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Welfare Bounds in a Growing Population�

Duygu Yenginy

April 7, 2010

Abstract

We study the allocation of collectively owned indivisible goods when monetary transfers are
possible. We restrict our attention to incentive compatible mechanisms which allocate the goods
e¢ ciently. Among these mechanisms, we characterize those that respect welfare lower bounds.
The main characterization involves the identical-preferences lower-bound: each agent should be
at least as well o¤ as in an hypothetical economy where all agents have the same preference
as hers, no agent envies another, and the budget is balanced. This welfare lower-bound grants
agents equal rights/responsibilities over the jointly owned resources but insures agents against
the heterogeneity in preferences. We also study the implications of imposing variable population
axioms together with welfare bounds.
JEL Classi�cations: C79, D61, D63.
Key words: collective ownership, allocation of indivisible goods and money, NIMBY problems,
imposition of tasks, the Groves mechanisms, the identical-preferences lower-bound, individual ra-
tionality, the stand-alone lower-bound, k-fairness, population monotonicity.

1 Introduction

In several cases in public life, the society needs to allocate resources among its members who own
them collectively. We have in mind situations where either all the agents have equal rights over some
indivisible goods or all the agents are collectively responsible for the completion of a given set of
tasks. We study such cases where a �center� (government, jurisdictional authority, etc.) allocates
heterogenous indivisible goods (or bads) among agents whose valuations for the objects are their
private information. Since goods or bads to be allocated are indivisible, monetary transfers are
allowed to restore fairness.

Many examples �t into this context such as auctions held to allocate water entitlements to farmers
and imposition of tasks as in government requisitions and eminent domain proceedings1 (see Yengin,
2010). Another example is the allocation of indivisible public goods or services to neighborhoods,
cities, or states, where all members of the society have collective rights or responsibilities. Assume
that there is no question of whether or how much of the public good is to be provided (e.g., building
a waste disposal site, siting state capitals). The only question is which localities will provide what
public goods and what the compensations are. For instance, consider choosing the locations of
desirable facilities or events (state capitals, parks, international airports, etc.) or the siting problem

�An earlier version of this paper was circulated under the title "Groves Mechanisms and Welfare Bounds in a
Variable Population Setting". The �rst draft of this paper was written while I was a Ph.D. student at the University
of Rochester. I am grateful to William Thomson for his guidance and advice. I also thank Paulo Barelli and Gábor
Virág for their helpful comments and advice.

ySchool of Economics, The University of Adelaide, Napier Building, Room G 34, SA 5005, Australia; e-mail:
duygu.yengin@adelaide.edu.au.

1Government requisition is the government�s demand to use goods and services of the civilians usually in times of
national emergency such as natural disasters and wars. Eminent Domain is government�s right to seize private property,
without the owner�s consent, for public use (such as to build a road or a public utility over a privately held land),
provided owners receive just compensation.
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of noxious facilities (prisons, hazardous materials facilities such as chemical process facilities, waste
disposal sites, nuclear facilities etc.). In the �rst case, although all members of the society have
equal rights, only those in the localities where the desirable facilities are provided derive the bene�ts.
Agents (localities) can overstate their possible bene�ts from the facility to ensure that it is built at
their region. Monetary transfers like taxes and subsidies can provide incentive compatibility and
restore fairness by distributing the net bene�ts over all agents. In the second example, suppose that
all localities together use a noxious facility which is hosted by only one of them. All agents are
jointly responsible for the construction of hazardous facilities since they all derive the same bene�t.
However, only the localities where the LULU (locally undesirable land use) facilities are sited incur
the costs. Hence, the localities have an incentive to overstate their possible costs in order to avoid
the construction of the noxious facility at their place which generates the so called NIMBY (not in
my backyard) syndrome. Monetary transfers can ensure truthful reporting and fair compensations.2

Several other examples �t in our model such as the following allocation problems: the allocations
of social services to the members of society (e.g. municipality child-care in Sweden, Biel, et al, 1997),
community housing, charitable goods and money among the needy, �shing or pollution permits, re-
sources in centrally planned economies, commonly owned indivisible goods in cooperative enterprises
such as cooperative supported agriculture, inheritance among heirs, landing rights to airlines, job
and wage assignments etc. In each of these examples, the resources allocated are indivisible goods or
bads over which society has equal rights and side payments such as taxes, subsidies, compensations,
etc. are possible.

Without loss of generality, we focus on the allocation of heterogenous tasks among agents based
on their reported costs (such as time, money, or e¤ort) of performing the tasks (see also, Porter,
Shoham, and Tennenholtz, 2004; Atlamaz, Yengin, 2008; Moulin, 2009). All tasks must be allocated,
each task is assigned to only one agent, and an agent may be assigned either no task, a single task,
or more than one task. In eminent domain or government requisition problems, a task is imposed on
an agent when the property or service of the agent is seized or used by the government. In NIMBY
problems, a locality is assigned a task when it has to host a noxious facility. Agents have quasi-linear
preferences over the sets of tasks and monetary transfers.3

In the above examples, since all agents have equal rights or responsibilities, society is generally
concerned with the equity of an allocation and the resulting welfare levels of people. In the literature
on fair allocation, several axioms (such as no-envy and egalitarian-equivalence)4 are suggested to
measure the justness of an allocation. However, a mechanism which satis�es these fairness axioms
may still generate welfare levels that are arbitrarily small or large. An allocation which guarantees
a minimum level of welfare to all agents may be preferable to an envy-free allocation which yields
�socially unacceptable�low levels of welfare to some agents. Most societies care about guaranteeing
a minimum level of welfare to its members for solidarity and compassionate reasons. Indeed, this
minimum guaranteed welfare can be seen as an indicator of the development stage and quality of life
of that society.

In the fairness literature, the following thought experiment is generally carried out to determine an
equitable welfare bound. First society agrees on a basic set of fairness notions that should be applied
in a hypothetical �reference economy�. These fairness notions determine an allocation and associated

2 In the literature, several papers study the problem of publicly provided indivisible goods. Unlike most papers, we
do not analyze whether the public good will be provided, we take the provision as given and decide who will provide it
and what the monetary transfers are. Our paper also di¤ers from others in adopting dominant-strategy implementation,
and characterizing mechanisms that respect welfare bounds. Also, our results are applicable to any indivisible goods
and money allocation problem.

3The utility of each agent is equal to her transfer minus the cost she incurs in performing the tasks assigned to her.
The assumption of interpersonally comparable utility is sometimes criticized. See Roemer (1986) for a discussion of
why use of utility functions may be justi�ed.

4No-envy (Foley, 1967) requires that no agent prefers another agent�s bundle to her own. Egalitarian-equivalence
(Pazner and Schmeidler, 1978) requires that each agent should be indi¤erent between her bundle and a common
reference bundle.
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welfare levels in this reference economy. Then, these welfare levels are taken as a benchmark for the
actual economy.

If all agents have equal rights or responsibilities over the resources and resources are perfectly
divisible, then in a reference economy where everyone have the same preference, a Pareto-e¢ cient and
fair allocation would distribute resources equally. However, since in the actual economy, agents may
have di¤erent preferences, equal division is not generally e¢ cient. An allocation which is a Pareto-
improvement over equal split would be preferable. In the classical fair division problem, guaranteeing
to each agent her utility at equal split of the resources is one of the oldest axioms in the fairness
literature and has been well-studied (see for example Steinhaus, 1948; Dubins and Spanier, 1961;
and Moulin, 1991).

In economies where indivisible goods and money are allocated, equal division is not well de�ned.
In such economies, an alternative fairness axiom is the identical-preferences lower-bound, introduced
by Moulin (1990). Pick an agent and consider a reference economy where all agents have preferences
identical to hers. Since all agents have equal rights and the same preference, they should enjoy the
same welfare. Find the common welfare level enjoyed, if objects are allocated e¢ ciently (assignment-
e¢ ciency5) and the budget is balanced. One can argue that this Pareto-e¢ cient and egalitarian
welfare distribution is equitable and should be a benchmark for the actual economy. Since no agent
is responsible for the heterogeneity in the preferences in the actual economy, they should all receive
at least their benchmark welfare levels. Identical-preferences lower-bound requires this be the case.

If a mechanism (that allocates the objects and determine money transfers) respects the identical-
preferences lower-bound, then the worst-case welfare of an agent is the welfare in her reference
economy. In the reference economy, since all preferences are identical to hers, her welfare would only
re�ect her own preference (for which she is held responsible) and her equal share in the collective
right/responsibility of the society over the allocated goods. Suppose in the actual economy, she is
guaranteed her reference welfare level. That is, the center insures her against the conditions of the
economy for which she is not responsible (i.e. the heterogeneity in preferences) while letting her
welfare to re�ect the factors for which she has a responsibility or right. Hence, this kind of welfare
level could be argued as fair in the liberal-egalitarian theory of distributive justice. According to
liberal-egalitarianism, fairness calls for eliminating welfare di¤erentials that result from factors for
which agents are not held responsible and keeping the welfare di¤erentials that are due to the factors
for which they are held responsible (see Fleurbaey, 1995).

To be able to determine an allocation where indivisible goods or bads are assigned e¢ ciently and
welfare levels respect the desired lower bound, the center has to extract the private information of the
agents about their preferences. Agents can misreport their true preferences in order to manipulate
the allocation in their favor. Hence, to ensure assignment-e¢ ciency (e.g. in NIMBY problems,
constructing the facility in a locality with the lowest actual cost) and fair monetary transfers, inducing
the agents to report their preferences truthfully is utmost importance. One of the most appealing
incentive compatibility constraints is strategy-proofness (truthful reporting of preference is a weakly
dominant strategy for all agents).

It is well known that when preferences are unrestricted, by Gibbard (1973) and Satterthwaite
(1975), there is no non-dictatorial social choice function that is truthfully implementable in dominant
strategies (i.e., strategy-proof ). Two approaches were designed to overcome this impossibility result.
First approach is the implementation theory which weakens the requirement of strategy-proofness.
However, various equilibrium concepts used in implementation theory require that each agent knows
a lot about the preferences of other agents which may not be feasible in real life. On the other hand,
strategy-proofness has no such requirement which makes this concept very appealing.

The second approach keeps strategy-proofness while restricting the domain of preferences. One
of the few domain restrictions which allow for non-trivial, non-dictatorial strategy-proof mechanisms

5That is, if indivisible goods are allocated, then the total value experienced by the agents should be maximal. If
indivisible bads (tasks) are allocated, then the total cost incurred by the agents should be minimal.
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is the domain of quasi-linear preferences. On this domain, the Vickrey-Clarke-Groves mechanisms
(simply referred to as the Groves mechanisms from now on) are the only mechanisms that are
assignment-e¢ cient and strategy-proof. Our goal is three fold, to design Groves mechanisms that
respect the identical-preferences lower-bound, to make a comparative study of Groves mechanisms
that respect di¤erent welfare bounds suggested in the literature, and to characterize mechanisms that
respect welfare lower bounds in a growing population. To our knowledge, the results presented here
are the only ones on these issues.6

Our main result (Theorem 1) is the characterization of assignment-e¢ cient and strategy-proof
mechanisms that respect the identical-preferences lower-bound and minimize the de�cit for each
economy. These mechanisms preserve order (an agent with lower costs is not worse o¤ then an agent
with higher costs). Under some domain restrictions, they are envy-free, they have bounded de�cits,
the de�cit is almost zero in large populations, and they generate the minimal de�cit among all Groves
mechanisms which grant agents welfare levels that are at least as much as the one at a Pareto-e¢ cient
and egalitarian allocation (i.e., they are 1�fair; Porter, et al, 2004).

Next, we present the relations between the identical-preferences lower-bound and other intuitive
welfare-bounds. To be speci�c, we consider individual rationality (that respects the status-quo), the
stand-alone lower-bound (that respects the autonomy of agents), and k�fairness (a welfare bound,
based on Rawlsian maxmin criterion, introduced by Porter, et al, 2004). We also study the budget
properties of the Groves mechanisms that respect these welfare lower-bounds (Section 6).

Our other important contribution is to study the implications of welfare bounds under population
changes. When population grows, the cost of an e¢ cient assignment weakly decreases which is good
news for the society. Since no agent is responsible for the population change, solidarity and fairness
would require that all agents be weakly better o¤ (population monotonicity). Hence, in a way, the
welfare levels in the smaller population are taken as lower bounds on the welfares experienced in the
larger population. The compatibility of population monotonicity with welfare lower bounds such as
the identical-preferences lower-bound is not always guaranteed in other models. Fortunately, in our
model, this is not the case (see Theorem 2).

Section 2 presents the model. In Section 3, we characterize the Groves mechanisms that respect
the identical-preferences lower-bound. Section 4 presents characterizations with alternative welfare
bounds. In Section 5, we characterize population monotonic Groves mechanisms respecting welfare
bounds. Section 6 presents logical relations and budget properties. All proofs are in the appendix.

2 Model

A �nite set of indivisible tasks is to be allocated among a �nite set of agents. All tasks must be
allocated. An agent can be assigned either no task, a single task, or more than one task. Each task
is assigned to only one agent. Let A be the �nite set of tasks, with jAj � 1; and �; � be typical
elements of A:

There is an in�nite set of �potential� agents indexed by the positive natural numbers N �
f1; 2; :::g. In any given problem, only a �nite number of them are present. Let N be the set of
subsets of potential agents with at least two agents. Let n � 2 and N with jN j = n be a typical
element of N . The number of agents may be smaller than, equal to, or greater than the number of
tasks.

Let 2A be the set of subsets of A. Each agent i has a cost function ci : 2A ! R+ with ci(;) = 0.7
We refer to such a cost function as unrestricted. Let Cun be the set of all such functions.

6 In the same setting as ours, the analysis of the Groves mechanisms from the fairness perspective has also been the
object of just a few recent studies (see Atlamaz and Yengin, 2008; Pápai, 2003; Porter, et al, 2004; and Yengin, 2009,
2010).

7As usual, R+ denotes the set of non-negative real numbers.
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If for each A 2 (2An;), ci(A) =
P
�2A

ci(f�g), then ci is additive. If for each pair fA;A0g � 2A with

A \ A0 = ;, ci(A [ A0) � ci(A) + ci(A
0), then ci is subadditive, and if for each fA;A0g � 2A with

A\A0 = ;, ci(A[A0) � ci(A)+ ci(A0), then ci is superadditive. Let Cad; Csub; and Csup be the classes
of additive, subadditive, and superadditive cost functions, respectively. Let C be a generic element of
fCun; Cad; Csub; Csupg and CN be the n�fold Cartesian product of C:8

For each N 2 N , a cost pro�le for N is a list c � (c1; :::; cn): Let
S

N2N
CN be the domain of cost

pro�les where for each i 2 N; ci 2 C. Unless stated otherwise, the results of this paper hold on any
domain.

A cost pro�le de�nes an economy. Let c; c0;bc be typical economies with associated agent sets
N;N 0; bN: For each N 2 N and each i 2 N; let c�i be the cost pro�le of the agents in Nnfig: For
each pair fN;N 0g � N such that N 0 � N and each c 2 CN ; let cN 0 be the restriction of c to N 0 :
cN 0 � (ci)i2N 0 :

There is a perfectly divisible good we call �money�. Let ti denote agent i0s consumption of the
good. We call ti agent i0s transfer : if ti > 0; it is a transfer from the center to i; if ti < 0; jtij is a
transfer from i to the center.

We think of a �center� that assigns the tasks and determines each agent�s transfer. Agent i�s
utility when she is assigned the set of tasks Ai 2 2A (note that Ai may be empty) and consumes
ti 2 R is

u(Ai; ti; ci) = �ci(Ai) + ti:

For each A 2 2A and each N 2 N ; let A(A;N) = f(A0i)i2N : for each i 2 N; Ai 2 2A; for each
pair fi; jg � N; Ai \Aj = ;; and

S
i2N
A0i = Ag be the set of all possible distributions of A among the

agents in N: For each N 2 N ; an assignment for N is a list (Ai)i2N 2 A(A; N):
A transfer pro�le for N is a list (ti)i2N 2 RN . An allocation for N is a list (Ai; ti)i2N where

(Ai)i2N is an assignment and (ti)i2N is a transfer pro�le for N:

A mechanism is a function ' � (A; t) de�ned over the union
S

N2N
CN that associates with each

economy an allocation: for each N 2 N ; each c 2 CN ; and each i 2 N , 'i(c) � (Ai(c); ti(c)) 2 2A�R:
For each N 2 N , each c 2 CN ; each i 2 N; and each � 2 A; let c�i � ci(f�g), c� � (ci(fag))i2N ,

and c��i � (cj(fag))j2Nnfig: For each k � n; let c�[k] be the k-th cost in the ascending order of the
costs in fc1(f�g); : : : ; cn(f�g)g and let c�hki�c

�
[minfk;ng].

For each N 2 N ; each c 2 CN ; and each A 2 2A; let W (c; A) be the minimal total cost generated
among all possible distributions of A to the agents in N . That is,

W (c; A) = min

(X
i2N
ci(A

0
i) : (A

0
i)i2N 2 A(A;N)

)
:

2.1 The Groves Mechanisms

In our model, the utility of each agent is increasing in her transfer. Also, an agent�s transfer and total
transfer can be of any size. Hence, every allocation is Pareto-dominated by some other allocation
with higher transfers. Thus, there is no Pareto-e¢ cient allocation. However, we can de�ne a notion
of e¢ ciency restricted to the assignment of the tasks. Since utilities are quasi-linear, given any cost
pro�le c; an allocation that minimizes total cost is Pareto-e¢ cient for c among all allocations with the
same, or smaller, total transfer. Our �rst axiom requires mechanisms to choose only such allocations.

8Note that we do not assume monotonicity of the cost functions (ci is monotonic if for each fA;A0g � 2A with
A � A0; ci(A) � ci(A0)); however, if we imposed this restriction, our results would remain the same.

5



Assignment-E¢ ciency: For each N 2 N and each c 2 CN ,
P
i2N
ci(Ai(c)) =W (c;A):

On the additive domain, assignment-e¢ ciency requires that each task is assigned to an agent
who can perform it at the lowest cost: for each N 2 N ; each i 2 N; and each c 2 CNad, � 2 Ai(c)
implies c�i = min

j2N
c�j :

Since costs are private information, an assignment-e¢ cient mechanism assigns the tasks so that
the actual total cost is minimal only if the agents report their true costs. Truthful reporting is also
essential to determine the correct welfare bounds. Then, a desirable property for a mechanism is
that no agent should ever bene�t by misrepresenting her costs (Gibbard, 1973; Satterthwaite, 1975).

Strategy-proofness9: For each N 2 N , each i 2 N , each c 2 CN ; and each c0i 2 C, u('i(c); ci) �
u('i(c

0
i; c�i); ci):

The Groves mechanisms were introduced by Vickrey (1961), Clarke (1971), and Groves (1973). A
Groves mechanism chooses, for each economy, an e¢ cient assignment of the tasks. In the literature,
Groves mechanisms are sometimes de�ned as correspondences that select all the e¢ cient assignments
in an economy. We work with single-valued Groves mechanisms and assume that each Groves mech-
anism is associated with a tie-breaking rule that determines which of the e¢ cient assignments (if
there are more than one) is chosen. Let T be the set of all possible tie-breaking rules and � be a
typical element of this set.

The transfer of each agent determined by a Groves mechanism has two parts. First, each agent
pays the total cost incurred by all other agents at the assignment chosen by the mechanism. Second,
each agent receives a constant sum of money that does not depend on her own cost. This constant
can depend on the cost functions of the other agents or the population size.

For each i 2 N; let hi be a real-valued function de�ned over the union
S

N2N
CN such that for each

N 2 N with i 2 N and each c 2 CN ; hi depends only on c�i: Let h = (hi)i2N and H be the set of all
such h:

The Groves mechanism associated with h 2 H and � 2 T , Gh;� :
Let Gh;� � (A� ; th;� ) be such that for each N 2 N and each c 2 CN ; A� (c) is an e¢ cient assignment
for c and for each i 2 N;

th;�i (c) = �
P

j2Nnfig
cj(A

�
j (c)) + hi(c�i);

= �W (c;A) + ci(A�i (c)) + hi(c�i):

The following observation will be of much use. For each N 2 N , each i 2 N , and each c 2 CN ;
u(Gh;�i (c); ci) = �W (c;A) + hi(c�i): (1)

By equation (1), for each h 2 H; the mechanisms in fGh;�g�2T are Pareto-indi¤erent10. That is,
the particular tie-breaking rule used is irrelevant in the determination of the utilities.

When all types of preferences are allowed and there are at least three alternatives to choose from,
by Gibbard (1973) and Satterthwaite (1975), there is no non-dictatorial and strategy-proof social
choice function. Fortunately, when we restrict our attention to the domain of quasi-linear preferences,
this impossibility result disappears as the following theorem indicates.
Theorem A A mechanism is assignment-e¢ cient and strategy-proof on

S
N2N

CN if and only if it is

a Groves mechanism.

Proof: Since for each N 2 N ; CN is convex, the proof follows from Holmström (1979). 2

9See Thomson (2005) for an extensive survey on strategy-proofness.
10Let N 2 N and c 2 CN . Allocations (Ai; ti)i2N and (A0i; t

0
i)i2N are Pareto-indi¤erent for c if and only if for each

i 2 N; u(Ai; ti; ci) = u(A0i; t0i; ci): The mechanisms ' and '0 are Pareto-indi¤erent if for each N 2 N ; each i 2 N; and
each c 2 CN , u('(c); ci) = u('0(c); ci).
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3 The Identical-Preferences Lower-Bound

In an economy where all agents have the same preference, fairness11 may require that they all expe-
rience the same welfare. Since utilities are quasi-linear, two agents have identical preferences if and
only if their cost functions are identical.

For each N 2 N ; each i 2 N; and each ci 2 C; let ci 2 CN be agent i0s �reference�economy in
which all agents have the same cost function ci: That is, ci � (cij)j2N 2 CN is such that for each
j 2 N; cij � ci:

In economy ci; under assignment-e¢ ciency and budget-balance, a fair allocation would equally
distribute among the agents, the cost of an e¢ cient assignment through budget balancing transfers.
Then, each agent�s utility would be �W (ci;A)

n : This is the common utility at a Pareto-e¢ cient and
egalitarian allocation at agent i�s reference economy.

Suppose in the actual economy, the preferences di¤er from agent to agent. No agent is responsible
for the preferences of the others. Hence, no one should be worse than she is in her reference economy.
The identical-preferences lower-bound (Moulin; 1990) requires that this be the case.

The Identical-Preferences Lower-Bound (IPLB): For each N 2 N ; each i 2 N; and each
c 2 CN ,

u('i(c); ci) � �
W (ci;A)

n
:

This lower bound has been studied in the problem of allocating indivisible goods when there is a
�xed amount of money to be distributed and each agent can be assigned at most one object (see, for
instance, Thomson, 2004; Bevia, 1996). In exchange economies and in the problem of allocating a
single divisible good over which agents have single-peaked preferences, IPLB is equivalent to the equal-
division lower-bound (no agent�s welfare should be less than the one at equal-split of the resources),
which is also well-studied (see, for instance, Thomson, 2008).

To characterize the Groves mechanisms that respect IPLB on the unrestricted domain, we need
the following notation:

For each N 2 N ; each i 2 N , and each c 2 CNun; let ci 2 Cun be such that for each A 2 2A;

ci(A) � maxf0;W (c�i;A)�W (c�i;AnA)g: (2)

For each N 2 N ; each i 2 N , and each c 2 CNun; let ci � (cij)j2N be such that for each j 2 N; cij � ci:

Let us explain how ci is calculated. First �nd the minimum total cost of allocating the objects
in A among the agents in Nnfig: This cost isW (c�i;A): For each set of tasks A; to �nd ci(A); we ask
the following question: what is the minimum cost agent i could incur for performing the tasks in A;
such that if A was assigned to agent i and AnA was e¢ ciently distributed among the other agents,
the total cost achieved by this allocation is not smaller than W (c�i;A): Hence, the cost function ci
speci�es the minimum cost for each set of tasks A; such that when agent i joins the society N=fig;
the cost of an e¢ cient assignment does not change, i.e., W (c�i;A) =W (c�i; ci;A):

The following example demonstrates the calculation of ci in equation (2).

Example 1. Let A = f�; �g and N = f1; 2; ig: Table 1a presents (c1; c2) and the calculation of the
corresponding ci: Table 1b presents (c01; c

0
2) and the calculation of the corresponding c

0
i:

Table 1a: Here, W (c�i;A) = 12 and is obtained by assigning both tasks to agent 1: Also,
W (c�i;Anf�g) = 17 (� is assigned to agent 1); W (c�i;Anf�g) = 8 (� is assigned to agent 2);
and of course, W (c�i;AnA) = 0:
11Fairness notions such as no-envy, anonymity, or equal treatment of equals would imply this result.
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f�g f�g f�; �g
c1 10 17 12

c2 8 19 15

ci minf0; 12� 17g = 0 12� 8 = 4 12� 0 = 12

f�g f�g f�; �g
c01 4 7 12

c02 8 9 18

c0i 12� 7 = 5 12� 4 = 8 12� 0 = 12
Table 1 (a) Table 1 (b)

Table 1: Cost functions in Example 1.

Even if fc1; c2g � Csub, we have ci 2 Csup. Note thatW (ci;A) = 4 (each task is assigned to a di¤erent
agent). Also, W (ci;A) < W (c�i;A):

Table 1b: Here,W (c�i;A) = 12; W (c�i;Anf�g) = 7; andW (c�i;Anf�g) = 4: Even if fc1; c2g � Csup,
we have ci 2 Csub. Note that W (ci;A) = 12 (A is assigned to one of the agents). Also,
W (ci;A) =W (c�i;A): �

Our �rst result presents the characterization of the class of Groves mechanisms that respect the
identical-preferences lower-bound on the unrestricted, the additive, and the subadditive domains.

Proposition 1.
a) On the unrestricted domain, a Groves mechanism Gh;� respects the identical-preferences lower-
bound if and only if for each N 2 N , each i 2 N , and each c 2 CNun;

hi(c�i) �W (c�i;A)�
1

n
W (ci;A): (3)

b) Let C 2 fCad; Csubg: A Groves mechanism Gh;� respects the identical-preferences lower-bound on
the domain

S
N2N

CN if and only if for each N 2 N , each i 2 N , and each c 2 CN ,

hi(c�i) �
n� 1
n

W (c�i;A): (4)

Let us give the intuition of the result brie�y. By equation (1), Gh;� respects the identical-
preferences lower-bound if and only if for each N 2 N ; each i 2 N , and each c 2 CN ; hi(c�i) �
W (c;A)� 1

nW (c
i;A): However, checking whether this inequality holds is not enough since agents may

lie about their costs. We need to check whether for each N 2 N , each i 2 N; and each c�i 2 CNnfig,

hi(c�i) � max
ci2C

�
W (ci; c�i;A)�

1

n
W (ci;A)

�
: (5)

The maximum value of the right-hand side (RHS) of this inequality is equal to the RHS of inequality
(3) on the unrestricted domain; and inequality (4) on the additive or the subadditive domain, or
when there is a single task to be allocated. Actually, on the additive domain, the right-hand-sides
of (3) and (4) are identical.12

Note that for each N 2 N ; each i 2 N , and each c 2 CN ; W (ci;A) � ci(A) = W (c�i;A): Hence,
the RHS of inequality (3) is greater than the RHS of (4).

12On the superadditive domain, we could not come up with a compact formula for the right-hand side of (5). In
general, characterizing Groves mechanisms on the superadditive domain is either technically or notationally complex.
Hence, papers analyzing Groves mechanisms generally restrict attention to either the single-object case and to the
additive domain (Porter, et al, 2004; Atlamaz and Yengin, 2008), or to the allocation of homogenous objects where
each agent can receive at most one object (Ohseto, 2006, Moulin, 2009), or to the subadditive domain (Pápai, 2003).
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Many Groves mechanisms respect IPLB. An example is the Pivotal mechanisms. These mech-
anisms are also known by the following names: Vickrey mechanisms, Clarke mechanisms, Vickrey-
Clarke-Groves mechanisms, and Second-price sealed-bid auctions. Let � 2 T : A mechanism P � is
Pivotal if P � � Gh;� where for each N 2 N ; each i 2 N; and each c 2 CN ; hi(c�i) =W (c�i;A):

For each N 2 N and each c 2 CN ; the de�cit is
P
i2N
th;�i (c) = �(n�1)W (c;A)+

P
i2N
hi(c�i): Hence,

to minimize de�cit (i.e. total transfer) while respecting IPLB, the inequalities in Proposition 1 should
hold as equalities. Next, we present the mechanisms that are our main interest:

Theorem 1. a) On the unrestricted domain, a Groves mechanism generates the minimal budget
de�cit for each economy among all Groves mechanisms that respect the identical-preferences lower-
bound if and only if (3) holds as an equality.

b) On the additive or the subadditive domain, or when there is a single task to be allocated, a Groves
mechanism generates the minimal budget de�cit for each economy among all Groves mechanisms that
respect the identical-preferences lower-bound if and only if (4) holds as an equality.

Pápai (2003) characterizes the envy-free (no agent prefers another agent�s bundle to her own)
Groves mechanisms on the subadditive domain. (By Pápai, 2003, there is no envy-free Groves
mechanism on the unrestricted domain.) On the additive and the subadditive domains, both the
Pivotal mechanisms and the mechanisms in Theorem 1b are envy-free. Hence, IPLB is compatible
with this central notion of fairness, no-envy.13 We argue in Yengin (2010) that no-envy supports
the liberal-egalitarian view of holding agents responsible only for their own preferences but not for
the heterogeneity in the resources (the tasks). Hence, the compatibility of no-envy with IPLB for
Groves mechanisms is very good news. An envy-free Groves mechanism that respects IPLB would
ensure that agents�welfare levels do not re�ect factors for which they are not responsible, namely
the heterogeneity in tasks and in preferences.

When a Pivotal mechanism is used, each agent i�s utility is equal to the reduction in the cost of
an e¢ cient assignment when she joins the economy (i.e. her positive externality on the economy):
for each N 2 N ; each i 2 N , and each c 2 CN ; u(P �i (c); ci) = W (c�i;A) �W (c;A): To achieve this
welfare, her transfer is

t�i (c) =W (c�i;A)�W (c;A) + ci(A�i (c)): (6)

Hence, not only the center covers her cost of performing her assignment (ci(A�i (c)), but also she
receives the reduction in total cost when she is assigned A�i (c): The de�cit generated by a Pivotal
mechanism is X

i2N
t�i (c) =

X
i2N
[W (c�i;A)�W (c;A)] +W (c;A) �W (c;A) � 0: (7)

That is, the center completely covers the total cost W (c;A) and also pays agents extra money that
is equal to their positive externalities. Hence, no agent bears a share of the total cost. Therefore,
Pivotal mechanisms are not appealing in situations where all agents are jointly responsible both for
the performance of the tasks and for the resulting total cost. In such situations, the mechanisms in
Theorem 1 can be used. Although, they can not exactly distribute the total cost among agents (since
no Groves mechanism is budget balanced), they still let the total cost be shared by the agents and
the center in a �fair�way as explained below.

Let N 2 N and c 2 CN : Suppose an agent i 2 N reports such a cost function that she is not
assigned any task. Then, the cost of an e¢ cient assignment in the actual economy isW (c�i;A): Since
i shares the joint responsibility with the other agents for the completion of all the tasks, she should
still pay her �fair�share of the total cost. What is this fair share? Suppose the society agrees that

13Unless there is an upper bound on the costs an agent may incur, our conjecture is that for Groves mechanisms,
IPLB is not compatible with egalitarian-equivalence or egalitarianism (see Yengin 2009, 2010 for the characterizations
of the egalitarian-equivalent and egalitarian Groves mechanisms, respectively).
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the welfares should only re�ect the factors for which agents are responsible. Each agent is responsible
for her own cost function and she shares the joint responsibility of completing the tasks. No agent
is responsible for other agents�preferences (cost functions). Hence, an equal share of the cost of an
e¢ cient assignment when everyone had the same cost function as agent i (i.e. 1

nW (c
i;A)) can be

argued as agent i�s fair share that she should pay: Since i can misrepresent her actual cost function,
she would report bci which makes her payment 1

nW (c
i;A) minimal while still allowing her not to be

assigned any task. That is,

bci = argmin
ci2C

fW (ci;A) subject to W (ci; c�i;A) =W (c�i;A)g: (8)

How does bci look like?
No matter what the domain is, bci should be such that bci(A) �W (c�i;A): Otherwise, i would be

assigned the whole set of tasks in the economy (bci; c�i) which would cause W (bci; c�i;A) = bci(A) <
W (c�i;A) and contradict (8): To minimize W (bci;A); she would report bci(A) =W (c�i;A):

When the domain is additive, if for some � 2 A; bc�i < (c��i)[1], then i would be assigned � in
(bci; c�i). Hence, by (8), we must have for each � 2 A; bc�i = (c��i)[1]: Then, W (bci;A) =W (c�i;A).

Let the domain be subadditive. Since costs are subadditive and all agents have the same costs inbci; then by assignment-e¢ ciency, all of the tasks should be assigned to only one agent in bci. Thus,
W (bci;A) = bci(A) =W (c�i;A):

If the domain is unrestricted, then for (8) to be satis�ed, bci = ci where ci is as in (2). Then,
W (ci;A) �W (c�i;A) =W (ci; c�i;A):

To sum up, if an agent is not assigned any task, her transfer is th;�i ((bci; c�i)) = � 1
nW (bci;A); and

by equation (1), her utility is � 1
nW (bci;A): She can always guarantee this welfare by reporting bci:

Suppose that if she reports her actual cost ci, she would be assigned A�i (c): If her transfer in this
case is ci(A�i (c)) � 1

nW (bci;A); then she would be indi¤erent between reporting bci or ci: To give her
an added incentive to report the true cost function, the center can pay her the positive externality
she would have in the economy by reporting true costs. Then, her transfer and utility would be

th;�i (c) = � 1
nW (bci;A) + ci(A�i (c)) +W (c�i;A)�W (c;A): (9)

u(Gh;�i (c); ci) =W (c�i;A)�W (c;A)�
1

n
W (bci;A) = u(P �i (c); ci)� 1

n
W (bci;A):

The transfer in (9) is the transfer prescribed by the mechanisms in Theorem 1. First, each agent
i pays her fair share, the share in her reference economy, namely 1

nW (bci;A): Then, if she is assigned
any set of tasks, the center covers her cost and pays her the positive externality she generates on
the economy. This second part of her transfer is same as what a Pivotal mechanism prescribes.
Hence, the transfers speci�ed in (9) di¤er from the transfers of a Pivotal mechanism by the term
� 1
nW ((bci;A):
Note that in a large population where the positive externality of an agent is almost zero, the

transfer of an agent is such that she pays her share of the total cost in her reference economy (her
fair share) and get reimbursed for her own actual cost. Also, on the additive, or the subadditive
domain, for each i; W (bci;A) =W (c�i;A): As the number of agents approaches to in�nity, W (c�i;A)
would approach to W (c;A). Thus, in the limit, each agent�s disutility is an equal share of the total
cost.

If transfers are as in (9), then total transfer isX
i2N
th;�i (c) =

X
i2N
[W (c�i;A)�W (c;A)] +W (c;A)�

1

n

X
i2N
W (bci;A): (10)

Note that on the unrestricted, the additive, or the subadditive domain, for each i 2 N;
W (bci;A) �W (c�i;A): Hence, when transfers are as in (9), P

i2N
th;�i (c) � n�1

n

P
i2N
[W (c�i;A)�W (c;A)]:
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That is, there is budget de�cit. But this de�cit is smaller than the de�cit generated by a Piv-
otal mechanism (compare (7) with (10)). Also, on the additive, or the subadditive domain, the
de�cit is n�1n

P
i2N
[W (c�i;A)�W (c;A)]: Since, when the population is large, for each i; the di¤erence

W (c�i;A) �W (c;A) is negligible, and even zero if agents have replicas, then the budget would be
almost balanced in large populations. Such a result does not hold for the Pivotal mechanisms.

When total transfer is as in (10), the center covers the actual total cost and also pays each agent
her externality just like in the Pivotal mechanisms. But on top of that, the center collects the average
of the total costs in the reference economies of all agents. Hence, the burden of the tasks is shared by
the agents and the center, and the center motivates people to report their true costs by paying their
externalities. While each agent pays a cost share as if there is no heterogeneity in the preferences,
the center covers the di¤erence between these payments and the actual total cost. This way, the
center insures the agents against the conditions of the economy for which they are not responsible.

4 Other Welfare Bounds

If participation is voluntary, then a natural requirement from a mechanism is to ensure that no agent
experiences a welfare that is less than her status quo welfare when she didn�t participate. Even if
participation may not be voluntary, the center still may wish to ensure that agents have non-negative
utilities. For instance, in the eminent domain proceedings, if the government seizes the property of
a civilian, say to build a railroad passing through the location of this property, it is required by law
that the government should pay a just compensation. Although there is no consensus on what this
�just�compensation should be, most can agree that it should at least ensure a non-negative utility to
the civilian. Current laws pay the condemnee, the market price of a property similar to the one that
was seized. However, this payment does not ensure incentive compatibility and assignment-e¢ ciency.
Also, if condemnee�s valuation for her property is higher than what other people who traded in the
market have for their similar properties, then the condemnee would experience a negative utility.
The following property ensures this never be the case.

Individual Rationality (IR)14: For each N 2 N , each i 2 N; and each c 2 CN ,

u('i(c); ci) � 0:

Although individual rationality is a desirable and in many cases, an essential property, there are
situations where it may not be required. For instance, when agents who are collectively responsible for
the completion of a set of tasks are also jointly responsible for the associated costs, a fair distribution
of these costs among agents would lead to utility levels below status quo. As an example, in times of
a war or national emergency (such as a natural disaster), all the agents in the society are responsible
for the tasks imposed on them. In these cases, government can requisition the goods or services of the
people without fully compensating their costs. In general, in imposition problems where agents do
not have the right to refuse their task assignments (hence, participation is not necessarily voluntary),
agents may end up with negative utilities. Still, society would be concerned with the equity of the
distribution of welfare. Hence, welfare lower bounds which are weaker than IR, but still guaranteeing
a safety net for agents would be required.

One such welfare lower bound is the one that respects agents�autonomy. Imagine, there is only
one agent in the society. Since she is the only one who is responsible for the completion of all tasks,
she should bear all the cost. However, it would be unfair to tax this agent. Let us call her utility in
this reference economy as her stand-alone utility. (For instance, in the siting problem of hazardous
facilities, this utility is the welfare when each locality autonomously builds its own facility.) In the
actual economy, since all agents are responsible for the tasks, no agent should end up worse than her

14 (The same property is used by Pápai, 2003, for the allocation of desirable objects and money).
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stand-alone utility where she bore all the costs alone. The following welfare bound requires this be
the case.

The Stand-Alone Lower-Bound (SALB): For each N 2 N , each i 2 N; and each c 2 CN ,

u('i(c); ci) � �ci(A):

The following welfare bound, introduced by (Porter et. al., 2004), is a natural implication of
Rawlsian maximin criterion when one requires the center to incur no de�cit. Suppose there is a
single task, say �. In imposition problems, since the agents do not have the option of refusing their
task assignments, it may be unfair to hold them responsible for their costs. Hence, fairness may
require that agents experience equal utilities unless it is possible to have a Pareto improvement on
the equal utility distribution (Rawls� di¤erence principle, also known as the maximin criterion).
If one requires that the center incurs no budget de�cit (total transfer is at most zero), then the
maximin criterion implies that the task should be assigned to an agent with the lowest cost and
utilities should be equalized through transfers that balance the budget. The resulting allocation is
assignment-e¢ cient, budget-balanced, and egalitarian. A mechanism that always chooses such an
allocation would not be strategy-proof (Porter et. al; 2004). But one can require the utility achieved
at such an allocation to be a welfare lower-bound (1�fairness). Unfortunately, there is no Groves
mechanism which is 1�fair, strategy-proof and that guarantees no-de�cit (see Corollary 1 of Porter
et. al., 2004). To obtain no de�cit, we can weaken the fairness property by reducing the lower bound
on the utilities.15 For each k � 1, consider the hypothetical economy where the task is assigned
to an agent with the k-th lowest cost and utilities are equalized through transfers that balance the
budget. The resulting utility of each agent is � 1

nc
�
hki
. We can require this reference utility to be a

lower bound on the actual utilities. Porter et. al. (2004) generalize this bound to the multiple task
setting as follows (this generalization may be most appealing on the additive domain). Let k � 1:

k-Fairness: For each N 2 N ; each i 2 N; and each c 2 CN ,

u('i(c); ci) � �
1

n

P
�2A

c�hki:

Note that for each k � 1; if a mechanism is k�fair, then it is (k + 1)�fair as well.

Finally, we investigate variations of the IPLB notion where the �identical preferences bound�
may be taken as a lower or upper bound on welfare conditional on whether an agent bene�ts or loses
from cooperation with the other agents.

Let N 2 N , i 2 N , and c 2 CN : In exchange economies, variety in preferences is typically good
news: trade among agents who have di¤erent preferences bene�t both parties of the trade. But in
the problem we study, the heterogeneity in preferences may be good or bad news for agent i since the
cost of an e¢ cient assignment in an economy c 2 CN can be greater or smaller than the one in the
reference economy ci 2 CN : One may argue that it is fair for agent i to bene�t from the heterogeneity
in preferences whenever it is good news, and lose whenever it is bad news, respectively. The following
two axioms represent this idea.

Conditional Identical-Preferences Lower-Bound (CIPLB): For each N 2 N ; each i 2 N; and
each c 2 CN , if W (c;A) �W (ci;A); then

u('i(c); ci) � �
W (ci;A)

n
:

15No de�cit is compatible with k�fairness for k � 3:
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Conditional Identical-Preferences Upper-Bound (CIPUB): For each N 2 N ; each i 2 N;
and each c 2 CN , if W (c;A) �W (ci;A); then

u('i(c); ci) � �
W (ci;A)

n
:

The next result presents the characterizations of Groves mechanisms that respect the welfare
bounds we introduced in this section. Note that parts (b), (d), and (e) are new results whereas part
(a) is parallel to Proposition 3 in Pápai (2003) and part (c) follows from Theorem 1 in Atlamaz and
Yengin (2008).

Proposition 2.
a) A Groves mechanism Gh;� is individually rational if and only if for each N 2 N , each i 2 N , and
each c 2 CN ;

hi(c�i) �W (c�i;A): (11)

b) A Groves mechanism Gh;� respects the stand-alone lower-bound if and only if for each N 2 N ,
each i 2 N , and each c 2 CN ;

hi(c�i) � 0: (12)

c) Let k � 2: On the additive domain, a Groves mechanism Gh;� is k�fair if and only if for each
N 2 N , each i 2 N , and each c 2 CNad;

hi(c�i) �W (c�i;A)�
1

n

P
�2A

(c��i)hk�1i: (13)

d) Let C 2 fCun; Cad; Csubg: A Groves mechanism Gh;� respects the conditional identical-preferences
lower-bound on the domain

S
N2N

CN if and only if for each N 2 N , each i 2 N , and each c 2 CN ,

hi(c�i) �
n� 1
n

W (c�i;A): (14)

e) A Groves mechanism Gh;� respects the conditional identical-preferences upper-bound if and only
if for each N 2 N , each i 2 N , and each c 2 CN ;

hi(c�i) � 0: (15)

Note that inequalities (4) and (14) are the same. Hence, even though the IPLB is in general a
stronger requirement than CIPLB, on the additive domain and on the subadditive domain, under
assignment-e¢ ciency and strategy-proofness, IPLB is equivalent to CIPLB. Hence, if we wish that
the agents bene�t from cooperation whenever cooperation reduces the cost of an e¢ cient assignment,
we need to ensure that they bene�t from cooperation whether or not cooperation reduces the cost of
an e¢ cient assignment.

Note that even though CIPLB and CIPUB are symmetrical requirements, (14) and (15) are
not. Also note that there is no Groves mechanism that respects both CIPLB and CIPUB since the
right-hand sides of (14) and (15) are incompatible in general.16

For further analysis of the relationships between the classes of mechanisms characterized in Propo-
sition 2, see Section 6.1.

16For Groves mechanisms, SALB is compatible with CIPUB. On either the unrestricted, or the additive, or the
subadditive domain; there is no Groves mechanism that respects both IPLB and CIPUB. This is because there are
cost pro�les for which the right-hand-sides of inequalities (3) and (4) are positive, which, by (15), contradicts CIPUB.
Similarly, on the additive domain, for k � 2; there is no k�fair Groves mechanism that respects CIPUB.
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5 Population Changes and Welfare Bounds

When a population increases (or decreases), the resources may need to be reallocated. In doing so,
two concerns arise. First, the center may wish to ensure that a welfare bound of its choice is still
respected in the new allocation. Second, since the population change is no agent�s fault, the center
may wish to ensure solidarity. In this section, we investigate whether these two goals are attainable
simultaneously. The compatibility of these two goals is not guaranteed in several economic models.
Fortunately, this is not the case in our model as our characterization results indicate.

Suppose new agents join some initial population. The cost of an e¢ cient assignment in the larger
population is at most as large as the one in the smaller population, which is good news for the society.
Since none of the agents in the initial population is responsible for the population growth, solidarity
would require that all of them be at least as well o¤ in the larger population as in the smaller one
(Thomson, 1983). Hence, the welfare level of an agent in the initial population acts as a welfare
lower bound for her in the new population.17

Population Monotonicity : For each pair fN;N 0g � N such that N 0 � N; each i 2 N 0, and each
c 2 CN ,

u('i(c); ci) � u('i(cN 0 ); ci):

It is easy to show that18 a Groves mechanism Gh;� is population monotonic if and only if for each
pair fN;N 0g � N such that N 0 � N; each i 2 N 0, and each c 2 CN ,

hi(c�i) � hi(cN 0 nfig): (16)

Population monotonicity has been studied in several models.19 In some of these models, it is a
rather strong property in the sense that it is incompatible with e¢ ciency and fairness criteria. For
instance, population monotonicity is incompatible with the equal-division lower-bound in exchange
economies (Kim, 2004) and in the problem of allocating a single divisible good over which agents
have single-peaked preferences (Thomson, 1995b). The following result shows that on any domain,
for Groves mechanisms, population monotonicity is compatible with IR, IPLB, SALB, and k�fairness
for k � 1.

Example 2. If for each N 2 N ; each i 2 N , and each c 2 CN ;

hi(c�i) = max
j2Nnfig

fcj(A)g;

then the Groves mechanism Gh;� satis�es population monotonicity, individual rationality, the
identical-preferences lower-bound, the stand-alone lower-bound, and k�fairness for k � 1.

Proof: Let k � 1; N 2 N , i 2 N; and c 2 CN : Since max
j2Nnfig

cj(A) � W (c;A); by equation (1),

u(Gh;�i (c); ci) � 0 � max
ci2C

f� 1
nW (c

i;A); �ci(A); � 1
n

P
�2A

c�
hki
g: Thus, Gh;� respects IR, IPLB, SALB,

and k-fairness. Since for each N 0 � N with i 2 N 0, max
j2Nnfig

cj(A) � max
j2N 0nfig

cj(A); then by (16), Gh;�

is population monotonic. �

17 In the working paper version of our paper, we also consider a strengthening of population monotonicity where the
minimum utility change under population increases is parameterized. Then, we characterize the Groves mechanisms
satisfying this stronger population monotonicity axiom and welfare bounds. The working paper version can be found
at �http://www.adelaide.edu.au/directory/duygu.yengin�and �https://economics.adelaide.edu.au/research/papers/�.
18See Proposition 3 in Yengin (2010).
19See Thomson (1995a) for a survey.
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It is easy to characterize the class of population monotonic Groves mechanisms that respect
SALB. Unfortunately, if we strengthen the welfare bound to IR, or IPLB, or k�fairness, then the h
functions associated with a population monotonic Groves mechanism do not have compact formula.
On the other hand, in the single-task case, we do obtain characterizations presented below.

Theorem 2:
(a) A Groves mechanism Gh;� satis�es population monotonicity and the stand-alone lower-bound if
and only if for each pair fN;N 0g � N such that N 0 � N; each pair fi; jg � N 0, and each c 2 CN ,

hi(c�i) � hi(cN 0 nfig) and hi(cj) � 0: (17)

Consider the single-task case. Without loss of generality, let A = f�g:
(b) A Groves mechanism Gh;� generates the minimal de�cit among all Groves mechanisms that
satisfy population monotonicity and individual rationality if and only if for each N 2 N ; each
i 2 N , and each c 2 CN ;

hi(c�i) = (c
�
�i)[n�1]: (18)

(c) A Groves mechanism Gh;� generates the minimal de�cit among all Groves mechanisms that
satisfy population monotonicity and the identical-preferences lower-bound if and only if for each
N 2 N ; each i 2 N , and each c 2 CN ;

hi(c�i) = max
p2f1;2;:::;n�1g

�
p

p+ 1
(c��i)[n�p]

�
: (19)

(d) Let k � 2: A Groves mechanism Gh;� generates the minimal de�cit among all Groves mechanisms
that satisfy population monotonicity and k�fairness if and only if for each N 2 N ; each i 2 N , and
each c 2 CN ;

hi(c�i) = max
t2f2;3;::;ng

max
s2f1;::;n+1�tg

�
(c��i)[s] �

1

t
(c��i)[s�2+min(k;t)]

�
: (20)

Comparison of Theorem 2 with Theorem 1 and Proposition 2 shows that if the center wishes
to guarantee that a welfare lower bound among IR, IPLB, or k�fairness, is respected in a growing
population while maintaining solidarity as the population increases, then the transfer function gets
quite complex compared to the transfers of a Groves mechanism respecting that welfare bound in a
�xed population. Although, in the �xed-population case, we could provide an intuitive interpreta-
tion of the transfers when a Groves mechanism respects a welfare lower-bound such as IPLB, such
interpretations are hard to come up with for the transfers speci�ed in Theorem 2.

6 Further Results

6.1 Logical Relations

It is easy to see that among the welfare lower bounds we considered so far, IR is the strongest one.
There are several other logical relations between these conceptually distinct welfare bounds, when
one also requires assignment-e¢ ciency and strategy-proofness. Note that all these welfare lower-
bounds are compatible, since the Pivotal mechanisms respect each of them on any domain. To see
this, let � 2 T and k � 1: By equation (1), for each N 2 N ; each i 2 N; and each c 2 CN ;
u(P �i (c); ci) =W (c�i;A)�W (c;A) � 0 � max

ci2C
f�ci(A);�W (ci;A)

n ;� 1
n

P
�2A

c�hkig; P
� satis�es IR, IPLB,

SALB, and k�fairness.

The following Table 2 presents the logical relations between di¤erent welfare lower-bounds for
Groves mechanisms. (See Appendix for the proof of these relations).
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Domain un. ad. sub. sup.
(i) X X X X IR ) IPLB SALB k � fair for k � 1
(ii) X X X X IPLB ) SALB
(iii) X IPLB , 2� fair
(iv) X X IPLB ) k � fair for k � 2
(v) X X CIPLB , IPLB
(vi) X X X CIPLB ) SALB
(vii) X X CIPLB ) k � fair for k � 2

Table 2: Logical Relations Under Assignment-E¢ ciency and Strategy-Proofness.

An alternative statement of the results in Table 2 is as follows. For instance, part (ii) can be
rephrased as �on any domain, if a Groves mechanism respects the identical-preferences lower-bound,
then it respects the stand-alone lower-bound�.

Let us denote the class of Groves mechanisms satisfying an axiom �A�as GA: Table 3 is based on
Table 2 and summarizes the relations between classes of Groves mechanisms that respect di¤erent
welfare lower bounds.

Domain

Unrest./Superad. for k � 2; GIR � GIPLB � GCIPLB � GSALB:

Additive for k > 2; GIR � GIPLB � GCIPLB � G2�fair � (Gk�fair \ GSALB):

Subadditive for k � 2; GIR � GIPLB � GCIPLB � (Gk�fair \ GSALB):

Table 3: Relations Between Di¤erent Classes of Groves Mechanisms.

It is interesting to note that although, conceptually, IPLB and 2�fairness have di¤erent motiva-
tions, on the additive domain or when there is a single task, since for k = 2; the right hand sides of
inequalities (4) and (13) are the same, the class of 2�fair Groves mechanisms is same as the class of
Groves mechanisms that respect IPLB (and CIPLB). Hence, by Table 2 (ii), on the additive domain,
if a Groves mechanism is 2�fair, then it respects SALB. For k > 2; there is no inclusion relationship
between GSALB and Gk�fair: This is because for k > 2; the RHS of inequality (13) can be negative
or positive depending on the cost pro�le.

Part (iv) of Table 2 is not an �if and only if�statement. To see that consider the following class
of mechanisms that are introduced by Porter et. al. (2004). Let k � 2 and � 2 T . Let F k;� = Gh;� be
such that inequality (13) holds as an equality. Let Fk � fF k;�g�2T be the class of these mechanisms.
Note that for each k � 2; mechanisms in Fk are k�fair on any domain. However, for k > 2; the
mechanisms in Fk violate IPLB on each of the domains we consider in this paper. The mechanisms
in F2 violate IPLB on the unrestricted, or the subadditive, or the superadditive domain:

Note that on the additive domain or when there is a single task, the mechanisms in Theorem 1b
are same as the mechanisms in F2: These mechanisms have some remarkable properties as shown in
Corollary 3 and Theorems 2 and 3, in Atlamaz and Yengin (2008).

Corollary 3 in Atlamaz and Yengin (2008) shows that the mechanisms in F2 are not only 2�fair
but also 1�fair. Hence, they are the most fair ones in the Rawlsian sense. The de�cit generated by
these mechanisms is the smallest one among all k-fair Groves mechanisms for k � 2: There is an
upper bound on this de�cit in any economy. Moulin (2009) states that when there is a single task,
the e¢ ciency loss of these mechanisms is the smallest among all Groves mechanisms.

By Theorem 3, in Atlamaz and Yengin (2008), the mechanisms in F2 also are the only k-fair
Groves mechanisms for k � 2; that preserve order : for each N 2 N , each fi; jg � N , each c 2 CN ;
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if ci(A) � cj(A) for each A 2 2A; then u('i(c); ci) � u('j(c); cj): That is, no agent is punished for
having lower costs than others.

The following result follows from our Theorem 1 and results in Atlamaz and Yengin (2008). This
result reinforces the appeal of our mechanisms presented in Theorem 1.

Remark 1. On the additive domain or when there is a single-task, the following statements are
equivalent:
(i) a Groves mechanism Gh;� belongs to F2 ,
(ii) Gh;� generates the minimal de�cit for each economy among all Groves mechanisms that respect
the identical-preferences lower-bound (or conditional identical-preferences lower-bound),

(iii) Gh;� generates the smallest de�cit for each economy among all 1-fair Groves mechanisms,

(iv) Gh;� generates the smallest de�cit for each economy among all order-preserving Groves mecha-
nisms satisfying k-fairness for k � 1;
(v) Gh;� is a 1-fair Groves mechanism such that the de�cit is bounded as follows: for each N 2 N
and each c 2 CN ,

P
i2N
ti(c) �

P
�2A

(c�[2] � c
�
[1]):

6.2 Welfare bounds and budget properties

One can argue that among all allocation mechanisms, Groves mechanisms that respect welfare bounds
meet several important criteria of the center, namely, e¢ ciency of assignments, incentive compati-
bility, and guaranteeing that welfare levels are �socially acceptable�or �just�. However, the center
is also generally concerned with the amount of budget imbalances.

Ideally, when agents are collectively responsible to perform the tasks, they should bear the total
cost of doing so, hence, the transfers should add up to zero (budget-balance). On the other hand,
an important function of the center is to ensure e¢ ciency and fairness in the society which are only
possible under strategy-proofness. Since, by Green and La¤ont (1977), no assignment-e¢ cient and
strategy-proof mechanism balances the budget, in order to ful�ll its functions, the center has to allow
for budget imbalances. In a way, the imbalance is the price of ful�lling these functions.

Fortunately, there are Groves mechanisms that respect an upper bound on total transfer (budget
de�cit). In general, the upper bound on the de�cit may depend on the economy. Consider an economy
where the e¢ cient assignment costs zero, that is no agent incurs any cost to perform the assigned
tasks. Then, agents do not need to be compensated, the assignment of tasks does not generate any
burden on agents. Suppose the center wishes to incur no de�cit in such economies, but agrees to
share some of the burden with agents whenever the cost of an e¢ cient assignment is positive. Also,
the higher the cost of an e¢ cient assignment, the larger part of it the center agrees to share. Suppose
the center wants to impose an upper bound on how much of the burden it would cover.

LetM be the set of all functions M :
S

N2N
CN ! R such that

(i) for each N 2 N and each c 2 CN with W (c;A) = 0; M(c) = 0 and
(ii) for each N 2 N and each pair fc; c0g � CN with W (c;A) �W (c0;A); M(c) �M(c0):

Let M 2M.
M�Bounded-De�cit (M�BD): For each N 2 N and each c 2 CN ,

P
i2N
ti(c) �M(c):

Note that for each M 2M; each N 2 N ; and each c 2 CN ; M(c) � 0:
We have seen that SALB is a weaker welfare lower bound than IR, IPLB, and CIPLB. Let us

investigate whether SALB is compatible with M -bounded de�cit.
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Proposition 3. Let M 2M. A Groves mechanism Gh;� satis�es the stand-alone lower-bound and
M -bounded de�cit if and only if for each N 2 N ; each i 2 N; and each c 2 CN ;

hi(c�i) = 0:

If M :
S

N2N
CN ! R is such that for each N 2 N and each c 2 CN ; M(c) = 0; then the total

transfer can not be positive. The mechanisms in Proposition 3 are the only ones that respect SALB
and that generate no-de�cit.20

On the additive domain, by Atlamaz and Yengin (2008), 2�fair Groves mechanisms violate no-
de�cit, but if a Groves mechanism is k�fair for k � 3; then it generates no-de�cit. (See Atlamaz and
Yengin (2008) for the characterization of k�fair Groves mechanisms that have bounded de�cits.)

By Tables 2 and 3, all individually rational Groves mechanisms respect SALB. It is easy to see
that there are economies for which the RHS of inequality (11) is positive. Hence, by Proposition 3,
there is no individually rational Groves mechanism that generates no-de�cit (or respectsM -bounded
de�cit for any M 2M): For instance, all Pivotal mechanisms violate no-de�cit.

By a similar argument, since there are economies for which the RHS of inequalities (3) and (4)
are positive, by Table 2 (ii) and Proposition 3, if a Groves mechanism respects IPLB, then it violates
M -bounded de�cit for any M 2M: By Table 2 (iv) and Proposition 3, same impossibility holds for
CIPLB on the additive, the subadditive, or the unrestricted domain. However, remember that on the
additive or the subadditive domain, for the mechanisms in Theorem 1, the de�cit approaches to zero
as population increases. Also, even if we can not obtainM�bounded de�cit, it is still possible to have
a bounded de�cit of a di¤erent type on the additive domain. On this domain, by Remark 1, a Groves
mechanism respects the IPLB and generates a de�cit bounded above by the amount

P
�2A

c�[2]�W (c;A)

if and only if it is as in Theorem 1: When there is a single task, this upper bound on de�cit is the
di¤erence of the second lowest cost and the lowest cost in the economy.

To sum up, for Groves mechanisms, no-de�cit (M -bounded de�cit) is compatible with SALB and
k�fairness for k � 3; on the other hand it is not compatible with the stronger welfare lower-bounds,
namely, CIPLB, IPLB, and IR. Hence, our results con�rms the usual trade-o¤ between equity and
e¢ ciency. As the lower bound on welfare gets stronger (hence the welfares guaranteed get higher),
the de�cit incurred by the center gets larger. As we have seen, for Groves mechanisms, SALB is
weaker than IPLB, which is weaker than IR. Among all Groves mechanisms that respect SALB,
the ones in Proposition 3 generate the minimal de�cit. Among all the individually rational Groves
mechanisms, the Pivotal mechanisms generate the minimal de�cit. Among all Groves mechanisms
that respect IPLB, the ones in Theorem 1 generate the minimal de�cit. Among these three classes
of Groves mechanisms, the de�cit generated by Pivotal mechanisms is the highest and the de�cit
generated by the mechanisms in Proposition 3 is the lowest.

7 Concluding Remarks

In problems where jointly owned resources are allocated, the society cares about the welfare levels
attained by its members. The study of welfare lower bounds has been carried out in several models
but for the case of Groves mechanisms such an analysis was missing, which our paper intends to
provide.

The identical-preferences lower-bound has been studied in several papers where objects are allo-
cated and budget is balanced. However, in these models, if non-dictatorial and non-trivial solutions
are sought, one can not obtain strategy-proofness which is an important property to prevent agents

20Note that the mechanisms in Proposition 3 are the only ones that respect SALB and CIPUB. They are also the ones
that generate the minimal budget surplus among all Groves mechanisms that respect CIPUB, and they Pareto-dominate
all Groves mechanisms that respect CIPUB.
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from manipulating the mechanism. Hence, we relax the budget balance requirement and restrict
our attention to the domain of quasi-linear preferences, and characterize assignment-e¢ cient and
strategy-proof mechanisms that respect welfare bounds.

Our results in Section 6.1 indicate that the identical-preferences lower-bound is weaker than
individual rationality and stronger than the stand-alone lower-bound (and k�fairness on the additive
domain). Individual rationality compensates the agents fully for their costs. The identical-preferences
lower-bound is appealing in problems where agents are responsible for their own preferences and
costs while the center wants to insure them against the e¤ects of the factors for which they are not
responsible, namely the heterogeneity in preferences.

In most NIMBY problems, the question is to site a single noxious facility. Our results indicate
that the mechanisms in Theorem 1 are very appealing for this case (see Remark 1). They are the only
assignment-e¢ cient and strategy-proof ones that respect IPLB (CIPLB) and minimize the de�cit
for each economy. The de�cit is almost zero in big populations. These mechanisms are also the
only 1�fair mechanisms with the minimal de�cit. They have bounded de�cits and satisfy SALB,
order-preservation, and no-envy.

We also characterized those Groves mechanisms which are population monotonic and respect
welfare bounds. However, the transfer functions of a population monotonic Groves mechanism get
very complicated if we impose any welfare lower bound which is stronger than SALB.

8 Appendix

Proof of Proposition 1:

a) For each N 2 N ; each i 2 N; and each c 2 CNun; let fci;ecig � Cun be such that for each A 2 2A;
ci(A) � maxf0;W (c�i;A)�W (c�i;AnA)g; (21)eci(A) � maxf0;W (c;A)�W (c�i;AnA)g: (22)

�If� Part: Let h be as in (3) in Proposition 1. Note that for each N 2 N ; each i 2 N; and each
c 2 CNun;

W (c;A) = min
A22A

fci(A) +W (c�i;AnA)g: (23)

That is, for each N 2 N ; each i 2 N; each c 2 CNun; and each A 2 2A; W (c;A) � ci(A)+W (c�i;AnA):
Hence,

ci(A) � maxf0;W (c;A)�W (c�i;AnA)g (24)

with equality for some A 2 2A (note that A may be empty):

� Claim 1: For each N 2 N ; each i 2 N; and each c 2 CNun;

W (ci;A) �W (eci;A):
Proof of Claim 1: Let N 2 N ; i 2 N; and c 2 CNun: By (22) and (24), for each A 2 2A; ci(A) � eci(A):
Hence, W (ci;A) �W (eci;A): �

� Claim 2: For each N 2 N ; each i 2 N; and each c 2 CNun;

W (c�i;A)�
1

n
W (ci;A) �W (c;A)� 1

n
W (eci;A): (25)

Proof of Claim 2: Let N 2 N ; i 2 N; and c 2 CNun. Let W (c;A) = W (c�i;A) � r for some
r 2 [0;W (c�i;A)]. Note that for each A 2 2A;

maxf0;W (c�i;A)� r �W (c�i;AnA)g � maxf0;W (c�i;A)�W (c�i;AnA)g � r:
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That is, for each A 2 2A; eci(A) � ci(A)� r:
For each A 2 2A; let di(A) � ci(A)� r: Note that eci = (ecij)j2N where for each j 2 N; ecij = eci: Since
for each A 2 2A; eci(A) � di(A); we have
W (eci;A) = minfX

j2N
eci(Aj) : (Aj)j2N 2 A(A; N)g � minfX

j2N
di(Aj) : (Aj)j2N 2 A(A; N)g: (26)

Let (A0j)j2N 2 argminf
P
j2N

di(Aj) : (Aj)j2N 2 A(A; N)g: Then,

minf
P
j2N

di(Aj) : (Aj)j2N 2 A(A; N)g =
P
j2N

di(A
0
j);

=
X
j2N

ci(A
0
j)� nr;

� minf
X
j2N

ci(Aj) : (Aj)j2N 2 A(A; N)g � nr;

= W (ci;A)� nr: (27)

Inequalities (26) and (27) together imply W (eci;A) �W (ci;A)� nr: Hence,
W (c;A)� 1

n
W (ci;A) + r �W (c;A)� 1

n
W (eci;A): (28)

Substituting W (c;A) =W (c�i;A)� r into the LHS of (28),

W (c�i;A)�
1

n
W (ci;A) �W (c;A)� 1

n
W (eci;A):

Hence, we obtain (25). �

By Claims 1 and 2, for each N 2 N ; each i 2 N; and each c 2 CNun; W (c�i;A) � 1
nW (c

i;A) �
W (c;A)� 1

nW (c
i;A): This inequality and (3) together imply that for each N 2 N ; each i 2 N; and

each c 2 CNun; hi(c�i) � W (c;A) � 1
nW (c

i;A): By equation (1), on the unrestricted domain, Gh;�
respects IPLB. �

�Only If�Part: Let Gh;� be a Groves mechanism that respects IPLB on the unrestricted domain.
Assume, by contradiction, that there are N 2 N , i 2 N , and c 2 CNun such that

hi(c�i) < W (c�i;A)�
1

n
W (ci;A): (29)

Let bc = (ci; c�i) 2 CNun: Since bc�i = c�i, by equation (1) and IPLB,
hi(c�i) �W (bc;A)� W (ci;A)

n
: (30)

By (21) and (23), W (bc;A) =W (c�i;A). This equality and (30) together contradict (29). �

b)�If�Part: Let h 2 H be as in (4) in Proposition 1 and C 2 fCad; Csubg:
� Claim: For each N 2 N ; each i 2 N; and each c 2 CN ;

n� 1
n

W (c�i;A) �W (c;A)�
1

n
W (ci;A): (31)
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Proof of the Claim: Assume, by contradiction, that there are N 2 N ; i 2 N , and c 2 CN such that

n� 1
n

W (c�i;A) < W (c;A)�
1

n
W (ci;A): (32)

Note that on the additive and the subadditive domains, for each ci 2 C; W (ci;A) = ci(A): This
equality and (32) together imply 1

nci(A) < � (W (c�i;A)�W (c;A)) + 1
nW (c�i;A): This inequality

and the fact that for each ci 2 C; W (c;A) �W (c�i;A) together imply

ci(A) < W (c�i;A): (33)

Since W (c;A) � ci(A) and W (ci;A) = ci(A); then

W (c;A)� 1

n
W (ci;A) � n� 1

n
ci(A): (34)

Inequalities (32) and (34) together imply W (c�i;A) < ci(A); which contradicts (33). �

By (4) and (31), for each N 2 N ; each i 2 N; and each c 2 CN ; hi(c�i) � W (c;A)� 1
nW (c

i;A): By
equation (1), Gh;� respects IPLB on the additive and the subadditive domains. �

�Only If� Part: Let Gh;� be a Groves mechanism that respects IPLB on the additive or the
subadditive domain. Let C 2 fCad; Csubg. Assume, by contradiction, that there are N 2 N , i 2 N ,
and c 2 CN such that

hi(c�i) <
n� 1
n

W (c�i;A): (35)

If CN = CNad; then let bci 2 Cad be such that for each A 2 2A; bci(A) =W (c�i;A)�W (c�i;AnA): Note
that (bci; c�i) 2 CNad.
If CN = CNsub; then let bci 2 Csub be such that for each A 2 2A; bci(A) = W (c�i;A): Note that
(bci; c�i) 2 CNsub.
Let bc = (bci; c�i): The fact that bc�i = c�i, equation (1), and IPLB together imply

hi(c�i) �W (bci; c�i;A)� 1

n
W (bc i;A): (36)

Note that W (bci; c�i;A) = W (c�i;A) = W (bc i;A): These equalities and (36) together imply
hi(c�i) � n�1

n W (c�i;A); which contradicts (35). ��

Proof of Theorem 1:
Let Gh;� be as in Theorem 1. LetN 2 N and c 2 CN : Since

P
i2N
th;�i (c) = �(n�1)W (c;A)+

P
i2N
hi(c�i);

for the de�cit be minimal,
P
i2N
hi(c�i) should be minimized: For each i 2 N; by IPLB, hi(c�i) has to

be as in (3) on the unrestricted domain, and as in (4) on the additive or the subadditive domain.
Hence, to minimize

P
i2N
hi(c�i), (3) ((4)) should hold as an equality on the unrestricted domain (on

the additive or the subadditive domain). �

Proof of Proposition 2:
(a) Let h 2 H be as in (11). Then, by equation (1), for each N 2 N , each i 2 N; and each c 2 CN ,
u(Gh;�i (c); ci) �W (c�i;A)�W (c;A) � 0: Hence, Gh;� is individually rational.
Conversely, let Gh;� be individually rational. Assume, by contradiction, that there are N 2 N , i 2 N;
and c 2 CN ; such that

hi(c�i) < W (c�i;A): (37)

21



Let bci 2 C be such that W (bci; c�i;A) =W (c�i;A): Let bc = (bci; c�i): Since c�i = bc�i and W (c�i;A) =
W (bc;A); by (1) and (37), u(Gh;�i (bc);bci) < 0; which contradicts individual rationality. �

(b) Let h 2 H be as in (12). Then, by equation (1), for each N 2 N , each i 2 N; and each c 2 CN ,
u(Gh;�i (c); ci) � �W (c;A) � �ci(A): Hence, Gh;� respects SALB.
Conversely, let Gh;� respect SALB. Assume, by contradiction, that there are N 2 N , i 2 N , and
c 2 CN such that

hi(c�i) < 0: (38)

Let bci 2 C be such that for each A 2 2A; bci(A) = 0: Note that bci is additive. Let bc = (bci; c�i) 2 CN :
By (1) and SALB, u(Gh;�i (bc);bci) = �W (bc;A) + hi(bc�i) � �bci(A): Since W (bc;A) = bci(A) = 0 andbc�i = c�i; hi(c�i) � 0; which contradicts (38). �

(c) Let k � 2 and h be as in (13). Note that for each N 2 N , each i 2 N , and each c 2 CNad;
W (c�i;A) �W (c;A); and for each � 2 A; (c��i)hk�1i � c�hki : Hence, for each N 2 N , each i 2 N , and
each c 2 CNad; W (c�i;A) � 1

n

P
�2A

(c��i)hk�1i � W (c;A) � 1
n

P
�2A

c�hki: By (1) and (13), G
h;� is k�fair on

the additive domain.

Conversely, for some k � 2; let Gh;� be k�fair on the additive domain. Assume, by contradiction,
that there are N 2 N , i 2 N; and c 2 CNad such that

hi(c�i) < W (c�i;A)�
1

n

P
�2A

(c��i)hk�1i: (39)

Let bci 2 Cad be such that for each � 2 A, bci(f�g) = (c��i)[1] and bc = (bci; c�i) 2 CNad: By k-fairness and
equation (1),

hi(bc�i) �W (bc;A)� 1

n

P
�2A
bc�hki: (40)

Since bc�i = c�i; by (39) and (40),
W (c�i;A)�W (bc;A) + 1

n

� P
�2A
bc�
hki
�
P
�2A

(c��i)hk�1i

�
> 0: (41)

Since for each � 2 A, bci(f�g) = (c��i)[1], then W (bc;A) =W (c�i;A) = P
�2A

(c��i)[1] and for each � 2 A;bc�
hki
= (c��i)hk�1i: These equalities together contradict (41). �

(d) Let h 2 H be as in (14) and C 2 fCun; Cad; Csubg:
� Claim: For each N 2 N ; each i 2 N; and each c 2 CN such that W (c;A) �W (ci;A);

n� 1
n

W (c�i;A) �W (c;A)�
1

n
W (ci;A): (42)

Proof of the Claim: Let N 2 N ; i 2 N , and c�i 2 CNnfig: Since for each ci 2 C; W (c;A) �W (c�i;A);
then n�1

n W (c�i;A) � W (c;A) � 1
nW (c;A):This inequality and the fact that W (c;A) � W (ci;A)

together imply (42). �

By (14) and (42), for each N 2 N ; each i 2 N; and each c 2 CN such that W (c;A) � W (ci;A);
hi(c�i) �W (c;A)� 1

nW (c
i;A): By equation (1), Gh;� respects CIPLB on the domain

S
N2N

CN .

Conversely, let Gh;� respect CIPLB on the domain
S

N2N
CN . Assume, by contradiction, that there

are N 2 N , i 2 N , and c 2 CN such that

hi(c�i) <
n� 1
n

W (c�i;A): (43)
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If CN = CNad; then let bci 2 Cad be such that for each A 2 2A; bci(A) =W (c�i;A)�W (c�i;AnA):
If CN 2 fCNun; CNsubg; then let bci 2 C be such that for each A 2 2A; bci(A) =W (c�i;A):
Let bc = (bci; c�i) 2 CN : Since W (bci; c�i;A) =W (bc i;A) =W (c�i;A); we have

W (bc;A)� 1

n
W (bc i;A) = n� 1

n
W (c�i;A): (44)

Since W (bci; c�i;A) �W (bc i;A); by (1) and CIPLB, hi(bc�i) �W (bc;A)� 1
nW (bc i;A): This inequality,

(44), and the fact that bc�i = c�i together contradict (43). �

(e) Let h 2 H be as in (15). Note that for each N 2 N ; each i 2 N; and each c 2 CN such that
W (c;A) �W (ci;A);

W (c;A)� 1

n
W (ci;A) � 0: (45)

By (15) and (45), for each N 2 N ; each i 2 N; and each c 2 CN such that W (c;A) � W (ci;A);
hi(c�i) �W (c;A)� 1

nW (c
i;A): By equation (1), Gh;� respects CIPUB.

Conversely, let Gh;� respect CIPUB. Assume, by contradiction, that there are N 2 N , i 2 N , and
c 2 CN such that

hi(c�i) > 0: (46)

Let bci 2 C be such that for each A 2 2A; bci(A) = 0 and bc = (bci; c�i) 2 CN :
Note that W (bc;A) = W (bc i;A) = 0: Since W (bc;A) � W (bc i;A); by (1) and CIPUB,
hi(bc�i) � W (bc;A) � 1

nW (bc i;A) = 0: This inequality and the fact that bc�i = c�i together
contradict (46). ��

For the next proofs, we need the following notation: Let c;bc;ec; ::: denote typical economies as-
sociated with the agent sets N; bN; eN; :::; respectively. For each N 2 N ; each i 2 N; each c 2 CN ,
and each r 2 f2; 3; :::; ng; let Cr be the set of economies that has r number of agents and Dr(N; i; c)
be the set of all economies obtained by removing the cost functions of any (n� r) number of agents
from c�i :

Notation 1. For each N 2 N ; each i 2 N; each c 2 CN , and each r 2 f2; 3; :::; ng;

Dr(N; i; c) � fc0 2 Cr: there exists N 0 � N with i 2 N 0 and jN 0j = r such that c0 = cN 0g:

Proof of Theorem 2:
(a) Let h 2 H be as in (17). By inequality (16), Gh;� satis�es population monotonicity. Assume, by
contradiction, that Gh;� does not respect SALB. Then, by Proposition 2b, there are N 2 N ; i 2 N;
and c 2 CN such that

hi(c�i) < 0: (47)

Let N 0 � N be such that N 0 = fi; jg for some j 2 N: By (17), hi(cj) � 0 and by population
monotonicity, hi(c�i) � hi(cj): Altogether, hi(c�i) � 0; which contradicts (47).
Conversely, let Gh;� satisfy population monotonicity and SALB. By inequality (12) and (16), h is as
in (17). �

The proof for the rest of the parts is constructive.

Consider the single-task case. Let A = f�g: Let Gh;� be a Groves mechanism that generates the
minimal de�cit in each economy among all Groves mechanisms that satisfy population monotonicity
and Axiom A�, where A� is IR in part (b), IPLB in part (c), and k�fairness with k � 2 in part (d).

23



Note that (16) can be rephrased as follows: A Groves mechanism Gh;� is population monotonic if
and only if for each N 2 N ; each i 2 N; each c 2 CN , each r 2 f3; :::; ng; and each bc 2 Dr(N; i; c),

hi(bc�i) � maxec2Dr�1( bN;i;bc) fhi(ec�i)g : (48)

Note that population monotonicity doesn�t impose any restriction on economies with two agents, so
we take r � 3.

As an example, let N = f1; 2; 3; 4g and c 2 CN : Let Gh;� be population monotonic. Then, (48)
should be true for N; c; and i = 1: That is,

� for r = n = 4; h1(c2; c3; c4) � max fh1(c2; c3); h1(c2; c4); h1(c3; c4)g ; and
� for r = 3; for each pair fj; kg � f2; 3; 4g; h1(cj ; ck) � max fh1(cj); h1(ck)g :

Let N 2 N and c 2 CN : Note that since A = f�g, for each i 2 N; W (c�i;A) = (c��i)[1]:
Since

P
i2N
th;�i (c) = �(n � 1)W (c;A) +

P
i2N
hi(c�i); to minimize the de�cit we need to minimizeP

i2N
hi(c�i): For each i 2 N; population monotonicity and Axiom A� restrict the minimal value

that hi(c�i) can take, which we investigate in the rest of the proof.

(b) By (48) and (11), population monotonicity and IR together imply, for each i 2 N and eachbc 2 D2(N; i; c),
hi(bc�i) � (bc��i)[1]; (49)

(note that population monotonicity doesn�t impose any restriction on economies with two agents,
hence the only restriction on economies in D2(N; i; c) is by IR),
and for each i 2 N , each r 2 f3; :::; ng; and each bc 2 Dr(N; i; c),

hi(bc�i) � max maxec2Dr�1( bN;i;bc) fhi(ec�i)g ; (bc��i)[1]
!
: (50)

To minimize the de�cit, (49) and for r = 3; (50) should hold as an equality. Then, for each i 2 N
and each bc 2 D3(N; i; c),

hi(bc�i) = max maxec2D2( bN;i;bc)
�
(ec��i)[1]	 ; (bc��i)[1]

!
: (51)

Note that for each i 2 N , each r 2 f3; :::; ng; each bc 2 Dr(N; i; c), and each s 2 f1; 2:::; r � 2g;
maxec2Dr�1( bN;i;bc)(ec��i)[s] = (bc��i)[s+1]. (52)

(Let c0 be a maximizer of the LHS of (52). Then, c0 is obtained from bc by removing the cost function
of an agent with the lowest cost in (bc��i). That is, c0 = bc�j where bc�j = (bc��i)[1]:)
By (51) and (52), for each i 2 N and each bc 2 D3(N; i; c),

hi(bc�i) = max �(bc��i)[2]; (bc��i)[1]� = (bc��i)[2]: (53)

Similarly, to minimize the de�cit, for r = 4; (50) should hold as an equality. Then, by (52) and (53),
for each i 2 N and each bc 2 D4(N; i; c),

hi(bc�i) = max

 
maxec2D3( bN;i;bc)

n
max(ec��i)[2]o ; (bc��i)[1]

!
;

= max
�
(bc��i)[3]; (bc��i)[1]� = (bc��i)[3]:
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By recursive substitution, at each step applying (52) and minimizing the de�cit (i.e., (50) holding
as an equality for each r 2 f3; :::; ng), we obtain, for each i 2 N , each r 2 f3; :::; ng; and eachbc 2 Dr(N; i; c),

hi(bc�i) = max �(bc��i)[r�1]; (bc��i)[1]� = (bc��i)[r�1]:
Note that bc 2 Dn(N; i; c) if and only if bc = c: Hence, for r = n; we obtain the h function in (18). �
(c) By (48) and (4), population monotonicity and IPLB together imply, for each i 2 N and eachbc 2 D2(N; i; c),

hi(bc�i) � 1

2
(bc��i)[1]; (54)

and for each i 2 N , each r 2 f3; :::; ng; and each bc 2 Dr(N; i; c),
hi(bc�i) � max maxec2Dr�1( bN;i;bc) fhi(ec�i)g ; r � 1r (bc��i)[1]

!
: (55)

To minimize the de�cit, (54) and for r = 3; (55) should hold as an equality. Then, for each i 2 N
and each bc 2 D3(N; i; c),

hi(bc�i) = max maxec2D2( bN;i;bc)
�
1

2
(ec��i)[1]� ; 23(bc��i)[1]

!
: (56)

By (56) and (52), for each i 2 N and each bc 2 D3(N; i; c),
hi(bc�i) = max�1

2
(bc��i)[2]; 23(bc��i)[1]

�
: (57)

Similarly, to minimize the de�cit, for r = 4; (55) should hold as an equality. Then, by (57) and a
similar argument to (52), for each i 2 N and each bc 2 D4(N; i; c),

hi(bc�i) = max

 
maxec2D3( bN;i;bc)

�
max

�
1

2
(ec��i)[2]; 23(ec��i)[1]

��
;
3

4
(bc��i)[1]

!
;

= max

�
1

2
(bc��i)[3]; 23(bc��i)[2]; 34(bc��i)[1]

�
:

By recursive substitution, at each step applying (52) and minimizing the de�cit (i.e., (55) holding
as an equality for each r 2 f3; :::; ng), we obtain, for each i 2 N , each r 2 f3; :::; ng; and eachbc 2 Dr(N; i; c),

hi(bc�i) = max

�
1

2
(bc��i)[r�1]; 23(bc��i)[r�2]; 34(bc��i)[r�3]; :::; r � 1r (bc��i)[1]� ;

= max
p2f1;2;:::;r�1g

�
p

p+ 1
(bc��i)[r�p]� :

Note that bc 2 Dn(N; i; c) if and only if bc = c: Hence, for r = n; we obtain the h function in (19). �
(d) By (48) and (13), population monotonicity and k�fairness together imply, for each i 2 N and
each bc 2 D2(N; i; c),

hi(bc�i) � (bc��i)[1] � 12(bc��i)hk�1i; (58)
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and for each i 2 N , each r 2 f3; :::; ng; and each bc 2 Dr(N; i; c),
hi(bc�i) � max maxec2Dr�1( bN;i;bc) fhi(ec�i)g ; (bc��i)[1] � 1r (bc��i)hk�1i

!
: (59)

To minimize the de�cit, (58) and for r = 3; (59) should hold as an equality. Then, for each i 2 N
and each bc 2 D3(N; i; c),

hi(bc�i) = max maxec2D2( bN;i;bc)
�
(ec��i)[1] � 12(ec��i)hk�1i

�
; (bc��i)[1] � 13(bc��i)hk�1i

!
: (60)

Observation 1: For each i 2 N; each r 2 f2; :::; ng; and each bc 2 Dr(N; i; c),
(bc��i)[1]�1r (bc��i)hk�1i � (bc��i)[1]�1r (bc��i)[min(k�1;r�1)] � maxt2frg

max
s2f1;::;r+1�tg

�
(bc��i)[s] � 1t (bc��i)[s�2+min(k;t)]

�
:

Proof: Note that there are r � 1 = j bNnfigj agents in bc�i. Hence, (bc��i)hk�1i = (bc��i)[min(k�1;r�1)]: �
Let r 2 f3; :::; ng and t 2 f2; 3; :::; r � 1g:

Observation 2: For each i 2 N , each bc 2 Dr(N; i; c), and each m 2 f1; 2; :::; r � tg;

maxec2Dr�1( bN;i;bc)
�
max
s2fmg

f(ec��i)[s] � 1t (ec��i)[s�2+min(k;t)]g
�
= max
s2fm;m+1g

�
(bc��i)[s] � 1t (bc��i)[s�2+min(k;t)]

�
:

(61)
Proof: Let ec 2 Dr�1( bN; i;bc) be a maximizer of (61). Since j eN j = j bN j � 1 = r � 1 and i 2 eN; thenec = bc�j for some j 2 bNnfig: That is, we obtain ec�i by removing the cost function of one agent frombc�i: Hence, either (i) (ec��i)[m] = (bc��i)[m] or (ii) (ec��i)[m] = (bc��i)[m+1]:
In order to maximize (61), given (ec��i)[s]; we need (ec��i)[s�2+min(k;t)] as small as possible. Note
that since min(k; t) � 2; then (ec��i)[s] � (ec��i)[s�2+min(k;t)]: Thus, if (i) holds, then ec�i in-
cludes the �rst r � 2 smallest costs in bc�i; i.e., ec�i = ((bc��i)[1]; (bc��i)[2]; :::; (bc��i)[bn�2]). In
this case, (ec��i)[m�2+min(k;t)] = (bc��i)[m�2+min(k;t)]: Similarly, if (ii) holds, then ec�i includes
the last r � 2 smallest costs in bc�i; i.e., ec�i = ((bc��i)[2]; (bc��i)[3]; :::; (bc��i)[bn�1]) which implies
(ec��i)[m�2+min(k;t)] = (bc��i)[m�1+min(k;t)]: �

Observation 3: For each i 2 N; each r 2 f3; :::; ng; and each bc 2 Dr(N; i; c),
maxec2Dr�1( bN;i;bc)

�
max

t2f2;::;r�1g
max

s2f1;::;r�tg
f(ec��i)[s] � 1

t (ec��i)[s�2+min(k;t)]g�
= max
t2f2;::;r�1g

maxec2Dr�1( bN;i;bc)
�

max
s2f1;::;r�tg

f(ec��i)[s] � 1
t (ec��i)[s�2+min(k;t)]g� ;

= max
t2f2;::;r�1g

max
s2f1;:::;r+1�tg

�
(bc��i)[s] � 1

t (bc��i)[s�2+min(k;t)]	 :
Proof: The second equality follows from Observation 2. �

By (60) and Observations 1 and 3, for each i 2 N and each bc 2 D3(N; i; c),
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hi(bc�i) = max

 
maxec2D2( bN;i;bc)f maxt2f2g

max
s2f1;::;3�tg

f(ec��i)[s] � 1t (ec��i)[s�2+min(k;t)]gg; (bc��i)[1] � 13(bc��i)hk�1i
!
;

= max

�
max
t2f2g

max
s2f1;::;4�tg

f(bc��i)[s] � 1t (bc��i)[s�2+min(k;t)]g; (bc��i)[1] � 13(bc��i)hk�1i
�
;

= max

�
max
t2f2g

max
s2f1;::;4�tg

f(bc��i)[s] � 1t (bc��i)[s�2+min(k;t)]g;maxt2f3g
max

s2f1;::;4�tg
f(bc��i)[s] � 1t (bc��i)[s�2+min(k;t)]g

�
= max

t2f2;3g
max

s2f1;::;4�tg

�
(bc��i)[s] � 1t (bc��i)[s�2+min(k;t)]

�
: (62)

Similarly, to minimize the de�cit, for r = 4; (59) should hold as an equality. Then, by (62), for each
i 2 N and each bc 2 D4(N; i; c),
hi(bc�i) = max maxec2D3( bN;i;bc)

�
max
t2f2;3g

max
s2f1;::;4�tg

f(ec��i)[s] � 1t (ec��i)[s�2+min(k;t)]g
�
; (bc��i)[1] � 14(bc��i)hk�1i

!
:

This equation and Observations 1 and 3 together imply, for each i 2 N and each bc 2 D4(N; i; c),
hi(bc�i) = max

t2f2;3;4g
max

s2f1;::;5�tg

�
(bc��i)[s] � 1t (bc��i)[s�2+min(k;t)]

�
:

By recursive substitution, at each step applying Observations 1 and 3, and minimizing the de�cit
(i.e., (59) holding as an equality for each r 2 f3; :::; ng), we obtain, for each i 2 N , each r 2 f3; :::; ng;
and each bc 2 Dr(N; i; c),

hi(bc�i) = max
t2f2;3;::;rg

max
s2f1;::;r+1�tg

�
(bc��i)[s] � 1t (bc��i)[s�2+min(k;t)]

�
:

Note that bc 2 Dn(N; i; c) if and only if bc = c: Hence, for r = n; we obtain the h function in (20).��
Proof of Table 2:

(i) Let Gh;� be individually rational. Then, for each N 2 N ; each i 2 N; and each c 2 CN ;
u(Gh;�i (c); ci) � 0: Since 0 � max

ci2C
f�W (ci;A)

n ;�ci(A);� 1
n

P
�2A

c�hkig; G
h;� respects IPLB, SALB, and

k�fairness for k � 1.
(ii) Let Gh;� be a Groves mechanism that respects IPLB. Then, for each N 2 N ; each i 2 N; and
each c 2 CN , u(Gh;�i (c); ci) � � 1

nW (c
i;A): Since 1

nW (c
i;A) � W (ci;A) � ci(A); then Gh;� respects

SALB.

(iii) On the additive domain, for each N 2 N ; each i 2 N; and each c 2 CN ,
P
�2A

(c��i)[1] =W (c�i;A):

Hence, the result follows from the fact that on the additive domain, inequalities (4) and (13) are the
same for k = 2:

(iv) Let C 2 fCad; Csubg: Let Gh;� be a Groves mechanism that respects IPLB on the domain
S

N2N
CN :

Let N 2 N ; i 2 N; and c 2 CN :By Proposition 1b and equation (1), u(Gh;�i (c); ci) � W (c�i;A) �
W (c;A)� 1

nW (c�i;A): Note that W (c�i;A) �W (c;A); for each k � 2 and each � 2 A; (c
�
�i)hk�1i �

c�hki; and W (c�i;A) �
P
�2A

(c��i)hk�1i : Altogether, for each k � 2, u(G
h;�
i (c); ci) � � 1

n

P
�2A

c�hki; that is,

Gh;� is k�fair on the domain
S

N2N
CN :

(v) Follows from Proposition 1b and Proposition 2d.
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(vi) Let C 2 fCun; Cad; Csubg: Let Gh;� be a Groves mechanism that respects CIPLB on the domainS
N2N

CN : Then, on
S

N2N
CN ; h is as in (14). The result follows from the fact that for each N 2 N ;

each i 2 N; and each c 2 CN , the RHS of inequality (14) is greater than the RHS of (12).
(vii) The result follows from (iv) and (v). �

Proof of Proposition 3:

Let h 2 H be as in Proposition 3. Then, by equation (1), for each N 2 N , each i 2 N; and each
c 2 CN , u(Gh;�i (c); ci) = �W (c;A) � �ci(A): Hence, Gh;� satis�es SALB.
Note that for each M 2 M; each N 2 N ; and each c 2 CN ; M(c) � 0: Since for each N 2 N and
each c 2 CN ,

P
j2N

th;�j (c) = �(n� 1)W (c;A) � 0; Gh;� respects M -bounded de�cit for any M 2M:

Conversely, let M 2 M and Gh;� satisfy SALB and M -bounded de�cit. Assume, by contradiction,
that there are N 2 N ; i 2 N; and c 2 CN such that hi(c�i) 6= 0: By SALB and (12), hi(c�i) > 0
and

P
j2N

hj(c�j) > 0: Now, let bci 2 C be such that for each A 2 2A; bci(A) = 0 and bc = (bci; c�i): Sincebc�i = c�i; we have hi(bc�i) = hi(c�i) > 0: By SALB and (12),
P
j2N

hj(bc�j) > 0: This inequality and
M -bounded de�cit together imply

�(n� 1)W (bc;A) < �(n� 1)W (bc;A) +X
j2N

hj(bc�j);
=

X
j2N

th;�j (bc);
� M(bc): (63)

SinceW (bc;A) = bci(A) = 0; we haveM(bc) = 0: Then, inequality (63) is 0 < 0 which is a contradiction.
�
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