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Abstract

We consider the bias of the 2SLS estimator in the linear instrumental vari-
ables regression with one endogenous regressor only. By using asymptotic
expansion techniques we approximate 2SLS coeffi cient estimation bias un-
der various scenarios regarding the number and strength of instruments.
The resulting approximation encompasses existing bias approximations,
which are valid in particular cases only. Simulations show that the de-
veloped approximation gives an accurate description of the 2SLS bias in
case of either weak or many instruments or both.
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1. Introduction

It is well known that the two-stage least squares (2SLS) estimator can perform

poorly in finite samples when there are weak or many instruments or both. One

aspect of this poor accuracy is finite sample bias. When instruments are weak,

i.e. only weakly correlated with the endogenous regressors, the 2SLS estimator

is biased in the direction of the ordinary least squares (OLS) estimator, see e.g.

Bound et al. (1995), Staiger and Stock (1997) and Stock et al. (2002). With

many instruments a similar result occurs, see e.g. Bekker (1994).

The approximate bias of the 2SLS estimator can be obtained using ‘higher

order’asymptotics, see Nagar (1959) and Buse (1992). The resulting bias approx-

imation has been derived assuming a finite number of strong instruments. Hahn

and Kuersteiner (2002) show that in case of nearly weak instruments this stan-

dard higher order approximation is still valid. However, under weak instruments

as defined by Staiger and Stock (1997) this approximation breaks down. Cruz and

Moreira (2005) show by simulation that in case of weak instruments the standard

higher order result is a poor approximation to the true finite sample bias.

An alternative and particular simple bias approximation has been proposed

by Hahn and Hausman (2002). They also compare 2SLS bias with that of OLS.

There are interesting differences between the standard higher-order 2SLS bias

approximation and the alternative Hahn-Hausman approximation. When identi-

fication becomes weak, the Hahn-Hausman approximate relative bias (compared

with OLS) goes to 1, whereas the higher-order Nagar approximation goes to in-

finity.

In this paper we analyze the accuracy of both approximations using an as-
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ymptotic expansion of the 2SLS estimation error. Following the terminology of

Andrews and Stock (2006) we will consider different types of asymptotics, i.e.

strong, many, weak and many weak IV asymptotics. We show that the Hahn and

Hausman (2002) approximation to the finite sample bias is actually not a higher-

order approximation when applying usual strong IV asymptotics. However, it can

be considered as a first-order bias approximation (inconsistency) in both the many

and many weak IV asymptotics set up. We derive an encompassing higher-order

bias approximation of the IV bias for these cases, which in a Monte Carlo study

is shown to be more accurate than existing bias approximations.

2. Absolute and Relative 2SLS Bias

As in Hahn and Hausman (2002) and Hahn and Kuersteiner (2002) we consider

a simple model specification with one endogenous explanatory variable xi and k

instruments zi

yi = xiβ + ui (2.1)

xi = z′iπ + vi, (2.2)

i = 1, ..., n, with (
ui
vi

)
∼ IIN

(
0,

[
σ2u σuv
σuv σ2v

])
. (2.3)

The 2SLS estimator of β is given by

β̂2SLS =
x′Z (Z ′Z)−1 Z ′y

x′Z (Z ′Z)−1 Z ′x
= β +

x′Z (Z ′Z)−1 Z ′u

x′Z (Z ′Z)−1 Z ′x

where y, x and u are the n-vectors (y1, ..., yn)′, (x1, ..., xn)′ and (u1, ..., un)′ respec-

tively, and Z is the n× k matrix (z1, ..., zn)′.
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Using the reduced form specification (2.2) we can write

β̂2SLS − β =
π′Z ′u+ v′PZu

π′Z ′Zπ + 2π′Z ′v + v′PZv
, (2.4)

where PZ = Z (Z ′Z)−1 Z ′. For ease of exposition, and following Hahn and Kuer-

steiner (2002), we assume throughout that zi are non-stochastic instruments with

limn→∞
1
n
Z ′Z finite and nonsingular. The approximate bias of the 2SLS estimator

can be obtained using ‘higher order’asymptotics, see Nagar (1959), Buse (1992)

and Hahn and Kuersteiner (2002), and is then given by

E
[
β̂2SLS

]
− β ≈ σuv

σ2v

(k − 2)

µ
, (2.5)

where µ is the concentration parameter,

µ =
π′Z ′Zπ

σ2v
. (2.6)

Hahn and Hausman (2002) derive an alternative approximation to the bias of the

2SLS estimator:

E
[
β̂2SLS

]
− β ≈ E [π′Z ′u+ v′PZu]

E [π′Z ′Zπ + 2π′Z ′v + v′PZv]

=
σuv
σ2v

k

µ+ k
. (2.7)

There are interesting differences between the two approximations, especially

when we relate 2SLS bias to OLS bias. This relative bias is used by Bound et al.

(1995), Staiger and Stock (1997) and Stock and Yogo (2005) to assess whether

instruments are weak. The bias of the OLS estimator can be approximated by

(see also Hahn and Hausman, 2002)

E
[
β̂OLS

]
− β ≈ σuv

σ2v

1
µ
n

+ 1
= plim

(
β̂OLS

)
− β.
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Then the relative bias based on the Nagar 2SLS bias approximation is approxi-

mately given by
E
[
β̂2SLS

]
− β

E
[
β̂OLS

]
− β

≈
(k − 2)

(
µ
n

+ 1
)

µ
.

Using the Hahn-Hausman bias approximation the relative bias would be approx-

imated as
E
[
β̂2SLS

]
− β

E
[
β̂OLS

]
− β

=
k
(
µ
n

+ 1
)

µ+ k
.

When µ is close to 0, the Hahn-Hausman approximate relative bias goes to 1,

whereas the Nagar approximation goes to infinity.

3. Bias Approximation

From (2.4), we have for the 2SLS estimation error

β̂2SLS − β =
π′Z ′u+ v′PZu

π′Z ′Zπ + 2π′Z ′v + v′PZv
≡ c

d
, (3.1)

with

E [c] = E [π′Z ′u+ v′PZu]

= σuvk,

and

E [d] = E [π′Z ′Zπ + 2π′Z ′v + v′PZv]

= σ2v(µ+ k).

We will use the shorthand notation E [c] = c̄ and E [d] = d̄ to denote these

expectations.
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Below we will develop a stochastic expansion of the estimation error (3.1)

in terms of decreasing order of magnitude in s = max(µ, k). Doing so we do not

restrict ourselves a priori regarding the number and strengths of instruments used.

The conventional expansion (Nagar, 1959; Rothenberg, 1984) asumes µ = O(n)

and k = O(1), hence is only valid when µ → ∞ as n → ∞. Here we are more

flexible because we allow either µ or k (or both) to grow with the sample size. The

only assumption we make is that s → ∞ as n → ∞ thereby ruling out the case

of a finite number of weak instruments in the sense of Staiger and Stock (1997).

It can be shown that V ar [c] = O(s) and V ar [d] = O(s), hence c = Op(s
1/2)

and d = Op(s
1/2). It should be noted that these results hold regardless of the

number or strength of instruments used in estimation because the usual O and Op

notation exploited here only denotes the largest order of magnitude. Hence, we

allow the moments of c and d to contain components µ and k of different order of

magnitude. Once again, the only important assumption is that s→∞ as n→∞.

We may express the denominator of the estimation error (3.1) as follows:

d = d̄+ d− d̄

= d̄(1 + d̄−1(d− d̄)),

hence we have

d−1 = d̄−1(1 + d̄−1(d− d̄))−1.

Noting that d̄−1(d− d̄) = Op(s
−1/2) the second factor expands as follows

(1 + d̄−1(d− d̄))−1 = 1− d̄−1(d− d̄) + d̄−2(d− d̄)2 +Op

(
s−

3
2

)
.

Denoting the numerator of (3.1) as

c = c̄+ c− c̄,
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and exploiting the expansion of the denominator we write the estimation error as

β̂2SLS − β =
c̄

d̄
+
c− c̄
d̄
− c̄(d− d̄)

d̄2
− (c− c̄) (d− d̄)

d̄2

+
c̄(d− d̄)2

d̄3
+Op

(
s−

3
2

)
.

Taking expectations we get

E
[
β̂2SLS − β

]
=
c̄

d̄
−
E
[
(c− c̄) (d− d̄)

]
d̄2

+
c̄E
[
(d− d̄)2

]
d̄3

+ o(s−1). (3.2)

Evaluating the remaining expectations on the right hand side we find

E
[
(c− c̄) (d− d̄)

]
= E

[
(π′Z ′u+ v′PZu− σuvk)

(
2π′Z ′v + v′PZv − kσ2v

)]
= 2E [π′Z ′uv′Zπ] +

σuv
σ2v

E
[
(v′PZv − σuvk)

(
v′PZv − kσ2v

)]
= 2σuvπ

′Z ′Zπ +
σuv
σ2v

(
σ4v
(
k2 + 2k

)
−
(
σuvk + kσ2v

)
σ2vk + k2σuvσ

2
v

)
= 2σuvσ

2
v(µ+ k),

E
[
(d− d̄)2

]
= E

[(
2π′Z ′v + v′PZv − kσ2v

)2]
= E

[
(2π′Z ′v)

2
]

+ E
[(
v′PZv − kσ2v

)2]
= 4σ2vπ

′Z ′Zπ + σ4v
(
k2 + 2k

)
− k2σ4v

= 2σ4v(2µ+ k),

where we used the normality assumption (2.3) and, hence, that terms involving

odd moments have expectation zero. Hence, we find the following bias approxi-

mation:

E
[
β̂2SLS − β

]
=
σuv
σ2v

(
k

(µ+ k)
− 2µ2

(µ+ k)3

)
+ o(s−1). (3.3)
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4. Comparison with Existing Bias Approximations

The standard approach is to assume a fixed number of strong instruments, i.e.

k = O(1) and µ = O(n). In this case s = O (n), the leading term in the bias

approximation (3.3) is O(n−1) and 2SLS is a consistent estimator. Because k is

of smaller order than µ we have

1

µ+ k
=

1

µ
− k

µ(µ+ k)

=
1

µ
+O(n−2),

1

(µ+ k)3
=

1

µ3
− 3µk2 + 3µ2k + k3

µ3(µ+ k)3

=
1

µ3
+O(n−4),

hence we have for the approximate bias

E
[
β̂2SLS − β

]
=
σuv
σ2v

(k − 2)

µ
+ o(n−1),

which is equal to the result of Nagar (1959), Buse (1992) and Hahn and Kuer-

steiner (2002). From the derivations above it is also clear that the Hahn and

Hausman (2002) bias approximation is not a higher order approximation because

it omits important O(n−1) contributions, while adding some o(n−1) contributions.

The next question is in which set up the Hahn and Kuersteiner (2002) is actu-

ally a valid bias approximation. One possibility is the case of many instruments

(Bekker, 1994). More in particular, assuming that k →∞, n→∞ and k/n→ α

with 0 < α < 1 we have that k = O(n). However, we continue to assume that

µ = O(n). Inspecting the bias approximation in (3.3) in this case the leading term
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is σuv
σ2v

k
(µ+k)

= O(1) and 2SLS is inconsistent. The Hahn and Hausman (2002) bias

approximation measures the inconsistency, but note that the remainder term in

this case is O(n−1) instead of o(n−1).

Another possibility is the case of weak instruments (Staiger and Stock, 1997).

More in particular, assuming that k is finite, π = c/
√
n with 0 < c <∞ we have

that µ = O(1). Again we have that the 2SLS estimator is inconsistent and we

have that E(c) = O(1) again, but now c − E(c) = Op(1). Also we have that

E(d) = O(1) now, but now d−E(d) = Op(1) too. Hence, we are left with a 2SLS

estimation error in which both numerator and denominator are of finite stochastic

order of magnitude. Hence, an expansion of the type above breaks down.

However, we can combine both cases and consider many weak instruments as

introduced by Chao and Swanson (2005). Assuming that k →∞ as n→∞ with

µ = O(k), which is basically the same result as in the many instruments case.

Hence, again the Hahn and Hausman (2002) approximation can be considered as

the inconsistency of the IV estimator.

5. Monte Carlo results

The bias approximation in (3.3) is a higher-order approximation irrespective of the

number and strength of instruments. Although it breaks down in case of a finite

number of weak instruments, it might still be informative in this case. In general

it is expected to be more accurate compared with existing bias approximations

(2.5) and (2.7).
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We generate data on ui, vi and zi as(
ui
vi

)
∼ IIN

(
0,

[
1 ρ
ρ 1

])
zi ∼ IIN (0, Ik) ,

and for y and x according to (2.1) and (2.2). We choose ρ = 0.5 and n = 200.

We evaluate the 2SLS bias approximations for different values of k and µ. We

vary the population first stage F statistic µ/k from µ/k = 0 to µ/k = 10 with

k = {5, 15, 25}. We choose the reduced form parameters according to (2.6). With

the particular choice for the DGP of the instruments this leads to πj =
√

µ
kn
,

j = 1, ..., k.

Figures 1, 2 and 3 shows simulation results for k = 5, k = 15 and k = 25. We

plot actual bias (labeled bias) and the 3 different approximations (2.5), (2.7) and

(3.3) (labeled Nagar, HH and BW) against the population first stage F statistic

µ/k. It is seen that in case of weak instruments the Nagar approximation is

inaccurate as documented previously by Cruz and Moreira (2005). For modest k

the Hahn-Hausman approximation is inaccurate. The approximation (3.3) works

well in all cases.

6. Concluding remarks

In this study the accuracy of various analytical approximations for the finite sam-

ple bias of the 2SLS coeffi cient estimator in the linear instrumental variables model

have been analyzed. Using asymptotic expansion techniques an alternative bias

approximation has been developed encompassing existing bias approximations.

The developed bias approximation is valid in case of both many and many weak

instruments.
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Through Monte Carlo experiments its accuracy in finite samples is compared

with existing bias approximations. The simulation results show that the proposed

bias approximation is very accurate for a wide range of parametrizations. In case

of many instruments or many weak instruments the proposed bias approximation

is numerically very close to an estimate of the inconsistency of the 2SLS estimator.

However, in case of only a moderate number of weak instruments invoking higher-

order terms yields some significant improvements.
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Figure 1. Bias of 2SLS Estimator and Approximations, n = 200, ρ = 0.5, k = 5
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Figure 2. Bias of 2SLS Estimator and Approximations, n = 200, ρ = 0.5, k = 15
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Figure 3. Bias of 2SLS Estimator and Approximations, n = 200, ρ = 0.5, k = 25
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