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Abstract

The paper studies the forecasting of a future size distribution of
plants. As a model we use an open Markov chain model for macro
data. Estimation is by reparametrization instead of by inequal-
ity restrictions using single equation least squares. The estimator
is studied in a small Monte Carlo experiment for short time se-
ries lengths and macro data. Well-known mobility indices and a
new idea of using a truncated transition probability matrix are
discussed and also studied in the Monte Carlo experiment. For
the ¯nancial plants (1984-1993) we ¯nd evidence of mobility of a
downsizing nature. In a one-step-ahead forecast evaluation we ¯nd
some overprediction.
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1. Introduction

The paper focuses on the forecasting of size distribution and on the
mobility of plants1 within the ¯nancial sector of Swedish municipalities.
Plant size is measured annually along disjoint size intervals, such that
for each interval the number of plants is recorded. This type of data is
said to be at the macro level, since it is not possible to record individual
plants' transitions between states (micro data).

Models of ¯rm size and indices of mobility separately have long his-
tories, for a review see Bartholomew (1982). Zepeda (1995) appears
to be the only paper focusing in a related way on dynamic models for
¯rm/plant size. The present framework di®ers from hers in the way we
separately account for entry and exit rather than focusing on 'net-entry'.
The model of Berglund and BrÄannÄas (1998) for the stock of plants at a
semi-aggregate level is based on assumptions of a common exit probabil-
ity across plants and a single mean entry stream. The present modelling
approach adds more structure and can therefore provide more detailed
inferences. In addition, we discuss an idea of relating model based mea-
sures of mobility to explanatory variables in a regression like manner (cf.
the related area of ine±ciency studies, e.g., Battese and Coelli, 1995).

In Section 2, we introduce the openMarkov chainmodel (e.g., Bartho-
lomew, 1982, ch. 3) for the movements between di®erent plant size in-
tervals (states) and account for plants' entry and exit. Based on this
model we brie°y introduce some of the mobility indices given for closed
Markov chain models by Shorrocks (1978), Conlisk (1985), Geweke et
al. (1986) and others in Section 3. This section also contains an al-
ternative, ad hoc, index for upward or downward mobility. A new idea
of obtaining mobility indices for a subset of all transitions (exclusive of
entry and exit states) is also introduced.

Section 4 de¯nes the estimation problem and considers alternative
ways of incorporating the natural restrictions that hold for transition
probabilities. Both single equation and joint estimation approaches are
considered. While there has been substantial research on estimation for
closed Markov chains, nothing much is known about estimation in the
open Markov chain model.

Section 5 presents the forecast expression for the model. Section 6

1A ¯rm may have have one or several plants, possibly located in di®erent munic-

ipalities. The majority of ¯rms have one plant. From a municipality point of view,

employment within the plants of its territory is therefore of a more direct interest

than that of ¯rms.
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reports the results of a limited Monte Carlo study on the small sample
properties of estimators and indices. Some empirical results for employ-
ment mobility and forecasts are reported in Section 7. A few summariz-
ing remarks are made in the ¯nal section. In this section we also discuss
an extended model speci¯cation in which transition probabilities depend
directly on explanatory variables.

2. The Basic Model

Following Bartholomew (1982, ch. 3) we de¯ne the model as an open
Markov chain in discrete time. Let nj(t) denote the number of plants
in an arbitrary municipality in size interval j = 1; : : : ; k; with k ¯nite,
at time t = 1; : : : ; T; so that N(t) =

Pk
j=1 nj(t) is the stock of plants

at time t. We think of the size intervals as arranged in an increasing
order. Further, let ¹nj(t) denote the expectation of nj(t) and let there be
R(t+1) entrants in the period (t; t+1). Denote by pij ; i; j = 1; 2; : : : ; k;
the time invariant transition probability of moving from a state (size
interval) i at time t to a state j at time t+1. The pij are collected into
a transition probability matrix P.

Since we wish to allow for exits, i.e. transitions from any state i to a
state k+1, we have as a consequence the row sum property

P
k
j=1 pij · 1,

for every row i. The exit probability from state i in the time interval
(t; t+ 1) is denoted pi;k+1 and is then

pi;k+1 = 1¡
kX

j=1

pij (i = 1; 2; : : : ; k):

The R(t+1) entrants are distributed over the k states by transition
probabilities p0 = (p01; p02; : : : ; p0k) such that

Pk
j=1 p0j = 1.

The relationship for the expected frequencies of plants in each state
j is for given entry, R(t+ 1), of the form

¹nj(t+1) =
kX
i=1

pij¹ni(t)+R(t+1)p0j (j = 1; 2; : : : ; k; t = 1; 2; : : : ; T¡1)

or
¹n(t+ 1) = ¹n(t)P+R(t+ 1)p0 (t = 1; 2; : : : ; T );

where ¹n(t) = (¹n1(t); : : : ; ¹nk(t)). Note that in this model formulation the
exit probabilities are only implicitely present. Therefore, if R(t+ 1) is
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known no information about the number of exits would be required for
the estimation of the P matrix.

Unfortunately, the R(t + 1) is not observed. With E[R(t + 1)] = ¸
we have the unconditional result ¹n(t + 1) = ¹n(t)P + ¸p0. Assuming
fR(t)g to be a sequence of independent and constant mean (¸) Poisson
distributed random variables, and n(1) ¯xed, Pollard (1967) shows that
the elements nj(t+1) of n(t+1) are independently Poisson distributed
for large t.

With E[R(t+1)] = ¸t we indicate that entry in the period (t; t+1) is
governed by the parameter value at the initial time point in the interval.
In a related way we may specify a time dependent transition probability
matrix P(t). We may write a time varying model as

¹n(t+ 1) = ¹n(t)P(t) + ¸tp0: (1)

In Section 8, below, we make some additional remarks on P(t) and on
¸t speci¯cations. The time dependence would typically be taken to be
generated by explanatory variables.

3. Mobility Indices

In studying the dynamic properties of (1) the essential part of the model
is obviously the P matrix. For other dynamic models, e.g., the eigen-
values of corresponding matrices are used to provide summarizing mea-
sures of model properties. For a closed system (i.e. when ¸p0 = 0

and pi;k+1 = 0, for any i), P is the transition probability matrix of the
Markov chain. In the present case of an open Markov chain model, there
is, however, some ambiguity in advancing a transition probability ma-
trix. The ambiguity is due to how and if entry and exit states are to
be incorporated. For this reason the 'strong' criteria forming the basis
for the mobility indices suggested by Shorrocks (1978), Geweke et al.
(1986) and others seem to loose some of their strength.

The following mobility indices, taken from Shorrocks (1978) and
Geweke et al. (1986), are based on a transition probability matrix P¤:

M1(P¤) = [k ¡ tr P¤]=(k ¡ 1) M2(P¤) = exp(¡h¿)

M3(P¤) = (k ¡
P

k
i=1 j½ij)=(k ¡ 1) M4(P¤) = 1¡ jdetP¤j

M5(P¤) = 1¡ j½2j:

Here, h = ¡ ln2= ln j½2j, with ½i; i = 1; : : : ; k; the eigenvalues of P¤

arranged in decreasing order so that ½2 is the second largest one. The

3



¿ is the time period length (here ¿ = 1 year). Note that M1; : : : ;M5

make no distinction between upward or downward mobility, except very
indirectly. The ½2 is a measure of half life span (in demography the
generational length), so that a large ½2 indicates a reduction in the sizes
of plants (and then small M2 and M5).

The below diagonal elements p¤ij ; i < j; should for upward mobility
be smaller than the elements above the diagonal, when i > j, if states
are arranged in an increasing order. We introduce an ad hoc index based
on this idea as

M6(P
¤) =

1

2
f1 + (

X
i>j

p¤ij ¡
X
i<j

p¤ij)=[k(k ¡ 1)]g 2 [0; 1];

where the leading term 1

2
standardizes to the unit interval. A large M6

(> 1

2
) indicates upward mobility, M6 <

1

2
indicates downward mobility,

while for M6 = 1

2
either no mobility or equal upward and downward

mobility are indicated.
Bartholomew (1982, ch. 3) proposes the following transition proba-

bility matrix

P¤ =

Ã
p0 0
P p0

k+1

!
;

where pk+1 = (p1;k+1; : : : ; pk;k+1). Obviously, we may rearrange states
without altering the model. Here, with more employees in higher states,
it appears natural to let the exit state be placed before the smallest
plant size. Hence, we have

P¤ =

Ã
0 p0
p0
k+1 P

!
: (2)

Note that only M4 remains unchanged by this column order change.
Since this matrix accounts for the entry but not for the exit mechanisms
we could extend P¤ by an exit state and restrict entry to only arise from
existing ¯rms or plants:

P¤ =

0
B@ 0 0 p0

q00 p0
k+1

P

0 1 0

1
CA : (3)

Admittedly there is arbitrariness in all of these P¤ matrix speci¯cations
and for (3) we will not be able to estimate q0 given the data type at
hand.

4



A simpler solution that avoids the arbitrariness is to restrict focus
only on the mobility between the size states 1; : : : ; k, i.e. to avoid the
entry and exit states altogether. We obtain a truncated transition prob-
ability by deviding the underlying probability by the probability of being
in any of the k states:

p¤ij = pij=
kX

r=1

pir (i; j = 1; : : : ; k): (4)

For the resulting truncated transition probability matrix the row sum
property is satis¯ed and inferences about mobility within the restricted
class can easily be made. Hence, for this matrix all properties of indices
remain true, but then for the restricted state space.

4. Estimation

In this section we focus on the estimation of parameters in a time invari-
ant case. The estimation is performed for a single municipality. Should a
model covering all municipalities with common P and p0 be the issue of
interest, data on municipalities need to be stacked. The time dependent
case is brie°y discussed in Section 8.

The observations for state j for an arbitrary municipality are gener-
ated according to

nj(t+ 1) =
kX

i=1

nij(t) + ¸p0j + ²j(t+ 1);

where ¸p0j+²j(t+1) = n0j(t+1) corresponds to the number of entrants.
Replacing in addition nij(t) with E[nij(t)jni(t)]+»ij(t) = pijni(t)+»ij(t)
we get

nj(t+ 1) =
kX

i=1

pijni(t) + ¸p0j + [²j(t+ 1) +
kX

i=1

»ij(t)]: (5)

For all observations t = 1; : : : ; T ¡ 1 we may write

nj = ~nPj + 1T¡1¸p0j + ²j + »j ; (6)

where nj = (nj(2); : : : ; nj(T ))0;1T¡1= (1; : : : ; 1)0,

~n =

0
BBBB@

n1(1) n2(1) ¢ ¢ ¢ nk(1)
n1(2) n2(2) ¢ ¢ ¢ nk(2)
...

...
...

n1(T ¡ 1) n2(T ¡ 1) ¢ ¢ ¢ nk(T ¡ 1)

1
CCCCA ;
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and where Pj is the jth column of P.
By stacking the k equations, the entire system for all k(T ¡ 1) ob-

servations can for an arbitrary municipality be written on the form

n = (~n­ IT¡1)vec(P) + (1T¡1­p0)¸+ ²+ »; (7)

where n = (n0
1; ¢ ¢ ¢ ;n

0
k)

0, IT¡1 is the T ¡ 1 identity matrix and ­ is the
Kronecker matrix product.

The covariance matrix structure of ²+ » is quite complicated and we
will abstain from using estimation methods building on this structure.
Similarly, we will not present any covariance matrices for the parameter
estimators at this stage.

4.1 Single Equation Estimation

To estimate the unknown parameters in P;p0 as well as ¸ the simplest
estimator is based on the least squares criterion function for each state j
separately. The criterion function to be minimized for each municipality
and state is then of the form

Sj =
T¡1X
t=1

(nj(t+ 1)¡
kX
i=1

pijni(t)¡ ¸p0j)
2 (j = 1; : : : ; k):

It is obvious from Sj that ¸ and p0j cannot be separately estimated in
general. Setting ®j = ¸p0j ; makes estimation of ®j feasible. Once all
equations are estimated we may use the fact that ¸ =

P
k
i=1 ®i so that

using estimates of ®j we can get an estimate of p0j by the expression
p0j = ®j=

Pk
i=1 ®i.

The logical restrictions pij 2 [0; 1] and
Pk

j=1 pij · 1 are not auto-
matically satis¯ed by a least squares or for that matter by any other
estimator. Estimation under inequality or band restrictions is compu-
tationally more demanding than unrestricted estimation (e.g., Fomby
et al., 1984, ch. 6). Employing reparametrizations, e.g., of the forms
pij = 1=[1+exp(µij)] and ®j = exp(°j), and minimizing Sj with respect
to the unrestricted µij ; °j 2 (¡1;1) yields in a very convenient way
p̂ij 2 [0; 1] and ®̂j ¸ 0. In this way linear estimation subject to in-
equality restrictions is replaced by unrestricted nonlinear least squares
estimation. Note, however, that the row sum property can not be en-
forced with a single equation estimation technique.
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4.2 Joint Estimation

The restriction that row sums of P should be smaller than or equal
to one can only be imposed when all k equations for a municipality
are estimated jointly. In the least squares framework we then minimize
S =

Pk
j=1 Sj , i.e.

S = (n¡W¯)0(n¡W¯);

whereW¯ corresponds to the systematic part of (7), i.e. W = (~n­ IT¡1;
1T¡1 ­ Ik) and ¯ = (vec(P)0;®0)0, with ® = ¸p0.

For this case a useful reparametrization is, for instance, the multi-
nomial logistic probability, such that for i; j = 1; : : : ; k:

pij = exp(µij)=
k+1X
r=1

exp(µir):

For® we suggest using the exponential reparametrization of the previous
subsection. The criterion function S is minimized with respect to the un-
restricted k2 +2k dimensional parameter vector µ = (µ11; : : : ; µkk+1; ®1;
: : : ; ®k)0. Using the reparametrization, the linear inequality restrictions
are avoided and a nonlinear least squares estimator can be employed.

4.3 Regressing Mobility Indices

Given an estimated P¤ matrix for each municipality m, the mobility
indicesMim(P̂

¤) can be calculated. Any of these indices can then be used
directly or after transformation as dependent variables in formulating,
say, linear (ecological) regression models

f [Mim(P̂
¤)] = zm° + Àm (m = 1; 2; : : : ;M) (8)

in which ° can be estimated by least squares. The zm vector would for
the present purposes characterize the municipality and could contain
variables that can be controlled by the municipality or some higher level
of government. These estimates may help in isolating factors that are
important for the mobility of plants within the municipality. The func-
tion f [¢] could, for instance, be the inverse of the logistic transformation
such that yim = ln(1=Mim ¡ 1) 2 (¡1;1).

It is important to remember that for the interpretation of the mobil-
ity indices the sets of logical constraints on transition probabilities are
assumed to be satis¯ed.
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5. Forecasting

The h-steps-ahead forecast for nT+h based on the time invariant model
is of the form

n̂T+hjT = nTP
h + ¸p0

h¡1X
i=0

Pi (h = 1; 2; : : :) :

By substitution of estimated parameters, forecasts to throw interesting
light of future employment in the di®erent size classes of plants and
for each municipality can be made. To obtain the aggregate number of
employees within a municipality, the best forecast is n̂T+hjT1k , i.e. by
summing over the k states.

Since the covariance matrix of the forecast depends on the covariance
structure of the model, we abstain from presenting such results.

6. Monte Carlo Study

In this section we provide some evidence on the small sample properties
of single equation least squares estimators for the full transition proba-
bility matrix P¤ as given in (2) and of the mobility indices formed for
the truncated transition probability matrix as de¯ned in (4). A more
complete study that would include, for instance, the estimator of ° in
(8) is beyond the scope of the present study.

We consider a single k = 3 state open Markov chain with

P =

0
B@ 0:6 0:1 0:1

0:1 0:6 0:0
0:0 0:1 0:6

1
CA and p0 = (0:6; 0:3; 0:1):

For this model the truncated transition probability matrix is

P¤ =

0
B@ 0:75 0:125 0:125

0:14 0:86 0:0
0:0 0:14 0:86

1
CA

and M1(P
¤) = 0:268; M2(P

¤) = 0:107; M3(P
¤) = 0:266; M4(P

¤) =
0:462; M5(P¤) = 0:266 and M6(P¤) = 0:497. The indices indicate mod-
est mobility andM6 suggests that this is marginally downward oriented.
The R(t + 1) is generated as independently Poisson distributed with
¸ = 15. The time series length is set to T = 10(10)50; 100. 1000 repli-
cations are generated and estimated by least squares (without and with
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Table 1: Means of estimated transition probabilities, based on 1000
replications.

Para- Sample size (T )
meter 10 20 30 40 50 100
p11 0.36 0.47 0.53 0.56 0.58 0.61
p12 0.24 0.20 0.17 0.16 0.15 0.14
p13 0.18 0.15 0.13 0.12 0.11 0.10
p21 0.14 0.10 0.08 0.08 0.07 0.07
p22 0.40 0.49 0.54 0.56 0.58 0.59
p23 0.06 0.04 0.03 0.02 0.01 0.01
p31 0.06 0.03 0.02 0.02 0.01 0.01
p32 0.22 0.14 0.11 0.10 0.10 0.09
p33 0.33 0.43 0.48 0.50 0.53 0.56

p01 0.43 0.42 0.41 0.40 0.39 0.38
p02 0.17 0.20 0.20 0.21 0.22 0.22
p03 0.40 0.38 0.39 0.39 0.39 0.39
¸ 15.3 14.5 13.7 13.2 12.9 12.7

reparametrization) for single equations. For the reparametrized case es-
timates are obtained by a simplex algorithm (AMOEBA, Press et al.,
1987) minimizing Sj directly. We use ^̧ =

Pk
i=1 ®̂i and p̂0j = ®̂j=^̧ to

estimate ¸ and p0j ; j = 1; 2; 3. If p̂i;k+1 =2 [0; 1], it is set to its closest
boundary. Since the row sum condition is not enforced in single equa-
tion estimation, the sum may be larger than one. In such a case j½2j
may well exceed one, if this happens we set j½2j = 0:9999. To study the
forecasting performance we employ T ¡ 1 observations for estimation
and make a one-step-ahead forecast for the T th observation.

6.1 Results

We ¯nd that the least squares estimator without reparametrization is
the weaker alternative both in terms of frequent violations of the range
restriction and in terms of both bias and mean square error. For this
reason no detailed results are presented. For the reparametrized least
squares estimator we get the mean over replications results presented in
Tables 1 and 2.

A general impression from the means over the replications for the
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Table 2: Means of mobility indices based on 1000 replications of the
truncated transition probability matrix for the reparameterized case.

Sample size (T )
Index True value 10 20 30 40 50 100
M1 0.268 0.67 0.46 0.37 0.33 0.30 0.26
M2 0.107 0.22 0.14 0.09 0.07 0.06 0.05
M3 0.266 0.53 0.43 0.36 0.33 0.30 0.26
M4 0.462 0.79 0.69 0.61 0.56 0.52 0.46
M5 0.266 0.31 0.23 0.18 0.16 0.15 0.13
M6 0.497 0.51 0.50 0.50 0.50 0.50 0.50

Table 3: Means of forecast errors and means of absolute precentage
errors (MAPE) for one-step-ahead forecasts based on 1000 replications
for the reparameterized case.

Sample size Mean error (state) MAPE (state)
T 1 2 3 1 2 3

10 -0.149 -0.054 0.168 21.36 20.79 16.58
20 -0.283 0.004 0.239 21.19 19.71 15.16
30 0.019 -0.108 0.066 20.31 18.61 14.93
40 0.030 -0.070 0.002 19.17 18.52 14.74
50 -0.090 0.234 0.181 18.83 18.69 13.29
100 0.017 -0.205 0.255 19.00 18.88 14.37

reparametrized least squares estimator (cf. Table 1) is that the diagonal
elements are underestimated for small T , while o®-diagonal elements are
overestimated. For the largest sample size of T = 100, biases are quite
small. With respect to the estimation of p0j and ¸ the results are not
encouraging as the biases remain large for p0j and for ¸ increasing with
the sample size. Note that for these parameters estimates from the three
equations are combined.

Table 2 gives a summary of the mean results on the mobility indices.
It appears that the indices that are based on ½2 only (i.e. M2 and M5)
do not perform very well. For the other mobility indices there are rather
small biases for T = 100, while sizeable for T = 10. Only M6 appears
to be more or less unbiased for all T .

Table 3 presents the results for the one-step-ahead forecasting exer-
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Figure 1: Box plot of the number of plants in municipalities by size state
[state 1 (no employees), state 2 (1-4 employees), state 3 (5-19 employees),
state 4 (19-100 employees) and state 5 (more than 100 employees)].
Circles indicate the 5 and 95 percent quantiles, respectively.

cise. We ¯nd that the mean errors (based on nj(T ) ¡ n̂j(T )) as well
as the mean absolute percentage errors (MAPE, based on 100jnj(T )¡
n̂j(T )j=nj(T)) gets smaller at a slow rate as T increases. The mean er-
rors are not extremely large as the process have averages of 15, 15 and
23 for the states for time T in the T = 100 case.

7. Financial Plants

Data on the number of ¯nancial sector (SNI 8) plants in di®erent size
intervals is obtained from registers at Statistics Sweden and covers the
10-year period 1984-1993. Figure 1 gives a box plot of the numbers of
plants in each size interval. Apparently, most plants have no or only few
employees. There is skewness within each of the size classes. Since for
some municipalities there is no variation in the number of plants in the
highest state, n5(t), single equation estimation is not feasible. Therefore,
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states 4 and 5 are added together to form a new state 4.
Due to too small or lacking variation in the data for 22 of the 283

municipalities results are based on the remaining 261 municipalities for
which estimation was successful. The single equation estimation results
for the P matrix are summarized in terms of the means of estimates over
municipalities (with variances in parentheses):

P =

0
BBBBBBBBBBBB@

0:726 0:151 0:017 0:002

(0:035) (0:014) (0:001) (0:000)
0:411 0:407 0:068 0:004

(0:129) (0:066) (0:010) (0:000)
0:145 0:326 0:584 0:027
(0:069) (0:109) (0:010) (0:010)
0:112 0:304 0:547 0:847
(0:049) (0:117) (0:186) (0:108)

1
CCCCCCCCCCCCA
:

The p0 vector has mean estimates (with variances in parentheses) (0:541
(0:139); 0:391 (0:134); 0:067 (0:034); 0:001 (0:000)) and ^̧ = 29:6
(3008).

Looking at the P matrix there appears to be a pattern of larger tran-
sition probabilities for downsizing than for growing. This corresponds
to larger below diagonal than above diagonal elements. For states 2 and
3 the probabilities of remaining in the same state appear surprisingly
small. In view of the presented Monte Carlo results for comparable sam-
ple sizes, we expect the diagonal elements to be too small on average,
while o®-diagonal elements are expected to be too large. Assuming con-
stant transition probabilities across municipalities yields the estimated
matrix

P̂ =

0
BBB@

0:85 0:06 0:00 0:00
0:28 0:75 0:00 0:00
0:49 0:51 1:00 0:09
0:00 0:00 0:04 0:81

1
CCCA

with p̂01 = 0:92; p̂03 = 0:08 and ^̧ = 4:9. We note the obvious row sum
violations for states 2 and 3. For state 1 the exit probability is estimated
to 0.09, while for state 4 it is as large as 0.15.

Mobility indices based on the truncated transition probability matrix
for each municipality are graphically displayed in Figure 2 for the 261
municipalities. IndicesM2;M5 andM6 all suggest that there is mobility
of a downsizing nature. The impression from the index M4 is that the
mobility is quite strong. Note that M6 does not appear very responsive,
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Figure 2: Box plot of mobility indices M1; : : : ;M6 based on 261 esti-
mated truncated transition probability matrices. Circles indicate the
5th and 95th percent quantiles, respectively.

in the sense of its small variation, to di®erent transition probability
matrices. Nothing in the mean P̂ contradicts these conclusions.

Re-estimating the model using only the ¯rst nine observations makes
it possible to compare the one-step-ahead forecasts with the tenth avail-
able and ¯nal observations. For the four states we get the mean er-
rors (based on 257 municipalities) -2.7, -4.4 , -3.7 and -1.8, respectively.
Hence the result is that we overpredict slightly. In this case the MAPEs
are 8.8, 11.6, 18.2 and 29.6, respectively.

8. Discussion

The open Markov chain model has accounted for the distribution in
plant size and is therefore richer in detail than a model focusing only on
the total number of plants (cf. Berglund and BrÄannÄas, 1998). Note that
by summing over the states j we get from (3) the total at time t+ 1:

N(t+ 1) = n(t+ 1)1 = n(t)¼ + ¸t + ²(t+ 1) + »(t);
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where 1 =(1; : : : ; 1)0 and ¼ = (
Pk

j=1 p1j ; : : : ;
Pk

j=1 pkj)
0. This expression

resembles a multivariate integer-valued AR(1) model that has been sub-
jected to expectation operators. A closed integer-valued AR(1) model
coming close to the one considered here has been considered by BrÄannÄas
and BrÄannÄas (1998) for the number of ¯sh in connected tanks.

An alternative to the time invariant parameter approach is obvious
and closely related to the reparametrization discussed in Sections 4 and
6. Let the transition probability matrix be time dependent such that
P(t) has elements

pij(t) = 1=[1 + exp(ztµ)]:

Note that zt and hence pij(t) vary over municipalities while µ remains
constant, as does p0. The ¸t could be an exponential function in the
same or other explanatory variables. In this case the mobility indices
depend in a complicated manner on zt and can be calculated for any
zt value at any time point t. In view of the rather disappointing small
sample performance of the studied estimator, accounting for observed
inter-municipality variation in transition probabilities appears a promis-
ing way to proceed.

Among the mobility indices M1; : : : ;M6, we observed poor bias-
performance for M2 and M5, while the ad hoc measure M6 does not
appear to be very sensitive to the values of the transition probability
matrices. In the simulation M1 and M3 are slightly better than M4.
This experiment is too small to draw far reaching conclusions, however.

Since micro-level data does not need to be available, studies based
on highly aggregated data, which then should be more readily available,
can be carried out. For instance, we could focus on wage mobility us-
ing o±cial wage statistics. If on the other hand, the richer micro-level
or combined micro/macro data is available improvements in estimator
performance would result (e.g., Rosenqvist, 1985).
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