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Abstract

This paper studies the evolution of peoples�models of how other people

think �their theories of mind. This is formalized within the level-k model,

which postulates a hierarchy of types, such that type k plays a k times iterated

best response to the uniform distribution. It is found that, under plausible

conditions, lower types co-exist with higher types. The results are extended

to a model of learning, in which type k plays a k times iterated best response

the average of past play. The model is also extended to allow for partial

observability of the opponent�s type.
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1 Introduction

In order to decide what strategy to choose, a player usually needs to form beliefs

about what other players will do. This requires the player to have a model of how

other people form beliefs �what psychologists call a theory of mind (Premack and

Wodru¤ (1979)). In this paper I study the evolution of players�theories of mind,

both in the form of their models of how other players form initial beliefs, and in the

form of their models of how other players learn.

When people play a game for the �rst time, their initial behavior rarely conforms

to a Nash equilibrium.1 In such situations, behavior is often more successfully

predicted by the level-k model (Stahl and Wilson (1995) and Nagel (1995)), and the

related cognitive hierarchy (Camerer et al. (2004)), and noisy introspection models

(Goeree and Holt (2004)).2 According to these models, people display limited depth

of reasoning, when forming beliefs about other peoples�behavior. Moreover, people

di¤er with respect to how they form beliefs. The heterogeneity is represented by

a set of cognitive types, such that higher types form more sophisticated beliefs.

According to the level-k model, the lowest type, type zero, does not form any

beliefs and randomizes uniformly over the strategy space. An individual of type

k � 1 believes that everyone else belongs to type k � 1, and hence plays a k
times iterated best response to the uniform distribution. The model is sometimes

speci�ed so that type 0 merely exists in the minds of higher types (Costa-Gomes

and Crawford (2006)).

In order to study evolution of theories of mind in the context of learning, I

consider an extension of �ctitious play. According to �ctitious play all individuals

best respond to the average of past play. If some individuals follow this rule, it is

natural to hypothesize that some more sophisticated individuals realize this, and

play a best response to the best response to the average of past play. And it seems

quite possible that some individuals think yet another step and play a twice iterated

best response to the average of past play. Continuing in this way one arrives at a

hierarchy of types, using increasingly complex models of how other people learn.

I refer to the resulting model as heterogeneous �ctitious play. A related model is

1See Camerer (2003). This claim presupposes some assumption about preferences. In the
mentioned studies, the preferences needed to make the observed behavior conform to Nash equi-
librium seem like a much less reasonable explanation than attributing the behavior to some form
of incorrect expectations. See the discussion in Costa-Gomes and Crawford (2006).

2For experimental evidence on this see Camerer et al. (2004), Costa-Gomes and Crawford
(2006), and Camerer (2003). Coricelli and Nagel (2009) present neuroeconomic evidence. The
models have also been applied to e.g. auctions (Crawford and Iriberri (2007)), communication
(Crawford (2003), Ellingsen and Östling (2010)), and marketing decisions (Brown et al. (2008)).
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proposed by Stahl (1999), and subjected to experimental testing by Stahl (2000).34

Many games with important consequences are only played a few times during a

life-time, with limited scope for learning. For example, the choice of a career and

the choice of a mate are parts of complicated games which most people play only

once, or a few times. Still, the strategic thinking employed in such interactions

should be immensely important for the success of a person, in economic as well as

biological terms. Other games are played many times, with feedback that allows

the players to learn. The evolutionary advantage of an accurate model of how other

people learn should be obvious in such cases.

The contribution of this paper is to provide an evolutionary analysis of initial

responses, as described by the level-k model, and modes of learning, as formalized by

the heterogeneous �ctitious play model. In particular I explain why evolution may

lead to a state where people display heterogeneous and limited depths of reasoning.5

From an evolutionary perspective, the potential advantage of having a better theory

of mind has to be weighed against the cost of increased reasoning capacity. I abstract

from such costs in the formal analysis, but note that they limit the survival chances

of higher types (see section 5).

Since evolution acts upon types rather than strategies, it is possible to study

evolution across di¤erent games, assuming that individuals are matched to play

games that are drawn from a class of games. In contrast, most of the literature on

evolution in games focuses on one game at a time, and among those who study evo-

lution across games, most papers only consider games which have identical strategy

spaces. To my knowledge Samuelson (2001a) is the only exception.6 He studies the

evolution of �nite automata used to implement strategies in a class of three di¤erent

games. There is a cost that is increasing in the number of states of the automata.

3Stahl�s (2000) rule learning model assumes that each individual is endowed with propensities
for the di¤erent learning rules. The propensities are updated in relation to how well they perform.
This is undoubtedly an interesting model for explaining and predicting how people learn to play
experimental games, but Stahl does not provide any general results on which propensities that
may be evolutionarily stable in di¤erent classes of games. The current paper can be viewed as a
step in that direction.

4Fudenberg and Takahashi (2011) model �ctitious play with heterogeneous beliefs.
5One might object that the heterogeneity could be due to random variation. However, there is

evidence that strategic reasoning is implemented by specialized modules in the brain (Cosmides
and Tooby (1992)), and it has been argued (Penke et al. (2007)) that variation in such traits is
best explained by frequency dependent selection, rather than by random variation.

6Heller (2004), Mengel (2009), and Steiner and Stewart (2008) model evolution and learning
across game with identical strategy spaces. Haruvy and Stahl (2009) experimentally investigate
learning across games with di¤erent strategy spaces. Sgroi and Zizzo (2009) study how a player
endowed with a neural network adapts her play across di¤erent 3�3-games, assuming that all other
players play a Nash equilibrium strategy. Their simulation experiments are broadly consistent with
a level-k model.
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Thus there is an incentive to save on states and thereby behave in a way that is

not tailored to each of the games. In a similar way, in the present paper I assume

that an individual�s type is constant across games. In reality an individual�s type is

likely to vary somewhat over time and across games, but as long as each individual�s

type only varies within some limits, one may expect the results presented in this

paper to be of relevance.

The level-k model, implicitly assumes that players lack speci�c information

about the cognitive types of their opponents. I extend the level-k model to al-

low types to be partially observed. Such an extension seems essential in order to

capture situations where an unfamiliar game is played by individuals who have some

information about their opponents�ways of thinking. In the kind of small-scale so-

cieties that characterized much of our evolutionary past, such information should

have been common. To model this I assume that when a type k faces a lower type

k0 < k the higher type recognizes and best responds to the lower type (even when

k0 < k � 1), but the lower type does not know how the higher type thinks. These
assumptions are motivated by the way types are de�ned: The cognitive type of

an individual represents that individual�s ability to understand how other people

think. Thus, being of a high type means that one is good at understanding how

other people think, i.e. that one is good at detecting their type.7

For the evolutionary analysis of the level-k model, consider a large population of

individuals of di¤erent types, who are randomly matched to play a symmetric two-

player game. The types of the matched pair of individuals, determine their actions,

and hence their payo¤s. The population fractions of types evolve in proportion to

their average payo¤s, in accordance with the replicator dynamic. In the case of the

heterogeneous �ctitious play model, one must consider both learning and evolution.

In each period, individuals are drawn to play one game many times, each time with

a di¤erent opponent. The average payo¤ over these interactions constitutes the

evolutionarily relevant payo¤ in the current period.

The results presented in this paper identify conditions under which evolution

leads to �or does not lead to �states where the highest type, and types behaving

like the highest type, dominate. I restrict attention to �nite symmetric two-player

games in which all level-k types, except type 0, play pure strategies. First I consider

the standard level-k model (without any observability of types). It turns out that

there is an important distinction to be made, between type-acyclic and type-cyclic

7In the literature on preference evolution it is well known, that if players have complete informa-
tion about preferences, then evolution may favor preferences that do not coincide with material
payo¤s (Dekel et al. (2007)). As pointed out e.g. by Samuelson (2001b), it is important that
assumptions about observability are well motivated and not ad hoc.
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games. A game is type-acyclic game if there exists a �nite k, such that the strategy

that is a k times iterated best response against the uniform distribution, is also a

best response to itself. Games that are not type-acyclic are type-cyclic. Provided

that the set of types is large enough relative to the number of strategies, the set of

states in which only the types behaving like the highest type exist, is asymptotically

stable if and only if the game is type-acyclic. Still, even in type-acyclic games (e.g.

in some dominance solvable games) evolution may lead to asymptotically stable

sets, in which the highest type, and all types behaving like the highest type, are

extinct. There is a su¢ cient condition, dubbed weak best reply dominance (satis�ed

e.g. by all strictly supermodular games), that guarantees the convergence to a state

where everyone behaves like the highest type. In type-cyclic games di¤erent results

obtain. Consider stable games with an interior evolutionarily stable strategy (ESS),

such as the Hawk Dove game. In such games it can be shown that evolution leads

to an asymptotically stable set of states, in which types that do not behave like

the highest type, co-exist with types that do behave like the highest type. Under

some circumstances, all types may co-exist. The intuition for these results is that

there is an incentive not to behave, and hence not to think, like the opponent

in these games. Next, suppose that individuals play games from a set of games

consisting of a type-acyclic game and a type-cyclic game. If the set of types is large

enough relative to the number of strategies, then the set of states where everyone

behaves like the highest type, is unstable. For the special case of a set of games

consisting of a 2-strategy coordination game, a 2-strategy strictly stable game, and

a Travelers�Dilemma game, it is shown that evolution may converge to a state with

heterogeneous types, starting from any initial condition.

The results for the heterogeneous �ctitious play model are similar to those of for

the standard level-k model. In games satisfying weak best reply dominance, evolu-

tion leads to states where only the highest types survive. In the game of Shapley

(1964) ordinary �ctitious play cycles, but evolution according to the heterogeneous

�ctitious play model converges to a state where di¤erent types co-exist, such that

behavior corresponds to the Nash equilibrium in all periods.

Introducing partial observability of types into the level-k model, alters the re-

sults. In games that satisfy weak best reply dominance, exempli�ed by the Travel-

ers�Dilemma, evolution may lead to the co-existence of di¤erent types, who do not

behave like the highest type. This happens because lower types choose strategies

which induce more e¢ cient outcomes than what is obtained when two high types

play. In some type-cyclic games adding partial observability improves the prospects

for di¤erent types to co-exist, but in other type-cyclic games the e¤ect is reversed.
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There are only a few studies of evolution of cognitive types which can be in-

terpreted as being about initial responses. A pioneering paper is Stahl (1993). In

his model there is a set of types n 2 f0; 1; 2; :::g. Type 0 is divided into subtypes,
each programmed to a di¤erent pure strategy. Type n believes that everyone else

is of a lower type, is able to deduce what lower types will do, and chooses among

strategies that are nth order rationalizable conditional on the actual distribution of

types. In order to choose among the strategies that are nth order rationalizable,

each individual has a secondary strict preference ordering over strategies. He �nds

that programmed individuals may survive since "being right is just as good as be-

ing smart". Banerjee and Weibull (1995) study the interaction between individuals

that are programmed to di¤erent strategies and individuals that optimize given a

correct belief about the strategy of the opponent, or the population distribution

of strategies. Another related paper is Stennek (2000) who studies the evolution-

ary advantage of ascribing di¤erent degrees of rationality to one�s opponent. An

individual of type d 2 f0; 1; 2; :::g believes that everyone else is of type d � 1 and
chooses some d-iterations undominated action, in accordance with some preference

over the pure strategies. There are at least three important di¤erences between

the models in these papers and the present model: First, these papers assume that

a �xed game is played recurrently and that some individuals are programmed to

pure strategies. The fact that some individuals are programmed to pure strate-

gies makes it di¢ cult to study evolution of initial responses and evolution across

games, since it is not clear how such individuals transfer their behavior between

games. Secondly, these papers build on behavioral models that lack the kind of

empirical support that the level-k and cognitive hierarchy models have; see Stahl

and Wilson (1995), Costa-Gomes et al. (2001), Costa-Gomes and Crawford (2006),

and Camerer (2003). Third, these models include many types whose behavior is

not fully determined by best response given beliefs. Such an approach potentially

confounds the question of how theories of mind have evolved, and the question of

how optimizing behavior has evolved. Moreover, these di¤erences in assumptions

lead these papers to identify di¤erent mechanisms shaping the distribution of types.

There is a vast literature studying properties of di¤erent formal learning rules

(see e.g. Fudenberg and Levine (1998), and Sandholm (2011)), but there are hardly

any studies of the evolutionary properties of the learning rules themselves. Heller

(2004) studies competition between, on the one hand individuals that are pro-

grammed to pure strategies, and on the other hand, individuals who play a best

response to the opponent she faces. The latter behavior is intended to be a reduced

form for how a learner would behave after learning has taken place. Since the envi-
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ronment changes stochastically the learners may survive even though they incur a

strictly positive cost. Josephson (2008) uses simulations to compare �ctitious play

and reinforcement learning. He �nds that evolution may end up putting roughly

equal weights on these two modes of learning. Both studies are restricted to sets of

games with identical strategy spaces.

The rest of the paper is organized as follows: The next section presents the

main model, focusing on the level-k model. The results for the level-k model are

presented in section 3. Section 4 contains the heterogeneous �ctitious play model

and the level-k model with partial observability. Section 5 contains some discussion

and section 6 concludes. Proofs can be found in the appendix. Additional proofs

and results are relegated to the online supplement.

2 Model

2.1 Preliminaries

Consider a symmetric two-player normal form gameG with a �nite pure strategy set

S and mixed strategy set �(S). Payo¤s are given by � : S�S ! R, where � (s; s0)
is the payo¤ to a player using strategy s against strategy s0. For mixed strategies

the expected payo¤s are given by ~� : � (S)��(S)! R where ~� (�; �0) is the payo¤
to a player, using strategy � against strategy �0. With slight abuse of notation let s

denote the degenerate mixed strategy that puts all weight on pure strategy s. Let

� : � (S)� S be the pure best reply correspondence. If the best response is unique

I write � (�) = s rather than � (�) = fsg. The uniform randomization over the set

of pure best responses to �, is denoted �� (�). Again, with slight abuse of notation,

the expression � (s) stands for the pure best response to the mixed strategy that

puts all weight on the pure strategy s (and similarly for ��).

A population consists of a �nite set of cognitive types K = f0; 1; 2; :::; �g. The
set of probability distributions over K is �(K), so a population state is a point

x = (x0; x1; :::x�) 2 �(K) .

(For reasons that will be explained below, some of the analysis disregards type 0, so

that the set of types is Knf0g, and a population state is a point x 2 �(Knf0g).)
Suppose that an individual of type k and an individual of type k0 play a symmetric

two-player normal form game G. Let � (k) 2 �(S) be the strategy that an indi-
vidual of type k plays. For a given game G, the expected payo¤ of type k, against

type k0, is ~� (� (k) ; � (k0)), so the expected payo¤ of type k, in state x, is given by
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the function �k : � (K)! R, with

�k (x) =
X
k02K

xk0~� (� (k) ; � (k
0)) . (1)

Suppose (in order to examine evolution across games) that individuals are ran-

domly matched to play a game which is drawn from a �nite set of games G, according
to a probability measure �. The individuals are informed about the game that has

been drawn. The expected payo¤ of type k, in state x, is now given by the function

�Gk : � (K)! R, with
�Gk (x) =

X
G2G

�G�Gk (x) ,

where �G is the probability of game G, and �Gk is the payo¤ in game G.

2.2 The Level-k Model

According to the level-k model, type 0 randomizes uniformly over the strategy

space.8 Each type k � 1 best replies to type k � 1. Let U denote the uniform

distribution over S, and let �i (U) denote the i � 0 times iterated best response

to the uniform distribution, with the convention �0 (U) = U . In order to avoid

unnecessary complication I will �throughout the whole paper �restrict attention

to symmetric games where the best responses of all types are unique, i.e. �k (U) is a

singleton for all k � 0.9 Thus, type k 2 K plays � (k) = �k (U). If the payo¤s asso-

ciated with di¤erent strategy pro�les are drawn independently, according to some

continuous measure de�ned over an interval on the real line, then the uniqueness

assumptions is satis�ed for all but a measure zero set of games.

2.3 Evolution

For a given game G, the average payo¤ in the population, in state x, is

��G (x) =

�X
k=0

xk�
G
k (x) .

8Other assumptions are possible (see section 5) but I will stick with the assumption that is
dominant in the existing literature.

9Alternatively one could assume that if the pure best reply is not unique, then the individual
follows the principle of insu¢ cient reason and randomizes uniformly over the set of pure best
replies. This would complicate the analysis substantially.
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Evolution of types is determined by the replicator dynamic, for all k 2 K,

_xk = [�k (x)� �� (x)]xk. (2)

This de�nes a vector �eld ' : R�+1 ! R�+1, such that _x = ' (x). Similarly, if the
games are drawn from G according to �, the average payo¤ in the population, in
state x, is denoted ��G (x) and the replicator is de�ned as above, with �Gk (x) instead

of �k (x).

In the level-k model, each type�s behavior is constant across states. It is then

easy to verify that the payo¤s to the di¤erent types, and hence the vector �eld, is

Lipschitz continuous. Let T � R be an open interval containing t = 0. By the

Picard-Lindelöf theorem the system has a unique (local) solution � (�; x0) : T !
�(K) through any initial condition x0, such that � (0; x0) = x0 and

@

@t

�
�
�
t; x0

��
= [�

�
�
�
t; x0

��
� ��

�
�
�
t; x0

��
]�
�
t; x0

�
,

for all t. Moreover, since �(K) is compact and the system never leaves �(K), T

can be taken to be the whole of R, so that the solution is global.
The notion of a type game will be useful in the analysis below.

De�nition 1 Consider a symmetric two-player normal form game G and a set of

types K. The corresponding type game is a symmetric two-player game, where
each player�s strategy space is K, and the payo¤ to type-strategy k, against type-

strategy k0, is w (k; k0) = ~� (� (k) ; � (k0)).

The de�nition of a type game allows us to apply results from standard evolu-

tionary game theory, where evolution acts upon strategies, to the present setting

where evolution acts upon the cognitive types. For instance, if a strategy in the type

game is an evolutionarily stable strategy (ESS), then we know that the correspond-

ing state x is asymptotically stable under the replicator dynamic.10 In the basic

level-k model each type plays the same strategy in all states, and all types except

type 0 play a pure strategy. Thus, if we disregard type 0 and restrict attention to

types Knf0g, studying evolution of types according to the replicator dynamic is for-
mally the same as studying the replicator on the subset of pure strategies picked by

the types in Knf0g, except for the minor complication that the same pure strategy
might be used by more than one type. Partly for this reason, some results below will

only be proved for the restricted set of types Knf0g. Another reason for excluding
10Some de�nitions of stability concepts are provided in the supplement.
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type 0 from the analysis is that the level-k model is sometimes estimated under

the assumption that type 0 only exists in the minds of higher types (e.g. Costa-

Gomes and Crawford (2006)). The simple relationship between strategy-evolution

in the underlying game and type-evolution in the type game does not hold for the

level-k model with partial observability, or the heterogeneous �ctitious play model

considered below.

3 Results

We are interested in �nding stability and convergence properties of, on the one

hand, (i) states where only types behaving like the highest type exist, and on the

other hand, (ii) states where lower types co-exist with higher types, not playing

the same strategies. For any game let ~K be the set of types that choose the same

strategy as the highest type;

~K = fk 2 K : �k (U) = �� (U)g, (3)

and de�ne ~X to be the set of states where only types behaving like the highest type

exist ;
~X = fx 2 �(K) :

X
k2 ~K

xk = 1g. (4)

To address questions regarding the asymptotic stability of ~X, de�ne:

De�nition 2 A game is type-acyclic if there is some k 2 N such that �k (U) =
�k+1 (U). In a type-acyclic game kNE is the smallest number k such that �k (U) =

�k+1 (U). A game is type-cyclic if it is not type-acyclic. In a type-cyclic game kc

is the smallest number k such that �k (U) = �k
0
(U) for some k0 < k.11

In type-acyclic games kNE is the lowest type that plays a symmetric Nash equi-

librium strategy. The strategy played by type kNE will be played by all higher types

(since we assume that �k (U) is a singleton for all k). In type-cyclic games kc is

the lowest type k such that the sequence f�i (U)gki=1 contains a cycle. Clearly we
always have kNE; kc < n.

Proposition 1 Suppose that an underlying game is played by level-k types. If the
underlying game is type-acyclic and � � kNE then the set ~X is asymptotically stable.

11Young (1993) de�nes an acyclic game as a game where, for every s 2 S, there is some (�nite)
k such that �k (s) � �k�1 (s).
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If the underlying game is type-cyclic and � � kc then the set ~X is not asymptotically

stable.

It follows that if � is large enough relative to the number of strategies n, so that

both � � kNE and � � kc hold, then ~X is asymptotically stable if and only if the

underlying game is type-acyclic. Note that � > n is su¢ ciently large.

3.1 Type-Acyclic Games

Proposition 1 does not claim that ~X is the unique asymptotically stable set when

the underlying game is type-acyclic and � � kNE. Neither does it claim that

evolution will always end up in that set ~X under these conditions. For example,

type-acyclicity is satis�ed by dominance solvable games (supplement, lemma S1),

but there are dominance solvable games which generate type games where ~X is not

the only asymptotically stable set; there might be asymptotically stable states where

x� = 0 (supplement, example S1). The reason is that the type game generated by

an underlying dominance solvable game need not itself be dominance solvable, even

when the type space is restricted to Knf0g. To obtain a condition under which
~X is the unique asymptotically stable set with the whole interior as its basin of

attraction, de�ne the property of weak best reply dominance:

De�nition 3 A game satis�es weak best reply dominance (WBRD) if, for all
k � 0 and all s, it holds that �

�
� (s) ; �k (s)

�
� �

�
s; �k (s)

�
.

The WBRD-property is satis�ed by strictly supermodular games (supplement,

lemma S2). A game that is not supermodular, but satis�es the WBRD property

is the Travelers� Dilemma (Basu (1994)). The two-player symmetric Travelers�

Dilemma has strategy space S = f1; 2; :::; ng. The payo¤ to a player choosing
strategy s against strategy s0 is

� (s; s0) =

8><>:
s if s = s0

s+R if s < s0

s0 � P if s > s0
,

for some real numbers R > 1; P > 0. Assume R + P =2 N so that � (s) is single-
valued for all s 2 S. In the Travelers�Dilemma there is always an incentive to
undercut the opponents choice, by picking a strategy that is one step below the

opponent�s strategy one obtains a net reward of R � 1 > 0. Therefore this game

constitutes a social dilemma, in the sense that both players would earn more if they

10



Figure 1 Travelers�Dilemma played by level-k types. Parameters R = 3=2, P =
1=3, and n = 6. Type space K = f0; 1; 2g. The state with x2 = 1 (black dot) is
asymptotically stable and has the whole interior as its basin of attraction.

X0=1

X2=1X1=1

were are able to cooperate and play a high strategy, than if they play the Nash

equilibrium pro�le (1; 1).

It can be veri�ed that a game satisfyingWBRD is type-acyclic (appendix, lemma

1). The following proposition provides a condition for convergence to the asymp-

totically stable set where only types that behave like the highest type exist.

Proposition 2 Suppose that an underlying WBRD-game is played by level-k types
Knf0g. For any �, the set ~X is the unique asymptotically stable set, with the whole

interior as its basin of attraction.

It is necessary to exclude type 0 in order to obtain the above result. There are

games satisfying WBRD, even strictly supermodular games, such that if type 0 is

included in the type space, then there is an asymptotically stable set where x� = 0

(supplement, example S2).12 However, if type 0 asymptotically becomes extinct in

a WBRD game, then clearly the above proposition implies that ~X is the unique

asymptotically stable set, with the whole interior as its basin of attraction.13 Figure

1 illustrates this possibility, for the Travelers�Dilemma with parameters R = 3=2,

P = 1=3, and n = 6, played by types K = f0; 1; 2g.
Even in WBRD-games, the asymptotically stable set of types ~X can be large.

Consider coordination games:

De�nition 4 A game is a coordination game if � (s) = s for all s 2 S.
12Any game generated by a subset of pure strategies from a supermodular game is itself su-

permodular. But the strategy that type 0 uses is not a pure strategy of the underlying game.
Therefore the cognitive game need not be supermodular when type 0 is included.
13All phase diagrams were created with Dynamo (Sandholm and Dokumaci (2007)).
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Coordination games satisfy the WBRD-condition with equality. The simplest

example would be a 2� 2 coordination game, such as the Stag Hunt game, whose
payo¤ matrix is strategically equivalent to 

a 0

0 1

!
, (5)

for some a > 1.14 Since each pure strategy is the unique best response to itself, all

types k � 1 behave in the same way i.e. ~X = fx 2 �(K) : x0 = 0g. Consequently
all types k � 1 earn the same in all states, and all types k � 1 earn more than type
0. Thus the set of all states where type 0 is absent is asymptotically stable.

Corollary 1 Suppose that an underlying coordination game is played by level-k
types. For any �, the set ~X = fx 2 �(K) : x0 = 0g is asymptotically stable and
has the whole interior as basin of attraction.

3.2 Type-Cyclic Games

Once we move away from the class of type-acyclic games the survival prospects of

lower types improve further. A normal form game with payo¤ matrix A is said to

be strictly stable if A is negative de�nite with respect to the tangent space.

De�nition 5 A normal form game with an n�n payo¤ matrixA is strictly stable
if v �Av < 0 for all v 2 Rn0 = fv 2 Rn :

P
vi = 0g, v 6= 0.15

A strictly stable game has a unique ESS. It is easy to see that if the unique

ESS is interior then the game is type-cyclic. The simplest example of a strictly

stable game with an interior ESS is the Hawk Dove game, whose payo¤ matrix is

strategically equivalent to  
�b 0

0 �1

!
, (6)

for some b > 1.

If all types play di¤erent strategies, and if we restrict attention to Knf0g, then
the type game based on an underlying stable game is itself a strictly stable game

(appendix, lemma 3), and the replicator dynamic converges to the ESS in strictly

14Two games are strategically equivalent if they share the same best replies and dominance
relations. Subtracting scalars from columns and multiplying All generic symmetric 2 � 2 games
fall into one of three categories of strategically equivalent games, (i) coordination games, (ii) games
with a unique interior ESS and (iii) dominance solvable games (see Weibull (1995), chapter 1).
15This de�nition is taken from Sandholm (2011), restricted to normal form games.
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stable games (Hofbauer and Sigmund (1988), Sandholm (2011), chapter 6). How-

ever, the ESS of the type game will generally not correspond to the same behavior

as the ESS of the underlying game. It will be useful to add some more structure

that allows us infer what strategies di¤erent types choose. In the Hawk-Dove game

each strategy is the unique best response to the other strategy. We can generalize

this property.

De�nition 6 An n-strategy game is completely cyclic if the strategies can be
ordered s1; :::; sn such that � (si) = si+1modn for all i 2 f1; ::; ng.

In other words, for all i 2 f1; ::; n�1g the best response to strategy si is strategy
si+1 and the best response to strategy sn is strategy s1. Hence, type i behaves

like type i modulo n (abbreviated imodn). Clearly, a completely cyclic game is

type-cyclic, and a strictly stable completely cyclic game has a unique interior ESS.

Let � (K; x) denote aggregate play at state x 2 �(K). For any strictly stable

game, de�ne XESS (K) to be the set of states where aggregate behavior of types K

corresponds to the unique ESS �ESS;

XESS (K) =
�
x 2 �(K) : � (K; x) = �ESS

	
. (7)

For the set of types Knf0g, the set of states XESS (Knf0g) is de�ned similarly.
We are now in a position to prove the following result regarding strictly stable

games:

Proposition 3 Suppose that an underlying strictly stable game with an interior
ESS, �ESS, is played by level-k types Knf0g. For any �, evolution from any interior
initial condition converges to a unique asymptotically stable set X� � �(Knf0g).

1. If � � kc then X� \ ~X = ;.

2. If the game is completely cyclic and � � n then X� = XESS (Knf0g) and X�

contains interior states.

3. If the game is completely cyclic and � = n then jX�j = 1.

Part 1 of the above proposition states that if � is large enough, so that the be-

havior of the di¤erent types f�k (U)g�k=1 contains a cycle, then evolution converges
to some asymptotically stable set, constituted by states in which at least one type

does not behave like the highest type. Furthermore, if the underlying game is not

only strictly stable, but also completely cyclic, and if there are at least as many
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types as strategies, then every strategy is played by some type. This means that the

set of states, XESS (Knf0g), in which aggregate behavior corresponds to the ESS
of the underlying game, is non-empty. Under these conditions, part 2 states that

XESS (Knf0g) is the unique asymptotically stable set, and that it has the whole
interior as basin of attraction. Part 3 considers the special case when the number

of types is equal to the number of strategies: Since each strategy is chosen by pre-

cisely one type, the unique asymptotically stable set XESS (Knf0g) now consists
of a single state in which all types Knf0g co-exist. The general intuition for these
results is that the payo¤s in strictly stable games and completely cyclic games are

such that it is bene�cial not to think, and behave, like everyone else. As aggregate

behavior approaches the ESS, the payo¤s to di¤erent strategies are equalized, so

that di¤erent types, playing di¤erent strategies, may earn the same.

The above proposition ignores type 0. In order to prove results for the full set

of types K another concept needs to be introduced. The Hawk-Dove game, like the

2� 2 coordination game, is a potential game (Monderer and Shapley (1996)).

De�nition 7 An n-strategy game with payo¤ matrix A is a potential game if
A = C+ 1r0, for some symmetric matrix C and some column vector r 2 Rn, with
transpose r0, and where 1 is the column vector with all entries equal to one.

The type game based on an underlying potential game is itself a potential game,

even when we consider the whole set of types K (appendix, lemma 4), and in poten-

tial games the replicator dynamic always converges (Sandholm (2001)). However,

without additional assumptions it is not possible to tell what strategies the di¤erent

types will play, and which types that will survive.16 Therefore the second part of

the following proposition is restricted to 2� 2-games.

Proposition 4 Suppose that an underlying strictly stable potential game with an
interior ESS, is played by level-k types K. For any �, evolution from any interior

initial condition converges to some (not necessarily unique) asymptotically stable

set X� � �(K).

1. If � � kc then X� \ ~X = ;.

2. If the game is a 2 � 2-game then, for any � � 1, evolution from any in-

terior initial condition converges to the unique asymptotically stable state

16The class of convex potential games includes coordination games, which fall under corollary
1. The class of concave potential games falls into the class of stable games which are handled by
proposition 4.
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Figure 2 Hawk Dove played by level-k types. Parameter b = 2, and type space
K = f0; 1; 2g. The set X� = XESS (K) (thick line) is asymptotically stable and has
the whole interior as its basin of attraction.

X� = XESS (K).17

The intuition behind proposition 4 is the same as for proposition 3; the payo¤s

in strictly stable games provide incentives for choosing something else than what

the opponent chooses. Again, part 1 of the above proposition states that if � is large

enough, so that the behavior of the di¤erent types contains a cycle, then evolution

converges to some asymptotically stable set, in which not everyone behaves like

the highest type. Part 2 states that for the special case of 2 � 2-games, evolution
leads to the set XESS (K). Since proposition 4 considers the whole set of types K,

including type 0, the set XESS (Kg) has a slightly di¤erent structure than the set
XESS (Knf0g) in proposition 3. In particular, suppose that the ESS fractions of
the Hawk and Dove strategies are xESSH and xESSD , respectively. For any fraction of

type zero that satis�es x0 � 2minfxH ; xDg, there is a state in XESS (K) with this

fraction of type 0. Figure 2, illustrates part 2 for a 2 � 2-game with b = 2, played
by types K = f0; 1; 2g.

3.3 Evolution across Games

The analysis so far has dealt with one game at a time, resulting in disparate con-

clusions about the survival of types that do not behave like the highest type. On

the one extreme we have the WBRD-games, in which evolution leads to an asymp-

17The �nding is similar to a result in Banerjee and Weibull (1995). They �nd that an optimizing
type may earn less than a preprogrammed type in games with a unique interior ESS. However,
their result only holds for the case of observable types, whereas we have found that lower types
may survive even when types are not observable.
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totically stable set ~X where all types not behaving like the highest type are extinct

(at least if we ignore type 0). On the other extreme we have the completely cyclic

strictly stable games, in which evolution leads to an asymptotically stable set X�

where all types may co-exist even when they behave di¤erently (again ignoring type

0). Now suppose that level-k types are randomly matched to play games that are

drawn from a set of games G. For the type space Knf0g it is possible to get a
general result for the case when G consists of one type-acyclic game and one type-
cyclic game. If type 0 is included in the analysis general results are harder to come

by. I prove a result for the case when G consists of (i) a Travelers�Dilemma, (ii) a
2� 2-game with a unique interior ESS, and (iii) a 2� 2 coordination game.
Before the desired results can be stated some more notation is needed: According

to de�nition 2, in a type-cyclic game, kc is the smallest number k such that �k (U) =

�k
0
(U) for some k0 < k. Now let kc� denote the smallest such k0 so that �k

c�
(U) =

�k
c
(U). Thus type kc� is the lowest type whose behavior is part of a cycle that is

repeated for all higher types: Type kc� + i plays the same strategy as type kc + i

for any i � 0. We also need to modify the de�nitions of ~K and ~X. Let ~KG be the

set of types that behave like the highest type in all games in G, ~KG = fk 2 K :

�k (U) = �� (U) ;8G 2 Gg, and let ~XG be the set of states where only these types

exist; ~XG = fx 2 �(K) :
P

k2 ~KG xk = 1g. Finally recall the meaning of w from
de�nition 1.

Proposition 5 (a) Suppose that level-k types Knf0g, play games from a set G =
fGA; GCg, where GA is a type-acyclic game and GC is a type-cyclic game, with
associated numbers kNE and kc, probabilities �A and �C, and type game payo¤s wA

and wC, respectively.

1. If �� kNE � kc� � kc then ~XG is not asymptotically stable.

2. If � � kNE < kc� � kc then ~XG = fx 2 �(K) : x� = 1g is asymptotically
stable if, for all k 2 f1; :::; kNEg,

�A
�
wA (k; �)� wA (�; �)

�
< �C

�
wC (�; �)� wC (k; �)

�
. (8)

(b) Suppose that level-k types K = f0; 1; 2g play games from a set G 0 = fGTD;
GHD; GCOg, consisting of a Travelers�Dilemma, GTD, with parameters R = 3=2; P =
1=3, n � 4, a 2 � 2 stable game, GHD, with matrix (6), and a 2 � 2 coordination
game, GCO, with matrix (5). If 3�HD < �TD then only the state where x2 = 1 is

asymptotically stable. If 3�HD > �TD then there is a unique asymptotically stable
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state, with the whole interior as basin of attraction, in which x0 = 0 and

x1 =
6b�HD � 2�TD

6�HD (b+ 1) + �TD
. (9)

To see the logic behind part (a.1) of the above proposition, note that if � is

su¢ ciently large, then there are many types that play the same strategy as the

highest type in the type-acyclic game, and some of these types play a best response

to the highest type in the type-cyclic game. Thus in any state where everyone

behaves like the highest type, there is some other mutant type that would earn

strictly more than the incumbent types.

To see the intuition behind part (a.2) of the above proposition, consider the case

of � = kNE + kc, kc� = 1 Under these assumptions the best response functions

of the type games based on the type-acyclic game, and the type-cyclic game, only

di¤er with respect to what type is the best reply to type �. In both the type game

based on the type-acyclic game and the type game based on the type-cyclic game

type k + 1 is the unique best response to type k for all k 2 f1; 2; :::; �� 1g. In the
type game based on the type-acyclic game � is the unique best response to itself,

whereas in the type game based on the type-cyclic game, type 1 is the unique best

response to type �. The condition (8) assures that type � is the unique best reply

to itself also in the type game based on the combination of these games.

Figure 3 illustrates part (b) of the above proposition, forK = f0; 1; 2g when each
game is played with equal probability. The parameters of the Travelers�Dilemma

and the stable game are the same as in �gures 1 and 2, and in the coordination

game a = 1. There is convergence to a unique state where types 1 and 2 co-exist.

4 Extensions

4.1 Partially Observed Level-k Types

As explained in the introduction, there are many situations in which people play

an unfamiliar game with people they already know something about. In particular

players may have information about their opponents�theories of mind. I propose a

simple way of extending the level-k model to the case of partially observed types.

The only modi�cation that I add to the level-k model is that when an individual

of type k faces an opponent of a lower type k0 < k then the former is able to

understand how the latter thinks, and hence former best responds to the latter.

The lower type is assumed to behave exactly as in the ordinary level-k. Formally,
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Figure 3 Evolution across games played by level-k types. The set of games consist
of three games, each played with the same probability: (i) Travelers�Dilemma with
R = 3=2, P = 1=3, and n = 6. (ii) 2 � 2 stable game with b = 1. (iii) 2 � 2
coordination game with a = 1. The type space is K = f0; 1; 2g. The state x =
(0; 4=13; 9=13) (black dot) is asymptotically stable and has the whole interior as its
basin of attraction.

type k 2 K plays

� (k; k0) =

(
�k

0+1 (U) against k0 2 f0; 1; 2; :::k � 1g
�k (U) against k0 � k

.

Since the behavior of a type depends on what type she encounters, equation (1) is

replaced by the following expression for the expected payo¤ of type k, in state x,

�Gk (x) =
X
k02K

xk0~� (� (k; k
0) ; � (k0; k)) .

Of course, this is very simpli�ed account of what happens when one individual

understands how another individual reasons while the latter does not understand

how the former reasons. Still, this speci�cation lends itself to straightforward analy-

sis. Introducing partial observability into the level-k model changes the results sub-

stantially compared with the standard level-k model: The set ~X may be unstable

even if the underlying game is type-acyclic and � � kNE. If fact, this might happen
even if the game satis�es WBRD, as demonstrated by the Travelers�Dilemma:

Proposition 6 Suppose that an underlying Travelers�Dilemma game, is played by
partially observed level-k types Knf0g. For any �, if P 2 (p� 1; p) for some p 2 N,
then every state where xk = xk�1 = ::: = xk�p = 0 for some k > p, is unstable.18

18It is possible to include type 0 and still get the same result, provided that the parameter
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Figure 4 Travelers�Dilemma played by partially observed level-k types. Parameters
R = 3=2, P = 1=3, and n = 6. Type space K = f1; 2; 3g. The state with
x = (4=7; 0; 3=7) (black dot) is asymptotically stable and has the whole interior as
its basin of attraction.

The claim in the above proposition implies that the set of state where everyone

behaves like the highest type is unstable. The intuition for this result is that lower

strategies are more destructive, so that when higher types meet each other, they

earn less than what lower types earn when they meet higher types. A lower type is

committed to a less destructive strategy, and may thereby induce a higher type to

choose a less destructive strategy, something that might bene�t both types. When

there is a large fraction of the high type, this mechanism favors the growth of the low

type. Figure 4 illustrates what happens in the case of K = f1; 2; 3g, with the same
parameters as in previous �gures. The state with x = (4=7; 0; 3=7) is asymptotically

stable and has the whole interior as its basin of attraction. Adding a type 0 would

not alter this result since type 0 would become extinct asymptotically.

The next proposition spells out the diametrically di¤erent e¤ects that introduc-

ing partial observability may have in two di¤erent kinds of cyclic games. We say

that a game with n � 3 is monocyclic (Hofbauer (1995)) if s0 6= s00 and s0 6= � (s00)
implies � (s; s) > � (s0; s00), still assuming that � is single-valued. Monocylic games

have the special property that each pure strategy is the second best response to

itself.

Proposition 7 Suppose that an underlying game is played by partially observed
level-k types. (a) If the types space is Knf0g, for any �, and if the underlying game
is monocyclic, then evolution from any interior initial state converges to the unique

asymptotically stable state where x� = 1. (b) If the type space is K, for any � � 3,

values are such that type 0 becomes extinct asymptotically.
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and if the underlying game is a 2 � 2-game with an interior ESS, with payo¤s as
in matrix (6), then evolution from any interior initial state converges to a unique

asymptotically stable state where x0 = 0, and xi = bxj, for any odd number i � �,
and any even number j � �.

Part (a) says that for some speci�c completely cyclic games introducing partial

observability creates a strict advantage for higher types: Regardless of how large

� is, evolution will lead to the state where only type � exists. Thus if � ! 1 we

get evolution towards in�nitely high types, something that was not possible with

unobserved types. Part (b) states a result that goes in the opposite direction. For

any �, evolution leads to a state where all types, except type 0, co-exist. As �!1
we get evolution towards in�nite diversity, except for the extinction of type 0.19

4.2 Heterogeneous Fictitious Play

So far the focus has been on the evolution of theories of mind that are used to predict

opponent�s initial behavior. This section studies the evolution of theories of mind

used in the process of learning. People may then use their information about past

play to predict future play. Fictitious play postulates that all individuals believe

that the future will be like the past, and best respond to the average of past play.

I modify this model and assume that there is a hierarchy of types K = f1; 2; :::; �g,
such type k plays a k times iterated best response to the average of past play. I

will refer to this as the heterogeneous �ctitious play (HFP) model. Note that there

is no type 0 in this model.20

Suppose that during her lifetime each individual is randomly matched to play

a symmetric two-player normal form game G, � times with � di¤erent individuals

from the same population. The average payo¤ over these � interactions serves

as �tness payo¤ in the evolutionary process. In order to keep things tractable I

assume that all individuals of type 1 have a common prior with full support, and

that higher types know about this prior. Let ht 2 �(S) be the aggregate play in
period t. According to �ctitious play the belief of type 1, t, evolves as

t =
1

t

�
ht�1 + (t� 1) t�1

�
, t � 2.

19The proof exploits the fact that the o¤-diagonal elements are zero. Hence the result does not
extend to all games that are strategically equivalent to matrix (6).
20In the related model of Stahl (1999) there is a type 0 which randomizes uniformly in the �rst

period and in subsequent periods imitate a geometrically weighted average of past play. Type 1
best responds to this behavior and type 2 best responds to type 1. Stahl truncates the hierarchy
of types at type 2.
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Note that fhtg�t=1 and ftg�t=1 are fully determined by 1 and x. Type 1 plays
strategy � (1; t) = �� (t), and type k plays strategy � (k; t) = ��k (t). The

expected payo¤ of type k, against type k0, in period t, is ~� (� (k; t) ; � (k0; t)).

Averaging over the � periods, and using the fact that ftg�t=1 is fully determined
by 1 and x, one gets

�k
�
k0; x; 1

�
=
1

�

�X
t=1

~�
�
�
�
k; t

�
1; x

��
; �
�
k0; t

�
1; x

���
.

The expected payo¤ of type k, in state x is

�k
�
x; 1

�
=
X
k02K

�k
�
k0; x; 1

�
xk0.

This is the evolutionarily relevant payo¤. The payo¤s will generally not be con-

tinuous in the state. As a consequence, the vector �eld (2) will generally not be

Lipschitz continuous in the state. However, the vector �eld will be Lipschitz contin-

uous almost everywhere. The reason is that behavior only changes in states where

some type is indi¤erent between two or more strategies. This set is constituted by

the union of a �nite set of hyperplanes in the type space �(K). These hyperplanes

divide the type space into a �nite number of open set. Within each of these sets,

behavior is constant across states. Therefore we can use the notion of a Filippov

(1960) solution. (See Ito (1979) for a more accessible statement.)

De�nition 8 Consider the system _x = ' (x) where ' is a real bounded measurable

function, de�ned almost everywhere on a set Q � Rn. For any x, let

C (' (x)) = \�:�>0 \Z:�(Z)=0 co
�
'
�
�B� (x) nZ

��
,

where Z is an arbitrary set in Rn, �B� (x) is the closed �-ball around x, co denotes
the closed convex hull, and � is a Lebesgue measure. A Filippov solution to the
system _x = ' (x) with initial condition x0, is an absolutely continuous function

� (�; x0) : T ! Q with � (0; x0) = x0, such that

@

@t

�
�
�
t; x0

��
2 C

�
'
�
�
�
t; x0

���
,

holds almost everywhere.

Intuitively, the set C (' (x)) is a "cleaned up version" of ' (x), constructed in

the following way: From vectors associated with the ball �B� (x) we take away all

21



those "strange" vectors that are only associated with some (Lebesgue) measure zero

subset of the ball (any set Z such that � (Z) = 0). Then we take the convex hull of

the remaining non-strange vectors. Finally we take the limit as we shrink the ball

(intersection for all � > 0). The useful thing about the Filippov solution is that

it does not have to respect the direction of the vector �eld on a measure zero set.

Filippov showed that a solution in the above sense always exists. Our vector �eld

satis�es the conditions of being real, bounded, and measurable. Furthermore it is

de�ned everywhere on �(K). Hence our system has at least one Filippov solution.

It turns out that this is all we need to prove the results we want.21

For a given game and a prior 1, let ~K (1) be the set of types that behave like

the highest type in all periods;

~K
�
1
�
= fk 2 K : ��k

�
t
�
= ���

�
t
�
, 8t � �g. (10)

Let ~X (1) be the set of states where only these types exist � analogous to the

de�nition of ~X in equation (4). For WBRD-games we have the following result:

Proposition 8 Suppose that an underlying game satisfying WBRD is played by

HFP types. For any �, if � (1) is a singleton, then evolution from any interior

initial condition converges to the unique asymptotically stable set ~X (1).

For the case of 2� 2 stable games one can prove result that is similar to those
presented for the level-k model above in propositions 3 and 4. Here will investigate

the following notorious example due to Shapley (1964);0B@ 0 0 1

1 0 0

0 1 0

1CA . (11)

This game has a unique Nash equilibrium in which each of the three strategies are

given equal weight. However, �ctitious play does not converge to this equilibrium.

21Within evolutionary game theory di¤erential inclusions are often analyzed with the help of
Caratheodory solutions (e.g. Lahkar and Sandholm (2008)). A Caratheodory solution to _x = ' (x)
is an absolutely continuous function �

�
�; x0

�
: T ! Q with �

�
0; x0

�
= x0, such that @

@t

�
�
�
t; x0

��
=

'
�
�
�
t; x0

��
, holds almost everywhere. For the present purposes the crucial di¤erence between the

concepts can be seen from the following example: Consider a vector �eld ' : R2 ! R such that
' (x) = (1; 0) if x1 6= 0, and ' (x) = (0; 1) if x1 = 0. For an initial condition x0 =

�
0; x02

�
there

are two Caratheodory solutions, namely �
�
t; x0

�
=
�
t; x02

�
and �0

�
t; x0

�
=
�
0; t� x02

�
. Only the

former is a Filippov solution, since the set fx 2 R2 : x1 = 0g has measure zero. The reason that I
prefer to use Filippov solutions in this paper is that they allow me to prove results that hold for
all Filippov solutions, whereas I would generally not be able to prove that the same results hold
for all Caratheodory solutions.
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Instead play goes round in a cycle whose time average does not correspond to the

Nash equilibrium. Intuitively we might think that if real humans were engaged

in this game and initially behaved in accordance with �ctitious play, they would

eventually be able to detect the cycles and best respond to it, and thereby break

out of the cycle. The present model of heterogeneous �ctitious play is able to do

justice to these intuitions. Type i behaves like type i modulo 3, abbreviated imod 3.

Proposition 9 Suppose that an underlying Shapley game is played by HFP types.
For any � � 3, if � (1) is a singleton then evolution from any interior initial state

converges to the state whereX
i2fk2K:k=1mod 3g

xi =
X

i2fk2K:k=2mod 3g

xi =
X

i2fk2K:k=3mod 3g

xi = 1=3,

and aggregate behavior corresponds to the unique Nash equilibrium in all periods.

The discontinuities would be avoided altogether in an alternative model in which

all types play logit best responses instead of deterministic best replies. In a model

with logit best responses the vector �eld would be Lipschitz continuous everywhere.

There is reason to believe that the solution of such a model would be consistent

with the Filippov solutions for the model considered in this section. Let the noise

parameter goes to 0 in the logit model. In this case the vector �eld of the logit

model converges to the vector �eld of the model with deterministic best replies,

on all states except the states at which a type in the latter model is indi¤erent

between two or more strategies. Since the set of such states has measure zero, we

can choose a Filippov solution that ignores them. Therefore there should exist a

Filippov solution that coincides with the limiting logit solution on all states.

5 Discussion

According to the prominent "social brain", or "Machiavellian intelligence", hy-

pothesis, the extraordinary cognitive abilities of humans evolved as a result of the

demands of social interactions, rather than the demands of the natural environment

(Humphrey (1976), for an introduction see Dunbar (1998)). In a single person de-

cision problem there is a �xed bene�t of being smart, but in a strategic situation

it may be important to be smarter than the opponent. Robson (2003) models

the Machiavellian intelligence hypothesis as the interaction between an uninformed

player and an informed player. The informed player does not want to reveal her

information, but the uninformed player wants her to do so. Both players use noisy
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bounded recall strategies. It turns out that for any equilibrium, each player would

bene�t from getting a longer recall. Thus there is a always pressure towards strate-

gic sophistication in the form of greater recall. The results in this paper complement

the social brain hypothesis, and Robson�s results, by suggesting mechanisms that

may sustain heterogeneity with respect to theory of mind abilities �in a way that

is consistent with experimental �ndings.

From an evolutionary perspective, the potential advantage of a better theory of

mind has to be traded o¤against the cost of increased reasoning capacity. Increased

cognitive sophistication, in the form of higher order beliefs, is probably associated

with non-negligible costs (Holloway (1996), Kinderman et al. (1998)). Such costs

have been excluded from the formal analysis. However, the potential e¤ect of cogni-

tive costs should be kept in mind when interpreting the �ndings. Adding cognitive

costs will increase the possibilities for lower types to survive. There does not seem

to be any reasons to expect that adding costs would make the evolution of a het-

erogeneous population less likely. As a brief illustration of this point, suppose that

the type game without cognitive costs can be represented by the negative of the

identity matrix. In this case the type game without cognitive costs is strictly stable,

with an interior ESS, i.e. v � (�I) v < 0 for all v 2 R�+10 = fv 2 R�+1 :
P
vi = 0g,

v 6= 0. Hence evolution leads to a state where all types co-exist. This conclusion
will not be altered if we add a cognitive cost ck for each type k. To see why, let

c 2 R�+1 be the vector of costs and note that (c10) v = 0 for all v 2 R�+10 so that

v � (�I� c10) v < 0. Moreover, if some types become extinct due to the added costs
the remaining types will still play a type game whose payo¤matrix can be written

as �Î� ĉ1̂0, for an identity matrix Î, and vectors ĉ and 1̂, of a dimensionality that
corresponds the number of surviving types.

The results presented in this paper are qualitative in nature. They indicate

mechanisms that may lead to the evolution of heterogeneous and bounded depth of

reasoning. However, they cannot be used directly to make quantitative predictions

about the distribution of types. Empirically, most experimental subjects seem to

behave as if they are of type 1 or 2, and individuals of type 3 and above are

rare (Costa-Gomes and Crawford (2006), Camerer (2003)). This distribution is

probably the outcome both of the mechanisms investigated in this paper, and of

costs of cognition.

Throughout this paper I have followed the standard assumption in the level-k

literature, that type 0 randomizes uniformly over the strategy space. An alterna-

tive assumption would be to let type 0 consist of a set of subtypes, each subtype

programmed to a di¤erent pure strategy. The e¤ect of an assumption depends on
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whether type k > 0 is assumed to play a k times iterated best response to a uni-

form distribution over the strategy space, or a k times iterated best response to the

actual distribution of play by the new deterministic subtypes. The former case is

perhaps most natural since the latter case assumes that higher types somehow (out-

side the model) continually update their beliefs about what the aggregate behavior

of level 0 is. If we retain the assumption that type k > 0 always plays a k times

iterated best response to the uniform distribution then introducing the new kind

of programmed type 0 only has a minor impact on the results of this paper. All

results which are either not about type 0, or where type 0 is explicitly excluded, are

unchanged. This includes propositions 2, 3, 5a, 6, and 7a in the main text, lemmata

1, 2, 3, and 5 in the appendix, as well as example S1 and lemmata S1, S2, and S3

in the supplement. Some other results that do involve type 0 still continue to hold,

namely propositions 1, and 4, and lemma 4, although proofs need to be modi�ed. In

the heterogeneous �ctitious play model there is no type 0, and adding programmed

types to such a learning model does not seem appropriate. Hence propositions 8

and 9, and lemma 6 are unchanged. It is not clear how proposition 5b, concerning

evolution across games, would be altered, because is it unclear how the programmed

subtypes should behave in games with di¤erent strategy spaces. One could allow for

a very large number of type 0 subtypes, each of which is programmed to a di¤erent

combination of pure strategies in the di¤erent games under consideration. However

in my view such an approach seems to miss something important about transfer

of experience between games. Finally there are some results where the assumption

about programmed type 0 subtypes could be introduced and would a¤ect the re-

sults. Example S2 in the supplement does not hold any more. Corollary 1 is altered

somewhat; the type that is programmed to play the risk dominant action will also

survive. In the case of partial observability it seems to be in line with the current

model to assume that higher types tailor their responses to the particular subtype

that they meet. Under this assumption proposition 7b will be modi�ed so that all

types, including the two type 0 subtypes, co-exist.

In this paper, preferences have been taken as given and focus has been on how

evolution shapes cognition given preferences. There is a large literature on pref-

erence evolution, which takes rationality and cognition as given. An interesting

possible avenue for future research is to combine these approaches and study the

co-evolution of preferences and cognition.
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6 Conclusion

This paper has undertaken an evolutionary analysis both of the level-k model of

initial play, and of a heterogeneous �ctitious play model of learning. The analysis

includes evolution of types across games. Furthermore the paper has extended the

level-k model to the case of partially observed types. It was found that an evolu-

tionary process, based on payo¤s earned in di¤erent games, both with and without

partial observability, could lead to a polymorphic population where relatively un-

sophisticated types survive.

7 Appendix: Proofs

7.1 The Level-k Model

Proof of Proposition 1. Suppose that the underlying game is type-acyclic with
� � kNE. Assume without loss of generality kNE = �, so that ~X only contains the

state where x� = 1. It follows that (�; �) is a pure Nash equilibrium of the type

game. By the de�nition of kNE we have �k (U) 6= �k+1 (U) for all k < kNE = �.

Hence the pro�le (�; �) is a strict equilibrium, implying that � is an ESS in the

type game. Thus the state where x� = 1 is asymptotically stable.

Suppose that the underlying game is type-cyclic with � � kc. We have � (�� (U)) =
�k (U) for some k < �, and this best reply is strict, so the set ~X = fx 2 �(K) :
x� = 1g is not stable.

7.1.1 Type-Acyclic Games

Lemma 1 If a game satis�es WBRD then it is type-acyclic.

Proof. In a completely cyclic game there is some s and some k such that

�k (s) = s, and �i (s) 6= �j (s) for all i; j 2 f0; :::; k � 1g with j 6= i. This

implies that � (�i (s) ; �i (s)) < � (�i+1 (s) ; �i (s)) for all i 2 f0; :::; k � 1g and
�
�
�k�1 (s) ; �k�1 (s)

�
< �

�
s; �k�1 (s)

�
. In contrast, in a WBRD-game we have

�
�
s; �k�1 (s)

�
� �

�
� (s) ; �k�1 (s)

�
� ::: � �

�
�k�2 (s) ; �k�1 (s)

�
� �

�
�k�1 (s) ; �k�1 (s)

�
.

Thus a WBRD-game is not type-cyclic, so it is type-acyclic.

Proof of Proposition 2. (i) Payo¤s: Since all types k � kNE behave like

type �, assume � = kNE. Generalizing to � � kNE is straightforward. The payo¤
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matrix of the type game with types Knf0g is

A =

0BBBB@
w (1; 1) w (1; 2) : w (1; �)

w (2; 1) w (2; 2) : w (2; �)

: : : :

w (�; 1) w (�; 2) : w (�; �)

1CCCCA .

Since ���1 (U) 6= �� (U) we have �k (U) 6= �k�1 (U) for all k � �, which implies

w (k + 1; k) > w (k; k) for all k � �� 1. By WBRD we have w (k + 1; i) � w (k; i)
for all i � k.
(ii) Convergence: The type game can be solved by iterated elimination of weakly

dominated strategies. More precisely, type k + 1 weakly dominates type k once all

types i < k have been eliminated. Furthermore, it holds that w (k + 1; k) > w (k; k).

Mohlin (2011) shows that under these conditions the replicator dynamic converges

to the weak dominance solution. For the convenience of the reader a specialized

version of this result is provided in the supplement as well (lemma S3).

(iii) Stability: Follows from the fact that the game is type-acyclic.

For the analysis of the Travelers�Dilemma we need the following lemma.

Lemma 2 In the Travelers�Dilemma, let R+ P = l + r for some l 2 N and some
r 2 (0; 1). The best response against the uniform distribution is � (U) = n� l � 1.

Proof. This is only a matter of calculations. Available upon request.

Proof of Corollary 1. Trivial, therefore omitted.

7.1.2 Type-Cyclic Games

Lemma 3 Let G = (2; S; �) be a symmetric normal form 2-player game. If G is

strictly stable then the 2-player game G0 = (2; S 0; �) that is generated by restricting

the strategy set to S 0 � S, is strictly stable.

Proof. Without loss of generality assume that the strategies of G are named

f1; 2; ::; ng and let A be the payo¤ matrix associated with game G. If v �Av < 0
for all v 2 Rn0 , v 6= 0, then v �Av < 0 for all v 2 Rn

0
0 = fv 2 Rn :

P
i vi = 0 and

vi = 0 i¤ i =2 S 0g � Rn0 , v 6= 0. Thus G0 is strictly stable.

Proof of Proposition 3. First, suppose that no two types play the same

strategy. Since the underlying game is strictly stable the type game is also strictly

stable by lemma 3, and so it has a unique ESS. In a strictly stable game the state
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where aggregate behavior corresponds to the unique ESS is asymptotically stable

under the replicator dynamic, and has the whole interior as its basing of attraction

(see e.g. Sandholm (2011), chapter 6). Thus evolution in the type game (where all

types play di¤erent strategies) leads to a unique asymptotically stable state where

aggregate behavior corresponds to the ESS of the type game. It is easy to see that

if some types play the same strategy then we have a unique asymptotically stable

set instead of a unique asymptotically stable state.

1. Since the underlying game is strictly stable with an interior ESS it is type-
cyclic. To obtain a contradiction suppose that there is some x 2 X� \ ~X. Since

x 2 ~X every type k with xk > 0 plays the same strategy s. Since � � kc there

exists some other type k0, with xk0 = 0, that plays � (s). Hence a mutant of type k0

earns strictly more than the incumbent types.

We prove points 2 and 3 in reverse order:

3. If the game is completely cyclic and � = n then each strategy in the under-
lying game is played by exactly one type so that the unique ESS of the type game

is identical to the ESS of the underlying game.

2. If the game is completely cyclic and � � n then some types play the same

strategy. Thus instead of a unique state where aggregate behavior corresponds to

the ESS of the underlying game we have a set of states where aggregate behavior

corresponds to the ESS of the underlying game.

Lemma 4 If G is a potential game then the type game generated by types K playing

G is potential.

Proof. Since the underlying game is potential the payo¤ to strategy i against
strategy j can be decomposed as aij = cij + rj. We need to show that the payo¤s

of the type game can be similarly decomposed: The payo¤ to type k � 1, playing
strategy i, against type k0 � 1, playing strategy j, can be written as w (k; k0) =

aij = cij + rj, where cij = cji for all i; j. The payo¤ to type k � 1, playing strategy
i, against type 0, can be written as

w (k; 0) =
1

n

nX
j=1

aij =
1

n

nX
j=1

cij +
1

n

nX
j=1

rj = ci0 + r0.

The payo¤ to type 0, against type k0 � 1, playing strategy j, can be written as

w (0; k0) =
1

n

nX
i=1

aij =
1

n

nX
i=1

cij +
1

n

nX
i=1

rj = c0j + rj.
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Finally the payo¤ of type 0 playing against type 0, can be written as

w (0; 0) =
1

n

nX
i

nX
j=1

aij =
1

n

nX
i

nX
j=1

(cij + rj) = c00 + r0.

Proof of Proposition 4. First, suppose that no two types k; k0 � 1 play

the same strategy. By lemma 4 the type game is potential. In a potential game

the replicator converges to some asymptotically stable set from any interior initial

condition (see e.g. Sandholm (2011), chapter 6). Thus evolution in the type game

(where all types k � 1 play di¤erent strategies) leads to an asymptotically stable

state. Again, if some types play the same strategy then we have convergence to a

an asymptotically stable set instead of state.

1. The same argument as in the proof of proposition 3.1 establishes that if
� � kc then X� \ ~X = ;.
2. Let H be the �rst strategy and D the second strategy in matrix 6. Note the

following property of 2� 2-games with a unique interior ESS: If �s (x) > �ESSs then

strategy s 2 fH;Dg earns more than strategy s0 6= s. Let xH , xD, and xU denote the
fractions of the population that playsH, D, and U , respectively. In all interior state

we have xH > 0, xD > 0, and xU > 0. It is trivial to see that no monomorphic states

are stable. Suppose the system is initially in an interior state where xH + xU=2 >

�NEH . Then _xH < 0 and _xD > _xU > _xH , so xH decreases, xD increases, and xU
may increase or decrease. This process continues until asymptotically xH + xU =

�NEH . Similar reasoning applies if the system is initially in an interior state where

xD + xU=2 > �
NE
D . Thus evolution from any interior initial state converges to some

state where xs + xU=2 = �NEs .

7.1.3 Evolution across Games

Proof of Proposition 5. (a)We study the type game derived from the combina-
tion of GA and GC with probabilities �A and �C = 1� �A.
1. Suppose that �� kNE � kc� kc�. The set ~KG consists of the types k � kNE

that play the strategy �� (U) in the type-cyclic game. All types k � kNE earn

the same in the type-acyclic game. Since � � kNE � kc � kc� there is a type
k0 = ��(kc � kc�) � kNE that plays a best reply to type �, i.e. �k0 (U) = � (�� (U))
in the type-cyclic game. Since � (�� (U)) 6= �� (U) in a cyclic game, we have

k0 =2 ~KG. Thus in any state x 2 ~XG, a mutant of type k0 =2 ~KG earns more than

each type k 2 ~KG. Hence ~XG is not asymptotically stable.
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2. Suppose that �� kNE < kc � kc�. It follows that there is no type k0 � kNE

that play a best response to type � in the type-cyclic game. Hence ~KG = f�g.
Condition (8) says that � is a strict best reply to any k < � in the type game

based on the combination of GA and GC . Hence ~XG = fx 2 �(K) : x� = 1g is
asymptotically stable.

(b) In the coordination game type 1 and 2 play � (U), so the payo¤ matrix is0B@ (a+ 1) =4 a=2 a=2

a=2 a a

a=2 a a

1CA , (12)

so type 0 is strictly dominated. In the Hawk Dove game type 1 plays � (U) = D,

and type 2 plays � (D) = H. Thus the payo¤ matrix is0B@ � (1 + b) =4 �1=2 �b=2
�1=2 �1 0

�b=2 0 �b

1CA , (13)

so type 0 earns the same as a mixed strategy in the type game, which puts equal

probability on type 1 and 2. In the Travelers�Dilemma type 1 plays n� l� 1, and
type 2 plays n� l � 2. Using P = 1=3 and R = 3=2 yields the payo¤ matrix0B@ ~� (U;U) ~� (U; n� l � 1) ~� (U; n� l � 2)

~� (n� l � 1; U) n� 2 n� 10
3

~� (n� l � 2; U) n� 3
2

n� 3

1CA . (14)

One can verify that type 0 is dominated for all n � 4 (calculations available upon
request).

The conclusion from these three games is that type 0 will be strictly dominated in

the type game based on the combination of the games in G, provided that �HD 6= 1.
Thus type 0 will be extinct so we disregard type 0 for the rest of the analysis. We

can also disregard the payo¤s from the coordination game (matrix 12) since type

1 and 2 earn the same in that game. It follows that we can restrict attention to

the type game between type 1 and 2, derived from the Hawk Dove game and the

Travelers�Dilemma. Deleting the payo¤s involving type 0, and adding (13) and

(14), weighted by �HD and �TD respectively, yields 
w (1; 1) w (1; 2)

w (2; 1) w (2; 2)

!
=

 
��HD � 2�TD �10

3
�TD

�3
2
�TD �b�HD � 3�TD

!
. (15)
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We have w (1; 1) < w (2; 1) for all �. We have w (1; 2) > w (2; 2) if and only if

3b�HD > �TD. In that case the game (15) has a unique interior ESS where (9)

holds. If 3b�HD < �TD then only x2 = 1 is ESS, and hence the corresponding

population state is asymptotically stable.

7.2 The Level-k Model with Partially Observed Types

Lemma 5 Consider the Travelers�Dilemma, played by partially observed level-k
types. If k � 1 then

w (1; k) > w (2; k) > ::: > w (k � 1; k) (a)

w (k � 1; k) = w (k; k)� P (b)

w (k; k) < w (k + 1; k) (c)

w (k + 1; k) = ::: = w (�; k) . (d)

Proof. A matter of straighforward calculations. Available upon request.

Proof of Proposition 6. I prove the result for the case of P 2 (0; 1). Gen-
eralization is straightforward. Consider a state x where xi = xi�1 = 0 for at least

one i > 0. There are three cases to consider: Either (I) there is at least one type

k < � � 1 such that xk = xk�1 = 0 and xk+1 > 0, or (II) x��1 = x��2 = 0 and

x� > 0, or (III) there is some k � � � 1 such that xk0 = 0 for all k0 � k, and

xk�1 > 0.

Case I: Suppose that there is at least one type k < ��1 such that xk = xk�1 = 0
and xk+1 > 0. Using xk = 0, we have

�k�1 (x)� �k+1 (x) =
k�2X
i=1

(w (k � 1; i)� w (k + 1; i))xi

+ (w (k � 1; k + 1)� w (k + 1; k + 1))xk+1

+

�X
i=k+2

(w (k � 1; i)� w (k + 1; i))xi.

By lemma 5(d) the �rst term on the right hand side is zero. By lemma 5(b) the

second term equals (1� P )xk+1 so by the assumption that P < 1 this is positive.
By lemma 5(a) the third term is strictly positive, so �k�1 (x) > �k+1 (x). Thus a

mutant of type k � 1 < � � 2 entering the population will earn more than type
k + 1 < �.
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Case II: Suppose x��1 = x��2 = 0 and x� > 0. By logic similar to that in case
I we have

���2 (x)� �� (x) =
��3X
i=1

(w (�� 2; i)� w (�; i))xi + (w (�� 2; �)� w (�; �))x�,

where the �rst term on the right hand side is equal to zero, by lemma 5(d) and,

the second term is at least (1� P )x� > 0, by part (a) and (b) of lemma 5. Thus a
mutant of type �� 2 will earn more than type �.
Case III: Suppose that there is some k � �� 1 such that xk0 = 0 for all k0 � k,

and xk�1 > 0. The di¤erence in average payo¤ to types k and k � 1 is

�k (x)��k�1 (x) =
k�2X
i=1

(w (k; i)� w (k � 1; i))xi+(w (k; k � 1)� w (k � 1; k � 1)) xk�1.

By lemma 5(d), the �rst term on the right hand side is zero and by lemma 5(c)

the second term is strictly positive, so �k (x) > �k�1 (x). Thus a mutant of type k

entering the population will earn more than type k � 1.

Proof of Proposition 7. (a) Since higher types play a unique best response
to lower types, it follows that in each column of the payo¤matrix of the type game,

all entries below the diagonal are the same, and they are larger than the diagonal

entry. By monocylicity, all entries above the diagonal in the type game are lower

than the diagonal entries. Thus higher types strictly dominate lower types, and

evolution from an interior initial condition converges to the state with x� = 1.

(b) (i) Behavior and payo¤s: Let the �rst strategy beH and the second strategy
be D. We have � (U) = D. Type k � 1 plays H against an odd k0 < k and D

against an odd k0 < k. An odd k plays D against k0 � k and an even k plays H

against k0 � k. This results in the following type game0BBBB@
� (1 + b) =4 �1=2 �1=2 :

�1=2 �1 0 :

�1=2 0 �b :

: : : :

1CCCCA . (16)

(ii) Extinction of type 0 : Let z = fzig�i=1 denote a mixed strategy in the type
game represented by (16). Such a strategy z dominates type 0 in the type game if

and only if zi < 1=2 for all odd i and zi < 1=2b for all even i. Thus, if � is odd then
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there is a strategy z that dominates type 0 if and only if

1

2

�+ 1

2
+
1

2b

�� 1
2

> 1,

or equivalently � > (3b+ 1) = (b+ 1). Note that the right hand side is increasing in

b and approaches 3 as b!1. Thus, for any �nite b it holds that (3b+ 1) = (b+ 1) <
3. Thus the corresponding strategy in the type game will asymptotically become

extinct under the replicator dynamic. It can be veri�ed that if � is even then there

is a strategy z that dominates type 0 if and only if � < 4. We conclude that if

� � 3, then type 0 is strictly dominated in the type game.
(iii) Convergence and stability: After deletion of type 0 we have the payo¤

matrix A = Ic where b0 = (�1;�b;�1;�b; :::) 2 R�, and I is the identity matrix.
It is clear that, regardless of whether � is odd or even, we have �1 (x) = ::: = �� (x)

if and only if xi = bxj, for any odd number i � � and any even number j � �.

This is the unique interior Nash equilibrium. In order to show that evolution from

any interior initial state converges to a unique interior state it is su¢ cient to show

that the game is stable. Recall that a game with payo¤ matrix A is stable if an

only if A is negative de�nite with respect to the tangent space, i.e. v � Av < 0,

for all v 2 R�0 , v 6= 0. One can transform the problem to one of checking negative

de�niteness with respect to R��1 rather than the tangent space R�0 . This is done
with the �� (�� 1) matrix P (see Weissing (1991)) de�ned by

pij =

8><>:
1 if i = j and i; j < n

0 if i 6= j and i; j < n
�1 if i = n

.

We need to check whether (P �AP) is negative de�nite with respect to R��1. Let
c0 = (�1;�b;�1;�b; :::) 2 R��1. We have P � AP = � (1 � 10) + Ic. Note that
v � (� (1 � 10)) v < 0, for all v 2 R��1, v 6= 0, so that v � (P �AP) v < 0 for all

v 2 R��1, v 6= 0, if and only if Ic is negative de�nite. Since Ic has two negative

eigenvalues �b and �1 it is indeed negative de�nite. This implies thatA is negative
de�nite with respect to the tangent space.

7.3 Heterogeneous Fictitious Play

Behavior depends on the state and on initial beliefs, so letw (k; k0; x; 1) = �k (k0; x; 1).

The proofs from above regarding the level-k model can be applied more or less di-

rectly to the HFP model, by using w (k; k0; x; 1) instead of w (k; k0) and showing
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that the payo¤relations that obtain in the level-k model, obtain for the HFP model,

for almost every state x. The reason that we can ignore measure zero sets of states

is that we now study Filippov solutions.

Lemma 6 Suppose that � (s) is a singleton for all s and that � (U) is a singleton.
If 1 has full support and if � (1) is a singleton, then the set of states x that,

together with 1, induce histories such that some type is indi¤erent between two or

more strategies in some period, has measure zero.

Proof of Lemma 6. The assumptions that � (s) is a singleton for all s, and that
� (1) is a singleton, implies that all higher types always will play pure strategies.

Thus it is su¢ cient to show that the set of states that induce histories in which

type 1 is indi¤erent, has measure zero.

(i) Since 1 has full support, so has t for all t. First we show that the set of
beliefs with full support, at which type 1 indi¤erent between two or more strategies,

has measure zero: The set of beliefs  at which type 1 is indi¤erent between two or

more strategies is

�I = f 2 �(S) :  has full support and 9s; s� 2 S s.t. ~� (s; ) = ~� (s�; )g.

The assumption that � (U) is a singleton implies that for any pair of strategies s and

s� there is some s0 such that ~� (s; s0) 6= ~� (s�; s0). This implies that the dimension

of �I is lower than the dimension of �(S). Thus �I is a hyperplane in �(S), and

as such it has measure zero.

(ii) Now we show that the set of states that induce histories where type 1 is
indi¤erent, has measure zero. Recall t = (ht�1 + (t� 1) t�1) =t. Since �I is a
hyperplane it follows that if t�1 =2 �I then there is a measure zero set of states
that induce aggregate behavior ht�1 such that t 2 �I . Since we have assumed that
� (1) is a singleton, an inductive argument establishes that, for each period, the

set of states that induce indi¤erence, given 1, has measure zero. Since the number

of periods is �nite it follows that the set of states that induce indi¤erence in some

period, given 1, has measure zero.

Proof of Proposition 8. By lemma 6 we can assume that all types play pure
strategies in all states, without loss of generality. Let s (k; t) denote the pure

strategy that is chosen by type k given the belief t. Assume ���1 (1) 6= �� (1)
so that all types distinguish themselves behaviorally, at least in the �rst period.

Extension to the case when several types behave like type � already in the �rst

period, is straightforward. Based on these assumption one can verify that the
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following payo¤relations hold, analogous to what was obtained for the level-k model

above (part (i) of the proof of proposition 2),

w
�
k + 1; k; x; 1

�
> w

�
k; k; x; 1

�
,

w
�
k + 1; i; x; 1

�
� w

�
k; i; x; 1

�
, 8i � k.

The rest of the proof is identical to the proof of proposition 2.

Proof of Proposition 9. By lemma 6 we can assume that all types play

pure strategies in all states. In period t type 1 plays � (t) and type k plays

� (t) + (k + 1)mod 3. Thus in each period the payo¤s to types 1mod 3, 2mod 3 and

3mod 3 are given by the matrix 0B@ 0 1 0

0 0 1

1 0 0

1CA , (17)

where the entry in the ith row and the jth column represents the payo¤ to type imod 3
against type jmod 3. Since these payo¤s are earned in each period, the above matrix

(17) is the payo¤ matrix of the type game. Note that this matrix is the transpose

of the payo¤matrix (11) of the underlying game. It is straightforward to show that

these matrices are negative de�nite with respect to the tangent space. Since the

unique Nash equilibrium is interior it follows the game is strictly stable with an

interior ESS. Thus the replicator dynamics converges from any interior initial state

to the unique state (1=3; 1=3; 1=3).
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S1 Stability Concepts

De�nition 1 A closed set A � �(K) is Lyapunov stable if every neighborhood
(nbd) B of A contains a neighborhood B0 of A, such that if the system starts in

B0 \�(K) at time t0, then the system remains in B at all times t � t0.
A closed set A � �(K) is asymptotically stable if it is Lyapunov stable and if

there exists a nbd B� of A such that if the system starts in B� at t0 then as t! +1
the system goes asymptotically to A.

The basin of attraction of a closed set A � �(K) is the set of states such

that starting from such a state the system goes to A as t! +1.
A set A � �(K) is an attractor if its basin of attraction is a nbd of A.
A strategy � 2 �(S) is an evolutionarily stable strategy (ESS) if (i)

~�(�0; �) � ~�(�; �) for all �0 2 �(S), and (ii) ~�(�0; �) = ~�(�; �) implies ~�(�0; �0) <
~�(�; �0) for all �0 6= �.

Stability of a point is de�ned as the stability of the singleton fxg. Note that a
Lyapunov stable set is asymptotically stable if and only if it is an attractor. A state

is polymorphic if it contains positive fractions of more than one type. Otherwise

the state is monomorphic.

�E-mail: e.mohlin@ucl.ac.uk. Mail: Department of Economics, University College London,
Gower Street, London WC1E 6BT, United Kingdom. Telephone: +44 (0)20 7679 5485. Fax: +44
(0)207 916 2775.
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S2 Type-Acyclic Games

Lemma S1 If a game is dominance solvable then it is type-acyclic.

Proof. First note that � (U) survives 1 round of iterated elimination of strictly
dominated strategies (IESDS). Next prove that if �k (U) is eliminated by r rounds

of IESDS, and if �k+1 (U) 6= �k (U), then �k+1 (U) survives r+ 1 rounds of IESDS.
To prove this suppose that �k (U) is eliminated by r rounds of IESDS. To obtain

a contradiction assume that �k+1 (U), �k (U) 6= �k+1 (U) is also eliminated by r

rounds of IESDS. This means that �k+1 (U) earns strictly less than some other

strategy s0 against all strategies that survive r � 1 rounds of IESDS. Since �k (U)
survives r�1 rounds of IESDS this implies that s0 earns more than �k+1 (U) against
�k (U), contradicting the de�nition of �. It follows that �k+1 (U) survives r + 1

rounds of IESDS. Finally, an inductive argument yields the conclusion that �k (U)

survives at least k rounds of IESDS. Since n is �nite iteration of � will lead to the

unique Nash equilibrium.

Example S1: A type game based on an underlying dominance solvable
game may have an asymptotically stable state where x� = 0.
Consider the following game,

s1 s2 s3 s4 s5 s6 s7 s8 s9

s1 2 2 2 2 2 2 2 2 2

s2 30 1 1 1 1 1 1 1 1

s3 3 3 3 3 3 3 3 3 3

s4 0 5 0 0 0 0 0 0 0

s5 0 4 4 4 4 4 4 4 4

s6 0 �25 0 7 0 0 0 0 0

s7 0 0 5 5 5 5 5 5 5

s8 0 0 0 0 0 7 0 7 7

s9 0 0 0 6 6 6 6 6 6

.

The game is dominance solvable with the unique Nash equilibrium (s8; s8). The

type game is as follows,

� (U) = s2 �2 (U) = s4 �3 (U) = s6 �4 (U) = s8

� (U) = s2 1 1 1 1

�2 (U) = s4 5 0 0 0

�3 (U) = s6 �25 7 0 0

�4 (U) = s8 0 0 7 7

.
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This game is not dominance solvable. The state where x1 = 1=5 and x2 = 1� x1 is
asymptotically stable since in that state types 3 and 4 earn �3 (x) = �25 � 15+7 �

4
5
=

3
5
and �4 (x) = 0, respectively, whereas types 1 and 2 earn 1 each.1

S3 WBRD-Games

Lemma S2 If a game is strictly supermodular, then it satis�es WBRD.

Proof of Lemma S2. Suppose that the game is strictly supermodular. For
the setting of symmetric two player games the condition for a game to be strictly

supermodular requires that the strategy space can be ordered S = f1; 2; :::; ng such
that the payo¤ function exhibits strictly increasing di¤erences, in the sense that if

s > ~s and s0 > ~s0 then

� (s; s0)� � (~s; s0) > � (s; ~s0)� � (~s; ~s0) .

The set of equilibria has some smallest element sNEmin and some largest element s
NE
max.

Vives (1990), theorem 5.1, shows that starting from s < sNEmin (s > s
NE
max) the Cournot

best response dynamic converges monotonically upwards (downwards) to some point

in SNE. In a �nite game this means that if s < sNEmin then s < � (s) � sNEmax and

there exists some �nite k such that �k (s) 2 SNE. (Similarly, if s > sNEmax then

s > � (s) � sNEmax and there exists some k such that �
k (s) 2 SNE.) Suppose

s < sNEmin so that � (s) > s (the case with s > sNEmax is exactly parallel). We have

� (� (s) ; s)� � (s; s) > 0 and by supermodularity it holds that

� (� (s) ; s0)� � (s; s0) > � (� (s) ; s)� � (s; s) > 0,

for all s0 > s. In particular, since �k (s) > s for all k � 1 it holds that

�
�
� (s) ; �k (s)

�
� �

�
s; �k (s)

�
> 0,

for all k � 1. Finally note that the above inequality is also satis�ed for k = 0.

Example S2: A type game based on an underlying strictly supermod-
ular game may have an asymptotically stable state where x� = 0.

1This example also illustrates that if � < ~k then ~X need not be asymptotically stable. To see
this note that if � = 3 then type 3 is strictly dominated in the cognitive game.
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Consider the following weakly supermodular game,

s1 s2 s3 s4 s5 s6 s7 s8

s1 3 1 1 � 1
10

1 1 1 1

s2 3 1 1 � 1
10

1 1 1 1

s3 3 1 1 � 1
10

1 1 1 1

s4 31
10

11
10

11
10

0 11
10

11
10

11
10

11
10

s5 �3 1 1 1 21
10

21
10

21
10

21
10

s6 �10 �2 0 13
10

24
10

24
10

24
10

24
10

s7 �11 �3 � 3
10

1 3 3 3 3

s8 �12 �4 � 3
10

1 3 31
10

31
10

31
10

.

The type game is as follows,

U � (U) = s4 �2 (U) = s6 �3 (U) = s8

U 197
245

4
7

21
10

21
10

� (U) = s4 97
70

0 11
10

11
10

�2 (U) = s6 �11
70

13
10

24
10

24
10

�3 (U) = s8 �3
7

1 31
10

31
10

.

Consider a state where x1 = 1� x0 and type 0 and 1 earn the same. For this state
to be a rest point it must solve 197

245
x0+

4
7
(1� x0) = 97

70
x0, which is done by the state

x� where x�0 =
56
113
and x�1 = 1�x�0. If we restrict attention the type game with only

type 0 and type 1 then the state with x0 = 56
113

and x1 = 1 � x0 is asymptotically
stable (notice the hawk-dove character of this submatrix). Moreover, if we again

consider the full type game, then type 1 and 2 earn �0 (x) = �1 (x) =
97
70
� 56
113

=
388
565

� 0:686 73, in state x�. The payo¤s to type 2 and 3 are �2 (x) = �11
70

�
56
113

�
+

13
10

�
1� 56

113

�
= 653

1130
� 0:577 88, and �3 (x) = �3

7

�
56
113

�
+
�
1� 56

113

�
= 33

113
� 0:292 04,

respectively in state x�. Thus the state x� is asymptotically stable. The game

de�ned by the above matrix is only weakly supermodular. To obtain a strictly

supermodular game add a factor "�i�j to each entry ij in the matrix. For su¢ ciently
small " 2 R+ the type game based on such a strictly supermodular game will have
the same stability properties as the game with " = 0.

The proof of proposition 2 refers to a result in Mohlin (2011), a specialized

version of which is provided here.

Lemma S3 In the type game based on an underlying WBRD-game played by level-k
types Knf0g, with � = kNE, evolution from any interior initial condition converges

to the state where x� = 1.

4



Proof. The payo¤s of the type game are described in the proof of proposition 2.
We proceed with a proof by induction. Fix k and let � = w (k + 1; k)�w (k; k) > 0,
and  = maxi�k�1 [jw (k; i)� w (k + 1; i)j] � 0. It follows that

�k+1 (x)� �k (x) � �xk � 
k�1X
i=1

�xi. (1)

Inductive hypothesis: Consider k � � � 1. As inductive hypothesis suppose
that (a) for all i 2 f1; :::; k � 1g it holds that �i (t; x0) ! 0, and (b) for some

I � f1; :::; k � 1g it holds that

lim
t!1

P
i2I �i (t; x

0)

�k (t; x0)
= 0, (2)

and (c) for all i 2 L = f1; :::; k � 1gnI it holds that
R t
0
�i (�; x

0) d� ! �i for some

�nite �i 2 R+.
Inductive step: De�ne vk (x) = log xk � log xk+1. The derivative with respect to

time is, using (1),

_vk (x) =
_xk
xk
� _xk+1
xk+1

= �k (x)� �k+1 (x) �
k�1X
i=1

xi � �xk.

Integration w.r.t. t yields

vk
�
�
�
t; x0

��
� vk

�
x0
�
+
X
i2L
�i +

X
i2I


Z t

0

�i
�
�; x0

�
d� � �

Z t

0

�k
�
�; x0

�
d�

= vk
�
x0
�
+
X
i2L
�i +

Z t

0

X
i2I
�i
�
�; x0

�
d� �

Z t

0

��k
�
�; x0

�
d� (3)

Note that the integral
R t
0
�k (�; x

0) d� is increasing in t so either (case 1) it goes to

+1 or (case 2) it goes to some �nite �k 2 R+. It follows from (2) that there is

some t0 such that if t > t0 thenX
i2I
�i
�
t; x0

�
� ��k

�
t; x0

�
. (4)

Case 1: If
R t
0
�k (�; x

0) d� ! 1 then (3) and (4) together imply vk (� (t; x0)) !
�1 so that the de�nition of vk implies �k (t; x0)! 0 and �k (t; x0) =�k+1 (t; x0)! 0.
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Together with (2) this further implies

lim
t!1

P
i2I �i (t; x

0) + �k (t; x
0)

�k+1 (t; x0)
= 0.

Case 2: If instead
R t
0
�k (�; x

0) d� ! �k < 1 then �k (t; x0) ! 0, by the fact

that �k (�; x0) is uniformly continuous in t. To see that �k (�; x0) is uniformly con-

tinuous in t note that
�� @
@t
(�k (t; x

0))
�� � maxx2�(K) ���k (x)� �� (x)�� 2 R+. (For an

argument why uniform continuity implies �k (t; x0)! 0, see Weibull (1995), propo-

sition 3.2.) Moreover, if
R t
0
�k (�; x

0) d� ! �k < 1 then it follows from (2) that

limt!1
P

i2I �i (t; x
0) < 1, and hence for all i 2 I, we have �i (t; x0) ! �i < 1,

for some �i.

Inductive base case: De�ne v1 (x) = log x1� log x2. The derivative with respect
to time is

_v1 (x) =
_x1
x1
� _x2
x2
� ��1x1,

where �1 = w (2; 1)�w (1; 1) > 0. Integrating both sides w.r.t. t yields v1 (�1 (t; x0)) �
v1 (x

0) � �1
R t
0
�1 (�; x

0) d� . If
R t
0
�1 (�; x

0) ! +1 then by the de�nition of v1 (x)

we have �1 (t; x0) ! 0 and �1 (t; x0) =�2 (t; x0) ! 0. If
R t
0
�1 (�; x

0) d� ! �1 then

�1 (�; x
0)! 0 by the fact that �1 (�; x0) is uniformly continuous in t.
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