
 

 

 
 
 
 
 
 
 

SUBJECTIVE EVALUATION OF 
DELAYED RISKY OUTCOMES:  

AN EXPERIMENTAL 
APPROACH 

 
Uri Ben-Zion, Jan Pieter Krahnen  

and Tal Shavit  
 
 

Discussion Paper No. 07-09 
 

July 2007 
 

 
 

Monaster Center for Economic 
Research  

Ben-Gurion University of the Negev  
P.O. Box 653 

Beer Sheva, Israel 
 
 

Fax:  972-8-6472941 
Tel:  972-8-6472286 

 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6507107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Subjective Evaluation of Delayed Risky Outcomes:  

An Experimental Approach  

Uri Benziona, Jan Pieter Krahnenb, Tal Shavitc 

 

This paper uses experimental data to estimate the pure time discount rate for different 

lengths of times for riskless assets (bonds), and risky assets (delayed lotteries). In 

moving from the present time (t = 0) to the future, there is a very sharp decline (jump) 

in the subjective price of the assets for both buy and sell transactions. This jump 

corresponds to a large increase in the discount rate for the first period and a much 

lower discount rate for later periods (forward rate). The findings cast doubt on the 

relevance of the hyperbolic function approach to discounting.  
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1. Introduction  

Beginning with the model by Strotz (1956) on dynamic inconsistency, and the work 

by Kahneman and Tversky (1979) on the Certainty Effect, many authors have shown 

that individual decision-making accounts for risk and time in a non-linear fashion. The 

recent surge of literature on hyperbolic discounting argues along these lines as well. 

For example, Choi et al. (2003) develop a model of voluntary opting into 401(k) plans 

by individuals when utility functions exhibit hyperbolic discounting. As Laibson has 

shown in earlier papers (1997, 1998, 2001), individuals with hyperbolic utility 

discounting will choose self-commitment devices to limit time-inconsistency. Other 

authors have endorsed the view that revealed individual reservation prices are not 

consistent with constant period-by-period discount rates. For example, Thaler (1981) 

tested and confirmed three hypotheses concerning the behavior of discount rates 

inferred from riskless choices. His findings were as follows: (1) the discount rate 

declines as waiting time increases; (2) the discount rate decreases as the amount of 

cash flow increases; (3) the discount rates are lower for losses than for gains. 

Ben-Zion et al. (1989) presented a choice experiment that manipulated four scenarios: 

postponing a receipt, postponing a payment, expediting a receipt and expediting a 

payment. The experiment’s results were used to test four hypotheses regarding the 

behavior of discount rates (The Classical Approach, the Market Segmentation 

Approach, the Implicit Risk Approach, and the Added Compensation Approach). The 

Classical Approach was flatly rejected; the Market Segmentation Approach was found 

lacking. The results support an Implicit Risk hypothesis according to which delayed 

consequences are associated with an implicit risk value; they also support an Added 
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Compensation hypothesis, asserting that individuals require compensation for a 

change in their financial positions. 

Green et al (1997) present an experiment in which subjects were asked to make a 

series of choices regarding hypothetical amounts of money, one immediate and one 

after specified delay. They found that the degree of discounting decreased as the 

amount of the delayed reward increased.  

According to Read (2001), sub-additive time discounting means that “discounting 

over a delay is greater when the delay is divided into subintervals than when it is left 

undivided.” Read presents three choice experiments that show strong evidence of sub-

additive discounting. He found that "when a delay was divided into three, the total 

discounting over that delay was increased by an average of 40%". This result is 

inconsistent with the hyperbolic discounting. Read suggests an alternative theory 

using the "immediacy effect". According to this effect individual requires a relatively 

high premium for the delay itself and this premium does not decline with time, "but 

rather a one-time-only charge for delaying consumption".     

Rubinstein (2003) argues that the evidence that rejects standard constant discounting 

can easily reject hyperbolic discounting as well. Rubinstein presents three pairs of 

experiments that provide evidence against hyperbolic discounting theory. Although 

the hyperbolic discounting theory predicts the same preference for a pair of amounts 

and a sequence of amounts, human beings behave differently. He also introduced 

psychological phenomena that are not exhibited by hyperbolic discount functions, 

such as “middle aversion”.  

The present-biased preferences, as labeled by O’Donoghue and Rabin (1999), entail a 

jump that is apparently realized in the first period. This may entail dynamic 
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inconsistencies, reversing the preference relationship among alternatives as time goes 

on.    

This paper offers a detailed analysis of the structure of intertemporal valuation in 

individual choice behavior using an experimental setting. The design allows for 

replicating and quantifying the first-period jump in implied discount rates, 

distinguishing between sure bonds and risky lotteries. In our experiments we find 

significant jumps (or discontinuities) in the term structure of both the pure time and 

the pure risk discount rates. These latter rates are derived from individual lottery 

reservation prices, after compounding bond reservation prices.  

A significant discontinuity at t=0 was found for the pure time discount, calculated 

from bond and lottery reservation prices, and for both bid and ask prices, albeit the 

latter is less pronounced in the case of bonds.  The pure risk discount, in contrast, has 

no significant jump around t=0. It tends to decay steadily over time for bid prices, 

while it stays flat for ask prices.  

To further explore the nature of the discontinuity, we then identify determinants of the 

size of the ‘jump’ at t=0, in particular whether it varies with individual risk aversion, 

or with the size of the investment (i.e. the face value of the bond, and the amount at 

stake in the lottery). We find no dependence on individual risk aversion, and a 

negative dependence of the jump on asset size. These results taken together lead us to 

believe that the discontinuity is not a reflection of the shape of the utility function, as 

suggested by the hyperbolic and other functional forms put forward in the literature. 

Rather, we advocate a new interpretation that stresses decision dependence, yielding a 

time-zero fixed effect and a constant effect afterward. According to this interpretation, 

choices and evaluations are made in a two-step procedure. First, spot (or time-zero) 
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alternatives are evaluated. Then, alternatives that entail forward contracting are 

considered (time greater than zero). In comparison, the other subsequent alternatives 

entail a fixed cost, which may be thought of as the information costs, or other entry 

costs associated with evaluating and contracting financial claims that consist of future 

payoffs. Present time alternatives do not incur these costs.  

The two-step procedure suggests that hyperbolic discounting is relevant only for small 

stakes, because for large stakes the first period jump vanishes. Experimental and other 

evidence has not sufficiently addressed the issue of size-dependence. The current 

paper represents a first step in this direction. Note that for small stakes, the fixed cost 

hypothesis and the hyperbolic discounting hypothesis make the same prediction, while 

this is no longer true for (relatively) larger stakes. The important difference to be 

stressed is that with the fixed costs explanation, the jump in the implicit discount 

function cannot be attributed to the shape of the utility function, but rather is caused 

by features of the decision situation. Thus, the fixed costs explanation leads to 

different policy conclusions from those derived under the hyperbolic discounting 

hypothesis, as discussed in the concluding section.  Note that our explanation is also 

related to a decision model recently suggested by Rubinstein (2003). 

The rest of the paper is organized as follows: Section 2 presents the definitions and 

hypotheses. Section 3 introduces the experimental design. Section 4 presents the main 

results. Finally, Section 5 discusses the results and points to further research questions 

related to the study.  
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2. Definitions and Hypotheses 

The process of lottery discounting implicit in a bidder’s reservations price is assumed 

to consist of two interwoven rates, temporal discounting (time discounting) and 

probability discounting. The notation used in the discussion is as follows: 

RL
t is the pure time discount rate, up to period t, for lottery L (effective interest rate, or 

yield to maturity). 

RB
t is the pure time discount rate, up to period t, for a riskless bond B. 

CPB
t is the current price of the future bond’s face value Ft realized in t periods. CPB

0  = 

Ft is an assumption we make, i.e. a bond maturing in t=0 has a reservation price equal 

to its face value.  

CPL
0 is the current price of the current lottery.  

CPL
t is the current price of the future lottery played over t periods.  

The implied time discount rate for a zero coupon bond with face value F and maturity 

t is defined as the ratio of two bond values (or reservation prices) (e.g; Williams 

(1938): 

RB
t =

0
1/( ) tB

t
B

CP

CP
-1    

Similarly, the per-period time discount rate for a risky asset with maturity t is defined 

by (e.g., Anderhub et al, 2001): 

RL
t = t

t
L

L

CP

CP /1
0

)( -1 



 

 

 

7 

There has been extensive discussion in the literature concerning the shape of the 

discount function. The current consensus assumes that the intertemporal discount rate 

is time dependent, i.e. varies with the distance from the present (t=0). An influential 

formulation of the time-dependent discount function Z(t) was proposed by Prelec and 

Loewenstein (1993), who suggested a generalized hyperbolic functional form, where 

Z(t) is the discounted present value of one € (see Ahlbrecht/Weber 1995). 

  t -f(t)Z(t) = (1+R )                                                                      (1) 

Note that for f(t)=t, Z(t) is the classical discount function.  

 

Prelec and Loewenstein suggest - /f(t) = (1+ t) β αα , of which special cases have also 

been used in the literature. Setting α=1 leads to Harvey’s (1986) formulation 

f(t)= (1+t)-β. β/α=1 yields f(t)= (1+αt)-1  Others have suggested a quasi-hyperbolic 

discount function of the form: 

   { }{ 1 0

1,2,...
Z(t) t

if t

if tβδ

=

∈
=                                                 (2) 

In all these cases, the shape of the discount function diverges from the classical form 

in that the discount factor ‘jumps’ at t=0. Afterwards, it gradually decreases, similar to 

the exponential discount function typically used in finance (Thaler 1981).  

In this study, first we examine the relative price of a bond in terms of an otherwise 

identical asset with different maturity. This examination is applied to a set of lotteries 

as well. The forward rate is calculated between two dates, k and w (k<w), and defined 

as: RL
w-k for the lottery and RB

w-k for the bond. 

For example, the forward rate between period 1 and period 4 for the lottery is 
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RL
4-1 = 1)( 3/1

4

1

−
L

L

CP

CP
, and for fixed bond payoffs it is  RB

4-1 = 1)( 3/1
4

1

−
B

B

CP

CP
. 

One formula that yields a hyperbolic discount function for a given lottery is 

  )(
0

L

t
L

CP

CP
= 

)1(

1

tβ+
                                                                  (3)                      

where β, 0<ß<1, is the constant rate for one period. 

 

The current analysis uses a slightly more general formulation that allows determining 

the extent of the jump in t=0 separate from the slope of the discount function after t=0. 

This “jump discount” function is described by equation (4): 

   )(
0

L

t
L

CP

CP
= 

)1()1)(1(

1
−++ tβα

                                                    (4)               

 

where α is the rate for the first period, β is the constant rate for one period except for 

the first period, and α> β. The case of α=β yields the simple financial function. In the 

case of bonds, the latter is given by 0( )
t

B

B

CP
CP

. We are now in a position to formulate 

the first hypothesis, which replicates results in the literature. 

Hypothesis 1:  The difference in prices between period zero and period 1 

exhibits a significant jump, which can be reflected in a very high spot discount 

rate at time zero (Jump discount). 

This jump compensation for the delayed current amount or lottery from time zero to 

time 1 can be associated with two known behavioral effects. The first is the status-quo 

bias (Samuelson and Zeckhauser, 1988), meaning that subjects ask for high 

compensation for changing their state from current action to future action. This 
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explanation is also consistent with Read (2001) who suggests that individual requires  

a relatively high premium for the delay itself and this premium does not decline with 

time. Getting the payment in the future period instead of today may involves other 

cost such as planning travel cost and the need to remember to collect the future 

payment (Green et al (1997)). The second is the Kahneman and Tversky (1979) 

‘certainty effect’.  According to this effect, delaying a reward is risky because it 

increases the possibility that something will prevent payment (e.g., Stevenson 1986, 

Green and Myerson 1996, and Myerson et al. 2003). We test the hypothesis using both 

bid and ask prices for both bonds and lotteries. Based upon the literature, we test 

whether delayed rewards are seen by investors as risky, possibly because delaying a 

reward may increase the expectation that some unforeseen event will prevent the 

payment from being realized. 

The next hypothesis relates to individual risk aversion. We want to test whether the 

size of the jump in the discount function is related to risk aversion on the part of the 

investor. A positive relationship between risk aversion and the size of the jump will 

indicate that the latter involves a compensation for switching payoffs from the present 

to an uncertain future. 

Hypothesis 2: The initial jump in the discount function is positively related to 

the investor’s risk aversion.  

Next we test the dependency of the jump in the discount function on the size of the 

asset’s face value. A negative relationship between jump size and asset size suggests 

the existence of a fixed cost responsible for the jump in the discount function. Such a 

fixed cost may be rationalized by information costs or by monitoring costs that are 

positive but independent of the properties of the claim. This leads to Hypothesis 3. 
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Hypothesis 3: In the cross section, the jump of the discount function is 

inversely related to the face value of the asset.  

A possible formulation of such a model is as follows: 

Let X be the payoff of a time-zero asset, and let F(X) be a fixed compensation which 

depends on X, and incurred if the asset pays off at a future date T. Let i be the market 

interest rate of asset. Then we can approximate the required yield of the asset (ireq) as 

                                  ireq  =  i + 
XT

XF )(
                                                           (5) 

We can easily see that the required yield of the asset rises in F, and it decreases at the 

payment date T. For example, if F(X) is a constant (not dependent on X), subjective 

bid reservation prices will yield a decreasing term structure of effective interest rates, 

giving the appearance of a hyperbolic functional run. However, by construction, the 

term structure of reservation prices in this example is correctly described by including 

a jump at t=0.  

If F(X) is linear with X the required yield of the asset is independent of X and there is 

no magnitude effect on the discount factor. In other cases where 
X

XF )(
 is  

a decreasing function of X we will have a magnitude effect where the discount 

function will decline with the magnitude (Loewenstein & Prelec (1992) , Green et al 

(1997), Chapman & Winquist (1998)). 

For a given sum one could consider the jump as an hyperbolic function with 

magnitude effect, however the hyperbolic approach assume (Mazur formula) that 

the process continue for later periods, where the jump does not specify any 

functional form. There is no need to add to the jump any specific discounting form 

such as hyperbolic. And in fact there was no further discounting between the latter 
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periods.  

The next step is to determine the pure risk premium, and to estimate its term structure. 

Of particular interest is whether the pure risk discount rate also exhibits a jump in its 

term structure.  When the payoff is certain, as in the case of bonds, their reservation 

prices CP can be estimated from observed bid prices, yielding an effective rate RB
t: 

  
1 (1 )

t t t
B t t

t B

F F
CP

Z R
= =

+ +
                                                   (6)          

where Zt is the discount rate for a sure payoff in period t, and RB
t is the one period 

risk-free effective discount rate (or yield to maturity). If F* t is a random lottery payoff 

with expectation E(F*t) = Ft, the current price t
LCP  can again be estimated from 

observed reservation (bid) prices. In order to estimate the functional form of the 

discount function, we express the ratio of the current price of the bond and the lottery 

as the product of the present risk premium λ and the intertemporal risk discount rate δ. 

Of course, if the risk of the lottery is taken into consideration only once, δ=0. In this 

case the lottery reservation price is set as a certainty equivalent: 

 .
(1 )(1 ) (1 ) (1 )λ λ

= =
+ + + +

t t t
L t t

t B

F F
CP

Z R
                                       (7) 

Equation (7) assumes that the substitution rate between present values of the bond 

payoff and the lottery payoff is constant, yielding  

 (1 )
t

B
t

L

CP
CP

λ= +                                                                            (8)                    

In contrast, if the reservation price is described by a constant per-period price of risk, 

we get 

 at
t

L

t
B

CP

CP
)1(*)1( δλ ++=                                                               (9) 
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The critical question is, which of the two expressions applies, and whether λ=δ, i.e., 

whether the reservation price adjustment for a lottery played in t=0 is of the same 

order of magnitude as a lottery played at a later date. This brings us to Hypothesis 4. 

Hypothesis 4: The risk premium, i.e., the rate of substitution between bond 

reservation value and lottery reservation value, is independent of when the 

lottery is played. 

We use the following equation to estimate the dependency of the pure risk premium 

on the maturity of the lottery.  

 )1(**)1()( δλ +++= LntaLn
CP

CP
Ln

t
L

t
B                                           (10)   

Next, we compare the two sets of rates (bond and lottery) with one another. 

Hypothesis 5: The time discount rate for a given lottery is lower than the time 

discount rate for a bond of equal maturity.  

According to Hypothesis 5,    RL
t = RB

t, or that 
0

( )B
t

B

CP
CP

 > )(
0

t
L

L

CP

CP
.   

Furthermore, let αB and αL be the alphas from equation (4) for bonds and lotteries 

respectively, and let βB and βL similarly be the betas from equation (4). Then, 

Hypothesis (5) implies that αB > αL and βB > βL. 

We suggest three alternative explanations to hypothesis (5), as follows:   

(1) Consistent with Keren and Roelofsma (1995) and Ahlbrecht and Weber (1997), 

implicit discounting for uncertainty overlaps with delay discounting, and therefore 

reduces the final level of the delay discount rate. We assume that this effect holds not 

only for choice tasks (as tested by Keren and Roelofsma, and by Ahlbrecht and 

Weber), but also for evaluation tasks.  
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(2) An alternative explanation is the “certainty effect”, which was presented in the 

prospect theory (Kahneman and Tversky, 1979). According to this effect, when an 

outcome is certain and becomes less probable, it has a greater impact than when the 

outcome was merely probable before the probability was reduced by the same amount. 

Delaying rewards is risky because delaying a reward increases the possibility that 

something will prevent payment (e.g., Stevenson 1986, Green and Myerson 1997, and 

Myerson et al. 2003). Since a delay is similar to reducing probability, it affects bonds 

more than lotteries, because of the “certainty effect”, implying a larger time discount 

rate.  

(3) Another explanation is the anticipation effect. This effect (Loewenstein 1987) 

describes additional utility (disutility) associated with delayed consumption of 

desirable (undesirable) goods. The notion of anticipatory emotions has been studied 

by Elster and Loewenstein (1992), who define savoring as the positive utility derived 

from anticipating a desirable outcome, and dread as the disutility derived from 

anticipating an undesirable outcome. In the gain domain, anticipation may be a source 

of positive utility, causing individuals to experience the hedonic utility of the future 

prospect in the current period. These emotions were also studied by Caplin and Leahy 

(2001, 2004), who extend expected utility theory to situations in which agents 

experience feelings of anticipation prior to resolution of uncertainty. They 

demonstrate that these anticipatory feelings may result in time inconsistency and 

provide an example from portfolio theory to illustrate the potential impact of 

anticipation on asset prices. 

Delaying a lottery can be an example of anticipation of playing or winning a gamble. 

An example from real life situations can be seen in the number of subjects who 
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participate in national lotteries even though they pay more than the lottery’s expected 

outcome. The potential feeling of being rich until the lottery is completed (anticipation 

effect) leads to a lower time discount rate for buying the lottery. 

 

3. Experimental design and data 

Two experiments were conducted.  

The first experiment. 

The participants in the experiment were 64 undergraduate students of economics1. The 

computerized experiment took place in a computer laboratory at Ben-Gurion 

University, and lasted approximately one hour.  

First, the subjects read the instructions2, including examples, and then the 

experimenter answered questions. In the instructions, subjects were told that the assets 

were to be sold and bought from them using a second-price auction. In the case of a 

buying auction, the subject with the highest bidding price will win the auction, but 

will pay the second highest bidding price in the group participating in the auction.  In 

the case of a selling auction, the subject with the lowest asking price will win the 

auction, but will receive the second lowest asking price in the group participating in 

the auction.  

The auctions were presented in a random order to avoid any order effect (with the 

exception of auction 1, which was used for risk attitude measurement). We asked the 

subjects: (a) to bid the maximum price they are willing to pay (WTP) today for a 

                                                 

1 The students were from Ben-Gurion University, Beer Sheba, Israel. In the discussion in Section 5 of 

the paper, we also refer to experimental sessions run at Frankfurt (Germany)’s Goethe University; see 

Benzion and Krahnen (1997: Hyperbolic discounting: an alternative explanation, mimeo). 
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lottery and a sure amount at different times, and  (b) to ask the minimum price they 

are willing to accept today for a lottery and a sure amount they own at different times 

(WTA). In each auction, subjects received an initial balance. In the case of selling 

problems, the subjects owned the initial balance and the lottery or the sure amount3.  

Each problem was presented separately, and subjects answered one problem at a time. 

This procedure was carried out to avoid the possibility of subjects returning to their 

previous answers while answering the current problem.     

The subjects were told that at the end of the experiment, the computer program would 

randomly divide them into groups of five subjects. Using the second-price auction, the 

five subjects in each group compete on buying and selling the assets.  

To provide concrete incentives, we told all subjects that one of the problems will be 

randomly selected (at the end of the experiment) and that we will pay them according 

to their final balance at the due date, i.e., at the actual date when the bond matures. 

This date may be several weeks after the experimental session. Subjects were asked to 

return to the experimenter on or after the due date to recoup their money.  For 

example, if the subjects won a lottery to be played out in four weeks, the pay day was 

four weeks after the experiment. 

The extra effort to collect the money is one possible factor, which affect the 

compensation required by individual and the jump. However, in our experiment all the 

subjects were student in the university during the regular academic year and the extra 

cost of time is rather small. The effect of forgetting suggested by Green et al (1997) is 

also a factor. However, in our experiment this effect is not very significant as we 

                                                                                                                                            

2 Translated instructions to be provided upon request. 

3 In order to avoid an income effect in the selling problems, the subjects’ initial balance was lower       

 than in the buying problems. We reduced the initial balance in these problems by 70, the lottery’s 
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promised to call (send a SMS or mail) the student on the payment date.  

 

Description of the assets 

The assets presented in the first experiment are described in Table 1.  

The lottery pays 100 with a probability of 60%, and 25 otherwise (the expected payoff 

is 70), and the bond face value is 70, the same as the expected value of the lottery. 

The auctions included current bid and ask prices for present and future assets.  

<Insert Table 1 about here> 

Subjects’ risk attitude. 

Risk aversion was measured by using the ratio between WTP and the expected value 

of a lottery, in accordance with Kachelmeier and Shehata (1992), Anderhub et al. 

(2001), and Holt and Laury (2002).  

The lottery used to measure risk aversion pays 80 with a probability 70% and 30 

otherwise; it thus differs from the lotteries in the other sessions. This lottery’s 

expected value E(L) equals 65.   

The risk aversion Index RA is defined as follows (see Anderhub et al. 2001, and 

Krahnen et al. 1997 for a discussion of this measure of risk aversion): 

RA = 
)(

)( 1

LE

WTPLE −
 

The second experiment. 

The second set of experiments was carried out at Frankfurt University. Subjects were 

asked to specify their reservation price (“quotes”) for either buying or selling a zero 

coupon bond maturing at a specified date in the future. Each decision (“round”) is 

                                                                                                                                            

expected value. 
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treated separately, and there is no carry-over from one round to the next. If a task 

consists of purchasing the security, the subject is endowed initially with a sufficient 

amount of cash; if the task requires selling the security, the subject is endowed with 

one unit of the bond. Subjects had to specify their reservation values for a series of 19 

bond transactions, involving purchase and sale transactions. Subjects also performed 

some additional tasks related to the purchase of securities with uncertain payoffs 

(lotteries), but this paper refers to the bond purchase transactions only.  

The face value and the term of the bonds were varied randomly across sessions and 

subjects. Terms were between 15 days (minimum) and 360 days (maximum). Face 

values ranged from a minimum of 200 monetary units [MU] up to a maximum of 920 

units. The tasks were presented on a computer screen, and subjects had to type in their 

respective reservations values.  

No interaction between participants was allowed. The final payoff was determined by 

randomly selecting one round. For inducing revelation of individual reservation 

prices, we relied on Becker et al. (1964). A random number was drawn from a 

uniform distribution spanning the interval between bond face value minus 50% and 

bond face value. This number is the relevant transaction price of that round. If the 

subject’s task was to purchase [sell] the specified bond, the exchange of money 

against the bond became effective if and only if the quote entered by the subject, i.e., 

the reservation price, turned out to be above [below] the transaction price. Each 

subject received the monetary equivalent of the bond in his or her possession, plus the 

remaining cash. The exchange rate of Monetary Units into Deutschmarks was 20:1. 

Payoff in cash was effective immediately after the end of the session, while bonds 

were paid out only at the actual maturity of the asset. 

We conducted four experimental sessions with a total of 47 participants, yielding 47 
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independent observations of 19 variables. Subjects were always offered the 

opportunity “to opt out”, i.e. to refuse to answer any single question. The opportunity 

cost of not complying with a specific task was a 30-second waiting period before the 

next task was presented to the subject. To limit the impact of typing errors or 

misunderstandings on the results, we eliminated all values that differed by more than 

1.5 standard deviations from the mean of each variable4. There were 59 such 

observations in the data, equaling 8.6 % of our data points. Table A-1 (Appendix A) 

summarizes all bond valuation tasks in the two sessions of the second experiment.  

The session for experiment 1 were carried out in May 2002 at Ben-Gurion University, 

Israel, while the sessions for experiment 2 were carried in October 1996 at Frankfurt 

University, Germany.  

 

4. Main Results.   

We start with Hypothesis 1. Table 2 presents the forward time discounting for the 

bond and the lotteries in experiment 1. 

<Insert Table 2 about here> 

Using the Wilcoxon Signed Ranks Test, we find that in both assets and in both 

positions (i.e. buy and sell), the jump rate is extremely high (the rate between current 

time to week 1) and significantly different (p-value < 0.05) from the forward rates of 

the next periods (1 to 4 weeks and 4 to 8 weeks). The forward rates do not different 

significantly from each other. These results are consistent with hypothesis (1). 

We next run a regression analysis for each asset in each position, estimating equation 

(11): 

                                                 

4 All observations are in the interval of 90% under a standard normal distribution (µ - 1.645σ,  
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 Rt = a0 + a1*t 1 + a2*t 2 + a3*RA                                                   (11) 

where, 

t1, t2– are dummy variables for a duration of one week and four weeks, respectively.  

Since t1, t2, t 3, and the dummy variable for 4 weeks to 8 weeks are linearly related, 

variable t3 is excluded from the regression.  

a0 – is the discount rate for 8 weeks.  

RA – is the risk aversion index.  

 

The results are presented in Table 3. 

<Insert Table 3 about here> 

The regression confirms the jump discount for the first weeks (a1) and the lower 

discounts for the following weeks, which do not differ from zero.  

Column 5 in Table 3 shows that the coefficient of risk aversion (a3) is insignificant in 

the case of lotteries, and mildly significant for bonds. For the case of bonds we find 

the same result as Anderhub et al. (2001), who found higher discounts for subjects 

with higher risk aversion, in line with Hypothesis 2. 

We now turn to Hypothesis 3, the effect of size on the discount rate. This question is 

important for our analysis because it is an indirect test of the fixed cost hypothesis. To 

conduct the analysis, a minimum of variation across asset nominal values and asset 

terms is needed. For this reason we include the second experiment, as described in 

section 3.  Given the variety of face values and maturities present in the data from the 

second experiment (see Table A-1 in the appendix), we can use a multivariate 

                                                                                                                                            

µ + 1.645σ). 
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regression to isolate the effect of asset size, i.e. face values of bonds, on individual 

reservation prices.  

Table 4 shows implicit interest rates according to equation (12), where T is a vector of 

maturity dummies, ranging from two weeks up to one year (see appendix), and  Beta 

(β) is the size coefficient. We are interested in the shape of the term structure and the 

existence of any size dependence. The results are summarized in Table 4.  

                Tsize
Bid

valueFace
γβα ′++=








)ln(ln                                                (12) 

<Insert Table 4 about here> 

Table 4 shows two interesting results. First, the size coefficient is negative and highly 

significant (p<0.01), suggesting that the time discount rate, after controlling for term 

differences between bonds, is negatively related to the nominal value of the claim. The 

higher the face value of the bond, the smaller is the discount rate (not necessarily the 

absolute discount).  Second, after controlling for the asset size, the discount rate for 

different periods is effectively flat, consistent with the idea that the hyperbolic shape 

of the discount function is due to a fixed effect at time zero for time periods above 30 

days. Above 60 days, the implicit discount rate fluctuates moderately around 10%. 

The coefficients for period 4 to 7 are highly significant. The coefficient for period 2 

(16-30 days) is 21%, but is insignificant due to large variability. The estimated 

coefficients for periods 2 and 3 are neither significantly different from each other nor 

from zero.  

Finally, the fixed term α, which is intended to capture the impact of a fixed forward 

charge, differs significantly from zero with a mean value of 0.16. 

We now turn to Hypothesis 4. The risk premium is independent of when the lottery is 
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played. Table 5 presents the average prices and the substitution rates: 
t

L

t
B

CP

CP
-1.  

For the valuation of the bond at t=0, we assume a valuation discount of zero, and we 

thus take the hypothetical buy price to equal its face value.  

<Insert Table 5 about here> 

Once again, we use regression (see equation 9) to test whether the substitution rate 

 
t

L

t
B

CP

CP
 -1 is dependent on the asset realization time, where t=0,1,4,8. 

We run the regression separately for buying and selling. 

The results are: 

 

For purchase decisions (see equation (10)): 

)(
t

L

t
B

CP

CP
Ln t*012.0253.0 −=                 {R-square = 0.01, p=0.16)              (13a) 

                             (0.00)   (0.159)    

For sell decisions ((see equation (10)): 

 )(
t

L

t
B

CP

CP
Ln t*013.0353.0 −=                 {R-square = 0.01, p=0.14)             (13b) 

                             (0.00)    (0.14)    

 

In both regressions, the coefficient of the realization time does not differ from zero, 

implying that adjustment for risk happens only once and is independent of the overall 

term of the security. This is consistent with Hypothesis 4. 
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We now turn to Hypothesis 5, which claims that the time discount rate for a given 

lottery is lower than the time discount rate for a bond of equal maturity.  

Table 6 summarizes the weekly discount rates for both assets and both trade 

directions, buys and sells. The comparison relies on the Wilcoxon Signed Ranks test.  

<Insert Table 6 about here> 

The table shows that for purchases, the lottery’s weekly time discount is lower than 

for bonds. However, for the selling position we were not able to reject the hypothesis 

that the lottery’s time discount equals the bond’s time discount. Thus, Hypothesis 4 is 

confirmed for sell but not for purchase decisions.  A possible interpretation is that the 

three effects mentioned when discussing Hypothesis 5, i.e. implicit discounting 

overlapping with delay discounting, the “certainty effect” and the “anticipation 

effect”, are only relevant for the buying position and not for the selling position. 

 

5. Summary and conclusions. 

The discounting rate for uncertain delayed rewards combines time discounting and 

probability discounting, with probability discounting corresponding to the risk 

premium. To estimate the risk premium from our data, we use the bid and ask prices 

for a current and future lottery, and compare them to the price of a current and future 

bond with the same maturity. Bid and ask prices, in turn, are elicited from a second 

price auction in a computerized experiment, using the Becker-DeGroot-Marschak 

mechanism. It is important to mention that all data in this paper refer to preference 

elicitation, and are not market prices or equilibrium outcomes.  

We show that the substitution rate between the bond present values and the lottery 

present values is constant, implying a one-time adjustment for risk, independent of the 
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maturity of the security.  Comparing the bids for bonds and lotteries, we observe a 

significant jump between the current price (time zero) and the next period (period 1), 

and a relatively small change between prices in later periods. This observation is true 

both for bid and for ask positions. The jumps in prices translate into high first period 

(implicit) discount rates, and into relatively low and stable (implicit) forward rates. 

Our findings to this point are consistent with earlier observations in the literature 

referring to hyperbolic discounting. Using additional data from a second experiment, 

we find that the jump discount is negatively related to asset size. This finding, 

however, is clearly not consistent with the concept of hyperbolic discounting. Thus, if 

discounting were to obey the idea of a hyperbolic discount function, the jump 

observed in reservation prices between period zero and period one should be 

independent of the face value of the bond, and independent of the expected payoff 

from the lottery. This, however, is not what we found.  What, then, is a possible 

explanation for the jump? We base our interpretation on the observed negative size 

dependence. The pattern of bid and ask prices observed in our experimental sessions 

is consistent with the presence of a fixed decision cost effect, i.e. a lump sum cost 

incurred by the decision-maker at the moment when future claims are evaluated. A 

lump sum cost is due to a general characteristic of a decision situation involving 

future choices, e.g. the fact that evaluation of alternatives implies a relatively more 

complex analysis. The increased complexity may have many dimensions concerning 

the effort of labor needed to prepare and undertake the decision, including the 

difficulty of assessing possible outcomes, the identification of a suitable benchmark, 

the consideration by the decision-maker concerning the chances of survival until 

maturity, and so on.  
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Nevertheless, to be consistent with a fixed cost interpretation, the cost incurred by the 

decision-maker must be related to the choice between present versus future claim, and 

it must be unrelated to the amount at stake (the size of the asset).  

When holding the amount of the asset constant, a fixed cost of switching from a 

decision setting with current choices to another setting with future choices yields a 

per-period discount rate that is inversely related to the maturity of the asset. Laibson 

(1997) has argued that it will always be possible to fit a hyperbolic or a quasi-

hyperbolic discount function to the implicit discount rates, provided they are 

downward sloping (see also Angeletos et al. (2001) on this). 

The presence of decision costs has been discussed in a work by Smith & Walker 

(1993), who give several examples of experimental studies where the omission of 

generic decision costs leads to biased results. The bias is found to disappear if stakes 

get high enough to outweigh decision costs. This is consistent with our finding of a 

diminishing first period jump in the implied discount rate if payouts rise.  

The difference between our interpretation of the functional form of the implied 

discount rates and the prevailing view in the literature is not only a matter of taste. 

Rather, it has relevant economic implications. First, in the fixed cost interpretation 

that we favor, the jump disappears if asset size gets large. In economic terms, if we 

focus on institutional investors who manage large funds, and whose individual 

transactions are commensurate to their holdings, the difference between inom and ieff 

may be negligible (see equation (5)). Second, and with respect to financial markets, 

most if not all financial transactions relate to cash flow streams that are entirely within 

the realm of future payments. Thus, all calculations and comparisons refer to points in 



 

 

 

25 

time that are no longer affected by the fixed cost argument, i.e. in periods where the 

implicit discount function has its usual shape.  

Third, our fixed cost interpretation still leaves open the question of where the fixed 

cost comes from. There are several observations in the literature that fit our 

interpretation, including Tversky’s “certainty effect” (1977), and the explanation in 

Keren and Roloefsma (1999), or in Rubinstein (2003).  

Fourth, finding out more about the determinants of the fixed cost effect is an 

important research agenda, the results of which will also shed light on the role of the 

institutional environment in fixing the level of decision costs. We conjecture that the 

emphasis on dynamic inconsistency in much recent work on hyperbolic preferences 

may be augmented by an emphasis on lowering decision costs for individuals.  

For example, Angeletos et al. (2001) argue that utility functions that give rise to 

hyperbolic discounting will lead to (too) high indebtedness via expensive credit card 

accounts. In contrast, our alternative interpretation stresses the way financial products 

influence individual decision costs. Thus, while credit card accounts are specifically 

designed to keep individual decision costs low, thereby allowing households to 

increase indebtedness with no discernable increase in (decision) costs, the opposite is 

true for a classical collateralized bank loan.  Hence, we expect households with credit 

card access to accumulate a disproportionate amount of credit card debt.  

The findings of this paper need further analysis, both experimental and empirical. On 

the experimental side, a detailed investigation of the decision cost function is 

warranted to enhance our understanding of cost determinants. On the empirical side, 

the relationship between the type of decision situation, or its framing, and the derived 
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form of the decision cost function may be analyzed with data from financial product 

markets.  
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Tables 

Table 1: The assets in the experiment                                                     

Asset Payment Realization 
Time 

Expected 
Value 

Today Today 70 

Today 1 Week 70 

Today 4 Week 70 

 
 

Lottery  

Today 8 Week 70 

Today 1 Week 70 

Today 4 Week 70 

 
Fixed sum 

Today 8 Week 70 

 

 

Table 2: Forward weekly time discount of lottery and bond. 
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Position Period Bond (RB
w-k) Lottery (RL

w-k) 

Current To 1 Week 0.38 0.15 

1 Week To 4 Weeks 0.02 0.01 

 
Buy 

(WTP) 
4 Week To 8 Weeks 0.02 0.02 

Current To 1 Week 0.20 0.19 

1 Week To 4 Weeks 0.01 0.01 

 
Sell 

(WTA) 
4 Week To 8 Weeks 0.02 0.02 

 

 

 

 

 

 

 

 

Table 3: Regression analysis of forward discount rate for different time periods and 
risk aversion. 

Position/asset a0 a1 a2 a3 R Square 

Buy Lottery 0.001 
(0.97) 

0.13 
(0.00) 

-0.006 
(0.872) 

0.11 
(0.16) 

0.08 
(0.001) 

Sell Lottery 0.06 
(0.24) 

0.159 
(0.02) 

-0.008 
(0.89) 

-0.187 
(0.14) 

0.05 
(0.02) 

Buy Bond -0.013 
(0.85) 

0.336 
(0.00) 

0.034 
(0.71) 

0.315 
(0.08) 

0.09 
(0.00) 

Sell Bond 0.011 
(0.73) 

0.157 
(0.00) 

-0.015 
(0.71) 

0.214 
(0.01) 

0.14 
(0.00) 

a Significance levels (p-values) are in brackets. 

 

 

Table 4: The effect of size and time on the jump function.  

Variable Coefficient p(Coefficient) 
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Constant .16 <.001 

ln(size) -.02 .007 

16 - 30 .21 .25 

31 - 60 .10 .18 

61 - 120 .12 .002 

121 - 180 .09 .0002 

181 - 270 .11 .000 

Time dummy 
variable 

271 - 360 .09 .000 
a Reservation prices from bond purchase quotes are used to estimate average implicit discount rates 
over different maturities according to equation (12).  

 

 

 

 

 

 

 

 

 
Table 5: Bidding prices and substitution rate between bond and lottery prices. 

Position Realization 
Time 

Lottery 
(CPL

t) 
Bond 
(CPB

t) t
L

t
B

CP

CP
-1 

Spot 53.9 70 0.42 

1 Weeks 48.7 58.6 0.35 

4 Weeks 48.7 55.9 0.31 

 
Buy 

(WTP) 

8 Weeks 46.1 53.4 0.36 

Spot 51.7 70 0.54 

1 Weeks 48.2 62.15 0.54 

4 Weeks 49.2 61.18 0.54 

 
Sell 

(WTA) 

8 Weeks 46.7 57.56 0.43 

 

 

 

Table 6: Bond and lottery time discount. 

Position Period RB
t RL

t Wilcoxon Signed Ranks Test. 

Z (significance) 
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1 Week 0.38 0.15 1.96 (0.03) 

4 Weeks 0.08 0.04 2.95 (0.00) 

 
Buy 

(WTP) 
8 Weeks 0.04 0.03 2.22 (0.01) 

1 Week 0.2 0.19 0.94 (0.17) 

4 Weeks 0.05 0.03 1.34 (0.09) 

 
Sell 

(WTA) 
8 Weeks 0.03 0.02 1.12 (0.13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A (data sets from second experiment (1997, Frankfurt-Germany) 

Maturities Face values of bonds purchase tasks 

 

Observations 

 200 290 410 500 530 650 730 810 920  

15 4 7 8 47  - 3 6 4 9 88 

30 3 11 - - 6 - - 20 - 40 

60 6 - 10 43 3 8 - 9 - 79 

90 11 6 - - - 3 - 10 8 38 

120 - 4 10 - 14 - 10 15 3 56 

150 7 4 4 - - 4 4 - - 23 

180 80 12 - 44 - 13 5 4 - 158 

210 3 - 3 - 6 10 2 2 - 26 

240 12 6 5 - - 10 7 - - 40 

270 - - 7 - 12 2 8 - 4 33 

300 2 - 3 - 4 - - - 7 16 

330 - 10 - - - - 7 - 4 21 
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360 - 4 8 43 11 - - - - 66 

Observations 128 64 58 177 56 53 49 64 35 684 

Outliers           
 


