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Does ignoring multidestination trips in the 
travel cost method cause a systematic bias?

 

*

 

Timo Kuosmanen, Eleonora Nillesen and 
Justus Wesseler

 

†

 

The present paper demonstrates that treating multidestination trips (MDT) as
single-destination trips does not involve any systematic upward or downward bias
in consumer surplus (CS) estimates because the direct negative effect of  a price
increase (treating MDT as a single-destination trip) is offset by a shift in the
estimated demand curve. Still, ignoring MDT can greatly underestimate or over-
estimate the CS. In addition, we demonstrate that there is a sound theoretical basis
for using preference information for allocating travel costs between different sites
included in the MDT package. A novel extreme value approach is proposed, which
does not require any overly restrictive assumptions about consumer preferences.
This approach is applied to the zonal travel cost model of  the Bellenden Ker
National Park, Australia. Parametric and non-parametric estimation techniques
are used for calculating CS estimates, and the effects of  different MDT treatments
and estimation methods are compared.

 

1. Introduction

 

The problem of  how to handle multidestination trips (MDT) is as old as
the travel cost method (TCM) itself  (e.g., Ward and Beal 2000). A standard
assumption of  the TCM is that observed visits are single-destination trips
(SDT). A problem occurs when a significant proportion of  individuals visit
other destinations on the way to the recreation site, near the site, or on the
way back home.

The most common approaches to dealing with the MDT in TCM can be
classified in three categories:
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1. Ignoring MDT, by either excluding MDT visitors from the sample or by
treating MDT visitors as if  they were single-destination visitors.

2. Correcting for MDT bias by using a proportion of  the total cost attrib-
utable to the evaluated site as a proxy for the price of  the trip.

3. Modelling MDT and SDT as different commodities.

Although ignoring MDT is likely to result in a biased estimate of  the
demand function and, hence, affect the estimate of  consumer surplus (CS),
the first approach remains a standard practice in applied research. Of
course, this is typically the simplest approach, and the MDT bias is likely
to be minimal if  there are few MDT visitors. Even if  there are many MDT
visitors, some authors argue that it is better to simply ignore the possible
MDT bias because any attempt to correct for that bias would be more or
less arbitrary (e.g., Beal 1995).

The second approach of  transforming MDT to be comparable with SDT
is also often used in empirical research. The main challenge of  this
approach is to attribute the correct proportion of  the total travel costs to
the site under evaluation. Several approaches have been suggested. One is
to use a quantifiable variable, such as ‘nights spent’ at the different sites, as
a proxy for relative importance (Knapman and Stanley 1991; Stoeckl 1993).
Another is to try to use visitors’ preferences to allocate the cost (Hanley
and Ruffel 1992). Bennett (1995) notes that, although the second approach
is much more subjective, it does recognise the possibility that the importance
of  visits may not be simply a function of  time allocation. However, evidence
from experimental studies clearly illustrates the difficulty of  expressing
preferences in measurable quantities (e.g., Hajkowicz 

 

et al.

 

 2000).
The third approach has been suggested by Hotelling (see Ward and Beal

2000, pp. 217–218) and has been rigorously developed by Mendelsohn 

 

et al

 

.
(1992). This approach includes all alternative sites, and combinations
thereof, in the estimation of  the demand function, to take into account any
substitution possibilities. As Mendelsohn 

 

et al

 

. demonstrate, this approach
is applicable in practice if  a few main substitutes (or complements) for the
evaluated site are visited by most MDT visitors. However, the number of
demand equations rises exponentially as the number of MDT sites increases.
Estimating demand functions for each MDT package requires a sufficiently
large number of  observations on each package tour. Ideally, the approach
would require data on those individuals who visited alternative sites, but
not the site under evaluation. These extensive data requirements explain
why the theoretically appealing third approach is not widely used in
practice.

Focusing on approaches (1) and (2) above, the objective of  the present
paper is to shed further light on how methods for dealing with MDT can
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influence the CS estimates obtained by the TCM.

 

1

 

 We resolve the question
of whether treating MDT observations in the same way as SDT observations
will systematically overestimate (Haspel and Johnson 1982) or underestimate
(Loomis 

 

et al

 

. 2000) the CS. To this end, three distinct routes will be pursued.
First, we develop some analytical insights into this issue by decomposing the
MDT effect into two measurable, partly offsetting components: the direct
effect of  a price change, and the indirect effect of  a shift in the empirical
demand function. Second, we demonstrate that using ordinal rankings of
alternative MDT sites as a basis for extracting cardinal cost-shares required
by the TCM has a strong theoretical foundation in duality theory. To convert
ordinal preference rankings to meaningful cardinal cost shares, the extreme
value approach initially proposed by Kmietowitcz and Pearman (1981) is
adapted to the present TCM context. Third, we apply the extreme value
approach and present some empirical evidence of  the influence of  the MDT
on the TCM CS estimates. Using data from the recent TCM study for the
Bellenden Ker National Park in Australia reported by Nillesen 

 

et al

 

. (2003),
we estimate the theoretical minimum and maximum bounds for the TCM, both
with and without an MDT-correction, using a parametric weighted-ordinary-
least-squares and a non-parametric trapezoid-rule approach for estimating
the demand functions. These MDT-corrected minimum and maximum bounds
allow us to analyse the effect of  ignoring MDT, without imposing strong
assumptions about consumer preferences.

The rest of the paper unfolds as follows: Section 2 analytically decomposes
the effect of MDT on CS, and concludes that considering MDT will not nec-
essarily increase the CS. This is followed by an introduction of the modified
extreme value approach for handling MDT in Section 3. Section 4 applies
this approach to a case study from Australia, where approximately half  of the
visitors of  a National Park visited the park as part of  an MDT. Section 5
closes with a discussion of  our results and draws conclusions for the TCM.

 

2. Consumer surplus

 

Individuals are assumed to have a well-behaved utility function, 

 

U 

 

=

 

 U

 

(

 

y

 

),
where vector 

 

y

 

 

 

=

 

 (

 

y

 

1

 

, … ,

 

 y

 

n

 

) summarises consumed quantities of 

 

n

 

 commodities
marketed. Let the recreational activity of interest be commodity 
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. Note that
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 1 substitute/complement goods, including alternative recrea-
tional activities, influence demand for commodity 

 

i

 

. In our framework,
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 It is known that approach (3) yields higher consumer surplus (CS) estimates than
excluding MDT visitors from the sample under approach (1), as Mendelsohn 

 

et al

 

. (1992)
have demonstrated. Therefore, we focus on approaches (1) and (2).
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MDT are modelled as commodity baskets that include a positive quantity
of  two or more goods. Prices of  commodities included in the MDT package
need not be additive and, hence, MDT may introduce nonlinearities and path-
dependencies in the budget line, but these do not affect the utility function.

Consumer surplus is a measure of  consumer welfare: it is the sum of
money consumers were willing to pay for a particular product over what
they actually had to pay. Formally, let  denote the Marshallian
demand for commodity 

 

i

 

 as a function of  price vector, , and income,

 

I

 

. Let 

 

π

 

i

 

 denote the prevailing price for commodity 

 

i

 

. The consumer surplus
(CS ) of  commodity 

 

i

 

 can be written as:

(1)

In other words, CS is the area under the Marshallian demand curve above
the current price level.

 

2

 

The purpose of  the TCM approach is to estimate the demand function,

 

x

 

i

 

, for the recreational site. The purpose of  the present paper is to investi-
gate how dealing with MDT influences the estimated CS. The essential
problem is to establish a link between the consumption decision and the
price of  the commodity perceived by the individual at the moment when
the consumption decision is made. Clearly, for rational and informed SDT
visitors, the perceived price is the total net travel cost plus the possible
entrance fees. For MDT visitors, however, the price of  visiting one of  the
sites in the MDT package can be extremely difficult to determine because
the total cost of  the MDT package often includes sunk costs and joint,
non-separable costs related to the whole package (e.g., insurance costs).
Nevertheless, the consumer must have some subjective perception of  the
price of  visiting the site, which may be anything between zero and the total
cost of  the MDT, in order to make a rational and informed decision. In
theory, if  these subjective prices were known for all individuals visiting the
evaluated site, the standard TCM using subjective prices rather than total
costs would yield consistent estimates of  CS. Of course, estimating these
subjective prices empirically involves many practical complications, which
will be addressed in more detail in the next section.

Suppose for the moment that the true subjective prices are known for
certain and, hence, the standard TCM provides a consistent estimate for CS.

 

2

 

 For convenience, the definition above described CS in terms of  Marshallian (market)
demand curves rather than Hicksian (compensated) demand curves. Marshallian curves are
easier to estimate empirically, and they can reasonably approximate the Hicksian demand
curves for small price changes and for goods with few substitutes and compliments.

xi
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This ‘ideal’ situation forms a good starting point for assessing the common
approach of  ignoring MDT, either by: (i) excluding MDT visitors from the
sample; or (ii) treating MDT visitors as if they were single-destination visitors.

The first case does not necessarily involve any systematic error, provided
that data availability does not introduce problems. Omitting the multidestina-
tion visitors may have an undesirable side-effect of  decreased sample size,
but that is a statistical matter which might be taken into account in the
design of the study. A more serious difficulty is that the profiles of the single
purpose respondents and omitted multidestination visitors might differ. For
example, the SDT visitors tend to live closer to the nature reserve than the
MDT visitors. In such circumstances, the omission of  long-distance MDT
travellers might leave some important influences of  demographic variables
undetected because of  little variation in the sample. This can also influence
the shape of  the estimated demand curve and, hence, the estimated total
CS. The existing empirical evidence (e.g., Loomis 

 

et al

 

. 2000) unanimously
suggests that the omission of  MDT visitors from the data set leads to
an underestimation of  the total CS, which can amount to 50 per cent or
higher.

Together, the effects of  decreased sample size and the respondent profile
may become an issue in zonal models, where it may be difficult to find
enough SDT visitors from distant zones. Therefore, the omission of  multi-
destination visitors seems a more viable strategy in individual traveller
models where plenty of  data are available. As the zonal approach is more
frequently applied, we next focus on the second approach, which treats
MDT visitors as if  they were SDT visitors.

In this case, the treatment of  MDT influences the CS in two mutually off-
setting ways. We call them the direct effect and the indirect effect. When the
total travel cost is used instead of  the effective (correct) cost share, the price
of  the commodity increases. This has the direct effect of  decreasing the CS:
Taking the subdifferential of  the CS, we see:

(2)

Consequently, if  total travel costs are used without correcting for the MDT,
the prevailing MDT price, , will increase to  and, hence, the
CS will be smaller. In other words, the direct effect is always non-positive.
We can quantify this direct effect as

(3)
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However, the previous effect does not take into account the indirect effect
of  the MDT to the estimated demand function, 

 

x

 

i

 

. Let  and  denote
the demand functions estimated from data adjusted for MDT and omitting
adjustment, respectively. Since the MDT adjustment always results as a
lower price than omission of  MDT , any sensible estimation
technique will yield coefficients with the property that:

(4)

That is, for any given prices and income, the estimated demand will be
higher if  the total cost of  travel is assigned to the nature reserve, compared
to the case where only the effective fraction of  the costs is used. This is
because we have the same demand observations in the data, but the price
observations are higher in the former case. Typically, we would expect the
slope of  the demand curve to be flatter when the travel costs are adjusted
for MDT, because a higher proportion of  high-cost, long-distance trips are
MDT.

The explicit analytical representation of  the latter effect depends, among
other things, on the estimation technique to be used, the specified function
form (if  applicable), and the specified error distribution. Given the empirical
demand functions  and , we can quantify the indirect effect as:

(5)

Figure 1 illustrates these effects graphically. The direct effect (
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) of
accounting for multidestination trips is a result of the price increase from 
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, given the original demand curve, . The indirect effect (
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the demand curve from  to , given the new price, 
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 Whether accounting
for MDT makes a difference, and by how much, depends on the relative difference
of the areas 

 

DE

 

 and 

 

IE

 

 in figure 1. This is solely an empirical question, which
probably depends on the proportion of MDT in the sample. We address this
issue from an empirical perspective in Section 4.

 

3. Weighting multidestination trips using ordinal preference rankings

 

The previous section revealed that ignoring MDT may or may not result in
biased estimates of  the CS. The main challenge in estimating the possible
MDT bias is to separate the subjective price of  the evaluated site from the
total cost of  the MDT package. This section proposes a new approach
that combines observed behaviour in the form of  travel costs with stated
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preference information. Instead of  trying to derive a sharp point estimate
for the subjective price, we resort to an interval estimate and infer both the
minimum and the maximum bound for the subjective price.

Since the consumption decision is conditional upon the individual’s
subjective perception of  the price, it is natural to resort to survey methods.
However, in contrast to most stated-preference approaches, such as con-
tingent valuation, our approach does not require respondents to state
anything other than purely ordinal information about the sites visited. That is,
the respondents are asked to rank the multiple destinations that they have
visited in ascending order according to their satisfaction with the park.
According to Hajkowicz et al. (2000), who evaluated five weighting methods
applied to natural resource management based on ease of use, and how much
they helped clarify the problem, ordinal ranking is preferred to fixed point
scoring, rating, geographical weighting and paired comparisons. Their results
showed that decision-makers felt most uncomfortable when applying fixed
point scoring where a fixed number of points is distributed among the criteria,
as is occasionally used within TCM (e.g., Willis and Garrod 1991; Hanley
and Ruffell 1992).

Given ordinal preference information on multiple destinations, TCM neces-
sitates a conversion of ordinal preference rankings into cardinal cost-shares.
First, the fundamental duality relationship between utility and expenditure
functions implies that the ordinal preference rankings have a one-on-one
correspondence with ordinal expenditure rankings. Recall the standard first-
order optimality condition of  the consumer’s utility maximisation problem:

Figure 1 Illustration of the direct and the indirect effects.
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(6)

That is, the utility maximising consumer keeps consuming commodities j
and k until the marginal utilities of  the commodities conform with the price
ratio. Therefore, if  the consumer’s choice is optimal in the sense of  the
standard neoclassical microeconomic theory, as we assume, then an ordinal
preference ranking implies a unique ordinal ranking in terms of  expendi-
tures (i.e., travel costs).3

The second challenge is to recover the cardinal cost shares underlying the
ordinal cost rankings. To be on the safe side, we resort to the extreme value
approach of Kmietowicz and Pearman (1981).4 We simply make calculations
for two different scenarios: one using the minimum cost shares for all respond-
ents to derive the lower-bound estimates; another involving the maximum
cost shares to derive the upper-bound estimate. If  the lower bound does
not considerably differ from the upper bound, we can be assured that the
estimated CS is robust with respect to the treatment of  the MDT. Even if
there is considerable deviation, we can use the lower and/or the upper bound
for making safe and sound policy inference.

Assume that the respondent has visited n destinations, and can rank the
destinations in non-increasing ordering according to their importance; that
is, from the most important to the least important. Let the unknown travel-
cost shares of  each destination be denoted by vector, ,
satisfying the following properties: (1) γ1 ≥ γ2 ≥ … ≥ γ n; and (2) .

Let the ranking position of the destination we are interested in be j ∈ ℜ+ :
1 ≤ j ≤ n, and the cost share of  this destination γj. We would like to know
the value of  γj to calculate the effective travel cost to the destination for this
particular visitor, but given the ordinal information only, we cannot infer
the exact value. However, we can derive the minimum and the maximum
value of  γj, such that all cost shares satisfy conditions (1) and (2). It is
straightforward to show (see Kmietowicz and Pearman 1981) that:

(7)

3 A possible practical problem is that the ordinal ranking of  destinations after the trip
might be based on the trip satisfaction, while the actual pre-trip consumption decisions
that we are primarily interested in may have been based on a different ordinal ranking per-
ceived prior to trip. This problem can be dealt with by a careful design of  the survey.

4 Alternative techniques are available for this conversion. For example, Nillesen et al.
(2003) apply the mean-expected value approach (Rietveld 1989) for that purpose.
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and

(8)

These minimum and maximum values characterise the feasible range of  the
unknown cost share, γj. For example, the cost share of  a site that ranks first
among five sites would be somewhere between 20 and 100 per cent, while
the cost share of  a site that was ranked third would be somewhere between
zero and 33 per cent.

From a methodological perspective, it is interesting to note that the
extreme value approach is well in line with the traditional Hotelling
approach that simply excludes multidestination visitors from the sample.
Observe that the minimum weight equals zero, except for the topmost rank-
ing destination. Therefore, if  our nature reserve does not typically rank as
the primary destination, then the traditional approach comes very close (or
even coincides) with our lower-bound estimate. In this sense, the safe-play
extreme value approach is built in to the traditional travel cost method.
Still, our more systematic approach that uses additional ordinal information
can improve even the lower-bound estimate by assigning a strictly positive
weight whenever the respondent ranks our destination j as his/her primary
destination.

4. Empirical application

4.1 Data

The extreme value approach is next applied to the zonal TCM model of  the
Bellenden Ker National Park in Australia reported by Nillesen et al. (2003).
The national park is part of  the Wet Tropics of  Queensland World Heritage
Area (WTWHA). The WTWHA extends along the upper north-east coast
of  Australia, measuring approximately 894 000 ha, and is highly important
for the conservation of  Australia’s biological diversity and the local tourism
economy (Driml 1996). The Bellenden Ker National Park includes, amongst
several short tracks, two overnight walking tracks: the Goldfield track and
Mount Bartle Frere track. The park is situated approximately 60 km from
Cairns, which is the nearest city. The park is an area of  mostly undeveloped
tropical rainforest.

Our data set is based on the camping permit records of  the Queensland
Parks and Wildlife Service (QPWS) for those visitors that stay overnight.
Australian visitors who camped in the park during the period 1995–2001
inclusive were chosen as the relevant population, for whom 1135 permits
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were issued between 1995 and 2001. Permit holders were grouped according
to their postal address into 18 mutually exclusive, geographically meaningful
zones. For each zone, visitation rates were calculated as the ratio of  permit
holders to the population of  the zone.

To obtain more detailed information about travel costs, modes of  trans-
portation, MDT combinations, and socioeconomic background of  the
visitors, a postal survey was conducted among the permit holders. A total
of  482 questionnaires were posted in the first week of  October 2001, of
which 96 were returned unopened as a result of  an invalid address. A total
of  142 responses were received, representing a high response rate of  36.8
per cent for this kind of mail-survey (Brouwer and Slangen 1998). Therefore,
we expect the profiles of  the respondents to be well representative of  the
entire population.

Respondents were asked to state their modes of  transportation from their
home to the starting point of  the walking track. The zonal average travel
costs were estimated based on these responses using the route planner of
the Royal Automobile Club of  Queensland (see Nillesen et al. 2003 for fur-
ther details). Following Bojö (1985), the opportunity cost of  time spent for
travel and on-site was assumed to be negligible because the majority of
respondents reported experiencing positive utility from travel.

In the case of  single destination visitors, total travel costs were used
throughout the study. The proportion of  MDT respondents was as high as
48 per cent in this application, which implies the treatment of  MDT visitors
is likely to have an impact on the CS estimate. For those who had combined
trips, a proportion of  the total travel costs attributable to Bellenden
Ker National Park was also calculated using the extreme value approach
discussed in the previous section. This leaves us with three travel cost
estimates: (i) an MDT-corrected minimum bound estimate ; (ii) an
MDT-corrected maximum bound estimate ; and (iii) an MDT-omitted
(total cost) estimate .

Apart from the travel cost variable, socioeconomic variables were considered
since demand for visits to a national park could be influenced by these vari-
ables. These variables included indicators for age, education and income
(see Nillesen et al. 2003 for details). Prices of  other recreational activities
were considered, but were excluded from the model in the preliminary cor-
relation analysis. The reasons were either minimal variation across zones or
high correlation with the price of the present site. For most common recrea-
tional alternatives, such as sports, movies and gardening, prices are almost
identical across zones and, hence, cannot explain variations in visitation
rates. Prices can also be expected to be at the same level for more rare activities
involving a high entrance fee (e.g., rock concerts) or a long travel distance
(overseas destinations), as the differences in regional travel costs are a

( )p j
Mmin

( )p j
Mmax

( )p j
O
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negligible proportion of  the total expenditure of  the visit. However, the
geographical location of  the Bellenden Ker National Park along the coast
of  north-east Australia means that almost all multidestination visitors
approach the park from the south-west. The area includes many other spec-
tacular destinations, such as the Great Barrier Reef, which were frequently
visited by long-distance travellers. However, the travel costs to these neigh-
bouring destinations are virtually identical to the travel costs to the present
site, and, hence, provide little additional explanatory power. To avoid
multicollinearity, travel costs to sites in the same area were excluded.

4.2 Methods

Given the data set, the first step of  the empirical analysis was to estimate
the demand function. The traditional estimation technique is ordinary least
squares (OLS). Unfortunately, economic theory does not provide many
guidelines for the ex ante specification of  the functional form for the recrea-
tional demand of, for example, a national park; besides the fact that the
demand curve should be downward sloping since recreational trips are clearly
a normal good. Therefore, we did not restrict to a single ideal model, but
experimented with multiple approaches. We applied the OLS technique to
various different functional forms, but also used a non-parametric trapezoid-
rule estimation approach (Cooper 2000), which does not impose any functional
form at all.

The advantages of  the non-parametric technique are its theoretical
consistency with the demand theory, and avoidance of  strong functional
form assumptions, which makes it very robust to specification errors. On
the downside, non-parametric estimators require a large sample size, and
they are generally sensitive to sampling errors and data perturbations. We
achieved a reasonable sample size of  142 observations by ignoring the zonal
structure imposed in Nillesen et al. (2003). Moreover, we investigated the
exposure to sampling errors by bootstrapping. Nevertheless, the problem of
possible data perturbations still remains. We find the demand quantities
highly reliable, but for some visitors, the actual travel costs can differ from
the travel costs Nillesen et al. (2003) had estimated for each zone. The OLS
error term may be better able to accommodate possible data errors. The
main problem with OLS is the sensitivity of  the CS estimates to the (ad
hoc) specification of  the functional form.

In conclusion, we have no preference for one estimation approach over
another, so we report both the OLS and non-parametric estimates. This also
serves to validate our results: in principle, if  two very different approaches
yield similar results, we can be more confident that the estimates are not
completely unreasonable.
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4.3 Regression analysis

The general form of the regression model is best summarised by the relation
F:

(9)

where:

VIj = visitation rate for the years 1995–2001 per zone j
= number of  visitors from zone j (VISj)/the population of  zone j 

(POPj)),
 = travel cost per zone j in orientation r : r ∈ Mmin, Mmax, O,

Aj = average age per zone j,
Ej = average education level per zone j, and
Ij = average household income adjusted for real income changes per 

zone j.

Six different functional forms for F were tested (see Appendix A), initially
with all variables included. However, all socioeconomic variables appeared
to be highly insignificant. Therefore, a redundant variable test was performed
to test whether all socioeconomic variables have zero coefficients; and might,
therefore, be deleted from the analysis. From the test, it could be concluded
that age, household income and education do not seem to explain the vari-
ation of  VI about its mean, so it was decided to proceed with a model that
only includes travel cost as an independent variable. The reduced model
was:

(10)

Systematic testing revealed that function F is best approximated by a
reciprocal functional form (see Appendix A). Hence, the chosen regression
equation is

(11)

In the zonal TCM, demand is usually measured in relative terms by the
visitation rate (VI ), as in our regression equation (11). Indeed, it seems
reasonable to assume that the travel cost ( pj) influences the relative propensity
to visit the site. However, it is the absolute number of  visitors (VIS ) that
determines the CS. Inspecting the OLS results, we found that the predicted
total number of  visitors from all zones far exceeded the observed number of
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visitors. The source of  the problem becomes evident if  we multiply the
regression equation (11) by the population variable (POP) to obtain:

(12)

Note that the error term is multiplied by the population variable. Inspecting
the residuals, we found that zones with a high population indeed tended to
be associated with negative errors (i.e., predicted visitation exceeds observed
visitiation) while low-population zones typically exhibited positive errors
(i.e., predicted visitation is less than observed visitiation). This would over-
estimate CS in highly populated zones and underestimate it in low-population
zones, leading to an overestimation of  the total CS.

To obtain unbiased demand and CS estimates, the parameters a and b of
equation (11) were estimated using a variant of  the weighted least squares
(WLS) approach. Specifically, whereas OLS minimises the unweighted sum
of squares of  error terms, we minimise the weighted sum of  squares using
the proportions of  the zonal population to the total population as the
weights.5 Applying such weighting, the impact of  each zone to parameter
estimates is proportional to its population. This is consistent with our
ultimate purpose of  estimating the total CS where the contribution of  each
zone is also proportional to its population. In practice, the WLS demand
curve will provide better fit for highly populated zones than the OLS curve.
In the WLS model, the predicted number of  visitors per zone will sum to
the observed total number of  visitors and, therefore, the problem of  the
OLS estimates noted above is avoided.

Table 1 reports the summary statistics for the extreme value (minimum
and maximum) approach, and compares the results to those obtained by
treating MDT as single destination trips (i.e., ignoring MDT treatment).

Considering the empirical fit (table 1), the best results were obtained by
ignoring the MDT. From the econometric point of  view this is nothing sur-
prising, recalling that our MDT treatment decreases the variance of  prices
(travel costs) in the sample. In the Mmax case the fit is still very good, but
the Mmin case is quite disappointing.6 In all three cases, the parameter

5 In fact, our weighted least squares (WLS) model is equivalent to the ordinary least
squares (OLS) model with regression equation:

6 Zones for which the estimated average minimum expected value was equal to zero were
omitted from the regressions. Therefore, only 13 zones could be used for regressions in the
minimum expected value case.
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p

POP POPj j
j

j j j              .= ⋅ + ⋅ ⋅ + ⋅
1 ε

VIS POP a POP b p POPj j j j j j        ( / )     = ⋅ + ⋅ ⋅ +1 ε



642 T. Kuosmanen et al.

© Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Ltd 2004

estimates for the slope b are statistically significant at very high confidence
levels, while the estimates of  the intercept a have large standard errors and,
hence, fail the significance test in all cases.

The estimated equations have been used to calculate total predicted visitation,
at increasing entrance fees, and corresponding CS. By taking the definite integral
over the zonal inverse demand functions and summing over all zones, we
obtain the CS as:

(13)

where k is the choke price at which demand equals zero, and Pj is the
population of  zone j. Table 2 reports the estimated CS per visit and person
for each of  the three MDT scenarios.

The results show that using the Mmin value for travel cost yields very
different results compared to using the MDT-omitted or Mmax value. The
difference is more than 470 per cent. The difference between MDT-omitted
and the Mmax approaches is relatively small. These large differences in CS
strengthen the argument to pay specific attention to MDT in applied TCM
with a high fraction of  MDT visitors. Still, the differences in CS are statis-
tically insignificant at the 10 per cent level (see table 3).7

7 The standard error of  the estimated CS was calculated using the approach suggested by
Adamowicz et al. (1989).

Table 1 Summary statistics of the WLS regressions using different MDT approaches
 

Mmin Mmax O

R2 0.279 0.887 0.945
F statistic 1.305 8.330** 17.197**
Intercept â −0.388 −0.555 −0.283
Standard error 5 678 577 256 241 87 043
Slope ∫ 204.43** 549.43** 623.72**
Standard error 0.180 0.012 0.004

*Significant at 95 per cent confidence level; **significant at 99 per cent confidence level. MDT, multi-
destination trips; WLS, weighted least squares.

Table 2 CS estimated from WLS demand curve*
 

Mmin Mmax O

Choke price (#A) 527 990 2204
CS per visit per person (#A) 137 773 645

CS, consumer surplus; WLS, weighted least squares.

CS k k p p PWLS
j

j
r

j
r

j  [(   ln( )    )  (   ln( )    )]  = ⋅ − ⋅ − ⋅ − ⋅ ⋅Σ ∫ å ∫ å
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Consider next the magnitudes of  the direct effect, DE, and the indirect
effect, IE. The magnitudes of  these effects for the min and the max cases
were calculated using (3) and (5), and are reported in table 4. Starting from
the MDT-corrected (min or max) CS estimate, the subtraction of  the direct
effect and the addition of  the indirect effect gives us the MDT-omitted CS
estimate. In the Mmin-case the indirect effect dominates, and hence the
MDT-omitted estimate is greater. Conversely, in the Mmax-case the direct
effect dominates, and hence ignoring MDT leads to a lower CS estimate.

It is important to note the relatively high levels of  these two offsetting
components compared to the levels of  the CS estimates themselves. (Note
that inequalities DE ≤ CSM and IE ≤ CSO must always hold.) Consequently,
the CS estimates appear highly sensitive to estimation error in the sense that
a minor change in either effect, the indirect effect in particular, can have a
major impact on the CS estimates. This is aptly illustrated by our results:
even when applying the same estimation method and the same data, the way
of  allocating the travel costs of  MDT visitors leads to dramatic differences
in the relative magnitudes of the direct and indirect effect; in the Mmin-case
the indirect effect is the most important determinant, whereas in the Mmax-
case the direct effect dominates.

As a final remark, we suspect that the high levels of  the direct and
indirect effect compared to the CS estimates are at least partly a result of the
curvature of  the estimated demand function. According to our econometric
model, the own price elasticity of recreational demand for the present nature
park is relatively high; that is, demand drops rapidly as the price increases.
Still, there are visitors who are observed to pay considerable sums of money

Table 3 Testing statistical significance of the CS differences
 

 

Table 4 Decomposition of the MDT-effect: the Mmin and the Mmax models*
 

Mmin versus Mmax Mmin versus O Mmax versus O

t-test statistic 1.652 0.724 0.132
p-value 0.117 0.479 0.896

CS, consumer surplus.

Mmin Mmax

CSM (#A per visit) 137 773
DE (#A per visit) (−) 113.4 (−) 713.1
IE (#A per visit) (+) 622.1 (+) 585.0
=CSO (#A per visit) 645 645

CS, consumer surplus; DE, direct effect; IE, indirect effect; MDT, multidestination trips.
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(i.e., travel across the continent) to visit the park. Consequently, the estimated
demand functions are highly nonlinear (convex). If  the demand functions
were linear, as in figure 1, then these two offsetting effects would tend to be
smaller compared to the CS estimates.

4.4 Results of non-parametric demand analysis

Next, the demand function was estimated using non-parametric methods to
obtain a conservative estimate of  the CS. Because of  the small number of
zones, we pooled all zones together for this exercise. In contrast to the OLS
regressions where zone-specific demand functions were estimated, we focus
here on the overall (aggregate) demand curve using the actual numbers of
visitors, and the travel costs estimated for each zone. Because of  the limited
sample size, no demographic variables were considered.

Our approach builds on the following two assumptions: (1) every visitor
is willing to pay any price less than or equal to the observed price; and
(2) no visitor is willing to pay a higher price. Under these two intuitive
assumptions, we obtain the non-parametric estimates of the demand functions
and the CS. The computational procedures are described in more detail in
Appendix B.

Figure 2 illustrates these piecewise linear demand functions for all three
cases considered (plotting the inverse demand like in figure 1). In all three
cases, demand is very sensitive to price changes at low price levels. Still, the

Figure 2 Piecewise linear inverse demand curves estimated in non-parametric fashion.
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Mmax-case and especially the MDT-omitted scenario suggest that small
but persistent demand exists even at very high price levels.

Table 5 reports the CS estimates for the Mmin- and Mmax-cases, and
their decomposition into the direct and indirect effects. Starting from the
MDT-corrected estimate, subtracting the direct effect and adding the
indirect effect results in the MDT-omitted estimate. Overall, our non-
parametric CS estimates are relatively close to our parametric WLS
estimates, which reassures us that both estimates are reasonable. However,
in contrast to the WLS case, the indirect effect is found to strongly domin-
ate both in the Mmin and Mmax scenarios. In other words, ignoring the MDT
seems to lead to a substantial overestimation in this case. The levels of  the
two effects are very high in the Mmin scenario, but the Mmax case seems
much more robust to these effects.

Unfortunately, there is no tractable analytical method for testing hypotheses
and deriving confidence intervals within this non-parametric framework.
Therefore, we resorted to the bootstrapping approach (Efron 1979), the
standard technique used in the published non-parametric literature. Assuming
a uniform density over the observed price range, we drew 2000 pseudo-
samples of size 18 observations (like the original sample) from the empirical
piecewise linear demand curve for each of  the three cases. We subsequently
applied the same non-parametric method to fit the piecewise linear demand
curve to each pseudo-sample, and calculated the CS. The distribution of  CS
values in the set of  these 2000 pseudo-samples should, hence, give us an
idea of  magnitudes of  the sampling bias and standard error in the original
estimation.

Table 6 reports the key statistics from the bootstrapping analysis. The
bootstrapping results suggest a relatively large standard error in the results,
from 8.65 per cent (MDT-omitted) up to 35.9 per cent (Mmin) of  the mean.
It also revealed a significant downward bias in the estimates, from 5.2 per
cent (MDT-omitted) all the way to 61.9 per cent (Mmin). That is, the mean
CS value of  the bootstrap pseudo-samples was, in all cases, significantly
lower than the original CS estimate. Therefore, if our pseudo-sampling proced-
ure reasonably mimics the actual sampling procedure, we may expect our

Table 5 Non-parametric CS estimates and their decomposition
 

Mmin Mmax

CSM (#A per visit) 100 343
DE (#A per visit) (−) 93.3 (−) 116.3
IE (#A per visit) (+) 572.3 (+) 352.6
=CSO (#A per visit) 579 579

CS, consumer surplus; DE, direct effect; IE, indirect effect; MDT, multidestination trips.
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original estimate to be similarly downward biased. Consequently, we adjusted
our CS estimates upwards by the measured bias factor.

We can also derive confidence intervals directly from the simulated error
distribution. Comparing the confidence intervals, we find that the differences
between the CS estimates in the three scenarios are statistically significant
at the 95 per cent level. Note that the error distribution need not be
symmetric or conform to normality and, hence, our point estimates do not
generally coincide with the median value of  the confidence interval.

5. Conclusions

Our analysis of  data from the Bellenden Ker National Park reveals that the
treatment of  MDT as SDT in the TCM does not involve any systematic
upward or downward bias; both underestimation and overestimation of  CS
are possible. The magnitude of the error depends on the slope and curvature
properties of  the demand function. While excluding MDT observations
from the data tends to lower the CS as a result of  the direct effect, treating
MDT as SDT typically overestimates the value of  the site because of  the
indirect effect. Our empirical analysis also highlights the sensitivity of  CS
estimates to the model specification and estimation technique, not to
mention potential data errors and sampling and non-response biases.

Since the true price perceptions for visiting the site are not known for the
MDT travellers, minimum and maximum bounds for the subjective price
were derived based on respondents preference ranking of  sites visited in the
MDT package. While we recognise the general problems in any stated-
preference techniques, we find the extreme bound approach quite useful.
The proposed survey method is convenient for respondents as they are only
asked to provide ordinal rankings of  a small number of  alternatives. In con-
trast to other arbitrary techniques, our approach builds on the fundamental
duality relationship between expenditure and utility functions. To avoid strong
assumptions about consumer preferences, the minimum and maximum bounds

Table 6 Bootstrapping analysis
 

Mmin Mmax O

Point estimate:
CS per visit 100 343 579
Sampling bias (+) 62.0 (+) 25.0 (+) 29.7
=Bias corrected CS estimate 162 368 609
Std. error 13.67 39.95 47.56
95% confidence interval (42−213) (275−416) (475−662)

CS, consumer surplus.
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for cost shares are derived from the ordinal preference rankings. Given the
sensitivity of  CS estimates to model specification and estimation technique,
resorting to extreme bounds rather than sharp point estimates of  the
subjective price can improve the robustness of  inferences. Our empirical
analysis shows that the treatment of MDT can make a considerable difference
in CS estimation of  recreational sites even if  we consider the most extreme
scenarios for cost shares.

The take-home message for policy makers and national park managers is
that using minimum weights for MDT-visitors results in a safe minimum
value of  the CS. If  the costs for managing the park can be justified using
those results, park managers and policy makers can be quite confident that
the money is well-spent.
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Appendix A

Six different function forms of  the trip demand function have been tested,
including and excluding socioeconomic variables. Results for all three cases
(Mmin, Mmax, total) have been displayed in tables 7–9, respectively.

The model with inverse travel cost outperformed all other models in
terms of  log-likelihood, adjusted R2 and F- and t-values, for Mmax, Mmin
and total travel costs. Therefore, we have chosen to proceed, for all three cases,
with a reciprocal form. Furthermore, because the socioeconomic variables
appeared to be insignificant as explanatory variables, they were discarded
from the analysis.

Appendix B

The non-parametric estimates of  the demand functions are obtained as
follows. First, rank the zones in ascending order according to the observed
travel costs. Let the travel costs be denoted by p1 ≤ p2 ≤ ... ≤ p18, and the cor-
responding visitor volumes by x1, x2, … , x18. Construct a cumulative index
of  the number of  visitors as X1 ≥ X2 ≥ ... ≥ X18, where . Value Xj

indicates the actual number of  visitors who have paid the price (travel cost)
less than or equal to pj and, hence, it is reasonable to assume 5 ( pj) = Xj.
Using the trapezoidal-rule (see, e.g., Cooper 2000, p. 453, for further details),
we obtain non-parametric, piecewise linear demand functions as:

(14)
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Table 7 Testing of six function forms for Mmax values
 

Table 8 Testing of six function forms for Mmin values
 

Function 
form

Variables 
included LL

Adjusted 
R2 F-value

t-value
C

t-value
p

t-value
E

t-value
I

t-value
A

t-value
p2

Linear all −39.26 0.04 1.2 1.56 −1.61 −1.18 −0.2 −0.37 –
Linear p −40.59 0.09 2.88 2.66 −1.70 – – – –
log p all −32.18 0.57 6.51 3.91 −4.61 −0.88 −0.85 0.01 –
log p p −33.17 0.61 27.09 5.64 −5.21 – – – –
log VI all −32.78 −0.01 0.97 0.78 −1.11 −1.4 0.13 −0.13 –
log VI p −34.24 0.03 1.66 −1.56 −1.29 – – – –
log p/ log VI all −30.54 0.21 2.16 1.68 −2.29 −1.14 0.33 −0.27 –
log p/ log VI p −31.45 0.29 8.08 2.12 −2.84 – – – –
p2 all −34.49 0.39 3.18 1.94 −3.33 −1.62 −0.88 1.07 2.9
p2 p −36.81 0.37 5.97 4.19 −3.26 – – – 2.8
1/p all −18.14 0.91 43.23 −0.76 12.25 0.35 0.04 0.64 –
1/p p −18.47 0.92 204.44 −1.43 14.30 – – – –

A, age; C, constant; E, education level; I, income; LL, log-likelihood; p, travel costs; VI, visitation rate.; –, not applicable.

Function 
form

Variables 
included LL

Adjusted 
R2 F-value

t-value
C

t-value
p

t-value
E

t-value
I

t-value
A

t-value
p2

Linear all −28.39 0.14 1.48 0.86 −1.76 −1.41 0.51 0.67 –
Linear p −30.18 0.18 3.56 2.84 −1.88 – – – –
log p all −26.20 0.39 2.88 2.17 −2.75 −1.36 0.61 0.72 –
log p p −28.09 0.40 9.05 3.39 −3.01 – – – –
log VI all −18.92 0.42 3.2 0.47 −1.79 −2.31 0.83 1.47 –
log VI p −23.74 0.12 2.62 −0.05 −1.62 – – – –
log p/log VI all −16.70 0.59 5.32 1.78 −2.79 −2.41 1.86 0.81 –
log p/log VI p −22.36 0.29 5.86 2.00 −2.42 – – – –
p2 all −26.15 0.30 2.04 1.22 −2.22 −1.28 0.12 0.99 1.70
p2 p −28.80 0.27 3.18 3.26 −2.10 – – – 1.54
1/p all −24.09 0.56 4.75 0.11 3.68 −1.05 0.84 0.35 –
1/p p −25.66 0.59 18.18 −0.82 4.26 – – – –

A, age; C, constant; E, education level; I, income; LL, log-likelihood; p, travel costs; VI, visitation rate.; –, not applicable.
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Table 9 Testing of six function forms for total travel costs
 

Function 
form

Variables 
included LL

Adjusted 
R2 F-value

t-value
C

t-value
p

t-value
E

t-value
I

t-value
A

t-value
p2

Linear all −38.49 0.12 1.59 1.59 −2 −1.34 −0.28 0.07 –
Linear p −39.87 0.17 4.47 3 −2.11 – – – –
log p all −29.19 0.69 10.37 4.52 −5.89 −1.08 0.37 −0.52 –
log p P −30.09 0.72 44.67 7.21 −6.68 – – – –
log VI all −31.86 0.09 1.42 0.86 −1.66 −1.54 0.31 −0.12 –
log VI p −33.47 0.12 3.22 −1.03 −1.8 – – – –
log p/ log VI all −27.65 0.43 4.21 2.2 −3.49 −1.24 −0.16 0.55 –
log p/ log VI p −28.66 0.48 16.81 3.2 −4.09 – – – –
p2 all −32.69 0.5 4.41 1.91 −3.89 −1.86 −0.34 1.37 3.3
p2 p −35.27 0.47 8.49 4.89 −3.79 – – – 3.16
1/p all −13.21 0.95 77.15 −1.01 16.4 0.55 1.33 −0.13 –
1/p p −14.46 0.95 328.45 −0.25 18.12 – – – –

A, age; C, constant; E, education level; I, income; LL, log-likelihood; p, travel costs; VI, visitation rate.; –, not applicable.
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Let π denote the weighted average of  the zonal travel costs, using the
number of visitors per zone as the weights. To calculate the consumer surplus
(CS) estimate, we use π for the prevailing price level. By basic geometry, the
non-parametric CS estimate is then given by:

(15)

The decomposition is obtained using the following formulas:

(16)
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