) = 0,∆M (.) = 0 H3 : H3J and H3M Ψ−−− ∪Ψ+++
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Table 2: Univariate dominance criteria, null and alternative hypotheses.

Null Alternative Class of Ψ
1st Order dominance
h0 : ∆Fi (.) = 0 h1 : ∆Fi (.) ≤ 0 Ψ
2nd Order dominance
h0 : ∆Hi (.) h2 : ∆Hi (.) ≤ 0 Ψ−

3rd Order dominance
h0 : ∆Ji (.) h3 : ∆Ji (.) ≤ 0 Ψ−−
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Table 3: Descriptive statistics, all households.

exh −th
Mean Std.Dev Min Max Mean Std.Dev Min Max n

75 197.22 128.15 29.25 3365.54 -45.12 38.25 -270 0 7203
80 207.05 129.00 21.10 2793.25 -41.43 37.06 -240 0 6944
85 220.36 155.49 10.67 2912.98 -35.62 36.22 -276 0 7012
90 246.47 198.88 20.12 5287.11 -34.38 34.95 -218 0 7046
95 261.24 183.75 26.78 3514.31 -31.79 34.01 -244 0 6759
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Table 4: Dominance results, all households.

ψ
¡exh¢ ψ

¡
−th

¢
ψ
¡exh,−th¢

75 80 85 90 95 75 80 85 90 95 75 80 85 90 95
75
80 h1 h1 H1(K)H2(H)

85 h1 h1
90 h1 h1 h1 h1 H1

95 h1 h1 h1 h1 h1 h1 h1 H1 H1 H1
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Table 5: Descriptive statistics, households with mean adult d.o.b pre 1930.

exh −th
Mean Std.Dev Min Max Mean Std.Dev Min Max n

75 180.60 135.98 29.25 3365.54 -27.44 32.35 -164 0 3539
80 182.66 132.84 21.10 2793.25 -18.79 26.29 -168 0 2892
85 184.75 146.76 34.61 2912.98 -8.84 18.50 -115 0 2487
90 189.74 172.66 20.12 2036.30 -3.92 12.32 -112 0 2057
95 180.66 155.12 26.78 3514.31 -1.32 6.55 -83 0 1456
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Table 6: Dominance results, households with mean adult d.o.b. pre 1930.

ψ
¡exh¢ ψ

¡
−th

¢
ψ
¡exh,−th¢

75 80 85 90 95 75 80 85 90 95 75 80 85 90 95
75 h1 h1 h1 h1
80 h1 h1 h1 h1 H2

85 h1 h1 h1
90 h1 h1 h1
95 h3 h2 h1 h1 h1 h1 H2
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Table 7: Descriptive statistics, households with mean adult d.o.b 1930 to 1939.

exh −th
Mean Std.Dev Min Max Mean Std.Dev Min Max n

75 219.18 126.78 54.25 2483.55 -68.73 35.90 -204 0 1516
80 229.02 123.53 55.52 1323.36 -60.24 32.25 -164 0 1016
85 249.86 163.20 33.58 1963.46 -44.39 29.71 -152 0 849
90 262.64 202.94 48.76 2060.69 -33.51 27.42 -136 0 836
95 266.12 195.60 46.81 1952.59 -16.12 22.80 -110 0 880
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Table 8: Dominance results, households with mean adult d.o.b.1930 to 1939.

ψ
¡exh¢ ψ

¡
−th

¢
ψ
¡exh,−th¢

75 80 85 90 95 75 80 85 90 95 75 80 85 90 95
75
80 h1 h1 H1

85 h1 h1
90 h1 h1 h1 h1 H1

95 h1 h1 h1 h1 h1 H1
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Table 9: Descriptive statistics, households with mean adult d.o.b 1940 to 1949.

exh −th
Mean Std.Dev Min Max Mean Std.Dev Min Max n

75 208.02 113.20 57.50 1625.56 -57.94 35.94 -270 0 1631
80 223.94 124.21 29.17 1531.69 -61.13 38.30 -236 0 1856
85 246.07 157.79 10.67 2096.67 -56.19 35.73 -207 0 1572
90 287.27 201.06 40.09 2866.13 -52.16 32.77 -162 0 1169
95 293.84 189.29 32.69 1808.40 -36.48 30.78 -138 0 903
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Table 10: Dominance results, households with mean adult d.o.b 1940 to 1949.

ψ
¡exh¢ ψ

¡
−th

¢
ψ
¡exh,−th¢

75 80 85 90 95 75 80 85 90 95 75 80 85 90 95
75 h1
80 h1 H2

85 h1 h1 h1 h1 H1 H1

90 h1 h1 h1 h2 h1 h1 H1 H1 H1

95 h1 h1 h1 h1 h1 H1 H1
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Table 11: Descriptive statistics, households with mean adult d.o.b. 1950 and
after.

exh −th
Mean Std.Dev Min Max Mean Std.Dev Min Max n

75 212.96 104.15 70.00 838.52 -56.58 30.77 -197 0 515
80 221.36 121.62 39.81 1352.86 -49.72 30.80 -240 0 1180
85 231.47 152.78 37.84 2909.97 -48.41 36.06 -276 0 2102
90 265.19 205.47 21.67 5287.11 -48.66 34.38 -218 0 2982
95 285.17 180.60 28.43 1923.85 -47.15 33.82 -244 0 3517
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Table 12: Dominance results, households with mean adult d.o.b. 1950 and after.

ψ
¡exh¢ ψ

¡
−th

¢
ψ
¡exh,−th¢

75 80 85 90 95 75 80 85 90 95 75 80 85 90 95
75 h2 h2 H2(L)

80 h2 h1 H2

85 h1 h1 h1
90 h1 h1 H2

95 h1 h1 h1 h1 H2
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