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Small Sample Improvements of the GEL Robust Tests
for Linear IV Models and Applications

Abstract

In order to improve the small sample performance of the Generalized Empirical Likelihood

Kleibergen type tests (GELK), we propose to re-weight the variance of moments matrix

with GEL probabilities. Our modi�cation improves GELK signi�cantly by cutting the size

distortion in half. Using simulations, we compare the performance of our modi�ed tests

with Kleibergen�s K-test and the original GELK tests in a dynamic panel setting. As an

empirical application, we use the Arellano and Bond�s dynamic panel data for 140 UK �rms

to estimate labor demand. We compare our results with the traditional Wald test to illustrate

the practical importance of using tests which are robust to weak instruments in a dynamic

panel setting.

Keywords: GELK, weak instruments, dynamic panel, empirical likelihood.
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1 Introduction

The linear instrumental variable (IV) model is widely used in the economic literature. How-

ever, when the instruments used in this model are weak, the commonly used two step pro-

cedures such as the Generalized Method of Moments (GMM) and Two-Stage Least Squares

(2SLS) become problematic. Under weak instruments, the standard asymptotics provide a

poor approximation to the sampling distribution, the con�dence intervals are poor and the

traditional Wald type hypothesis tests for the location of the parameters are size distorted

and lead to wrong conclusions. Figure (1) illustrates the size distortion for a simple panel

AR(1) model which can be viewed as a linear IV model1. In this picture the instruments

are weak when the parameter on the x-axis is close to 1. This shows that instead of the

perceived size of 5%, the actual size of the Wald test statistic can be over 70%, that is the

Wald test mistakenly rejects the null hypothesis of signi�cance over 70% of the time when

we think it only does it 5% of the time. Hence, over 70% of the time our conclusions are

wrong. To remedy this problem the literature has evolved away from point estimation and

towards tests that are robust to weak instruments. Such tests include the tests of Anderson-

Rubin (1949), Kleibergen (2002, 2004,2005a, 2005b), Moreira (2002), and the Generalized

Empirical Likelihood Kleibergen type tests (GELK) of Guggenberger (2003), Caner (2008)

and Guggenberger and Smith (2005)2. This paper focuses on improving the small sample

performance of the GELK tests and provides an empirical example of labour demand model

1The data generating process for this model is described in detail in the simulation section.
2The Anderson-Rubin test has its disadvantage in the power properties when the number of instruments

is large, since its degrees of freedom depend on the number of instruments. The Moreira test is hard to
compute for the Generalized Empirical Likelihood (GEL). Thus, we focus on the Kleibergen type of tests
including the Kleibergen test and its GEL alternatives.

Page: 3



The University of Adelaide, School of Economics Working Paper Series No:0098 (2010-03)

to illustrate the importance of using tests that are robust to weak instruments.

The Kleibergen test is based on the Continuous Updating GMM framework developed

by Hansen (1982). The alternatives to the Kleibergen test are the Generalized Empirical

Likelihood (GEL) counterparts developed by Guggenberger (2003) and Caner (2008), which

are based on the GEL framework developed by Qin and Lawless (1994), Hansen, Heaton and

Yaron (1996), Smith (1997) and Kitamura and Stutzer (1997). The GEL methodology has

been proposed speci�cally to improve the small sample performance of GMM. The higher

order properties of the GEL point estimators were studied by Newey and Smith (2000) who

showed that the GEL estimators exhibit better small sample performance. They have also

reported that the GEL estimators perform better in the case of outliers and errors from fat

tailed distributions. This is true since the estimated GEL probabilities reweigh the moments

and place less weights on the outliers. Similarly to point estimators, the GELK test has

been proposed as an alternative to the original K test in order to improve K tests�s small

sample performance. Asymptotically, these tests are equivalent but in small samples it is

not clear which test performs better and when. As we show in our paper, all of the original

tests are considerably size distorted in the case of a simple dynamic panel model. Moreover,

the existing GELK tests have not been able to outperform the K test.

This paper mainly consists of three parts. First, we propose a modi�cation to the existing

GELK tests by reweighting the variance matrix. We argue that the estimator for the variance

of moments used in the existing GELK tests does not use all of the bene�cial information from

the GEL framework, namely the estimated GEL probabilities. Alternatively, we propose

a modi�cation to the GELK statistics in order to improve their size properties. This is

accomplished by reweighting their variance estimator with GEL probabilities. Next, we
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conduct simulations for a simple panel AR(1) model with �xed e¤ects which can be written

as a linear IV model. This model is especially interesting because the quality of instruments

depends on the unknown parameter of interest. Hence, it is impossible to know in advance

whether the instruments are weak. We �nd that our modi�cation improves three out of the

four GELK tests considered. It cuts the original size distortion almost in half. It also makes

one of these tests perform better than Kleibergen�s K test in terms of size. Last, for an

empirical application, we take the model of employment equations based on the Arellano

and Bond (1991) data for 140 UK �rms observed over the nine-year period of 1976-1984. We

compare the performance of the joint signi�cance tests and the con�dence intervals for each

coe¢ cient. We consider endogenous and exogenous speci�cations of the model and �nd the

presence of weak instruments. We show that the conclusions one would make from a GMM

procedure would be misleading.

The rest of the paper is organized as follows. Section 2 describes the model. Section

3 outlines the construction of the K test. Sections 4 and 5 explain the GEL methodology

and GELK test procedures. Section 6 provides the modi�cation of GELK tests. Section 7

presents simulations for a dynamic panel model while Section 8 discusses an application to

labor demand. Section 9 concludes.
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2 Model

Consider the following linear instrumental variable (IV) model

Y = X�+ " (1)

X = Z� + v

where Y is an N � 1 vector of the dependent variable, X is an N � m matrix of the

independent variables, and Z is an N�k matrix of the instruments (k � m), " and v are the

vectors of error terms and � and � are the unknown parameters. The moment conditions

hold at the unique value of � = �h. To estimate the parameters of interest we use the

orthogonality-moment conditions for each i

E[Z 0i(Yi �Xi�h)] = 0 (2)

where Z 0i is a k � 1 vector of instruments for individual i.

These instruments are valid if � has a �xed full rank. If � = 0, the instruments are

considered to be invalid. The instruments are called weak if � = 1p
N
C where C is a �xed

full rank k �m matrix. In this paper we are particularly interested in the case where the

instruments may be weak.

The most common estimation procedures for this model are the two stage least squares

(2SLS) and the Generalized Method of Moments (GMM). However, these procedures become

problematic in the cases where the instruments are weak. In these cases, the point estimators

are biased, the con�dence intervals are inaccurate and the test statistics used for testing the
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estimated coe¢ cients are size distorted.

In order to know whether our inference is reliable, it would be helpful to know if the

instruments we are using are strong. Stock, Wright and Yogo (2002) suggest the rule of

thumb: if the joint F-statistic is large enough (10 or greater) then we can suppose the

instruments are strong. However, this rule of thumb works for the models with only one

endogenous variable. When dealing with a set of endogenous variables instead, which is

mostly the case in practice, the procedure for testing the quality of instruments becomes

complicated and hard to use.

Next, we outline the procedures to compute the K and GELK tests, and suggest some

improvements for the latter.

3 Kleibergen Test Overview

3.1 Testing All Parameters Jointly

The Kleibergen test3 uses the derivative of the objective function for the continuous updating

GMM estimator:

J(�) =  0NV  (�)
�1 N (3)

where

V  (�) = lim
N!1

E

"
1

N

NX
i=1

NX
j=1

� i(�)
� j(�)

0

#
(4)

3For full derivations see Kleibergen (2002, 2004, 2005a)
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is the variance of moments,  i = Z 0i(Yi � Xi�0) are the moments for individual i,  N =PN
i=1  i(�), and � i(�) =  i(�)� E[ i(�)].

The infeasible K-statistic has the form

K(�0) =
1

N
 0NV  (�0)

�1DN(�0)
�
DN(�0)

0V  (�0)
�1DN(�0)

��1
DN(�0)

0V  (�0)
�1 N (5)

where

DN(�) =
@ N
@�

� V� V  (�)
�1 N (6)

= �
NX
i=1

Z 0iXi � V� V  (�)
�1 N

and

V� = lim
N!1

E[
1

N

X
i

X
j

(
@� i(�)

@�
)� j(�)] (7)

This K-statistic is distributed �2 withm degrees of freedom (for detailed proof see Kleibergen

(2004)).

To make this statistic feasible we replace the unknown variance matrices with their con-

sistent estimators. Here, we consider the most common, easily computable choice of the

variance estimators:

V̂  (�) =
1

N

NX
i=1

 ̂i(�) ̂i(�)
0 (8)
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and

V̂� =
1

N

NX
i=1

@

@�
 ̂i(�) ̂i(�)

0 (9)

=
1

N

NX
i=1

(�Z 0iXi 
0
i +

1

N

NX
i=1

Z 0iXi) ̂i(�)
0

where  ̂i(�) =  i(�)� 1
N

NP
i=1

 i(�).

Similarly, we obtain a feasible matrix D by substituting the covariance matrices with

their estimators from equations (8) and (9):

D̂N(�0) = �
NX
i=1

Z 0iXi � V̂� V̂
�1
  (10)

Thus, the feasible K-statistic has the following equation:

K(�0) =
1

N
 0N V̂  (�0)

�1D̂N(�0)
h
D̂N(�0)

0V̂  (�0)
�1D̂N(�0)

i�1
D̂N(�0)

0V̂  (�0)
�1 N (11)

3.2 Testing the Subset of Parameters

In most models, including the empirical application considered in this paper, we are interested

in testing each parameter separately rather than in testing all parameters jointly. In this

paper�s empirical application we test the subset of parameters using the procedures which

were proposed by Kleibergen (2005b). Here, we brie�y outline these procedures.
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First, we decompose our model in the following way:

Y = X1� +X2 + " (12)

X1 = Z�1 + v1

X2 = Z�2 + v2

where X1 and X2 are N�m1 and N�m2 matrices, �1 and �2 are k�m1 and k�m2 vectors

of unknown parameters and ", v1 and v2 are vectors of error terms, such that m1+m2 = m,

and � is our parameter of interest. To test the hypothesis H0 : � = �0 we use Kleibergen�s

(2005b) results.

As the �rst step, we use a maximum likelihood estimator (MLE) of , ~. To �nd this

estimator we use the fact that the likelihood is inverse proportionate to the AR statistic, so

we maximize the AR statistic over :

max


1

AR(�0; )
(13)

This is equivalent to numerically solving equation (14) for ~

2

s""
~�2(�0)

0Z 0(Y �X�0 �X2~) = 0 (14)
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where

~�2(�0) = (Z 0Z)�1Z 0[X2 � (Y �X1�0 �X2~)
s"X2(�0)

s""(�0)
] (15)

s""(�0) =
(Y �X1�0 �X2~)

0MZ(Y �X1�0 �X2~)

N � k

s"X2(�0) =
(Y �X1�0 �X2~)

0MZX2

N � k

As the second step, we compute the K(�0) statistics

K(�0) =
1

s""(�0)
(Y �X1�0 �X2~)

0PMZ�2(�0)
Z~�1(�0)(Y �X1�0 �X2~) (16)

where ~�1(�0) = (Z
0Z)�1Z 0[X � (Y �X1�0 �X2~)

s"X1 (�0)

s""(�0)
] and s"X1(�0) =

1
N�k (Y �X1�0 �

X2~)
0MZX1.

This statistic�s limiting distribution is bounded from above by �2(m1) distribution (for

proof see Kleibergen (2005b)). Thus, using this distribution provides us with a conservative

test.

To obtain the con�dence intervals we select the grid of possible values of � : �1; :::; �M

and plot 1 � pvalue(�j) for each of the values of �j, j = 1; :::;M . The con�dence region is

the area above this curve. For example, if one is interested in a 95% con�dence set, we draw

a 0.95 line across the graph and look for the points of intersection with the 1-pvalue curve.

The interval above the curve and between the intersection points is the con�dence interval.

In some cases it is possible to have empty sets or a whole real line as a con�dence set. When

the con�dence set is unbounded we do not have enough information to say anything about

the value of our parameter.
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4 GEL point estimator

In this paper we follow the GEL formulation adopted by Guggenberger (2003) and Guggen-

berger and Smith (2005). The GEL estimators solve the following problem

min
�2�

sup
�2�

P̂�(�; �) (17)

where P̂�(�; �) = 2
N

PN
i=1 �(�

0 �) � �(0), �(�) is a function of the corresponding estimator

from the GEL class, � is called the Lagrange Multiplier, and the subscript � denotes the

corresponding name of the estimator.4

We focus on three standard estimators of the GEL class with the corresponding function

�: the Empirical Likelihood estimator (EL) with �(�0 �) = ln(1 � �0 �), the Exponential

Tilting estimator (ET) with �(�0 �) = �e�0 � , and the Continuous Updating Estimator

(CUE) with �(�0 �) = �(1 + �0 �)2.5 Thus,

P̂EL(�; �) = 2
NX
i=1

ln(1� �0 �(�))=N (18)

P̂ET (�; �) = 2

NX
i=1

�e�0 �(�)
N

+ 2 (19)

P̂CUE(�; �) = 2
NX
i=1

�(1 + �0 �(�))2
2N

� 1=2 (20)

The estimation procedure in equation (17) is conducted in two steps. First, we maximize

4We follow Guggenberg�s remapping by subtracting �(0) for computational ease. Other papers in the
literature might not do so. This does not alter the results in any way.

5Note that this is not the same estimator as the Continuous Updating GMM. For the circumstances when
they are equivalent see Guggenberger (2003).
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over the Lagrange Multipliers � and denote the solution to this maximization problem

�(�) = argmax
�2�

P̂�(�; �) (21)

where � is the domain of �.6 Then, to obtain the GEL point estimators, we plug the

maximal multipliers from (21) into the original function in (17) and denote it

Q�(�) = P̂�(�; �(�)) (22)

The function in (22) is the GEL counterpart of the GMM�s objective function J and, hence,

it is called the GEL objective function. Analogously to GMM, in order to obtain the GEL

point estimator we minimize the corresponding objective function Q� with respect to �.

However, the tests discussed in this paper are evaluated at the null parameter and, hence,

we forgo the second step (which is used to �nd the point estimator of �) and only use the

�rst step.

5 GELK test

The GELK test is often referred to as the GEL alternative to K-test. The di¤erence is that

it is based on the GEL objective function Q� instead of that of the GMM. The original

reason for developing GELK tests was the hope that the GEL procedure can detect the

outliers (errors from the fat tails) which is a common occurrence in dynamic panels, and put

a smaller weight on such data, so that the tests perform better then the K-test above.

6In the case of EL, � = f� : �0 � < 1} for all i. In all other cases � = Rk.
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Following the notation in Guggenberger (2003), we consider two types of his GELK test

statistics: Wald and Lagrange Multiplier, denoted as GELKW and GELKLM respectively.

Both of these tests are computed by evaluating the �rst order condition of the GEL objective

function in (22) at the null.7

The �rst order derivative is denoted

dQ� =
@P̂�(�0; �(�0))

@�
� 2�0(�)D�(�)

where D�(�) denotes the derivative of the corresponding GEL function �(�). This derivative

takes the following expressions for di¤erent GEL class estimators:

DEL(�) =
1

N

X
i

1

1� �0 i(�)
(Z 0iXi) (23)

DET (�) =
1

N

X
i

e�
0 �Z 0iXi (24)

and

DCUE =
1

N

X
i

(1 + �0 �)Z
0
iXi (25)

Thus, Guggenberger�s infeasible GELKLM
� has the following expression

GELKLM
� = N�(�0)

0D�(�0)
�
D�(�0)

0V �1
  (�0)D�(�0)

��1
D�(�0)

0�(�0) (26)

7For full derivations see Guggenberger (2003)
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Similarly to the Kleibergen�s K-statistic,

GELKLM
� !d �2(m) (27)

at the null.

Since the expression in equation (26) is based on the Lagrange Multipliers �(�0), this

test is referred to as the LM type GELK test. In the simulations section we also denote it

as GELKlm.

The Wald-type GELK test is constructed using the following result

�(�0) = V �1
  (�0)

1

N
 N (28)

Plugging the above equation into the expression in (26), we obtain the Wald-type GELK

test based on the moments

GELKW
� =

1

N
 0N(�0)V

�1
  (�0)D�(�0)

�
D�(�0)

0V �1
  (�0)D�(�0)

��1
D�(�0)

0V �1
  (�0) N(�0)

(29)

This test is also distributed �2(m) under the null by analogous arguments (for more detailed

proofs and derivations see Guggenberger (2003)).

6 GELK Modi�cation

Both of the tests above are infeasible because the covariance matrix is unknown. In order

to make them feasible, the previous papers estimate this matrix in the same fashion as in
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Section 3 for the K-test. While their approach is theoretically correct, we argue that it

does not take advantage of all the bene�ts of the GEL procedure. In particular, the GEL

procedure allows us to compute the variance estimator which is third order e¢ cient (see

Newey and Smith (2004)). This variance has been traditionally used in the context of the

GEL point estimators, however, it has been overlooked in the context of the robust GELK

tests. Thus, we propose to modify the feasible GELK statistic by using the GEL estimated

probabilities to reweigh the moments in the variance matrix estimator. To do this, let

p̂i =
�1(�(�0)

0 i(�0))
NP
j=1

�1(�(�0)
0 j(�0))

(30)

where �1(�) is the �rst order derivative of the GEL function �. Then, the GEL variance

estimator is

V̂ GEL
  (�0) =

NX
i=1

p̂i( i(�0)� � )( i(�0)� � )0 (31)

where  i(�0) are the moments evaluated at the null, � =
NP
i=1

 i(�0) and �(�0) is the vector

of optimal Lagrange multipliers for the null parameter �0.

Thus, our modi�ed feasible Wald and LM type GELK statistics are:

GELKW
� =

1

N
 0N(�0)V̂

GEL�1
  (�0)D�(�0)

h
D�(�0)

0V̂
GEL�1
  (�0)D�(�0)

i�1
D�(�0)

0V̂
GEL�1
  (�0) N(�0)

(32)

and
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GELKLM
� = N�(�0)

0D�(�0)
h
D�(�0)

0V̂
GEL�1
  (�0)D�(�0)

i�1
D�(�0)

0�(�0) (33)

where

D�(�0) =
1

N

NX
i=1

�1(�(�0)
0 i(�0))

@ i(�)

@�
(34)

7 Monte Carlo Experiment

7.1 Model and Data Generating Process

To demonstrate the impact of reweighting the variance in the GELK tests we use a simple

panel AR(1) model which can be viewed as an instrumental variable type model described

in equation (1)

yit = �i + �yit�1 + "it (35)

where T is small and N is large (t = 1; :::; T , i = 1; :::; N), � 2 [0; 1], �i � N(0; �2�) and

"it are independent across T and N with mean 0 and variance �2". To cancel out the �xed

e¤ects, we take the usual �rst order di¤erence and obtain the new equation

�yit = ��yit�1 +�"it (36)

where �yit = yit � yi;t�1 for t = 2; :::T and i = 1; :::; N .

Following Arellano and Bond (1991), we take the instruments to be all values of yit with

a lag of two periods and more, i.e. (yit�2; yit�3; :::; yi1). Thus, the instruments matrix for
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each individual i is denoted

Z 0i =

266666666666666666666666666666666664

yi;1 0 0 0 0

0 yi;1 0 0 0

0 yi;2 0 0 0

0 0 yi;1 0 0

0 0 yi;2 0 0

0 0 yi;3 0 0

0 0 0
. . . 0

0 0 0 0 yi;1

0 0 0 0
...

0 0 0 0 yi;T�2

377777777777777777777777777777777775

(37)

This model8 is a particularly interesting case of the linear IV models because the strength

of the instruments here depends on the unknown parameter �: When � is close to 1; the

instruments are weak and the standard Wald test based on the two stage least squares (2SLS)

over-rejects almost 70-80% of the time.

For our simulations we test the hypothesis H0 : � = �0 at 5% signi�cance level for

di¤erent values of �0 = 0:2; 0:3; 0:4; 0:5; 0:6; 0:8; 0:9; 1 and compare the actual size curves of

di¤erent test statistics.

8To see that this model can be represented as the model in equation (1) let fit = �yit � ��yi;t�1
. The moment conditions for this model are E[ i(�)] = 0, where  i = Z 0ifi, and fi = (f 0i2; :::; f

0
iT )

0 for
i = 1; :::; N . We stack all of the time period observations in a vector for each individual and denote �yi =
(�y0i3; :::;�y

0
iT )

0, �yi;�1 = (�y0i2;:::;�y
0
iT�1)

0 and �"i = (�"i3; :::;�"iT )0. Stacking the observations for all
individuals in a vector form, we get Y = (�y01; :::;�y

0
N )

0, X = (�y01;�1; :::;�y
0
N;�1)

0, " = (�"01; :::;�"
0
N )

0

and Z = (Z 01; :::; Z
0
N )

0 which correspond to the same name variables in the instrumental variable model.
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For the data generating process we take "it from a t-distribution with 10 degrees of

freedom9. We take �i = (1 � �)�i and �i � N(0; 2). To make sure the initial condition

is not zero we set yi0 = �i + "i0 where "i0 � N(0; 1). We compute size and power curves

for N = 50; 100 and 250, and T = 6. The number of replications in each experiment is

M = 100000.

7.2 Simulation Results

First, we present the improvement results for the GELK test statistics. Figure (2) shows the

size curves for each test separately when N = 50 and T = 6. All statistics show a stable size

improvement except for the GELKw-ET. On average, the size was improved by over 5% for

GELKw-EL, 4% for GELKlm-ET, and over 2% for GELKlm-EL. This improvement tends

to cut the original size distortion in half. For example, for the original GELKw-EL the size

was 14% and the new GELKw-EL size is only 9% on average.

Since all these tests are asymptotically equivalent, as the sample size increases, the actual

size of the tests converges to the nominal size of 5% and the test statistics converge to the

same asymptotic value although at a di¤erent rate. Figure (3) demonstrates this with the

size curves for N = 100 and T = 6. Here the improvement remains stable for the three tests:

GELKw-EL, GELKlm-ET and GELKlm-EL. Since they all converge to the same statistic at

the in�nite sample size, the improvement for this sample size is slightly smaller than their

counterpart when N = 50. Figure (4) shows similar results for N = 250 and T = 6.

9We have also performed the same simulations for the errors coming from normal and �2(2) distributions.
The results are almost identical to the above ones. Hence we omit their report here. However, it is interesting
to note the interpretation of these results. The presence of outliers or errors coming from a thick tailed
distribution does not change the results and the ranking remains the same.
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Now we compare the performance of all the Kleibergen type of tests: K, GELKw-EL

(new), GELKw-ET, GELKw-CUE, GELKlm-EL (new), GELKlm-ET (new), and GELKlm-

CUE. Notice that we only include the improved version of the GELK tests since we already

know that they perform better than the original ones except for GELKw-ET. Figure (5)

shows the size curves for N = 50 and T = 6. We can see that all of these tests are robust

to weak instruments. Their size remains stable across all values of the parameter. Although

all of the statistics are still size distorted, they are less so than the original non-improved

ones. The GELKlm-CUE shows the smallest size distortion (its size is the closest to the

desired 5%). However, this test tends to underreject the null. The rest of the tests still

overreject the null. In terms of the size, the GELKw-EL (new) is the best with the average

size of about 9%, followed by the K (12:5%), GELKw-CUE and GELKw-ET (13%), and

GELKlm-ET (new) (18%), with the GELKlm-EL (new) being the last (22%). Figures (6)

and (7) show the same size curves for N = 100 and N = 250 with T = 6 respectively. Here

the size decreases for all tests at slightly di¤erent rates, converging to the desired 5%, but

the ranking remains the same.

As for power, the results exhibit the usual power-size trade o¤ (the smaller the size the

smaller the power) for most of the tests. Figure (8) shows the results for N = 50 and T = 6

while Figures (9) and (10) show the power curves for N = 100 and N = 250 with T = 6

respectively. The GELKlm- EL and GELKlm-ET show smaller power and higher size than

K when the null values of � = 0:7, 0:98, i.e. when the instruments are weak. So the K test

is superior to GELKlm-ET and GELKlm-EL in terms of both size and power. When the

sample size is increased the K test power becomes visibly higher than the power of the rest

of the tests. This power curve has much more curvature.
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Given these size and power properties we recommend using the best three tests: GELKlm-

CUE, GELKw-EL (new) and K.
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8 Application: Labor Demand

For our empirical illustration we use the model of employment demand based on Arellano and

Bond (1991) dataset of 140 UK companies observed over the nine-year period of 1976-1984.

This is an unbalanced panel data in the sense that some of the �rms do not have observations

for all of the years in this time period. To deal with this problem, we delete the missing

equations and the rows in the instruments matrix that correspond to these equations, and

we replace the missing level entries in the IV matrix with zeros.

The model is a more complicated extension of the simple AR(1) panel model we used for

our simulations in equation (35). Here, we take two lags of the dependent variable, an AR(2)

process, and add three current and lagged independent variables. This particular economic

model of employment is taken from Layard and Nickell (1986), and consequently has been

tested by Arellano and Bond (1991) using GMM. The dynamic employment equations are

of the form:

nit = �i + t + �1ni(t�1) + �2ni(t�2) + (38)

+�3wit + �4wi(t�1) + �5kit + �6ki(t�1) + �7ki(t�2) + �8ysit + �9ysi(t�1) + �10ysi(t�2) + vit

where nit is the natural log of employment, wit is log of the real product wage, kit is the log

of gross capital and ysit is the log of industry output in company i at time period t: The

equation also includes a time speci�c e¤ect t that is the same for all �rms, an unobservable

�rm-speci�c e¤ect �i which is permanent across time and an error term vit. The lag structure

represents �rms�sluggish adjustments and the industry output captures the industry demand
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shocks.

8.1 Exogenous wages and capital

First, we consider the case where the �rms are price takers. Hence, the wages, capital and

industry output variables are treated as exogenous.

To estimate this model, we take the �rst di¤erence

�nit = �1�ni(t�1) + �2�ni(t�2) +�xit� +�vit (39)

where �nit = nit � ni(t�1), �xit is the �rst di¤erence of the lagged exogenous variables

including the time dummies, � = (�3; :::; �10)
0and �vit is the �rst di¤erence of the error

terms for t = 4; :::9: We lose the three �rst waves because of the dynamic nature of the

model, di¤erencing to avoid the incidental parameter problem and instrumenting.

To instrument for the lagged unemployment variables we take the instruments to be all

values of nit with a lag of two periods or more. The matrix of instruments takes the following

form for each i :

Zi =

266666666664

ni1 ni2 0 0 0 � � � 0 � � � 0
... �xi4

0 0 ni1 ni2 ni3 0 0
... �xi5

...
. . .

0 0 0 0 0 : : : ni1 � � � ni7 : �xi9

377777777775
(40)

Here, if the exogeneity assumption is valid, the strength of the instruments only depends

on the sum of the unknown parameters �1 + �2, that is for some values of these parameters
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the instruments are going to be weak. In such cases the GMM and 2SLS point estimators are

biased and the t-statistics are distorted. Without looking at the robust results and comparing

them to the results obtained from the two step procedures, we can�t determine which case

we are facing. Therefore, the point estimators have to be interpreted with caution.

To test the hypothesis that all the coe¢ cients are jointly insigni�cant we compute the

Wald statistic based on the GMM estimator and the best three robust K-type statistics. All

of these test statistics have a limiting distribution of �2(m) where m = 16 is the number of

independent variables including the time dummies, so the 5% critical level here is 26:296.

The results are provided in Table (1).

All of the above tests show that the coe¢ cients are jointly signi�cant except for GELKlm-

CUE. The latter test tends to underreject and be very conservative. The second best test,

GELKw-EL, overrejects slightly. Due to the fact that our tests do not yield uniform results, in

this situation the results can be interpreted at our discretion, depending on how conservative

we choose to be. The di¤erence between the Wald test and the GELKlm-CUE could be

caused by either the fact that the instruments are weak or the fact that the rest of the

tests are simply overrejecting. Since we are dealing with many variables, the joint test graph

would be multidimensional and hard to interpret. Hence the best way to visualize the results

is to look at the p-values for each parameter separately in order to determine if there are

weak instruments or if there are other complications.

Table (2) reports the optimal two-step GMM estimators for all the right hand side vari-

ables except time dummies, standard errors are shown in parenthesis.

Since robust tests do not yield point estimators, we compare their conclusions with those

based on the GMM procedure by investigating con�dence intervals. We provide 1-pvalue
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curves for each of the coe¢ cients, except the time dummies, for the GMM t-statistic and the

robust K statistic. Figure (11) shows the 1� pvalue curves10. The 95% con�dence interval

is the area above the curve and between the intersection points of the curve with the 0:95

line.

Figure (11) shows that the GMM and K tests result in di¤erent con�dence intervals.

While the GMM intervals are always well de�ned and closed, the K-test intervals are not.

The �rst picture on the left shows 1 � pvalue curves for the nit�1 coe¢ cient. Here, the K

test�s 1� pvalue curves do not asymptote to 1, indicating that the con�dence interval is the

whole real line. This means that there is weak identi�cation in the model: either the AR(1)

coe¢ cient or at least one of the parameters we projected out using the MLE estimator, or

both, are poorly identi�ed. There could be two sources for this problem: (1) the exogeneity

assumption is false and we have an endogeneity problem, (2) the GMM instruments are

weak. If the exogeneity assumption is valid, the identi�cation in this equation only depends

on �1+ �2 value. When this value is close to 1 in absolute value, the GMM instruments are

weak. But if the exogeneity assumption is false, instrumenting for these variables as if they

were exogenous would also introduce weak identi�cation and can in�uence the 1 � pvalue

curves of the AR(1) coe¢ cient, that is there is a spill over e¤ect from weak instruments for

one of the coe¢ cients onto the identi�cation of the rest of the coe¢ cients. Figure (11) shows

that kit�1 and kit�2 coe¢ cients are also not identi�ed.

To understand better the source of identi�cation problem we look at the long run coe¢ -

cients by slightly rearranging the original equation (39):

10The x-axis label shows the name of the variable for which the coe¢ cient is estimated. The numbers on
the x-axis actually represent the coe¢ cient values.
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�nit = (�1 + �2)�ni(t�1) � �2(�ni(t�1) ��ni(t�2)) + �xit� +�vit (41)

Table (3) shows the results for GMM estimator with the standard errors in parenthesis.

The 1-pvalue curves for this equation are shown in Figure (12).

The �rst �gure on the left shows the con�dence intervals for the long-run coe¢ cient

�1+�2. If the exogeneity assumption is correct, this model is identi�ed when this coe¢ cient

is between -1 and 1 and small. However, here, the K-statistic shows that the con�dence

interval is empty in the sensible parameter region. Hence, there is no solution in the sensible

parameter region, this model is misspeci�ed. The misspeci�cation most likely comes from the

fact that the assumption that capital and wages are exogenous is false. For many coe¢ cients

here, the K and GMM procedures do not agree on the signi�cance verdict either.

We also have obtained the results for the speci�cation which omits the insigni�cant

dynamics (the insigni�cance conclusion is derived from K test). Doing so had little change

on the long-run properties of the model and did not purge the identi�cation problem. Hence,

we do not report these results.

8.2 Endogenous wages and capital

The results in Figures (11) and (12) suggest that exogeneity assumption may not be sensible.

Now, we relax this assumption by allowing the wages and capital to be endogenous. To deal

with this endogeneity we change the instruments variable matrix to the following:
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Zi =

26666664
ni1 ni2 wi1 wi2 ki1 ki2 � � � 0 � � � 0

... �xi4

...
. . .

0 0 0 0 0 0 : : : ni1 � � � ni7 wi6 wi7 ki6 ki7 : �xi9

37777775
(42)

where �xit is a vector that now contains all the exogenous variables excluding wages and

capital.

Table (4) shows the results for the joint signi�cance hypothesis. The critical value is

26:296.

Table (5) shows the results for GMM estimators with standard errors in parenthesis.

Figure (13) shows the p-values for equation (39) where wages and capital are now en-

dogenous.

Again, while the GMM con�dence intervals are always nice and bounded, the K tests

con�dence intervals for nit�1, wit; wit�1; kit�2 and ysit�2 are unbounded, showing a problem

with identi�cation.

To get a better idea of the source of identi�cation we look at the long run equation with

endogenous wages and capital. Figure (14) shows the 1 � pvalue curves while Table (6)

shows the GMM estimators.

The long run coe¢ cient �1+�2 is not identi�ed along with the coe¢ cients for wit; kit; kit�2.

Omitting insigni�cant variables designated by K-test does not solve the identi�cation prob-

lem. So we do not report the results.

This shows that we may be dealing with weak GMM instruments. The time series are
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too persistent, so the instruments are weak and do not allow us to identify the coe¢ cients.

This is a very di¤erent conclusion from the one that would result from GMM procedures

alone.

9 Conclusion

In this paper we have suggested an improvement for the Generalized Empirical Likelihood

Kleibergen type (GELK) tests. This improvement is based on reweighting the variance of

moments matrix with GEL probabilities. We have shown that the GELK tests that use the

GEL probabilities as weights in the variance of moments matrix perform better in small

samples than those that use conventional 1=N equal weights.

To evaluate small sample performance of GELK and K tests we performed simulations for

a simple dynamic panel AR(1) model with �xed e¤ects. This model is especially interesting

because the quality of instruments depends on the unknown parameter of interest. In this

setting we found that the GELK�s GELKlm-CUE, the improved GELK�s GELKw-EL and

the Kleibergen�s K statistics are the best in terms of their size distortion performance, in

that order.

For an empirical application, we have used employment equations to estimate the elas-

ticity of labor demand. We have used data from Arellano and Bond (1991) for 140 UK �rms

observed over the period of 1976-1984. The empirical case demonstrates the importance of

using the tests that are robust to weak instruments, especially when dealing with dynamic

panel models. This is because the strength of the instruments depends on the value of the

unknown parameters. The Arellano and Bond (1991) data for modeling labor demand of a
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price-taking �rm shows that the optimal GMM instruments are weak and cause the identi-

�cation problems. Hence, the conclusions based on GMM procedures would be misleading.

None of the speci�cations of Arellano and Bond that we have tested using the Kleibergen test

are identi�able. Some of the models are actually misspeci�ed within the sensible parameter

region.
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Tables and Figures

Table 1: Test statistics for testing joint signi�cance: Exogenous wages and capital. Short
run.

Test statistic Reject
GELKlm-CUE 20:193 NO
GELKw-EL� 305:85 YES

K 292:59 YES
W-GMM 1771:9 YES

Notes:
(a)* indicates the modi�ed GELK test
(b) The critical 5% value: 26.296
(c) Degrees of freedom: 16

Table 2: GMM Estimates: Exogenous wages and capital. Short run.
Independent Variable GMM

�ni(t�1) 0:494 (0:105)
�ni(t�2) �0:083 (0:027)
�wit �0:480 (0:077)
�wi(t�1) 0:171 (0:096)
�kit 0:320 (0:048)
�ki(t�1) 0:037 (0:050)
�ki(t�2) �0:012 (0:024)
�ysit 0:499 (0:113)
�ysi(t�1) �0:290 (0:150)
�ysi(t�2) �0:012 (0:108)

Notes:
(a) All variables are in logs
(b) Standard errors in parenthesis
(c) Based on 2-step GMM estimator
(d) Exogenous wages and capital, short run
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Table 3: GMM Estimates: Exogenous wages and capital. Long run.
Independent Variable GMM

�ni(t�1) 0:411 (0:099)
�ni(t�1) ��ni(t�2) 0:083 (0:027)

�wit �0:480 (0:077)
�wi(t�1) 0:171 (0:096)
�kit 0:319 (0:048)
�ki(t�1) 0:037 (0:050)
�ki(t�2) �0:012 (0:024)
�ysit 0:499 (0:113)
�ysi(t�1) �0:290 (0:150)
�ysi(t�2) �0:012 (0:108)

Notes:
(a) All variables are in logs
(b) Standard errors in parenthesis
(c) Based on 2-step GMM estimator
(d) Exogenous wages and capital, long run

Table 4: Test statistics for testing joint signi�cance: Endogenous wages and capital. Short
run.

Test statistic Reject
GELKlm-CUE 17:859 NO
GELKw-EL� 537:03 YES

K 310:84 YES
W-GMM 2850:1 YES

Notes:
(a)* indicates the modi�ed GELK test
(b) The 5% critical value: 26.296
(c) Degrees of freedom: 16
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Table 5: GMM Estimates: Endogenous wages and capital. Short run.
Independent Variable GMM

�ni(t�1) 0:865 (0:053)
�ni(t�2) �0:106 (0:025)
�wit �0:450 (0:110)
�wi(t�1) 0:667 (0:106)
�kit 0:338 (0:070)
�ki(t�1) �0:266 (0:049)
�ki(t�2) �0:037 (0:019)
�ysit 0:687 (0:135)
�ysi(t�1) �0:792 (0:177)
�ysi(t�2) 0:214 (0:121)

Notes:
(a) All variables are in logs
(b) Standard errors in parenthesis
(c) Based on 2-step GMM estimator
(d) Endogenous wages and capital, short run

Table 6: GMM Estimates: Endogenous wages and capital. Long run.
Independent Variable GMM

�ni(t�1) 0:758 (0:048)
�ni(t�1) ��ni(t�2) 0:106 (0:025)

�wit �0:450 (0:110)
�wi(t�1) 0:667 (0:106)
�kit 0:338 (0:070)
�ki(t�1) �0:266 (0:049)
�ki(t�2) �0:037 (0:019)
�ysit 0:687 (0:135)
�ysi(t�1) �0:792 (0:177)
�ysi(t�2) 0:214 (0:121)

Notes:
(a) All variables are in logs
(b) Standard errors in parenthesis
(c) Based on 2-step GMM estimator
(d) Endogenous wages and capital, long run
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Figure 1: Size distortion example: Size curves for Wald Homosckedastic (solid), Wald Het-
eroskedastic (dotted) and robust K (dashed) tests.
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Figure 2: Modi�ed GELK: Size curves for N=50, T=6. Old GELK tests (dashed), New
GELK tests (solid)
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Figure 3: Modi�ed GELK: Size curves for N=100, T=6. Old GELK tests (dashed), New
GELK tests (solid)
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GELK tests (solid)

0.2 0.4 0.6 0.8 1.0

0.055

0.060

0.065

Fig 4.1: Wald type EL tests (GELKwEL)

Size

GELKwEL KwEL (new)

0.2 0.4 0.6 0.8 1.0

0.0625

0.0650

0.0675

0.0700

0.0725

0.0750
Fig 4.2: Wald type ET tests (GELKwET)

Size

GELKwET KwET (new)

0.2 0.4 0.6 0.8 1.0

0.069

0.070

0.071

Fig 4.3: LM type EL tests (GELKlmEL)

Size

GELKlmEL KlmEL (new)

0.2 0.4 0.6 0.8 1.0

0.0725

0.0750

0.0775

Fig 4.4: LM type ET tests (GELKlmET)

Size

GELKlmET KlmET (new)

Page: 37



The University of Adelaide, School of Economics Working Paper Series No:0098 (2010-03)

Figure 5: GELK tests comparison: Size curves for N=50, T=6. Old GELK tests (dashed),
New GELK tests (solid), K test (black bold)
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Figure 6: GELK tests comparison: Size curves for N=100, T=6. Old GELK tests (dashed),
New GELK tests (solid), K test (black bold)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.070

0.075

0.080

0.085

Fig 6.1: Wald type GELK and K tests

Size

φ0

K
GELKwCUE

GELKwET
KwEL (new)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.050

0.075

0.100

0.125 Fig 6.2: LM type GELK and K tests

Size

φ0

K
KlmEL (new)

GELKlmCUE
KlmET (new)

Page: 38



The University of Adelaide, School of Economics Working Paper Series No:0098 (2010-03)

Figure 7: GELK tests comparison: Size curves for N=250, T=6. Old GELK tests (dashed),
New GELK tests (solid), K test (black bold)
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Figure 8: GELK tests comparison: Power curves for N=50, T=6. Old GELK tests (dashed),
New GELK tests (solid), K test (black bold)
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Figure 9: GELK tests comparison: Power curves for N=100, T=6. Old GELK tests (dashed),
New GELK tests (solid), K test (black bold)
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Figure 10: GELK tests comparison: Power curves for N=250, T=6. Old GELK tests
(dashed), New GELK tests (solid), K test (black bold)
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Figure 11: 1-pvalue curves: Exogenous wages and capital. Short run. GMM (solid),
K(dashed).
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Figure 12: 1-pvalue curves: Exogenous wages and capital. Long run. GMM(solid),
K(dashed)
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Figure 13: 1-pvalue curves: Endogenous wages and capital. Short run. GMM (solid), K
(dotted).
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Figure 14: 1-pvalue curves: Endogenous wages and capital. Long run.GMM (solid), K
(dotted).
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