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We study pollution abatement and environmental equity in a dynamic panel model
using data for 236 plants in the US pulp and paper industry observed over the period
1985-1997. We suggest a theoretical model for the plant manager who incorporates reg-
ulatory pressures into his calculations of optimal amount of pollution. Assuming actual
pollution abatement exhibits a sluggish adjustment process, the theoretical model leads
to an empirical AR(1) panel model. We estimate our model using GMM with both “tem-
porally lagged” and “spatially lagged” instruments. We find that children, people below
the poverty line and the smallest minority races are exposed to higher levels of pollution.
Our findings show no evidence of environmental inequity against African-Americans or
Hispanics, and find that the neighborhoods with a higher percentage of elderly population
face significantly lower levels of pollution from the plants.
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1. Introduction

The question of whether disadvantaged population groups, such as racial and socioeco-
nomic minorities, are disproportionately exposed to pollution and whether demographic
composition influences the amount of pollutants generated has been studied for roughly
two decades. Ome of the goals of the US Environmental Protection Agency (EPA) is
to ensure that “everyone enjoys the same degree of protection from environmental and
health hazards and equal access to the decision-making process to have a healthy envi-
ronment in which to live, learn, and work."? However, while environmental and political
groups continue to lobby for “environmental justice,” especially with respect to racial and
ethnic minorities, the results of economic studies have been ambiguous. There has been
no agreement on whether disadvantaged population groups are exposed to more pollution
and if so, which of the racial, age, or socioeconomic minorities are more at risk.

This paper studies whether the racial, education, age, and income based population
groups are disproportionately exposed to emissions of air pollutants. Specifically, we are
interested in whether plants are allowed to emit more air pollutants if their neighborhood
has a more disadvantaged population group. We seek to answer this question by examining
air pollution emissions for a sample of 236 pulp and paper plants from 1985-1997 and
by correlating them with changes in the characteristics of communities surrounding the
plants. Our results show that neighborhoods with a higher percentage of children or a
higher percentage of the population below the poverty line are exposed to higher emissions
of air pollutants. Inequities were also found for "other" minority races (non-white, non-
black, non-hispanic), and communities with low voter turnout or congressional members
with low "environment" ratings based on the League of Conservation Voters scorecard.

The initial study in the literature was produced by the United Church of Christ’s
Commission for Racial Justice (1987). This descriptive study reported that the zip codes
which had more pollution as measured by the presence of a treatment, storage, and
disposal facility (TSDF), had a higher percentage of minorities (twice that of the areas
without TSDFs). They also noted that the relationship between socioeconomic status
variables and pollution were not as significant. Since this seminal study, the quantity and
quality of the environmental equity studies has improved remarkably.

One area of improvement is the measurement of the dependent variable. Earlier papers
use proximity to noxious facilities as a proxy for environmental risk, (e.g. Anderton
et al. (1994), Been (1994), Boer et al. (1997), Oakes et al. (1996), Pollock and Vittas
(1995)) whereas later studies use actual pollution emissions levels (see Brooks and Sethi
(1997), Daniels and Friedman (1999), Gray and Shadbegian (2004), Morello-Frosch et
al. (2004), Ringquist (1997)). This paper studies actual pollution levels cited at the
plant, specifically emissions of particulate matters less than 10um [PM10] and emissions
of sulfur dioxide [SO,]. These are common pollutants that are monitored and regulated
by the EPA. We incorporate the pulp and paper industry dataset which is extended from
Gray and Shadbegian (2004).

A second area of improvement has been the attempt to control for alternative explana-

2Environmental Protection Agency (EPA): http://www.epa.gov/environmentaljustice/



tions and addressing the inherent temporal dimension of environmental equity: assessing
the “chicken and the egg" question with respect to risk exposure and community de-
mographics. Been (1994) points out this endogeneity problem and resolves it by using
pre-siting demographics. Ringquist (1997) uses a control variable approach by controlling
for housing prices. Gray and Shadbegian (2004) use instrumental variables and control
for alternative explanations.

Despite these improvements, there has been no agreement on the existence of demo-
graphic inequities. There is disagreement in literature reviews as well with respect to
interpretation of results. Ringquist (2005) provides a helpful literature review on this
subject and a meta-study to analyze why conclusions about the existence of environmen-
tal inequity differ across studies, in an attempt to extract a generalizable conclusion. He
finds that the differences in the choice of pollution measurement, levels of aggregation,
and control factors do not explain away the existence of inequity with respect to race. He
also finds that there is, to a lesser degree, evidence to support inequity with respect to
the poor.

This paper is the first to use the dynamic panel model in the field of environmental
equity. We address the issues raised in previous studies by use of this new methodology.
The first methodological problem it addresses is that the process of pollution abatement
is a dynamic process. It is very hard to reduce pollution overnight since it frequently
requires changes in equipment and integration with the existing production technology.
Hence, pollution abatement may exhibit a sluggish adjustment phenomenon. Because the
empirical literature has so far focused on cross-sectional results, the sluggish adjustment
phenomenon of pollution abatement is not captured, nor is the delayed response to dy-
namic changes in the population demographic composition. For example, assume there
is environmental inequity towards the poor. Consider a case where the poor population
in a neighborhood decreased over the last period. There was high pollution, but because
pollution adjusts sluggishly, it did not yet respond to the change in composition and re-
mained high in the current period. Regressing current high pollution levels on current
decreased percentage of the poor may result in a misleading conclusion that the poor are
not more exposed to pollution when in fact they are. This paper deals with inertia in the
environmental performance of plants using an instrumental variables partial adjustment
model.

Another methodological issue addressed by this model is that regressing pollution
amounts on demographic characteristics introduces an endogeneity problem. Demo-
graphic groups that appear to suffer from environmental inequity could instead have
chosen to live near the pollution for social or economic reasons. This paper deals with
this endogeneity problem through the use of spatially lagged instruments suggested by
Gray and Shadbegian (2004) in their cross-sectional study and we extend this to a dy-
namic model. A third methodological problem comes from the difficulty in accounting for
the unobserved heterogeneity of the firms’ production technology and other firm-specific
effects. Gray and Shadbegian (2004) used variables such as pulp capacity and paper ca-
pacity to control for plant-specific effects. Although it is better to try controlling for these
effects than to leave them unaccounted for, some effects are unobservable. Instead, we
rely on the methodological advantage of our dynamic panel model. That is, we can first
difference out these fixed effects in a dynamic panel setting.



The rest of this paper is organized as follows: Section 2 proposes a dynamic model of
pollution adjustment that allows for a lag in abatement. Section 3 describes the Cen-
sus and the pulp and paper industry data along with the merging procedures. Section
4 describes the methodology and specifies the choice of instruments for estimating the
model using Generalized Method of Moments (GMM). Section 5 discusses results. Sec-
tion 6 concludes that environmental equity is not met with respect to certain demographic
groups.

2. Theory: model of dynamic regulation

To model pollution regulation and compliance within the confines of economic theory,
we propose a new approach. The approach taken by Gray and Shadbegian (2004)is to
model the behavior of environmental regulators (such as the EPA and state level regula-
tors) that maximize the total social benefits subject to the total social costs. The optimal
level of pollution is reached when the marginal social benefit of pollution abatement equals
the marginal social cost. Our approach is to construct a simple and intuitive dynamic
model for the typical plant whose pollution is under environmental regulation. The plant
manager is assumed to be a profit maximizing agent whose main disincentive for pollution
comes from society through its pollution regulating agencies.

The pollution regulating agencies interact with plants through a variety of regulatory
pressures. The manager of plant ¢, under the regulatory environment, incorporates regu-
latory pressure into his profit-maximizing calculations. When he does that, he arrives at
an optimal level of pollution at time ¢, P;. There is another important factor in deter-
mining P;;, the plant’s existing production technology, out of which the pollution comes
as a by-product. We assume P}, depends on the plant’s production technology, 7', and
the regulatory pressures, R.

We further assume that plant ¢’s production technology stays relatively fixed through
time, denoted T;. It is evident that a plant’s pollution emissions depend on its technology,
since pollution can be viewed as a by-product of the plant’s production process. The as-
sumption that plant technology stays constant through time seems justifiable: the typical
production process is largely dependent on the capital equipment whose life-cycle tends
to be long, factory buildings last a long time once built, and floor plans stay put once
the production line is in place. It is particularly justifiable in our case since the pulp and
paper industry we study is very capital-equipment intensive.

We model the regulatory pressure R in two parts: a relatively time-independent reg-
ulatory pressure R; and a relatively time-dependent regulatory pressure R;. R; itself
consists of two parts: an observable part O; and an unobservable part U;. Thus, the
model can be represented as the following equation:

Py = 01 Ti + ByRi + B30i + f4Ui (1)

The variable R; captures the possibility that the heterogeneity among plants may induce
regulators to impose plant-specific regulatory pressures. A plant may be considered more
politically important by the regulators for various reasons, such as its political visibility,
its unionization, its voting district’s pro-environmental voting records, etc. In general,



both T; and R; encompass numerous aspects that are easy to list but hard to account for
due to their qualitative and unobservable nature. Gray and Shadbegian (2004) attempted
to control for at least some of these aspects, such as the pulp and paper capacity, return
on assets, and Occupational Health and Safety Administration (OSHA) violations. Our
dynamic panel setting allows us to difference these fixed effects away and focus on the
main issue of environmental justice. The decomposition of R;; into an observable part O
and an unobservable part U;; is done to facilitate our empirical study, which uses only
observable data, such as population demographic characteristics. The unobservable data
U;; will eventually be incorporated into the error term of our regression.

At time t, the plant manager will compare the actual level of pollution P; with the
optimal level of pollution P, then their difference will be the target amount of pollution
to be abated for the period ¢ + 1, denoted as Abate;, ,; in the following equation:

Abatel,,, = Py — P (2)

We also make the sluggish adjustment assumption. That is, we assume that the actual
pollution abatement for the ¢ + 1 period, Abate;; .1, is only a fraction v of the theoretical
pollution abatement Abate;,  , :

Abatei 1 = (P — Py) (3)

It is reasonable to assume that the adjustment process is sluggish over time. One pos-
sible scenario is that many pollution abatement projects require investments in pollution
abatement capital, which takes time to plan and install. Another possible explanation is
that it may take time and some learning by doing to fully incorporate pollution abate-
ment processes into the existing production technology. In either of these scenarios, the
pollution will be gradually reduced over time as the abatement projects become fully
operational.

The actual pollution at time ¢+ 1 will be expressed as the difference between the actual
pollution in the last period P;; and the actual pollution abatement for the ¢ + 1 period:

Piy1 = Py — Abatejiyq (4)

Combining equations (1), (3), and (4), we reach the following equation:

Py1 =581 + ByRi) + (L — v) Py + vB30i + 84U (5)

Notice the first term in equation (5) can be regarded as the unobservable fixed effect.
Hence, we can take the standard step to difference out the fixed effect and arrive at our
main equation:

APy = (1 = 7)AP; +v83(A0q) +vB,(AUs) (6)



A special case to equation (6) is when 53 = 0. When none of the observable regulating
variables such as population characteristics matter in deciding the optimal pollution, and
assuming that the U; term becomes part of the error term, equation (5) simplifies into
the following:

Pin=F+(1—v)Pi+eu (7)

where F; = v(5,T; + ByR;) is the fixed effect and ¢;; is the error term. And similarly,
equation (6) simplifies into the following AR(1) model:

APyi1 = (1 —7)APy + Acy (8)

In our empirical analysis section, we use the above model to estimate the effect of
regulatory pressure on two air pollutants: small particulates (PM10) and sulfur dioxide
(SOg2) for the pulp and paper industry in the United States, observed between 1985 and
1997.

3. Data

In our empirical study, we use two data sets: the yearly plant-level pollution data
that comes from the Gray and Shadbegian (2004) study of US pulp and paper mills,
and the decade-level population demographic characteristics data (1970-2000) from the
US Census. The first data set contains 306 plants from the pulp, paper, and cardboard
industries (SICs 2611, 2621, and 2631) observed during the period 1985-1997. Due to the
dynamic panel nature of our study, we require the plants to have at least three consecutive
observations. We are left with 277 plants after this requirement. Merging with Census
data reduces the usable number of plants to 236.> Due to taking the first difference to
eliminate the fixed effects, we lose the first two years of observations. Thus, we are left
with the period 1987-1997. In 1992, the Census of Manufacturing reported a total of
529 plants. It should be noted that the plants in our data set tend to be larger than the
average plant in the industry as the result of EPA coverage.

The second data set used in our study is compiled from the 1970, 1980, 1990, and 2000
US Census of Population data for Census block groups.* It contains the demographic
characteristics of the population within a 50-mile radius of each plant. To determine
which Census block groups fall within the 50-mile radius of the plant, the distances are
calculated between the plant and the centroid of each block group. Then, the values for
these block groups are aggregated to determine the demographic characteristics for each
plant’s 50-mile radius neighborhood. For the purpose of constructing spatially-lagged
instruments, the population demographic characteristics for the area between 50 and

3This paper does not include the analysis of predicted probability of plant closing since the number of
plants that closed in the current dataset is very small (8 plants out of total of 306). The closed plants were
not omitted from the study if they had at least 3 consecutive observations in the period of 1985-1997.
4This data has been complied in the Census-CD data sets prepared by Geolytics, Inc. and merged using
the GIS.



100 miles from the plant (the “doughnut”) are also constructed in the same fashion and
included in this data set.

In our yearly plant-level pollution data set, we focus on the air pollution measures
of small particulates (PM10) and sulfur dioxide (SO5). These measures originally come
from the Aerometric Information Retrieval System database for 1985-1990 and from the
National Emissions Inventory for 1990-1997. Since there is a large difference in magnitude
in the reported emissions among different plants, we take the natural logarithm of the
pollution levels as our pollution measures.

To study the environmental justice issues, we merge our plant-level yearly pollution
data with the Census decade-level data set. The demographic characteristics we consider
represent different schemes, such as socioeconomic status, racial composition, and sen-
sitivity of population towards pollution. To measure socioeconomic status, we use the
variable (PPOOR), the percentage of the population below the poverty line. We also use
the variable (PHSDROP), the percentage of the population who are high school drop-
outs. For racial background characteristics, we use the percentage of population that
is African-American (PBLACK), Hispanic (PHISP) and non-white other than African-
American and Hispanic (POTHER) using the Census method for racial identification.
Children and the elderly are considered to be groups that are especially sensitive to air
pollution. We compute the percentage of population under six years old (PKIDS) and
the percentage of total population over the age of 65 (PELDERS). Population density of
the area surrounding the plant is measured by (DENSITY). To control for the propensity
to vote, we use the percentage of the population over 18 voting in the county in the pre-
vious presidential election (TURNOUT). However, political activity on its own may not
be as important if the voters do not support environmental regulation. Hence, we inter-
act the voter turnout with a measure of the area’s support for environmental regulation,
the state membership in 3 conservation groups in the late 1980’s, per 1000 population
(TURNOUT*CONVMEMB). We use state pro-environmental Congressional voting (EN-
VIRVOTE) to control for the area’s propensity for environmental regulation and pressure
to reduce pollution. The data comes from The League of Conservation Voters scorecard
for environmental voting records of each member of congress. We use the yearly average
score for all representatives of the state where the plant is located.

Ideally our demographic data should contain yearly characteristics instead of decade-
level data. Unfortunately this yearly data is not available from the Census. However,
given that population characteristics tend to change gradually and smoothly over the
years, we can obtain reasonable estimates for the yearly population demographics using
natural cubic spline interpolation. To perform the interpolation, we require data to be
available for all four Census years from 1970 to 2000. We are left with 236 plants after
this requirement.

The natural cubic spline interpolation uses a cubic polynomial for approximation, as
shown in the following formula:

where Y;(0) = y; and Y;(1) = y;4q for i = 0,...,n — 1. On top of the end condition,
we require Y;(1) = Y/ {(0) for ¢ = 0,...,n — 1. The second derivatives are also set to



Y/(1) = Y/}1(0) for ¢ = 0,...,n — 1. In addition to that, Yj'(0) = ¥,’(1) = 0. These
conditions will solve uniquely for a;, b;, ¢;, d;.

Including the demographic characteristics can create an endogeneity problem; that is,
some groups may come to live in polluted areas due to the cheaper housing rate or other
social factors. To correct this problem, we use the spatially lagged instruments suggested
by Gray and Shadbegian (2004). For each decade, we calculate each of the demographic
variables for the plant neighborhood within a 50-100 mile radius of the plant. As the
distance from the plant increases, the level of pollution decreases while the demographic
characteristics in the general area remain similar.

Tables 1, 2 and 3 provide the descriptive statistics for each year for the log of each
of the air pollutants and the demographic variables. The means of both pollutants have
been declining over the years, but there is considerable variation in the emission variables
across the plants.

4. Methodology

In this section we provide an overview of the econometric methodology used in our
empirical analysis to study the possibility of demographic discrimination and test for it
in various groups. The model we are using is a panel AR(1) model with fixed effects:’

Py = o; + pPy—1 +nDj—1 + €3 (10)

where «; represents the plant i’s unobservable fixed effect, which is invariant across time,
gt ~ i1d(0,0?) is the unobserved error term, which could include the unobserved regula-
tory pressure as we have discussed in our theory section, p = (1 — «y), with 7 being the
abatement coefficient from our theory, and P is the measured pollution variable (PM10
or SOy) of plant i at time ¢. D is a vector of demographic characteristics for plant i at
time ¢.

This model is very good at capturing the heterogeneity among the plants via the fixed
effect «;. «; represents the plant’s specific characteristics, such as the plant-specific tech-
nology for each plant. These characteristics cannot be easily observed or quantified, hence,
they cannot be controlled for in a cross-sectional model. The lagged AR(1) variable is
used to represent the sluggish adjustment of the dependent variable, pollution.

To deal with the incidental parameter problem, we eliminate the unobserved fixed effect
by taking the first difference and arrive at the equation®

APy = pAPy_1 +nADy_1 + Aeyy (11)

where AP,; = P;; — P;_1 represents the sluggish adjustment of the firm’s pollution, p =
(1 — ) and n = B4y according to our dynamic theoretical model. AD;, ; represents
the yearly change in the demographic composition around the plant. A nice feature of
equation (11) is that it has differenced out the fixed effects, and has eliminated the need
to find the control variables and estimate them.

®This equation corresponds to equation (5) in our theoretical model of pollution abatement.
6This corresponds to equation (6) in the theory section.



To estimate equation (11), we use the Generalized Method of Moments (GMM) frame-
work analogous to Arellano and Bond (1991). Our modification is that we use both tem-
porally and spatially lagged variables, which must both be included in the instrumental
variable matrix.

By using differencing to remove the fixed effects, we made the lagged regressor AP
correlated with the error term in equation (11). To resolve this issue we instrument
for the lagged variable AP;;_; with the optimal temporally-lagged instrumental variable
matrix which is suggested by Arellano and Bond (1991). The instruments are all values
of the levels P;; lagged two periods or more. It is worth noting that the strength of these
instruments depends on the unknown parameter of interest, p. In particular, when the
coefficient p is close to 1 these instruments are weak.” This would occur if v is close to
zero, implying that plant managers have little control in reducing pollution to the optimal
levels they set.

Another set of instruments is needed to resolve the endogeneity problem in AD; ;.
Although temporally lagged instruments are convenient and readily available, they will
be weak if the time series is too persistent. Another choice of instruments would be
pre-siting demographics as suggested by Been (1994). Unfortunately, since many pulp
and paper mills were built before 1960, detailed demographic data from before the mills
were built is mostly unavailable. Instead, we use demographic variables from the 50-100
miles around the plant, AD;; 1, as instruments for AD;;_;, which were used by Gray and
Shadbegian (2004). Hence, the instrumental variable matrix consists of both a temporally
lagged part for pollution and a spatially lagged part for demographic variables:

Py 0 0 0 0 0 -+ 0 -+ 0 | ADg ]

0 Py P, 0 0 0O -~ 0 -+ 0 | ADy

Zi=| 0 0 0 Fa1 P2 B3 0 0 | ADs
0O 0 0 0 0 0 ...Py - Py | ADy; |

5. Results

Table 4 reports the results of the first stage regression of demographic variables on all
the instruments and exogenous variables. All regressions include time dummies. The
spatially lagged demographic variables are highly significant with the p-values of 0 for all
the regressions.

Table 5 reports the two-step GMM estimates with the standard errors in parentheses.
The Sargan test statistic rejects the null hypothesis of serial autocorrelation in the errors.
Both Wald test and Kleibergen test, which is robust to weak instruments, indicate the
joint significance of the coefficients.

For the pollution variable PM10, the point estimate for the AR(1) coefficient is p =
0.552. For SO, the point estimate for the AR(1) coefficient is p = 0.474. Both AR(1)
coefficients are significantly positive. From our theory, the AR(1) coefficient has an ad-
ditional economic meaning: p = 1 — 7, where 7 is the pollution adjustment coefficient.

"This is because when the lag coefficient is close to 1 the process becomes a random walk.
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Specifically, for PM10, the AR(1) coefficient of 0.552 implies that the pollution adjust-
ment rate is v = 1 — 0.552 ~ 45%. That is, the plants tend to complete 45% of the total
targeted PM10 pollution abatement (which is the difference between the actual pollution
and the optimal level of pollution) over the following year. Similarly, the plants tend to
complete 53% of the targeted SO, pollution abatement over the following year. This result
shows that for both pollution measures, PM10 and SO, in the pulp and paper industry,
the pollution has been reducing steadily following the dynamic AR(1) process over the
observed years.

The variable PKIDS is found to be significant for the PM10 emissions and insignificant
for SO, emissions. Quantitatively, 1% increase in the percentage of children is associated
with 0.54% higher pollution levels of PM10 and, hence, less reduction in pollution. For
elders, the effect is opposite. Plants located in areas with a higher percentage of elderly
emit significantly lower levels of SO;. That is, a neighborhood with 1% higher elderly
population tends to have 1.19% lower pollution levels of SO,. It is interesting to note that
although each population group is considered sensitive to pollution, their coefficients are of
opposite sign. Population density around plants (DENSITY) is found to be insignificant.

We find that plants surrounded by higher percentage of people below the poverty line
emit higher levels of pollution, although not significantly for the amounts of PM10 (a 1%
increase in population below poverty is correlated with a 0.24% increase in pollution).

Hispanics and African-American population are found to be insignificant, with negative
coefficients for all except African-Americans for the SOy levels of pollution. Other non-
white population (POTHER) is found to be exposed to higher levels of pollution, although
not significant for the SO, levels. This suggests that 1% increase in POTHER is associated
with 0.056% higher PM10 emissions. HSDROP is found to be insignificant in exposure
to PM10 and significantly negative for SO emissions. A 1% increase in the population
who dropped out of high school is associated with 0.153% lower emissions of SO,.

The propensity for collective action (TURNOUT) is significant for PM10 emissions and
insignificant for SO, emissions. A 1% increase in voter turnout is correlated with 1.51%
lower emissions. However, this effect is smaller when plants are located in an area with
already high support for environmental regulation, measured by CONVMEMB. Also,
plants located in the states that are environmentally strong, measured by the State Con-
gressional pro-environmental voting (ENVIRVOTE), have significantly lower emissions of
PM10.

6. Conclusion

In this paper we construct a dynamic model of pollution where the amount of current
emissions depends on the emissions in the previous year and the demographic characteris-
tics of the population in the plant’s neighborhood. The model accounts for endogeneity in
demographics and the slow process of pollution abatement. We take the data on the pulp
and paper industry with pollution measurements of particulate matter of less than 10um,
PM10, and sulfur dioxide, SO5, and merge the dataset with the demographic characteris-
tics in the plant’s neighborhood as was reported in the Census. The Census decade-level
population data is interpolated using the natural cubic spline model to obtain yearly ap-
proximations. We use both "temporally lagged" and "spatially lagged" instruments and
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estimate a panel AR(1) model using two-step GMM.

Our results indicate that environmental inequity cannot be adequately explained away
by the fact that certain demographics may be more inclined to seek out housing around
plants. Even after controlling for endogeneity, plant-specific technology, political activism,
and education we still observe environmental inequity with respect to the poor, the small-
est minority races, and children. Our findings show no evidence of inequity with respect
to African-Americans or Hispanics. Also, the neighborhoods with a higher percentage of
elderly population face significantly lower levels of pollution from the plants.

We restricted our study to two types of pollutants from one industry in the US, so
we must caution against generalizing the results. The pulp and paper industry is one of
the largest polluting industries in the US, and the outputs studied here are common and
dangerous pollutants. We cannot, however, claim that these results are generalizable to
all types of pollution or to other industries. Further research could involve extending this
model to other regulated polluting industries and other toxic releases.
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Table 2: Summary Statistics for Pollution Sensitive Group and Socioeconomic Status Variables.
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Year Obs PKIDS PELDERS PPOOR PHSDROP
1987 118 8.64 (0.69) 12.51 (1.69) 12.75 (4.34) 16.89 (3.53)
1988 133 8.66 (0.65) 12.64 (1.68) 12.68 (4.42) 16.45 (3.50)
1989 148 8.68 (0.63) 12.75 (1.65) 12.61 (4.40) 16.16 (3.54)
1990 166 8.70 (0.60) 12.86 (1.67) 12.34 (4.34) 15.72 (3.53)
1991 170 8.66 (0.58) 12.93 (1.67) 12.27 (4.29) 15.33 (3.49)
1992 207 8.61 (0.56) 12.99 (1.65) 12.35 (4.63) 15.11 (3.49)
1993 226 8.57 (0.55) 13.05 (1.65) 12.18 (4.45) 14.73 (3.35)
1994 231 8.48 (0.55) 13.09 (1.71) 12.07 (4.32) 14.34 (3.26)
1995 235 8.39 (0.55) 13.10 (1.72) 11.96 (4.25) 13.96 (3.19)
1996 233 8.28 (0.56) 13.09 (1.73) 11.85 (4.13) 13.59 (3.12)
1997 233 8.16 (0.57) 13.08 (1.74) 11.70 (4.01) 13.18 (3.04)
Notes:

(a) Mean with standard deviation in parentheses
(b) Total number of plants = 236
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Table 4

First stage regression for the demographic variables.

Dependent Variables Instrumental Variable F-statistic
PKIDS 0.483** (17.40) 75.44
PELDERS 0.323** (10.59) 33.13
PPOOR 0.897** (57.78) 80.26
PBLACK 0.385** (14.83) 5.55
PHISP 0.839* (33.73) 34.70
POTHER 0.889** (60.09) 58.77
PHSDROP 0.327** (11.40) 20.75
DENSITY 0.298*  (6.63) 10.39
Notes:

(a) Time dummies are included in all equations.

b) T-statistics are reported in parenthesis.

(
(c) ** indicates significance at 5% level.
(

d) The F-stat p-values are 0 for all regressions; (df = 87, 2012)



Table 5

Results for regression on all demographic variables.
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Independent Variables

PM10

SO,

AR(1)
PKIDS
PELDERS
PPOOR
PBLACK
PHISP
POTHER
PHSDROP
DENSITY
ENVIRVOTE
TURNOUT
TURNOUT CONVMEMB
Sargan test
Wald test

K test

Number of observations

0.552"*(0.016)
0.538"* (0.117)
—0.191 (0.117)
0.063 (0.039)
—0.025 (0.065)
—0.120 (0.064)
0.056™ (0.025)
0.056 (0.037)
—0.002 (0.002)
—0.002* (0.0007)
—1.510" (0.695)
0.159** (0.051)
102.2 (64)
3999.7 (10)
165.6 (10)
2100

0.474* (0.012)
—0.182 (0.174)
—1.187* (0.294)
0.236** (0.077)
0.005 (0.120)
—0.148 (0.104)
0.061 (0.047)
—0.153** (0.069)
0.005 (0.004)
0.0002 (0.001)
—1.071 (1.116)
—0.003 (0.087)
88.8 (64)
4174.4 (10)
242.3 (10)
2098

Notes:

** indicates significance at 5% level.

(a
(
(
(
(e
(f
(
(
(

) Time dummies are included in all equations.

b) Pollution variables are in logs and demographic variables are in percentages.
c¢) Sample Period: 1985-2000 (236 plants)

d) Standard errors are reported in parenthesis for 2-step GMM estimates robust to heteroskedasticity.

)

) In the case of all tests, degrees of freedom for x? statistics are reported in parenthesis.
g) The Sargan test is a two-step version of the test for serially uncorrelated errors.

h) The Wald statistic is a test of the joint significance of the independent variables.

i) The K statistic is the Kleibergen test for joint significance. This test is robust to weak instruments.
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