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Abstract
The cumulants of the quadratic forms associated to the so-called spatial design matri-

ces are often needed for inference in the context of isotropic processes on uniform grids.
Unfortunately, because the eigenvalues of the matrices involved are generally unknown, the
computation of the cumulants may be very demanding if the grids are large. This paper con-
structs circular counterparts, with known eigenvalues, to the spatial design matrices. It then
studies some of their properties, and analyzes their performance in a number of applications.
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1 Introduction

When analyzing data observed on a uniform grid, it is often reasonable to assume

that the underlying spatial stochastic process is isotropic. Isotropy requires that the

variogram—or the covariance function, if it exists—does not depend on direction but

only on distance; see, e.g., Cressie (1993), Ch. 2.3. The so-called spatial design matrices

arise naturally in many inferential problems in the context of isotropic processes; see

Genton (1998), Gorsich et al. (2002), Hillier and Martellosio (2006), Arellano-Valle and

Genton (2010), and below. In particular, for testing or estimation purposes, one often

needs the first few cumulants of quadratic forms, or ratios of quadratic forms, associated

to the spatial design matrices. Unfortunately, the derivation of such cumulants may

be computationally very demanding. This paper is concerned with an approximation

aimed at alleviating the computational effort.

By d-dimensional uniform grid with ni sites on the i-th axis we mean the set

Γ = Γ(n1, ..., nd) of the N =
∏d

i=1 ni sequences α = (α(1), ..., α(d)) of integers

∗Corresponding author. Tel: +44 (0) 118 378 6033; fax: +44 (0) 118 378 4029
E-mail addresses: ghh@soton.ac.uk (G. Hillier), f.martellosio@reading.ac.uk (F. Martellosio).
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α(i) = 0, ..., ni − 1. We call two elements α,β ∈ Γ h-neighbors if the squared Eu-

clidean distance ‖α− β‖2 is equal to h.1 For convenience, we order the sequences in

Γ lexicographically. An off-diagonal spatial design matrix is a matrix Ah indexed by

Γ× Γ with entries

(Ah)α,β =

{
1 if α and β are h-neighbors

0 otherwise,
(1)

for h = 1, 2, ...,
∑d

i=1(ni− 1)2. Given Ah, we can define a full spatial design matrix as

Lh = Dh −Ah, (2)

where Dh denotes the diagonal matrix containing the row-sums of Ah. Note that

(Dh)α,α is the number of h-neighbors of α. For h = 0, it proves convenient to define

A0 = D0 = 2IN , where IN denotes the N ×N identity matrix.

Spatial design matrices appear in several important statistics related to stochastic

processes on uniform grids. Let z denote the N × 1 vector (z(α),α ∈ Γ)′, where z(α)

is the random variable observed at α. Let N(h) denote the set of unordered pairs

(α,β) that are h-neighbors, and let Nh = |N(h)| be the number of h-neighbors on Γ.

For any h such that Nh 6= 0, two fundamental quadratic forms associated to the spatial

design matrices are

γ̂h =
1

2Nh

z′Lhz =
1

2Nh

∑
α,β∈N(h)

(z(α)− z(β))2, (3)

and

b̂h =
1

2Nh

z′Ahz =
1

Nh

∑
α,β∈N(h)

z(α)z(β). (4)

The quadratic form γ̂h is a sample equivalent of the semivariogram γ(h) at distance√
h of an intrinsically stationary and isotropic process (e.g., Cressie, 1993). On the

other hand, b̂h is a sample equivalent of the autocovariance c(h) at distance
√
h of a

zero-mean second-order stationary and isotropic process. When E(z(α)) is assumed to

be constant over Γ, and unknown, b̂h can be generalized to

ĉh =
1

2Nh

z′MAhMz =
1

Nh

∑
α,β∈N(h)

(z(α)− z̄)(z(β)− z̄), (5)

where z̄ = N−1
∑
α∈Γ z(α) andM = IN−N−1ιNι

′
N , with ιN denoting the N×1 vector

of all ones. Generalizations to the linear regression case are also straightforward, but

will not be considered in this paper.

Another popular statistic associated to the spatial design matrices is the sample

correlation coefficient

rh =
ĉh
ĉ0

, (6)

1We define h-neighborhood with respect to the squared Euclidean distance, rather than the Eu-
clidean distance, only for notational convenience. Note that squared Euclidean distances between the
elements of a grid Γ are integer.
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where, from (5), ĉ0 is the sample variance N−1z′Mz.

In the context of testing for spatial autocorrelation, rh is referred to as the Moran

statistic (Moran, 1950). Similarly, the ratio

gh =
γ̂h
ĉ0

(7)

can be used as a test statistic for spatial autocorrelation (Geary, 1954), or as a normal-

ized semivariogram estimator (e.g., Gorsich et al. 2002, p. 161).2 It is worth noting

that, when d = 1, rh reduces to the standard serial correlation coefficient at time lag√
h (e.g., Anderson, 1971, p. 299), and gh reduces to (half) the von Neumann ratio at

time lag
√
h (von Neumann, 1941).

Spatial design matrices are also relevant for modeling purposes. For example, the

Ah’s can be used as weights matrices in conditional or simultaneous autoregressions

on Γ (e.g., Cressie 1993, Ch. 6.3), and the Lh’s can be used as precision matrices of

intrinsic autoregressions on Γ (e.g., Rue and Held, 2005, Ch. 3). In this context, the

results in the present paper are useful to construct an approximate likelihood in a way

similar to what is done Kent and Mardia (1996), but this will not be our emphasis

here.

Throughout the paper, we assume that the random vector z is Gaussian, although,

as we mention in Section 5, various generalizations are possible. Several authors,

especially in geostatistics, have been concerned with the cumulants of the quadratic

forms associated to spatial design matrices under Gaussianity. Such cumulants are

of direct interest in the context of estimation (for instance, as we shall see below,

variances and covariances of γ̂h for different values of h are required for generalized

least squares fitting of the variogram) and are useful to derive approximations to the

densities of the various statistics defined above (for instance, by matching the cumulants

to those of some family of distribution, or by saddlepoint approximation). Cressie

(1985) considers the case when z is a Gaussian intrinsically stationary process, and

studies the covariance structure of the non-isotropic versions of the γ̂h’s. Genton (1998)

deals with the isotropic case for general d, when observations are independent and

when only “non-diagonal directions” are considered.3 Gorsich et al. (2002) provides

generalizations, and study var(γ̂h) by simulation, under second-order stationarity and

isotropy. Hillier and Martellosio (2006), henceforth HM, derives a complete structural

representation of the matrices Ah and Lh, and studies generating functions for the

computation of the cumulants of the associated quadratic forms.

The purpose of this paper is to approximate the matrices Ah and Lh with matrices

having a “more convenient” structure. Part of the difficulty in working with the ma-

trices Ah and Lh is that, in dimension d higher than 1, their eigenvalues are generally

not known in closed form. This is problematic, because in many important cases the

cumulants of the statistics mentioned above are functions of the eigenvalues. Also,

2Geary (1954) used the unbiased sample variance [N/(N−1)]ĉ0, rather than ĉ0, as a normalization
factor in (7). Under the assumption z ∼ N(µιN , IN ), such a normalization has the advantage of
making E(gh) independent of N .

3Restricting attention to non-diagonal directions amounts to setting (Ah)α,β = 1 if ‖α− β‖2 = h

and α− β contains d− 1 zeros, (Ah)α,β = 0 otherwise.
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since all those statistics are based on quadratic forms, it follows that under the specific

assumption of a spherically symmetric distribution, all their properties depend only on

the eigenvalues of the spatial design matrices. It should be noted that, in principle, the

computation of the cumulants is possible even without knowing the eigenvalues, using

the generating functions given in HM. However, the required computation becomes

prohibitive when N is large. This is true not only under general assumptions on the

underlying spatial process (such as second-order stationarity and isotropy), but, in the

case of cumulants of order higher than two, even for i.i.d. data; see Section 3 of HM.

In the present contribution, we overcome these problems by approximating Ah and

Lh with matrices Ãh and L̃h whose eigenvalues are available in closed form. Because

they are constructed on the basis of circulant matrices, the matrices Ãh and L̃h will

be named circular spatial design matrices.

The rest of the paper is organized as follows. In Section 2 we briefly review the basic

structure of spatial design matrices, and we introduce the matrices that will be used as

building blocks for our approximation. In Section 3 we construct the approximation,

and we study some of its properties. In Section 4 we investigate the use of the circular

spatial design matrices in the context of three applications: the study of the properties

of the sample autocovariance, a test of significance of the Moran correlogram, and gen-

eralized least squares (GLS) estimation of the variogram. Some illustrative numerical

results are included. Section 5 concludes. The appendices contain some additional

technical material and all the proofs.

2 Preliminaries

Let F (n)
r , for r = 0, 1, ..., n − 1, denote the n × n matrices with (i, j) entry equal to 1

if |i− j| = r, 0 otherwise. For example,

F
(4)
1 =


0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

 ; F
(4)
2 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 .
The F (n)

r ’s are the off-diagonal spatial design matrices Ah in dimension d = 1 (with

r =
√
h). When d > 1, our circular approximation rests on a representation of the

spatial design matrices in terms of sums of Kronecker products (⊗) of the matrices

F (n)
r . Namely, the extension of Proposition 1 in HM to the case in which n1, n2, ..., nd

are not necessarily the same yield

Ah =
∑
α∈Γh

F⊗α, (8)

where

Γh = {α ∈ Γ : ‖α‖2 = h},
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and

F⊗α = F
(n1)
α(1) ⊗ F

(n2)
α(2) ⊗ ...⊗ F

(nd)
α(d) =

d⊗
i=1

F
(ni)
α(i). (9)

The eigenvalues of the matrices F (n)
r , r = 0, ..., n−1, are easily derived in closed form

(e.g., Biggs, 1993). Hence, by (9), the eigenvalues of any F⊗α are also known. However,

this is generally of no help in obtaining the eigenvalues of the Ah’s when d > 1, because

the summands in (8) are typically not pairwise commutative; see Section 2.3 of HM

for details. For many purposes, it would be useful to approximate Ah with a matrix

having a simple eigenstructure. We shall show that this can be achieved by replacing

the matrices F (n)
r with their circular counterparts F̃

(n)

r . These are circulant matrices

with (i, j)-th entry

(F̃
(n)

r )i,j =

{
1 if |i− j| = r or |i− j| = n− r
0 otherwise.

(10)

For example,

F̃
(4)

1 =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 ; F̃
(4)

2 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 .
Observe that F̃

(n)

r = F (n)
r if and only if r = 0 or n/2. Also, note that F̃

(n)

r = F̃
(n)

n−r, and

hence only bn/2c + 1 of the matrices F̃
(n)

r , r = 0, 1, ..., n− 1, are distinct (b·c denotes

the floor function).

The matrices F̃
(n)

r , r = 0, ..., bn/2c, are used to define the so-called circular se-

rial correlation coefficients (e.g., Anderson, 1971, Section 6.5), which are well-known

to have simpler statistical properties than the corresponding statistics based on the

matrices F (n)
r . Most of the analytical advantages of replacing the F (n)

r ’s with the

F̃
(n)

r ’s are a consequence of the fact that the latter matrices span an algebra—known

as Bose-Mesner algebra—that admits a basis of symmetric and pairwise orthogonal

idempotents, and hence is commutative and closed under multiplication and general-

ized inversion (see, e.g., Bannai and Ito, 1984).4

4A simple way to verify that the span of the matrices F̃
(n)

r is a Bose-Mesner algebra is to exploit
the well-known result that the distance matrices of a distance-regular graph span a Bose-Mesner

algebra (e.g., Biggs, 1993, p. 159-161). Indeed, the matrices F̃
(n)

r , r = 0, ..., bn/2c, can be interpreted
as the distance matrices of the graph with vertex set {0, 1, ..., n − 1} and edges the pairs (i, i + 1),
i = 0, 1, ..., n− 2, and the pair (0, n− 1). Such a graph is easily seen to be distance-regular.

5



3 The Circular Spatial Design Matrices

3.1 Definition and Properties

For each h = 1, 2, ...,
∑d

i=1(ni − 1)2, we define the circular off-diagonal spatial design

matrices by analogy with expression (8):

Ãh =
∑
α∈Γh

F̃
⊗
α, (11)

where

F̃
⊗
α =

d⊗
i=1

F̃
(ni)

α(i).

We can regard Ãh either as an approximation to the “true” matrix Ah, or as an

alternative spatial design matrix in its own right. Letting D̃h be the diagonal matrix

with (D̃h)α,α =
∑
β∈Γ(Ãh)α,β, for each α ∈ Γ, it is natural to consider also the circular

full spatial design matrix

L̃h = D̃h − Ãh.

In order to describe the structure of Ãh, we need some new notation. Let ∆ be the

collection of all (proper and improper) subsets of {1, ..., d}. For each D ∈ ∆, we define

the sequence πD = (πD(1), ..., πD(d)) with components

πD(i) =

{
0 for i ∈ D
ni otherwise.

For each (α,β) ∈ Γ × Γ, we also define the sequence εα,β ∈ Γ with components

εα,β(i) = |α(i)− β(i)|, i = 1, ..., d.

Theorem 1 For each (α,β) ∈ Γ× Γ,

(Ãh)α,β =

{
1 if ∃ D ∈ ∆ such that ‖εα,β − πD‖2 = h

0 otherwise.
(12)

Geometrically, the 2d sequences πD are the corners of the grid Γ(n1 + 1, ..., nd + 1).

Thus, Theorem 1 asserts that (Ãh)α,β = 1 if and only if α and β are at squared

distance h on the toroidal grid Γ̃ obtained by joining the “opposite sides” of the grid

Γ.5 Replacing a lattice by its toroidal counterpart has often proved useful in the

statistical literature to approximate properties of spatial processes; see, for instance,

Besag and Moran (1975), Martin (1986), and Kent and Mardia (1996).

Some immediate consequences of Theorem 1 are given in the following corollary.

5In graph theoretic terminology, Ãh and L̃h are, respectively, the adjacency matrix and the Lapla-
cian matrix of the graph having Γ̃ as vertex set, and edges the pairs (α,β) such that ‖α− β‖2 = h

(see, e.g., Biggs 1993).
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Corollary 1 Ãh = Ah if and only if α (i) equals 0 or ni/2, for each α ∈ Γh and each

i = 1, ..., d. For each (α,β) ∈ Γ × Γ, (Ãh)α,β = (Ah)α,β if εα,β (i) < ni −
√
h for all

i = 1, ..., d.

The first part of Corollary 1 asserts that, except for very restrictive cases, Ãh 6= Ah.

However, when h is small relative to each ni, many of the entries of Ah and Ãh

agree. Indeed, according to the second part of the Corollary 1, the proportion of

entries (Ãh)α,β that are different from (Ah)α,β is non-increasing in each ni, and, for

a fixed N , non-decreasing in d.6 This suggests that the approximation should work

particularly well when all ni’s are large and d is small, which is precisely the case when

an approximation is most needed.

Note that the matrices F̃
(n)

r have constant row sum, equal to 1 if r = 0 or r = n/2,

to 2 otherwise. An important consequence of this is that Ãh, in contrast to Ah, also

has constant row-sum, to be denote by m̃h. To see this, let δr,s be the Kronecker delta

(δr,s = 1 if r = s, δr,s = 0 otherwise), and write

ÃhιN =
∑
α∈Γh

F̃
⊗
α

d⊗
i=1

ιni
=
∑
α∈Γh

d⊗
i=1

F̃
(ni)

α(i)ιni

=
∑
α∈Γh

d∏
i=1

(
2− δα(i),0 − δα(i),

ni
2

) d⊗
i=1

ιni
= m̃hιN . (13)

Observe that m̃h is an eigenvalue of Ãh, associated to the eigenvector ιN . Also, note

that when n1 = ... = nd = n, expression (13) for m̃h yields

m̃h =
d∑
i=0

2d−ifi, (14)

where fi is the number of sequences in Γh with exactly i elements equal to 0 or n/2.

In particular, since
∑d

i=0 fi = |Γh|, it follows that if no α ∈ Γh contains either 0 or

n/2, then (14) simplifies to m̃h = 2d |Γh|. We denote the sum Nm̃h of all elements in

Ãh by 2Ñh, so that Ñh is the number of (unordered) pairs of h-neighbors on Γ̃. The

corresponding quantity on Γ is Nh, defined in the Introduction.

Remark 1 The computation of m̃h from equations (13) or (14) requires previous com-

putation of the elements of Γh (see Section 3.2). Alternatively, following the approach

described in HM, it is easily checked that m̃h can be efficiently computed as the coef-

ficient of th in the formal expansion of the generating function

d∏
i=1

{
1 +

ni−1∑
r=1

(
2− δr,ni/2

)
tr

2

}
. (15)

6A more formal justification of the approximation is provided by the fact that, as n1, n2, .., , nd →
∞, Ãh and Ah are asymptotically equivalent sequences of matrices, in the sense of, e.g., Gray (2006),
Section 2.3.
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The matrices Ãh do not retain all properties of the matrices F̃
(n)

r . In particular, the

Ãh’s are not necessarily circulant matrices, and do not necessarily span an algebra that

is closed under multiplication and generalized inversion. One crucial property that the

Ãh’s do inherit from the F̃
(n)

r ’s is that of pairwise commutativity.

Theorem 2 For all h and k, the matrices Ãh and Ãk commute.

Recall that if two symmetric matrices commute, they are simultaneously diagonal-

izable (e.g., Horn and Johnson, 1985). Because of this, Theorem 2 has two important

implications: (i) the eigenvalues of any linear combination of matrices Ãh are the same

linear combination of the eigenvalues of the Ãh’s; (ii) all positive or negative powers of

all linear combinations of matrices Ãh share the same eigenvectors. As an illustration

of (ii), consider a spatial process z with E(z) = Xβ, where X is a fixed full-rank n×k
matrix and β ∈ Rk is an unknown parameter, and with variance matrix equal to some

integer power q of a linear combination of the Ãj’, i.e., var(z) = Σ̃
q
, with

Σ̃ =
∑
j∈J

c(j)Ãj, (16)

where J is a set of nonnegative integers including 0, and the coefficients c(j) are such

that Σ̃
q

exists (if q < 0) and is positive definite. For example, q = 1 corresponds to

second-order stationary and isotropic processes on Γ̃ (cf. Section 4.3 below); q = −1

and q = −2 correspond to, respectively, conditional autoregressions and simultaneous

autoregressions constructed using the Ãh’s as weights matrices (see, e.g., Cressie 1993,

Ch. 6). By the Gauss-Markov theorem, β̂GLS = (XΣ̃
−q
X)−1X ′Σ̃

−q
z is the best

linear unbiased estimator. Assume that the column space of X is spanned by k eigen-

vectors of the Ãh’s. By implication (ii), it follows that β̂GLS = β̂OLS = (X ′X)−1X ′z,

i.e., the OLS estimator is best linear unbiased. Since ιN is an eigenvector of any Ãh, a

particular case of this result is that, if z has constant unknown mean µ ∈ R, then the

sample mean ι′Nz/N is the best linear unbiased estimator of µ.

3.2 Eigenvalues

We now derive all eigenvalues of Ãh. First observe that

F̃
⊗
αF̃

⊗
β =

d⊗
i=1

(
F̃

(ni)

α(i)F̃
(ni)

β(i)

)
=

d⊗
i=1

(
F̃

(ni)

β(i)F̃
(ni)

α(i)

)
= F̃

⊗
β F̃

⊗
α. (17)

That is, like the F̃ r, the matrices F̃
⊗
α are pairwise commutative, and hence admit a set

of common eigenvectors (see, Horn and Johnson, 1985, 51-53). Thus, the eigenvalues

of the matrices Ãh, which are sums of the matrices F̃
⊗
α’s, are easily obtained from

those of the summands. Specifically, letting the known eigenvalues of F̃
(n)

r be denoted

by λ
(n)
r,0 , λ

(n)
r,1 , ..., λ

(n)
r,n−1, we have:7

7The eigenvalues of the matrices F̃
(n)

r are given, e.g., in Theorem 6.5.3 of Anderson (1971). If n
is odd and r 6= 0, they are 2 cos(2πri/n), i = 1, ..., (n − 1)/2, each with multiplicity two, and 2; if
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Theorem 3 The eigenvalues of the matrix Ãh are

λ⊗Γh
(β) =

∑
α∈Γh

(
d∏
i=1

λ
(ni)
α(i),β(i)

)
, β ∈ Γ. (18)

Since D̃h = m̃hIN , it follows immediately that the eigenvalues of L̃h are m̃h −
λ⊗Γh

(β), β ∈ Γ. To obtain the λ⊗Γh
(β)’s, one needs to know Γh, which, depending on

Γ and on h, may be a complicated set. Fortunately, again following the approach

described in HM, the set Γh can be obtained from a suitable generating function.

Letting h̄ =
∑d

i=1 (ni − 1)2, it is easy to verify that α ∈ Γh if and only if the term∏d
i=1xα(i) appears as a term in the coefficient of th in the formal expansion of the

generating function

d∏
i=1

{
ni−1∑
r=0

(xrt
r2)

}
=

h̄∑
h=0

{
th
∑
α∈Γh

(
d∏
i=1

xα(i)

)}
.

The members of the set Γh can therefore be obtained simply by expanding the gener-

ating function using symbolic computer package, for any Γ and any h.

Remark 2 Theorem 3 holds not only for the matrix Ãh =
∑
α∈Γh

F̃
⊗
α, but, more

generally, for any matrix
∑
α∈U F̃

⊗
α, with U ⊂ Γ. From the proof of the theorem, it is

clear that the eigenvalues of
∑
α∈U F̃

⊗
α are λ⊗U(β), β ∈ Γ. This is useful for extensions

of the theory in this paper to cases when neighborhood on Γ is defined according to a

metric different from the Euclidean one.

4 Applications

In this section we study three applications of the above theoretical results, in increasing

order of complexity. Many more applications seem possible, but are left for future

investigation. Section 4.1 analyzes the sample autocovariance of a spatial process, in

the simple case when the mean is zero and data are identically and independently

distributed. Section 4.2 considers assessing the significance of a Moran correlogram.

Section 4.3 is concerned with GLS estimation of the variogram of an isotropic and

second order stationary process.

4.1 The Sample Autocovariance

As a first application of the circular spatial design matrices, we consider the circular

sample autocovariance

b̃h =
1

2Ñh

z′Ãhz.

n is even and r 6= 0, n/2, they are 2 cos(2πri/n), i = 1, ..., (n − 2)/2, each with multiplicity two, 2,

and 2(−1)r. Finally, F̃
(n)

n/2 has eigenvalues 1 and −1, each with multiplicity n/2, and F̃
(n)

0 = In and
hence has the unique eigenvalue 1.
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in approximating the sample autocovariance b̂h, given in (4). As we mentioned already

above, the main reason why it is convenient to approximate b̂h with b̃h is that the

cumulants of the latter are easier to obtain. To see this, we need to state the following

standard lemma, which is proved for instance in Kendall and Stuart (1969), Ch. 15.

Lemma 1 Let y be an N × 1 random vector, and R,R1 and R2 N × N symmetric

matrices. If y ∼ N(τ ,Ω), then the p-th cumulant of y′Ry is

κp(y
′Ry) = 2p−1(p− 1)!

(
tr [(RΩ)p] + pτ ′R(ΩR)p−1τ

)
, p = 1, 2, ... (19)

and

cov(y′R1y,y
′R1y) = 2 tr (R1ΩR2Ω) + 4τ ′R1ΩR2τ . (20)

Using Theorem 2, one can see immediately that if z ∼ N(0, Σ̃
q
), then κp(z

′Ãhz)

and cov(z′Ãhz, z
′Ãkz) depend only on the (known) eigenvalues of the Ãh’s. In Section

4.3, we shall also use the fact that, again by Theorem 2, if z ∼ N(µιN , Σ̃
q
), then

κp(z
′L̃hz) and cov(z′L̃hz, z

′L̃kz) depend only on the (known) eigenvalues of the L̃h’s.

Having explained the main advantage related to the use of b̃h, we now move to

analyze the performance of b̃h in approximating b̂h. We only consider the case z ∼
N(0, IN) (which can of course be seen as a particular case of z ∼ N(0, Σ̃

q
)), although

extensions are certainly possible (the case var(z) = Σ̃ can be dealt with as in Section

4.3).

Ideally, one would like to compare the densities of b̃h and b̂h, but this is outside the

scope of the present paper. In the rest of this subsection, we confine ourselves to the

first few cumulants of b̂h.

Proposition 1 When z ∼ N(0, IN), and for h, k > 0 such that Nh, Nk > 0,

(i) E(̂bh) = 0, var(̂bh) = 1/Nh;

(ii) b̂h and b̂k, h 6= k, are uncorrelated.

(iii) if d = 1, 2 or h is odd, the density of b̂h is symmetric about zero.

To derive corresponding results for b̃h we need the following condition, which is

stated for a fixed squared distance h.

Condition A For any α ∈ Γh and any i = 1, ..., d, α (i) < ni/2.

In applications, one is usually concerned only with values of h satisfying Condition

A. Indeed, when Condition A is not satisfied, the number Nh of h-neighbors may be

too small for inferential purposes.

Proposition 2 When z ∼ N(0, IN), and for h, k > 0 such that Nh, Nk > 0,

(i) E(̃bh) = 0, var(̃bh) = 1/Ñh;

(ii) b̃h and b̃k, h 6= k, are uncorrelated if Condition A holds for both squared distances

h and k.

10



The extension of Proposition 1(iii) to b̃h is more complicated and is given in Ap-

pendix A. The main result there is that, although b̃h does not need to be symmetric

about zero when b̂h is, this is not a problem in practice from the point of view of

approximating b̂h with b̃h, because the low-order cumulants of b̃h are zero if and only

if those of b̂h are.

Regarding part (ii) of Proposition 2, it is worth noting that if Condition A does

not hold for h or k, then b̃h and b̃k are generally correlated. The magnitude of the

correlation can be obtained from the eigenvalues of Ãh and Ãk, because,

cov(̃bh, b̃k) = 2
1

4ÑhÑk

tr(ÃhÃk) =
1

2ÑhÑk

∑
β∈Γ

{λ⊗Γh
(β)λ⊗Γk

(β)},

where the first equality follows from Lemma 1 and the second from Theorem 2.

To give an indication of the accuracy of the circular approximation, in Tables 1 and

2 we report some values of the ratios

ηp,h =
κp(̂bh)

κp(̃bh)
,

where κp(y) denotes the p-th cumulant of a random variable y. Table 1 displays values

of η2,h and η4,h for square grids in 2 and 4 dimensions (values of η3,h are not reported,

because κ3(̂bh) = κ3(̃bh) = 0 for most values of n, d, and h). The values of η2,h have

been computed using formulae derived in Appendix B, whereas those of η4,h have been

obtained by deriving κ4(̂b1) from the generating functions given in HM and κ4(̃b1) from

the known eigenvalues of Ãh. It is also of interest to look at the performance of the

approximation of non-square grid. Table 2 displays values of η2,h for 2-dimensional

grids with n1/n2 = 1, 4, 16, 25.

η2,h η4,h

n n

h 20 40 60 80 100 20 40 60 80 100
d = 2 1 1.053 1.026 1.017 1.013 1.010 1.114 1.055 1.036 1.027 1.021

2 1.108 1.052 1.034 1.025 1.020 1.267 1.125 1.081 1.060 1.048
5 1.170 1.080 1.052 1.039 1.031 1.416 1.188 1.121 1.089 1.071
10 1.238 1.109 1.070 1.052 1.041 1.590 1.256 1.163 1.120 1.094
100 1.866 1.422 1.253 1.181 1.141 2.265 2.083 1.631 1.439 1.336

d = 3 1 1.053 1.026 1.017 1.013 1.010 1.112 1.054 1.035 1.026 1.021
2 1.108 1.052 1.034 1.025 1.020 1.251 1.117 1.077 1.057 1.045
5 1.170 1.080 1.052 1.039 1.031 1.391 1.177 1.114 1.084 1.067
10 1.238 1.109 1.070 1.052 1.041 1.572 1.247 1.157 1.115 1.091
100 2.064 1.441 1.265 1.189 1.147 2.834 2.134 1.643 1.446 1.340

Table 1: Some values of η2,h and η4,h on 2- and 3-dimensional grids.

The numerical results suggest that our approximation is generally very satisfactory,

but it deteriorates when N is small, or h is large. Also, the approximation works better

11



N

n1/n2 h 400 1600 3600 6400 104 106

1 1 1.053 1.026 1.017 1.013 1.010 1.001

2 1.108 1.052 1.034 1.026 1.020 1.002

5 1.170 1.080 1.052 1.039 1.030 1.003

10 1.238 1.109 1.070 1.052 1.041 1.004

100 1.866 1.422 1.253 1.181 1.141 1.013

4 1 1.067 1.032 1.021 1.016 1.013 1.001

2 1.140 1.066 1.043 1.032 1.026 1.003

5 1.223 1.102 1.066 1.049 1.039 1.004

10 1.320 1.140 1.090 1.066 1.052 1.005

100 2.890 1.469 1.342 1.239 1.184 1.016

16 1 1.119 1.056 1.037 1.027 1.022 1.002

2 1.266 1.118 1.076 1.056 1.044 1.004

5 1.457 1.188 1.118 1.086 1.068 1.006

10 1.717 1.267 1.164 1.118 1.093 1.009

100 1.143 2.401 1.785 1.371 1.362 1.028

25 1 1.149 1.070 1.054 1.034 1.027 1.004

2 1.347 1.149 1.095 1.069 1.055 1.007

5 1.220 1.240 1.149 1.108 1.084 1.011

10 2.051 1.348 1.208 1.149 1.116 1.014

100 1.111 2.098 1.812 1.404 1.360 1.046

Table 2: Some values of η2,h on 2-dimensional grids.

on square grids than on rectangular ones. Finally, note that, while it is straightforward

to show that κp(z
′Ãhz) ≥ κp(z

′Ahz) (in particular, Ñh ≥ Nh for p = 2), a simple rela-

tionship does not necessarily hold for the cumulants of the normalized quadratic forms

b̃h and b̂h, although the results in Tables 1 and 2 suggest that κp(̃bh) underestimates

κp(̂bh) in most cases of interest.

4.2 Moran Correlogram

Our second application concerns testing for the joint significance of a Moran correl-

ogram. For an isotropic process on Γ, a Moran correlogram is a plot of the Moran

statistic rh, defined in expression (6), against h. Note that, when d = 1, this reduces to

the usual time-series correlogram. A popular test for assessing the joint significance of

a Moran correlogram has been proposed by Oden (1984). Suppose that rh is computed

for a set H of nonzero squared distances h such that Nh > 0, and let r be the |H| × 1

vector (rh, h ∈ H)′. Then, Oden’s test rejects the null hypothesis z ∼ N(µιN , IN) for

12



large values of the statistic

O = (r − E(r))′(var(r))−1(r − E(r)), (21)

where the two moments are evaluated under the null hypothesis.8 Under the null, r

is asymptotically (as N → ∞) multivariate normal; see Kelejian and Prucha (2001).

Thus, asymptotic critical values for Oden’s test can be obtained from a χ2 distribution

with |H| degrees of freedom.

For an h > 0 such that Nh (and hence Ñh) is positive, we define the circular

counterpart of ch in (5) as

c̃h =
1

Ñh

z′MÃhMz,

and the sample correlation coefficient, or circular Moran statistic, as

r̃h =
c̃h
ĉ0

=
1

m̃h

zMÃhMz

z′Mz
.

Proposition 3 Assume z ∼ N(µιN , IN). For any h, k > 0 such that Nh, Nk > 0,

E(rh) = E(r̃h) = − 1

N − 1
,

cov(rh, rk) =
1

N2 − 1

(
N2

Nh

1h=k −
Nh,k

NhNk

N + 2
N − 2

N − 1

)
, (22)

where Nh,k = ι′NAhAkιN , and, provided that Condition A holds for both h and k,

cov(r̃h, r̃k) =
2N

N2 − 1

(
1

m̃h

1h=k −
1

N − 1

)
. (23)

Remark 3 Proposition 3 generalizes results available in the time-series literature (d =

1) to higher dimension. When d = 1, Condition A is equivalent to
√
h,
√
k < n/2, where

n = n1. Under this condition, expression (32) in Appendix C yieldsNh,k = 4(n−k)−2h.

It is then easily checked that expressions (4.4) and (4.5) in Dufour and Roy (1985) are

particular cases of (22) and (23), respectively.9 Also, when d = h = 1 Proposition 3

gives var(r1) = (n − 2)2/(n − 1)3 and var(r̃1) = n(n − 3)(n + 1)−1 (n− 1)−2, which

correspond to the results derived by Moran (1948) for the first-order serial correlation

coefficient and its circular counterpart.

Computation of the term Nh,k defined in Proposition 3 is discussed in Appendix C.

Exact computation of Oden’s statistic, by means of expression (22), may be cumber-

some when N or |H| are large. We propose to replace the test statistic (21) with

Õ = (r̃ − E(r̃))′(var(r̃))−1(r̃ − E(r̃)), (24)

8Of course, under the null hypothesis var(z) may be known only up to a parameter σ2, which is
here taken to be 1 without loss of generality.

9The reader should notice that rh in Dufour and Roy (1984) is not the same as our rh, because of
a different normalization of the sample covariances, and because our h denotes a squared distance.
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where, with obvious notation, r̃ is the |H| × 1 vector (r̃h, h ∈ H)′). As for r, it is

straightforward to check that r̃ is asymptotically normal, and hence that Õ is asymp-

totically distributed as a χ2 distribution with |H| degrees of freedom. A substantial

reduction in computational effort comes from the fact that expression (23) does not

depend on h and k, when h 6= k.

Monte Carlo simulation shows that the test based on Õ provides a satisfactory

approximation to Oden’s test, both under the null and under typical alternative hy-

potheses. This is true as long as N is not too small (say, smaller than 1000). As a

representative example, in Table 3 we report the rejection rates obtained for a first-

order conditional autoregressive (CAR(1)) process z ∼ N
(
ιN , (IN − ρA1)−1), with

N = 212 = 4096. The process is simulated on a 2-dimensional grid with n1 = n2 = 26,

and on a 3-dimensional one with n1 = n2 = n3 = 24. We consider four values of ρ/ρmax,

where ρmax is the right boundary of the set of admissible values of ρ: 0 (correspond-

ing to the null hypothesis), 0.1, 0.2, 0.3. The set H is taken to be the set of squared

distances h = 1, ..., 10 such that Nh > 0 (that is, H = {1, 2, 4, 5, 8, 9, 10} when d = 2,

and H = {1, 2, 3, 4, 5, 6, 8, 9, 10} when d = 3). Two values of the nominal size α of the

test are considered, 0.01 and 0.05. The number of repetitions is 200,000. From the

numerical results it appears that size is essentially unaffected by the approximation,

and at the same time the power is not seriously compromised.

α = 0.01 α = 0.05

d = 2 d = 3 d = 2 d = 3

ρ/ρmax O Õ O Õ O Õ O Õ

0 0.010 0.010 0.011 0.011 0.050 0.050 0.051 0.051

0.1 0.139 0.137 0.068 0.063 0.322 0.317 0.192 0.182

0.2 0.825 0.817 0.504 0.464 0.936 0.932 0.725 0.692

0.3 0.999 0.999 0.955 0.938 1 1 0.988 0.983

Table 3: Monte Carlo rejection rates for Oden’s test and its circular approximation.

4.3 GLS Estimation of the Variogram

In this section we assume that the spatial process {z(α),α ∈ Γ} is second-order sta-

tionary and isotropic, i.e., that E(z(α)) does not depend on α and cov(z(α), z(β))

depends on α and β only through ‖α− β‖. The covariance matrix of a such process

can be represented as

Σ =
∑
j∈J

c(j)Aj,

where c(j) denotes the covariance between variables observed at j-neighbors, and J

is a set of nonnegative integers including 0. We assume that the c(j)’s, for j ∈ J ,

are nonzero and such that Σ is positive-definite. Note that the semivariogram of a

second-order stationary and isotropic process is γ(h) = c(0)− c(h).
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Given a parametric semivariogram model γ(h;θ), a popular way of estimating the

parameter vector θ is by a least squares procedure; see, e.g., Cressie (1993). Suppose

the estimator γ̂h in (3) (or some other nonparametric estimator of γ(h)) is computed

for a set H of distances h such that Nh > 0. Let γ̂ and γ(θ) be |H| × 1 vectors with

entries, respectively, γ̂h and γ(h;θ), h ∈ H. Then, a least squares estimator of θ is

found by minimizing

(γ̂ − γ(θ))′W (θ) (γ̂ − γ(θ)) , (25)

for some |H| × |H| positive definite weighting matrix W (θ). Under weak conditions,

the most efficient estimator in this class is the GLS estimator, say θ̂GLS, obtained by

taking

W (θ) = (var(γ̂))−1 (26)

(e.g., Cressie, 1993). Since, for a general spatial process, var(γ̂) is non-diagonal, it

follows that a diagonal W (θ) (as in ordinary or weighted least squares) may lead to

a substantial loss of efficiency. On the other hand, the computation of θ̂GLS may be

prohibitive, because it requires deriving var(γ̂), inverting it, and minimizing (25) (see,

again, Cressie, 1993). For a Gaussian second-order stationary and isotropic process on

Γ, var(γ̂) can be obtained exactly by Lemma 7 in HM,10 but it is clear the required

computation is still cumbersome if N or |J | is large. In what follows we show that our

circular approximation can dramatically reduce the computational effort associated to

θ̂GLS, and we study its performance numerically.

In order to approximate var(γ̂), we define a “circular process” z with var(z) =∑
j∈J c(j)Ãj, which has already been denoted by Σ̃ in (16). The following proposition

establishes that, under a suitable condition, the circular variogram estimator

γ̃h =
1

2Ñh

z′L̃hz

is unbiased for γ(h). For a general proof of the unbiasedeness of γ̂h see, e.g., Cressie

(1993).

Proposition 4 Assume that z ∼ N(µιN , Σ̃). Then, provided that Nh > 0 and that

Condition A holds for the squared distance h and for all the squared distances j ∈ J ,

γ̃h is unbiased.

Letting γ̃ be the vector (γ̃h, h ∈ H)′, the circular approximation θ̃GLS to θ̂GLS is

then obtained by replacing var(γ̂) in (26) with var(γ̃), computed under the assumption

z ∼ N(µιN , Σ̃). The next result shows that var(γ̃) can be conveniently obtained from

the known eigenvalues of the matrices Ãh.

Proposition 5 Assume that z ∼ N(µιN , Σ̃). For h, k ∈ H,

cov(γ̃h, γ̃k) =
1

2ÑhÑk

∑
j,l∈J

{
c(j)c(l)

∑
β∈Γ

[
λ⊗Γj

(β)λ⊗Γl
(β)

(
m̃h − λ⊗Γh

(β)
) (
m̃k − λ⊗Γk

(β)
)]}

.

10Although it is not pointed out there, expression (37) in HM also holds when E(z) = µιN , where
µ ∈ R is an unknown parameter.
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Since Ah and Ãh are asymptotically equivalent (see footnote 6), it seems clear that

θ̃GLS should be asymptotically efficient (in the sense of Lahiri et al, 2002). Rather

than providing a formal proof of this property, in the following we report numerical

results illustrating the finite sample behavior of θ̃GLS.

Consider the spherical variogram

γ(h; θ) =


0 if h = 0,
1
2

[
3
(
h
θ

) 1
2 −

(
h
θ

) 3
2

]
if 0 ≤ h ≤ θ,

1 h > θ.

(27)

For simplicity, model (27) depends only on one parameter, θ, representing the square

of the range. The sill and the nugget have been fixed to 1 and 0, respectively. Table

4 displays Monte Carlo results concerning estimation of θ given observation from a

Gaussian spatial process on a 2-dimensional grid with θ = 20 in model (27). We

consider two choices of H, namely, H = {1 ≤ h ≤ hmax}, with hmax = 10, 20. The

number of repetitions is 5000. It can be seen that the performance of θ̃GLS is very

similar to that of θ̂GLS, even when the grid is not square. In all the 16 cases considered,

the reduction in computational time associated to using θ̃GLS rather than θ̂GLS is larger

than 99% (average over the repetitions). To show the advantages of GLS estimation,

Table 4 also displays results concerning the OLS and the WLS estimators of θ, which are

obtained by setting W (θ) = IN and W (θ) = diag ((var(γ̂))−1) in (26), respectively.

Both the OLS and the WLS estimators are very inefficient.

n1, n2 hmax θ̂GLS θ̃GLS θ̂OLS θ̂WLS

50, 50 10 19.944

(1.065)

19.919

(1.064)

20.244

(2.935)

20.134

(2.042)

20 19.887

(0.938)

19.847

(0.952)

20.616

(3.715)

20.181

(2.159)

25, 100 10 19.928

(1.117)

19.900

(1.124)

20.101

(2.954)

20.039

(2.038)

20 19.810

(0.947)

19.753

(0.961)

20.578

(3.930)

20.112

(2.243)

Table 4: Monte Carlo results concerning the estimation of θ in the variogram model

(27), standard errors in parentheses.

5 Discussion

The (suitably normalized) quadratic forms associated to spatial design matrices play a

central role in various inferential procedures in the context of isotropic spatial processes

defined on uniform grids. In many cases of interest, the cumulants of such statistics
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are a function of the eigenvalues of the spatial design matrices (e.g., for second-order

stationary data, and for spatial autoregressions based on the Euclidean distance). Un-

fortunately, the eigenvalues are not known analytically in general. This is not a prob-

lem in principle, because the cumulants can be obtained exactly by the procedures

outlined in Hillier and Martellosio (2006). However, the required computation may

become prohibitive as the sample size increases. The present paper has proposed an

approximation to the cumulants, based on circular counterparts of the spatial design

matrices. Depending on the particular application, the reduction in computational

time can be dramatic, because the eigenvalues of the circular spatial design matrices

are known in closed form. The approximation performs well especially when it is most

needed, that is, when the sample size is large. Our numerical results indicate that, for

a fixed sample size, the approximation works best if the sides of the grid are of similar

magnitude, and deteriorates as the grid becomes more rectangular.

The following two extensions are left for future research. First, while we have con-

fined attention to Gaussian processes, various generalizations are possible. For instance,

the methods that we have used admit simple modifications in the case of elliptically

contoured and skew-symmetric distributions (see Genton, 1999, Genton et al., 2001,

and Arellano-Valle and Genton, 2009).11 Second, in some applications other norms

may be more appropriate than the Euclidean one to define neighborhood. Extensions

of the framework proposed in this paper to any other Lp-norm are theoretically simple.

Appendix A Symmetry of the Circular Sample Au-

tocovariance

Proposition 1 asserts that the sample autocovariance b̂h is symmetric about zero if d =

1, 2 or h is odd. Of course, it would be desirable if the circular sample autocovariance

b̃h inherited the same symmetry, at least approximately. In this appendix we check

whether this is the case.

It is convenient to start from the 1-dimensional case. Let

b̃r,1 =
1

2n1

z′F̃
(n1)

r z

denote the circular sample autocovariance b̃h when d = 1, with r =
√
h. Observe that

b̃r,1 = b̃n1−r,1, for any r = bn1/2c , ..., n1 − 1, and that b̃n1/2,1 = b̂n1/2,1 = z′F
(n1)
n1/2

z,

for any even n1. Hence, we only need to consider the autocovariances b̃r,1, r =

1, 2, ..., bn1/2c − 1.

Proposition A.1 Assume z ∼ N(0, In1). For r = 1, 2, ..., bn1/2c − 1, the density of

b̃r,1 is symmetric about zero if and only if either n1 is even and r is odd, or n1 is an

even multiple of r.

11It is also worth mentioning that the distribution of a ratio of quadratic forms such as the Moran
statistic rh is the same for any spherically symmetric distribution; see, e.g., Dufour and Roy (1985).
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By comparing Proposition A.1 with part (iii) of Proposition 1, it emerges that the

density of b̃h may be nonsymmetric when that of b̂h is symmetric. Recall that the

the density of a statistic is symmetric about zero if and only if all its odd cumulants

vanish. Then, by Proposition A.1, κp(̂bh) = 0 does not imply κp(̃bh) = 0 for all odd p

(at least when d = 1). It is therefore of interest to establish the circumstances under

which κp(̃bh) = 0 is necessary and sufficient for κp(̂bh) = 0. To this purpose, we need

the following extension of Condition A.

Condition B For any α ∈ Γh and any i = 1, ..., d, α (i) < ni/p.

For a general dimension d, we have the following result.

Proposition A.2 Assume z ∼ N(0, IN). If κp(̃bh) = 0 then κp(̂bh) = 0, for any

p, h = 1, 2, ... The converse does not hold in general, but it does hold if p = 1, p is even,

or under Condition B.

According to Proposition A.2, an odd cumulant of b̃h may be nonzero when the

corresponding cumulant of b̂h is 0 only if p is large (specifically, if p > nmin/h, where

nmin = min{n1, ..., nd}). We can therefore conclude that, although b̃h does not need

to be symmetric about zero when b̂h is, in practice this does not represent a serious

problem from the point of view of approximating b̂h with b̃h.

Remark A.1 For any h and Γ and when z ∼ N(0, IN), whether the density of b̃h
is symmetric or not can be established by looking at the eigenvalues of Ãh. Indeed,

since symmetry requires all odd cumulants to be zero, it follows that b̃h has symmetric

density if and only if the spectrum of Ãh is symmetric about zero (in the sense that if

λ is an eigenvalue of Ãh, then −λ is an eigenvalue too, with same multiplicity).

Appendix B Formulae for η2,h

This appendix gives formulae for computing the ratio η2,h = var(̂bh)/ var(̃bh), considered

at the end of Section 4.1.

Theorem B.1 Let ζα be the number of zeros in a sequence α ∈ Γh. Then,

η2,h =
N
∑
α∈Γh

2−ζα∑
α∈Γh

{
2−ζα

∏d
i=1(ni − α(i))

} . (28)

In some cases (28) simplifies considerably. Three such cases are considered in the

three corollaries below. Before stating the first corollary, some notions concerning the

structure of the set Γh are needed. Let σα denote the action of a permutation σ ∈ Sd
on an element α ∈ Γ, Sd being the symmetric group on d objects. Observe that for

some triplet h ∈ N, σ ∈ Sd, α ∈ Γh, it holds that σα is in Γh if it is in Γ. Now,

a necessary and sufficient condition—to be denoted by C—for σα to be in Γ for any

σ ∈ Sd and any α ∈ Γh is that α (i) < nmin, for any α ∈ Γh and any i = 1, ..., d, where

nmin = min{n1, ..., nd}. Note that C is trivially satisfied when n1 = n2 = ... = nd, but
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not necessarily otherwise. Under C, Γh is the union of one or more orbits in Γ under

the action of Sd. A set of orbit representatives is provided by the set of non-decreasing

sequences ω ∈ Γ (nmin, ..., nmin), with ω(1) ≤ ω(2) ≤ ... ≤ ω(d). For simplicity, we

denote such a set by Ω, without explicit reference to the dependence on d and nmin.

The set Ωh = Γh ∩Ω plays a central role in determining the structure of spatial design

matrices (see HM, Theorem 3). In particular, |Ωh| equals the number of orbits (of the

action of Sd on Γ) in Γh. As an example, consider h = 25 on a 2-dimensional grid.

Under C, i.e., when n1, n2 > 5, Ωh = {(0, 5), (3, 4)} and Γh is made of two orbits.

More generally, when C does not necessarily hold, Γh is the union of one or more

subsets of orbits in Γ under the action of Sd. For example, when n1 = 5 and n2 > 5,

Γh = {(0, 5), (3, 4), (4, 3)}.
The first corollary of Theorem B.1 is concerned with the case when the sides of the

grid are of equal length, and Sd acts transitively on Γh, i.e., Ωh has a single element.

Corollary B.1 If n1 = ... = nd = n and Ωh = {ωh}, then

η2,h =
nd−ζωh∏d

i=1;ωh(i)6=0 (n− ωh (i))
.

Consider now h = 1, 2, 3. These are the only distances such that the action of Sd
on Γh is transitive in any dimension d.12

Corollary B.2 If n1 = ... = nd = n and h = 1, 2, 3, then

η2,h =

(
n

n− 1

)h
.

Another case in which η2,h takes a simple form is when only “non-diagonal direc-

tions” are considered, i.e., when Γh has—or is restricted to have—only sequences lying

on the d main axes of Γ (see footnote 3 and Gorsich et al., 2002).

Corollary B.3 If only non-diagonal directions are considered, then

η2,h =
d

d−
√
h
∑d

i=1
1
ni

. (29)

Appendix C Evaluation of Nh,k

This appendix discusses computation of the term Nh,k required for (22). From the

definition Nh,k = ι′NAhAkιN , we have

Nh,k =
∑

α,β,γ∈Γ

(Ah)α,γ(Ak)γ,β (30)

12Recall that we are assuming Nh > 0 and that Condition A holds. When h = 1, 2, 3, such
assumptions require d ≥ h and n > 2.
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(that is, Nh,k is the number of triangles (α,β,γ) on Γ such that ‖α− γ‖2 = h and

‖β − γ‖2 = k). It follows immediately that

Nh,k = tr(DhDk). (31)

For r = 0, ..., n− 1, let M (n)
r be the diagonal matrix with (i, i) entry the i-th row sum

of F (n)
r , and let Cni

(t) =
∑n−1

r=0 t
r2M (ni)

r . Also, using Wilf (1994) notation, let [th]

denote the operator extracting the coefficient of th from the expansion in powers of t

of the function which follow. Then, by a trivial extension of equation (31) in HM, (31)

yields

Nh,k = [th][sk]
d∏
i=1

tr (Cni
(t)Cni

(s))

= [th][sk]
d∏
i=1

ni−1∑
p1,p2=0

tp
2
1sp

2
2 tr(M (ni)

p1
M (ni)

p2
). (32)

The implementation of expression (32) in a symbolic package is straightforward, be-

cause all terms tr(M (ni)
p1
M (ni)

p2
) are simple functions of p1 and p2; see equation (29) in

HM. Nevertheless, the computational effort can be substantial when the grid is large,

or when Nh,k is required for many values of h and k. These are precisely the cases when

it is convenient to approximate expression (22) with its circular counterpart (23).

Appendix D Proofs

We first give an auxiliary lemma, whose proof can be found in, e.g., Anderson (1971),

p. 304, and then we prove the results given in the main text of the paper and in

Appendices A and B.

Lemma 2 Assume that y ∼ N(0, IN). For any idempotent N ×N matrix Q, and any

symmetric N ×N matrices Ri, i = 1, ..., n,

E

[∏n
i=1 y

′QRiQy

(y′Qy)n

]
=

E (
∏n

i=1 y
′QRiQy)

E [(y′Qy)n]
. (33)

Proof of Theorem 1 Note that (F̃
⊗
γ )α,β = 1 only if |α(i)− β(i)| equals either γ(i)

or n− γ(i) for each i = 1, ..., d. Hence, (Ãh)α,β = 1 if and only if εα,β ∈ {πD − γ, γ ∈
Γh, D ∈ ∆}. That is, there must exist D ∈ ∆ such that ‖εα,β − πD‖2 = h.

Proof of Corollary 1 We first prove the necessity and sufficiency of the condition for

Ãh = Ah. If there exists an α ∈ Γh with a component α (i) different from 0 or ni/2,

then, by Theorem 1, there exists at least one pair (α,β) such that (Ãh)α,β 6= (Ah)α,β.

This establishes the necessity of the condition. Next, observe that the condition in

the corollary implies that there is no pair (α,β) ∈ Γ × Γ such that ‖α− β‖2 6= h

and ‖εα,β − πD‖2 = h for aD ∈ ∆ other that {0, ..., 0}. The sufficiency of the condition

follows, again by Theorem 1. We now move to the second part of the corollary. Suppose
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that εα,β (i) < ni −
√
h, i = 1, ..., d. Then ‖εα,β − πD‖2 =

∑n
i=1(εα,β(i) − πD(i))2 is

greater than h for all D ∈ ∆ other than D = {0, ..., 0}. Suppose also that α and β

are not h-neighbors, i.e., (Ah)α,β = 0. Then ‖εα,β − πD‖2 cannot be equal to h when

D = {0, ..., 0}. It follows that (Ãh)α,β is also zero. The proof is completed, because if

α and β are h-neighbors, then (Ah)α,β = (Ãh)α,β = 1.

Proof of Theorem 2 Using (17), we obtain

ÃhÃk =
∑
α∈Γh

∑
β∈Γk

(
F̃
⊗
αF̃

⊗
β

)
=
∑
β∈Γk

∑
α∈Γh

(
F̃
⊗
β F̃

⊗
α

)
= ÃkÃh,

which is the desired result.

Proof of Theorem 3 Let x1, ..., xn be the common eigenvectors of each F̃ r. Then,

for each β ∈ Γ,

Ãh

d⊗
i=1

xβ(i) =
∑
α∈Γh

F̃
⊗
α

d⊗
i=1

xβ(i) =
∑
α∈Γh

d⊗
i=1

F̃ α(i)xβ(i)

=

(∑
α∈Γh

d∏
i=1

λα(i),β(i)

)
d⊗
i=1

xβ(i),

so that the λ⊗Γh
(β), β ∈ Γ, are eigenvalues of Ãh.

Proof of Proposition 1 Parts (i) and (ii) follow immediately from Lemma 3 of HM.

As for part (iii), the symmetry of the density of b̂h when d = 1 or when h is odd is a

consequence of Lemmata 2 and 4 in HM. It only remains to prove that the density of

b̂h is symmetric, for any h ≥ 1 and when d = 2. A necessary and sufficient condition

for symmetry of b̂h is that all its odd-cumulants are zero, or equivalently, tr(Ap
h) = 0

for any odd p. For an arbitrary α ∈ Γ,

(Ap
h)α,α =

∑
β1,...,βp−1∈Γ

{(Ah)α,β1
(Ah)β1,β2

...(Ah)βp−2,βp−1
(Ah)βp−1,α}. (34)

This is nonzero if and only if there is at least one (p− 1)-tuple
(
β1, ...,βp−1

)
∈ Γ such

that

‖α− β1‖
2 = ‖β1 − β2‖

2 =, ...,=
∥∥βp−2 − βp−1

∥∥2
=
∥∥βp−1 −α

∥∥2
= h. (35)

Hence, tr(Ap
h) 6= 0 only if there is a sequence (α,β1, ...,βp−1,α) of elements of Γ such

that all consecutive elements of the sequence are at squared Euclidean distance h. We

call a such sequence a cycle, more precisely an odd-cycle when p is odd, and we refer

to h as the step of the cycle. To establish that tr(Ap
h) = 0, for d = 2, any h ≥ 1,

and any odd p, we then need to show that a 2-dimensional grid does not contain any

odd-cycle. When h is odd, this is guaranteed by Lemma 4 of HM. For the case when h

is even, suppose that one or more odd-cycles of even step exist and let h∗ denote the

minimum step of such cycles. Define Γ1 and Γ2 as the subsets of the 2-dimensional
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square grid Γ(n, n) such that a sequence α ∈ Γ(n, n) belongs to Γ1 if α(1) + α(2) is

even, to Γ2 if α(1) + α(2) is odd. Observe that a cycle of even step belongs to either

Γ1 or Γ2. Thus, an odd-cycle of step h∗ on Γ(n, n) is also an odd-cycle on either Γ1

or Γ2. But, after an obvious rescaling, Γ1 and Γ2 are themselves square uniform grids,

leading to the contradiction that h∗ cannot be the minimum even step of an odd-cycle

on a 2-dimensional uniform grid. This completes the proof.

Proof of Proposition 2 (i) For any h > 0 such that Nh > 0, and hence Ñh > 0,

E(̃bh) = tr(Ãh)/(2Ñh). This is zero because no α ∈ Γ(n1, ..., nd) can be an h-neighbor

of itself when h > 0, and therefore tr(Ãh) =
∑
α∈Γ(Ãh)α,α = 0. The variance is

var(̃bh) =
1

(2Ñh)2
2 tr(Ã

2

h) =
2

Ñ2
h

m̃hN =
1

Ñh

.

(ii) When z ∼ N(0, IN), cov(̃bh, b̃k) = 2 tr(ÃhÃk). Now, for any α ∈ Γ, (ÃhÃk)α,α =∑
β∈Γ(Ãh)α,β(Ãk)β,α, and hence cov(̃bh, b̃k) = 0 unless there exists at least one pair

α,β ∈ Γ×Γ and two (different) subsets D1 and D2 of ∆ such that ‖εα,β − πD1‖
2 = h

and ‖εα,β − πD2‖
2 = k. That is, cov(̃bh, b̃k) 6= 0 if and only if there exists a sequence

εα,β ∈ Γ at distance h from one vertex of Γ (n1 + 1, ..., nd + 1) and at distance k

from another vertex of Γ (n1 + 1, ..., nd + 1). It follows that a necessary condition for

cov(̃bh, b̃k) 6= 0 is that there exist α ∈ Γh and β ∈ Γk such that, for at least one

i = 1, ..., d, α (i) + β (i) = ni. As a consequence, cov(̃bh, b̃k) = 0 if no α ∈ Γh ∪ Γk
contains an element α (i) ≥ ni/2, which completes the proof.

Proof of Proposition 3 We start from the non-circular case. Let uh = z′MAhMz.

From (19), for any h > 0,

E(uh) = tr(MAhM ) = tr

[(
IN −

1

N
ιNι

′
N

)
Ah

]
= − 1

N
tr(ι′NAhιN) = − 1

N
ι′NAhιN = −2

Nh

N
(36)

and hence, E(ĉh) = E(uh)/2Nh = −1/N . Observe that E(ĉ0) = tr(z′Mz)/N =

(N − 1)/N . It follows from Lemma 2 that, for any h > 0 such that Nh > 0,

E(rh) =
E(ĉh)

E(ĉ0)
= − 1

N − 1
.

Next, using again Lemma 2, write

E (rhrk) =
N2

4NhNk

E (uhuk)

E (u2
0)

=
N2

4NhNk

cov (uh, uk) + E (uh) E(uk)

E (u2
0)

. (37)

Observe that

E
(
u2

0

)
= var(z′Mz) + [E(z′Mz)]

2

= 2(N − 1) + (N − 1)2 = N2 − 1,
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and, from (20) and for h, k > 0,

cov(uh, uk) = 2 tr(MAhMMAkM) = 2 tr(MAhMAk)

= 2 tr

(
AhAk −

1

N
AhιNι

′
NAk −

1

N
ιNι

′
NAhAk +

1

N2
ιNι

′
NAhιNι

′
NAk

)
= 2

[
tr(AhAk)−

1

N
ι′NAkAhιN −

1

N
ι′NAhAkιN +

1

N2
ι′NAhιNι

′
NAkιN

]
.

If h = k, then tr(AhAk) = tr(A2
h) = 2Nh. Conversely, if h 6= k, then tr(AhAk) =∑

α∈Γ

∑
β∈Γ(Ah)α,β(Ak)β,α = 0, because no sequences α and β can be both h- and k-

neighbors. Also, note that ι′NAkAhιN = ι′NAhAkιN = Nh,k, and that ι′NAhιN = 2Nh.

It follows that

cov(uh, uk) = 4

(
Nh1h=k −

1

N
Nh,k + 2

1

N2
NhNk

)
.

Thus, from (37),

E (rhrk) =
N2

(N2 − 1)NhNk

(
Nh1h=k −

1

N
Nh,k + 3

1

N2
NhNk

)
.

From the above calculations we obtain

cov(rh, rk) = E(rhrk)− E(rh) E(rk)

=
N2

(N2 − 1)Nh

1h=k −
N

N2 − 1

Nh,k

NhNk

+
3

N2 − 1
− 1

(N − 1)2

=
1

N2 − 1

(
N2

Nh

1h=k −
Nh,k

NhNk

N + 2
N − 2

N − 1

)
.

Turning to the circular case, let ũh = z′MÃhMz. By obvious modification of (36), we

find E(ũh) = −2Ñh/N . Thus, for any h > 0 such that Nh, and hence Ñh, is positive,

E(r̃h) = E(rh). To obtain cov(r̃h, r̃k), we follow the same steps as for cov(rh, rk). In

particular, for h, k > 0,

cov(ũh, ũk) = 2 tr
(
MÃhMMÃkM

)
= 2 tr

[(
IN −

1

N
ιNι

′
N

)
ÃhÃk

]
= 2 tr

(
ÃhÃk −

1

N
ι′NÃhÃkιN

)
= 2

[
tr(ÃhÃk)− 4

1

N2
ÑhÑk

]
= 2m̃h(N1h=k − m̃k),

where the first line of the display uses commutativity of M and Ãh, and the last line

follows by observing that, when Condition A is satisfied for both h and k, tr(ÃhÃk) =

tr(Ã
2

h) = 2Ñh if h = k, tr(ÃhÃk) = 0 otherwise. Given cov(ũh, ũk), we can compute

E (r̃hr̃k) by the obvious analog of (37), which gives

E (r̃hr̃k) =
1

N2 − 1

(
2N

m̃h

1h=k −
1

N2 − 1

)
.
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Thus,

cov(r̃h, r̃k) = E (r̃hr̃k)− E (r̃h) E (r̃k)

=
1

N2 − 1

(
2N

m̃h

1h=k −
1

N2 − 1

)
− 1

(N − 1)2

=
2N

N2 − 1

(
1

m̃h

1h=k −
1

N − 1

)
,

which completes the proof of the proposition.

Proof of Proposition 4 For any h ≥ 1 such that Nh, and hence Ñh, is positive,

equation (19) gives

E(γ̃h) =
1

2Ñh

tr(L̃hΣ̃) =
1

2Ñh

tr

(m̃hIN − Ãh

)σ2IN +
∑

j∈J\{0}

c(j)Ãj

 .
Since, for any h > 0, tr(Ãh) = 0 it follows that

E(γ̃h) =
1

2Ñh

σ2m̃hN −
∑

j∈J\{0}

c(j) tr(ÃhÃj)

 .

Recall now that m̃hN = 2Ñh, and note that, when h and j satisfy Condition A,

tr(ÃhÃj) = tr(Ã
2

h) = 2Ñh if h = j, and tr(ÃhÃj) = 0 otherwise. It follows that

E(γ̃h) = c(0)− c(h)1h∈J = γh.

Proof of Proposition 5 When z ∼ N(µιN , Σ̃), Lemma 1 yields

cov(γ̃h, γ̃k) =
1

2Ñh2Ñk

2 tr(L̃hΣ̃L̃kΣ̃)

=
1

2ÑhÑk

∑
j,l∈J

c(j)c(l) tr(L̃hÃjL̃kÃl).

The proposition follows by using the expression L̃h = m̃hIN −Ãh, Theorem 2, and the

fact that the eigenvalue λ⊗Γj
(β) of Ãj and the eigenvalue λ⊗Γl

(β) of Ãl are associated

to the same eigenvector, for any fixed β ∈ Γ.

Proof of Proposition A.1 The density of b̃r,1 is symmetric about zero if and only if

all its odd cumulants vanish, that is, if and only if

tr
[(
F̃

(n1)

r

)p]
= 0

for all odd p. Note that the diagonal entries of
(
F̃

(n1)

r

)p
are all the same, with the

(i, i)-th diagonal entry being((
F̃

(n1)

r

)p)
i,i

=
∑

l1,...,lp−1=1,...,n1

(F̃
(n1)

r )i,l1(F̃
(n1)

r )l1,l2 ...(F̃
(n1)

r )lp−2,lp−1(F̃
(n1)

r )lp−1,i,
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which, by expression (10), is nonzero if and only if there exists one (p− 1)-tuple

(l1, ..., lp−1) such that each of the absolute values |i− l1| , |l1 − l2| , ..., |lp−2, lp−1| , |lp−1, i|
equals r or n1− r. This requires that kn1 = rp for some k = 1, 2, ... Hence, the density

of b̃r,1 is symmetric about zero if and only if there is no odd p such that kn1 = rp.

Such a condition is satisfied if either n1 is even and r is odd, or n1 is an even multiple

of r, and is not satisfied in all other possible cases.

Proof of Proposition A.2 By Lemma 1, when z ∼ N(0, IN), κp(̃bh) is equal to

(2Nh)
−12p−1(p − 1)! tr(Ap

h) and κp(̂bh) to (2Ñh)
−12p−1(p − 1)! tr(Ã

p

h). The first part

of the proposition follows trivially from noting that Ãh and Ah are nonnegative ma-

trices, and Ãh = Ah +Rh, for some nonnegative matrix Rh. The case p = 1 is also

straightforward, because E(̃bh) = E(̂bh) = 0. Next, observe that

(Ã
p

h)α,α =
∑

β1,...,βp−1∈Γ

{(Ãh)α,β1
(Ãh)β1,β2

...(Ãh)βp−2,βp−1
(Ãh)βp−1,α}. (38)

Thus, in view of Theorem 1, (Ã
p

h)α,α 6= 0 if and only if there is at least one (p− 1)-tuple(
β1, ...,βp−1

)
such that

∃Dj ∈ ∆ :
∥∥εj − πDj

∥∥2
= h, j = 1, ..., p, (39)

where the sequences εj ∈ Γ are defined by εj(i) = |βj−1(i)− βj(i)|, i = 1, ..., d, with

β0 = βp = α. Call a distance h feasible if Γ contains at least one pair of h-neighbors.

For even p, κp(̃bh) = 0 is necessary and sufficient for κp(̂bh) = 0 because: (i) if h is not

feasible then both (Ap
h)α,α and (Ã

p

h)α,α are zero, for any α ∈ Γ, by definition; (ii) if h

is feasible then both κp(̃bh) and κp(̂bh) are positive, because for any pair of h-neighbors

(α,β), the (p− 1)-tuple (β,α,β, ...,α,β) satisfies both expression (39) and expression

(35) in the proof of Lemma 1. To prove the part of the Lemma relative to Condition

B, we establish that, under Condition B, κp(̃bh) 6= 0 implies κp(̂bh) 6= 0. First, observe

that Ã
p

h (α,α) does not depend on α, as is easily seen by considering formula (11) plus

the fact that the product of any two matrices F (n)
r has constant diagonal. If κp(̃bh) 6= 0,

then for each α ∈ Γ, there is at least one (p− 1)-tuple
(
β1, ...,βp−1

)
satisfying (39).

This clearly implies that, under Condition B, it is always possible to find a p-tuple(
α,β1, ...,βp−1

)
such that (39) is satisfied with Dj = {0, ..., 0} , for j = 1, ..., p. But

this in turn implies that the same p-tuple satisfies (35), and hence that κp(̂bh) 6= 0,

as was to be shown. To complete the proof, we need to show that when p ≥ 3 and

without Condition B, κp(̂bh) may be zero even if κp(̃bh) is not. An example suffices.

When d = 2 and h = 20, κ3(̂b20) = 0, since there is no equilateral triangle with vertices

on a 2-dimensional planar lattice (e.g., Beeson, 1992), but κ3(̃b20) > 0 because, for

instance, the sequences β1 = (4, 2) and β2 = (2, 6) satisfy (39) when α = (0, 0).

Proof of Theorem B.1 Recall that η2,h = Ñh/Nh = Nm̃h/(2Nh). Under Condition

A, from the generating function in Remark 1 we have m̃h =
∑
α∈Γh

2d−ζα . The desired

result follows by applying equation (25) in HM, which yields

2Nh =
∑
α∈Γh

d∏
i=1

{(
2− δα(i),0

)
(ni − α(i))

}
=
∑
α∈Γh

{
2d−ζα

d∏
i=1

(ni − α(i))

}
.
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Under Condition A, the generating function in Remark 1 yields m̃h =
∑
α∈Γh

2d−ζα .

From equation (25) in HM, we obtain

2Nh =
∑
α∈Γh

d∏
i=1

{(
2− δα(i),0

)
(ni − α(i))

}
=
∑
α∈Γh

{
2d−ζα

d∏
i=1

(ni − α(i))

}
.

Expression (28) follows on recalling that η2,h = Ñh/Nh = Nm̃h/(2Nh).

Proof of Corollary B.1 For any ω ∈ Ωh, let v(ω) =
∏n−1

j=0 ζω(j)!, where ζω(j) denotes

the multiplicity of j in ω (so that ζω(0) = ζω). Observe that the numerator in (28) is

nd
∑
ω∈Ωh
{d!2−ζω/ν(ω)}, and the denominator is

∑
ω∈Ωh
{d!2−ζω

∏d
i=1(n−ω(i))/ν(ω)}.

The corollary follows straightforwardly.

Proof of Corollary B.2 When h = 1, 2, 3 |Ωh| = 1 for any dimension d ≥ h, because

any decomposition in d squares of h consists of h ones and d − h zeros. The result

follows by applying Corollary B.1.

Proof of Corollary B.3 If only non-diagonal directions are considered, ζα = d − 1,

for any α ∈ Γh. The corollary then follows from expression (28), because under the

restriction of only diagonal directions the only nonzero element of any α ∈ Γh is
√
h.
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