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Abstract

Ridder (1990) provides an identification result for the Generalized Accelerated

Failure-Time (GAFT) model. We point out that Ridder’s proof of this result is in-

complete, and provide an amended proof with an additional necessary and sufficient

condition that requires that a function varies regularly at 0 and ∞. We also give

more readily interpretable sufficient conditions on the tails of the error distribution

or the asymptotic behavior of the transformation of the dependent variable. The

sufficient conditions are shown to encompass all previous results on the identifica-

tion of the Mixed Proportional Hazards (MPH) model. Thus, this paper not only

clarifies, but also unifies the literature on the non-parametric identification of the

GAFT and MPH models.

∗We thank Áureo de Paula, seminar participants at Tilburg University, and participants in the 10th
World Congress of the Econometric Society in Shanghai and the 21st (EC)2 Conference in Toulouse for
comments.
†CentER, Department of Econometrics & OR, Tilburg University, P.O. Box 90153, 5000 LE Tilburg,

The Netherlands. E-mail: jaap@abbring.org. Web: jaap.abbring.org.
‡Department of Economics, University of Southern California, Los Angeles, USA. E-mail: rid-

der@usc.edu. Financial support for this research was generously provided through NSF SES 0819612
and 081963.
Keywords: duration analysis, identifiability, Mixed Proportional Hazards model, regular variation.
JEL codes: C14, C41.

mailto:jaap@abbring.org
http://jaap.abbring.org
mailto:ridder@usc.edu
mailto:ridder@usc.edu


1 Introduction

The Generalized Accelerated Failure-Time (GAFT) model introduced by Ridder (1990)

specifies the cumulative distribution function F (·|x) of a positive random time T given a

q-vector of covariates x as

(A-1). F (t|x) = G [φ(x)Λ(t)]; t ∈ (0,∞), x ∈ X ⊆ Rq;

where

(A-2). Λ : (0,∞) → (0,∞) can be written as Λ(t) =
∫ t

0
λ(u)du, t ∈ (0,∞), for some

λ : (0,∞)→ (0,∞) that is integrable on bounded intervals, and limt→∞ Λ(t) =∞;

(A-3). G : (0,∞) → (0, 1) is a cumulative distribution function that is absolutely con-

tinuous with respect to the Lebesgue measure with density g : (0,∞) → (0,∞);

and

(A-4). φ : X → (0,∞) is such that φ(x0) 6= φ(x1) for some x0, x1 ∈ X .

If Λ is linear, the GAFT model reduces to the Accelerated Failure-Time model of Cox

(1972) (pp. 200–01) with baseline distribution G. If G(s) = 1−
∫∞

0
exp (−sv) dH(v) for

some cumulative distribution function H on (0,∞), then it is Lancaster (1979)’s Mixed

Proportional Hazards (MPH) model, with baseline hazard λ and mixing distribution H.

Assumptions (A-1)–(A-4) are equivalent to Ridder (1990)’s Assumptions (A-1)–(A-4).

Ridder required that F (·|x) has a positive density with respect to the Lebesgue measure

and that Λ is non-decreasing and left-continuous. For expositional convenience, we have

directly assumed that Λ is absolutely continuous with respect to the Lebesgue measure

and increasing, and that G has a positive Lebesgue density. From Ridder’s analysis, it is

clear that this is without loss of generality relative to his assumptions.

Ridder (1990) studied the identifiability of the GAFT model. Section 2 provides a

new proof of his main identification result (Theorem 1) for the GAFT model with a new
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necessary and sufficient condition, and shows that without it his proof is incomplete.

Sufficient conditions are provided that encompass the various assumptions that are made

in the literature to ensure the non-parametric identification of the MPH model. Section 3

gives a unification of the MPH identification literature based on these sufficient conditions.

Section 4 concludes. Three appendices provide further proofs and results.

2 Identification Results

Suppose that the data provide us with F (t|x) for all t ∈ (0,∞) and all x ∈ X .1 In

the GAFT model, this cumulative distribution function is fully determined by the triplet

(Λ, φ,G). Conversely, two GAFT triplets may imply the same cumulative distribution

function F . In this case, we say that the triplets are observationally equivalent. Assump-

tion (A-1) implies the following, more formal definition.

Definition 1. Two GAFT triplets (Λ, φ,G) and (Λ̃, φ̃, G̃) are observationally equivalent

if G [φ(x)Λ(t)] = F (t|x) = G̃
[
φ̃(x)Λ̃(t)

]
for all t ∈ (0,∞) and all x ∈ X .

We will study the GAFT model’s identification by characterizing the relation between

observationally equivalent GAFT triplets. A GAFT triplet is identified if no other triplets

are observationally equivalent. The GAFT model is identified if all GAFT triplets are. A

feature of the GAFT model, such as the sign of the effect φ(x1) − φ(x0) of changing the

covariates from x0 to x1, is identified if it does not vary across observationally equivalent

GAFT triplets.

2.1 Preliminary Results

First, note that the signs of the covariates’ effects are identified. For future reference, we

formalize this result in a lemma.

1Section 4 and Appendix C discuss an alternative setup with discretely observed durations.

2



Lemma 1. Let (Λ, φ,G) and (Λ̃, φ̃, G̃) be observationally equivalent GAFT triplets that

satisfy (A-1)–(A-3). Then; for x0, x1 ∈ X ; φ(x0) < φ(x1) if and only if φ̃(x0) < φ̃(x1).

Proof. Pick some t ∈ (0,∞). Observational equivalence implies that G [φ(x0)Λ(t)] <

G [φ(x1)Λ(t)] if and only if G̃
[
φ̃(x0)Λ̃(t)

]
< G̃

[
φ̃(x1)Λ̃(t)

]
. Moreover, because G and G̃

are strictly increasing by (A-2) and Λ(t) > 0 and Λ̃(t) > 0 by (A-3), G [φ(x0)Λ(t)] <

G [φ(x1)Λ(t)] if and only if φ(x0) < φ(x1) and G̃
[
φ̃(x0)Λ̃(t)

]
< G̃

[
φ̃(x1)Λ̃(t)

]
if and only

if φ̃(x0) < φ̃(x1).

Next, we present an implication of observational equivalence that is key to both our

main result (Section 2.2’s Theorem 1) and Ridder (1990)’s Theorem 1. Denote the com-

position of two functions f and g with f ◦ g; that is, for all s, f ◦ g(s) ≡ f(g(s)).

Lemma 2. Let (Λ, φ,G) and (Λ̃, φ̃, G̃) be observationally equivalent GAFT triplets that

satisfy (A-1)–(A-4). Define K ≡ Λ ◦ Λ̃−1, with derivative K ′ : (0,∞) → (0,∞) almost

everywhere.2 Then; for x0, x1 ∈ X and almost every s ∈ (0,∞);

sK ′(s)

K(s)
=
β̃ns K ′

(
β̃ns
)

K
(
β̃ns
) , n ∈ Z; (1)

and

sK ′(s)

K(s)
= lim

n→−∞

β̃ns K ′
(
β̃ns
)

K
(
β̃ns
) = lim

n→∞

β̃ns K ′
(
β̃ns
)

K
(
β̃ns
) ; (2)

where β̃ ≡ φ̃(x0)/φ̃(x1) and Z is the set of integers.

Proof. See Appendix A.

By Assumption (A-4), we can take x0 and x1 in Lemma 2 such that β̃ 6= 1. Then, for

given s ∈ (0,∞), β̃ns → ∞ in one of the limits in (2) and β̃ns → 0 in the other limit.

2Here and in the sequel, the exceptional sets have Lebesgue measure 0.
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Intuitively, with conditions on the tail behavior of K ′ and K at 0 and ∞, sK ′(s)/K(s)

can be determined almost everywhere from the limits in the right-hand side of (2). In

turn, because by definition Λ = K ◦ Λ̃, this characterizes the relation between the obser-

vationally equivalent GAFT triplets. Our main result gives such a characterization based

on conditions on the tail behavior of K ′ and K.

2.2 Main Result

The statement of our main result requires Karamata’s concepts of regular and slow vari-

ation (Feller, 1971, Section VIII.8).

Definition 2. A function k : (0,∞)→ (0,∞) varies regularly with exponent τ ∈ R at 0

(at ∞) if k(αs)/k(s)→ ατ as s→ 0 (s→∞) for every α ∈ (0,∞).

A function that varies regularly with exponent 0 is also said to be slowly varying. Any

function that has a positive (and finite) limit varies slowly; but slowly varying functions

may converge to 0 or diverge, such as s 7→ | ln(s)| and s 7→ 1/| ln(s)|. If k varies regularly

with exponent τ , then k(s) = sτk0(s) for some slowly varying function k0. The function k

varies regularly at 0 with exponent τ if and only if s 7→ k(1/s) varies regularly at ∞ with

exponent −τ . By Feller (1971), Section VIII.8, a function k that varies regularly with

exponent τ at ∞ (at 0) asymptotically satisfies sτ−ε < k(s) < sτ+ε, for any given ε > 0

(ε < 0).

With these definitions in place, we can state our main result. Here and in the sequel

statements that involve functions hold on their domain; for example, Λ = cΛ̃ρ means that

Λ(t) = cΛ̃(t)ρ for all t ∈ (0,∞).
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Theorem 1. Let (Λ, φ,G) and (Λ̃, φ̃, G̃) be observationally equivalent GAFT triplets that

satisfy (A-1)–(A-4). Define K ≡ Λ ◦ Λ̃−1, with derivative K ′ : (0,∞) → (0,∞) almost

everywhere. Let ρ ∈ (0,∞). Then,

(i). for some c, d ∈ (0,∞),

Λ = cΛ̃ρ,

φ = dφ̃ρ, and

G̃ (s) = G (cdsρ) for all s ∈ (0,∞)

if and only if

(ii). K ′ varies regularly at 0 and ∞ with exponent ρ− 1.

A sufficient condition for (ii) or, equivalently, (i) is that

(iii). ρ = (τ + 1)/(τ + 1) with at least one of the following true:

(a) λ and λ̃ vary regularly at 0, with exponents τ ∈ (−1,∞) and τ ∈ (−1,∞);

(b) λ and λ̃ vary regularly at ∞, with exponents τ ∈ (−1,∞) and τ ∈ (−1,∞);

(c) g and g̃ vary regularly at 0, with exponents τ ∈ (−1,∞) and τ ∈ (−1,∞); or

(d) g and g̃ vary regularly at ∞, with exponents τ ∈ (−∞,−1) and τ ∈ (−∞,−1).

Proof. The proof proceeds in three steps. It first (A) provides an alternative character-

ization of (ii); subsequently (B) uses this to prove that (i) and (ii) are equivalent; and

finally (C) shows that (iii) is sufficient for (ii).

A Alternative Characterization of (ii)

By Karamata’s theorem (Feller, 1971, Section VIII.9, Theorem 1), (ii) is equivalent to

lim
s→∞

sK ′(s)

K(s)
= lim

s→0

sK ′(s)

K(s)
= ρ. (3)
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Specifically, by Theorem 1(b) in Feller (1971, Section VIII.9), the first limit in (3) holds

if and only if K ′ varies regularly at∞ with exponent ρ−1. For the second limit, define

K?(s) ≡ K ′(1/s). Using that K(0) = 0,

lim
s→0

sK ′(s)

K(s)
= lim

s→0

sK ′ (s)∫ s
0
K ′ (u) du

= lim
s→∞

s−1K ′ (1/s)∫ 1/s

0
K ′ (u) du

= lim
s→∞

s−1K? (s)∫∞
s
u−2K? (u) du

= ρ. (4)

By Theorem 1(a) in Feller (1971, Section VIII.9), (4) is equivalent to regular variation

of K? at ∞ with exponent −ρ+ 1. Consequently, the second limit in (3) holds if and

only if K ′ varies regularly at 0 with exponent ρ− 1.

B Equivalence of (i) and (ii)

First, suppose that (i) holds. Then; K(s) = csρ, so that K ′(s) = cρsρ−1; s ∈ (0,∞);

and (ii) holds.

Next, we will prove that, conversely, (ii) implies (i), by showing that (3) implies (i).

Recall that, by Lemma 2, observational equivalence implies (2). Let x0, x1 ∈ X be such

that β̃ ≡ φ̃(x0)/φ̃(x1) 6= 1 (Assumption (A-4) ensures that x0 and x1 exist). Then,

for given s ∈ (0,∞), β̃ns → ∞ in one of the limits in (2) and β̃ns → 0 in the other

limit. Now suppose that (3) holds. Then, the limits in (2), and therefore sK ′(s)/K(s),

s ∈ (0,∞), equal ρ. In turn, this implies that K(s) = csρ, s ∈ (0,∞), for some

c ∈ (0,∞). Using the definition of K, we conclude that Λ = cΛ̃ρ. Substituting this into

(13) in the proof of Lemma 2 in Appendix A gives G̃(s) = G (cdsρ), s ∈ (0,∞), with

d ≡ φ(x0)/φ̃(x0)
ρ ∈ (0,∞). Finally, observational equivalence (Definition 1) implies

φ = dφ̃ρ. Consequently, (i) holds. This establishes that (i) and (ii) are equivalent.

C Sufficiency of (iii)

The final step is to prove that (iii) is sufficient for (ii). We will do so by showing that
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each of (iii)a–(iii)d implies

either lim
s→∞

sK ′(s)

K(s)
= ρ or lim

s→0

sK ′(s)

K(s)
= ρ, (5)

so that the corresponding limit in the right-hand side of (2) equals ρ. Then, Lemma

2 implies that sK ′(s)/K(s) = ρ for all s ∈ (0,∞), so that (3) and, equivalently, (ii)

hold.

We first consider regular variation of λ, λ̃. Because K = Λ◦ Λ̃−1, by Assumption (A-2),

we have K ′(s) = λ
[
Λ̃−1(s)

]
/λ̃
[
Λ̃−1(s)

]
, so that3

sK ′(s)

K(s)
=

Λ̃−1 (s)λ
[
Λ̃−1 (s)

]
Λ
[
Λ̃−1 (s)

] ·
Λ̃
[
Λ̃−1 (s)

]
Λ̃−1 (s) λ̃

[
Λ̃−1 (s)

] , s ∈ (0,∞). (6)

Suppose that (iii)a holds: λ and λ̃ vary regularly at 0 with exponents τ ∈ (−1,∞)

and τ ∈ (−1,∞), respectively. Then, by Theorem 1(a) in Feller (1971, Section

VIII.9) and an argument like that for K ′ around (4), limt→0 tλ(t)/Λ(t) = τ + 1

and limt→0 tλ̃(t)/Λ̃(t) = τ + 1. Because, by (A-2), Λ̃−1 : (0,∞) → (0,∞) and

lims→0 Λ̃−1(s) = 0, this implies that the first factor in the right-hand side of (6)

converges to τ + 1 and the second factor to 1/(τ + 1), as s → 0. Consequently,

lims→0 sK
′(s)/K(s) = ρ, and (5) holds, with ρ = (τ + 1)/(τ + 1).

For the case that (iii)b holds— λ and λ̃ vary regularly at∞ with exponents τ ∈ (−1,∞)

and τ ∈ (−1,∞), respectively— Theorem 1(b) in Feller (1971, Section VIII.9) implies

that limt→∞ tλ(t)/Λ(t) = τ + 1 and limt→∞ tλ̃(t)/Λ̃(t) = τ + 1. Now using that

lims→∞ Λ̃−1(s) = ∞, we conclude from (6) that lims→∞ sK
′(s)/K(s) = ρ, and (5)

holds, with ρ = (τ + 1)/(τ + 1).

3Here and in the sequel, we omit the qualifier “almost every” from “almost every s ∈ (0,∞)”.
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Next, we consider regular variation of g, g̃. With (A-3), (13) implies that

K(s) =
1

φ(x0)
G−1

[
G̃
(
φ̃(x0)s

)]
and K ′(s) =

φ̃(x0)g̃
[
φ̃(x0)s

]
φ(x0)g

{
G−1

[
G̃
(
φ̃(x0)s

)]}
so that

sK ′(s)

K(s)
=
φ̃(x0)s g̃

[
φ̃(x0)s

]
G̃
[
φ̃(x0)s

] ·
G
{
G−1

[
G̃
(
φ̃(x0)s

)]}
G−1

[
G̃
(
φ̃(x0)s

)]
g
{
G−1

[
G̃
(
φ̃(x0)s

)]} (7)

and

sK ′(s)

K(s)
=
φ̃(x0)s g̃

[
φ̃(x0)s

]
1− G̃

[
φ̃(x0)s

] · 1−G
{
G−1

[
G̃
(
φ̃(x0)s

)]}
G−1

[
G̃
(
φ̃(x0)s

)]
g
{
G−1

[
G̃
(
φ̃(x0)s

)]} , s ∈ (0,∞).

(8)

Suppose that (iii)c holds: g and g̃ vary regularly at 0 with exponents τ ∈ (−1,∞)

and τ ∈ (−1,∞), respectively. Then, by Theorem 1(a) in Feller (1971, Section

VIII.9) and an argument like that for K ′ around (4), lims→0 sg̃(s)/G̃(s) = τ + 1

and lims→0 sg(s)/G(s) = τ + 1. Because, by (A-2) and (A-4); φ̃(x0) ∈ (0,∞),

G−1
[
G̃(φ̃(x0)s)

]
∈ (0,∞) for s ∈ (0,∞), and lims→0G

−1
[
G̃(φ̃(x0)s)

]
= 0; this implies

that the first factor in the right-hand side of (7) converges to τ + 1 and the second

factor to 1/(τ + 1), as s → 0. Consequently, lims→0 sK
′(s)/K(s) = ρ, and (5) holds,

with ρ = (τ + 1)/(τ + 1).

For the case that (iii)d holds— g and g̃ vary regularly at ∞ with exponents τ ∈

(−∞,−1) and τ ∈ (−∞,−1), respectively— Theorem 1(a) in Feller (1971, Section

VIII.9) implies that lims→∞ sg̃(s)/
[
1− G̃(s)

]
= τ + 1 and lims→∞ sg(s)/ [1−G(s)] =

τ + 1. Now using that lims→∞G
−1
[
G̃(φ̃(x0)s)

]
= ∞, we conclude from (8) that

lims→∞ sK
′(s)/K(s) = ρ, and (5) holds, with ρ = (τ + 1)/(τ + 1).

8



Theorem 1 is an amended version of Ridder (1990)’s Theorem 1. It shows that GAFT

triplets are identified, up to obvious normalizations, if and only if an additional condition,

(ii), is satisfied. Because K ′(s) = λ
[
Λ̃−1(s)

]
/λ̃
[
Λ̃−1(s)

]
, this necessary and sufficient

condition requires that the ratio λ(t)/λ̃(t) behaves like
[
Λ̃(t)

]ρ−1

for t near 0 and ∞.

This is made explicit in the more readily interpretable conditions (iii)a–(iii)d. Each one

of these conditions is sufficient for (i) to hold, but none of them is necessary. For example,

suppose that (Λ, φ,G) = (Λ̃, φ̃, G̃). Then, trivially, K(s) = s for all s ∈ (0,∞) and K ′

varies slowly at 0 and∞, even if λ and λ̃ satisfy neither (iii)a nor (iii)b and g and g̃ satisfy

neither (iii)c nor (iii)d.

Within the context of the literature on the identification of the (single spell) MPH

model, the new sufficient conditions are mild, because they are implied by each of the

identifying assumptions made in that literature (see Section 3). The restrictions on the

ranges of τ and τ in Theorem 1(iii)a–(iii)d are implied by Assumptions (A-2) and (A-3)

and constitute no additional restrictions, except for exclusion of the boundary cases that

τ and/or τ equal −1 (which we will further discuss below). In particular, by the Lemma

in Section VIII.9 of Feller (1971), the requirement that limt→∞ Λ(t) = ∞ implies that λ

cannot vary regularly with exponent τ < −1 at ∞, and lims→∞G(s) = 1 implies that

g cannot vary regularly with exponent τ > −1 at ∞. By that same Lemma, and an

argument like that for K ′ around (4), existence of Λ(t) =
∫ t

0
λ(u)du < ∞ and G(s) =∫ s

0
g(u)du <∞ for finite t and s implies that λ and g cannot vary regularly with respective

exponents τ < −1 and τ < −1 at 0. Obviously, the same restrictions hold for λ̃ and g̃.

Ridder (1990)’s Theorem 1 does not impose conditions on the asymptotic behavior

of the transformation or the baseline distribution, but his proof implicitly relies on such

a condition. In particular, condition (17) in that proof states that 0 < K(s) < ∞ and

0 < K ′(s) <∞ for all s ∈ (0,∞). His limit result (21) essentially claims that, because of

these bounds on K and K ′, the right-hand side of our equation (2) converges to a constant

ρ ∈ (0,∞) as n → ∞. Our Theorem 1 shows that this requires that K ′ varies regularly

9
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0

20

s

K(s)

0 β̃2s0 β̃1s0 β̃0s0 β̃−1s0
20

00

s0K′(s0)
K(s0)

2

s

sK ′(s)/K(s)

Figure 1: A function K ≡ Λ ◦ Λ̃−1 such that, for given β̃ ∈ (0, 1) and all s0 ∈ (0,∞),
s 7→ sK ′(s)/K(s) is constant on {β̃ns0;n ∈ Z} but not on (0,∞) (plotted for β̃ = 1

2
,

s0 = 8)

with exponent ρ− 1 ∈ (−1,∞), which is not guaranteed by Ridder’s conditions.

The top panel of Figure 1 plots a counterexample to Ridder (1990)’s claims,

K(s) = s2 exp

{
− ln(β̃)

2π
cos

[
2π

ln(β̃)
ln(s)

]}
, (9)

for the case that β̃ = 1
2
. In this example, Ridder’s bounds on K and K ′ hold. Moreover,

Lemma 2’s implication of observational equivalence (1) is satisfied:

sK ′(s)

K(s)
= 2 + sin

[
2π

ln(β̃)
ln(s)

]

= 2 + sin

[
2π

ln(β̃)
ln(s) + 2πn

]
=
β̃nsK ′

(
β̃ns
)

K
(
β̃ns
) , n ∈ Z.

(10)
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However, sK ′(s)/K(s) is not a constant and the right-hand side of (10) does not converge

to a constant as n → ∞ or n → −∞. Figure 1’s bottom panel illustrates this by

plotting sK ′(s)/K(s) and, for given s0 = 8, its value s0K
′(s0)/K(s0) = 1 on the set

{β̃ns0;n ∈ Z}. It follows that K is not uniquely determined (up to two constants) by

(2). Moreover, lims→0 sK
′(s)/K(s) and lims→∞ sK

′(s)/K(s) do not exist so that, by

Karamata’s theorem, K ′ does not vary regularly (see Part A of Theorem 1’s proof). We

conclude that observationally equivalent triplets are not necessarily related as in Theorem

1(i), so that the GAFT model is not non-parametrically identified, under Ridder (1990)’s

conditions alone. Also, the corresponding GAFT triplets do not satisfy any of the sufficient

conditions in Theorem 1(iii)a–(iii)d.

This counterexample can also be applied to Theorem 1(iii)’s excluded boundary cases.

Consider, for example, Theorem 1(iii)b. Let K be specified as in (9) and suppose that

Λ̃(t) = ln(t+1). Then, both λ and λ̃ vary regularly at∞ with exponent −1, but Λ = K◦Λ̃

and Λ are not related as in Theorem 1(i). Clearly, regular variation of λ and λ̃ at∞ with

exponent −1 is not sufficient for Theorem 1(i) to hold.4 Appendix B provides further

discussion of the boundary cases.

In the special case of the MPH model, G(s) = 1 −
∫∞

0
exp (−sv) dH(v) for some

cumulative distribution function H on (0,∞). Then, because

K(s) =
1

φ(x0)
·G−1

[
G̃
(
φ̃(x0)s

)]
,

s 7→ sK ′(s)/K(s) is real analytic. One may wonder whether this additional structure

on K is sufficient to prove Theorem 1 without reference to conditions on the model’s

tails. This is not the case: The counterexample in (9) is real analytic and thus continues

to be valid in the analytic case. It is nevertheless instructive to develop the argument

based on real analyticity as far as it goes. For a given s0 ∈ (0,∞), Lemma 2 tells

4We have not been able to find such counterexamples for all boundary cases. Thus, it is possible that
some of the other boundary cases imply Theorem 1(i).
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us that s 7→ sK ′(s)/K(s) equals the constant ρ ≡ s0K
′(s0)/K(s0) ∈ (0,∞) on a set

{β̃ns0;n ∈ Z} that is dense near 0. From this, one may want to conclude from an analytic

extension result, like Krantz and Parks (2002), Corollary 1.2.7, that sK ′(s)/K(s) = ρ

everywhere. However, such an analytic extension result does not readily apply, because

the accumulation point 0 is on the boundary of the domain of s 7→ sK ′(s)/K(s). This

suggests that we need further conditions on the tail of s 7→ sK ′(s)/K(s). Theorem 1(ii)

and (iii)a–(iii)d are such conditions.

3 Application to the Mixed Proportional Hazards

Model

Ridder (1990) provides an extensive discussion of his Theorem 1’s implications for, in

particular, the empirical content of the MPH model; that is, a GAFT model with G(s) =

1 −
∫∞

0
exp (−sv) dH(v) for some cumulative distribution function H on (0,∞). This

discussion remains valid for our amended version of his theorem, and can be extended to

more recent results in the literature on the identification of the MPH model from single

spell data, because our new sufficient conditions on the tails of λ and g, Theorem 1(iii),

nest all related assumptions made in this literature. We list these assumptions and their

connection to our Theorem 1.

• Elbers and Ridder (1982) and Kortram et al. (1995) achieve point identification

of the MPH model (up to the obvious scale normalizations) under the finite-mean

assumption that

lim
s→0

g(s) =

∫ ∞
0

vdH(v) <∞.

Because H has no support outside (0,∞), we also have that lims→0 g(s) > 0.5

5This continues to be true if, more generally, H is a cumulative distribution function on [0,∞), because
(A-3) precludes the case that H is concentrated at 0.
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Consequently, Elbers and Ridder’s finite-mean assumption implies that g varies

slowly at 0. This is equivalent to setting τ = τ = 0 in Theorem 1(iii)c.

• Heckman and Singer (1984) instead make assumptions that guarantee that v 7→

M(v) ≡
∫ v

0
sdH(s) varies regularly at ∞ with an a priori given exponent −τ ∈

(0, 1). The Laplace transform of M is g(s) =
∫∞

0
v exp(−sv)dH(v). Therefore,

by an Abelian-Tauberian theorem (Feller, 1971, Section XIII.5, Theorem 2), their

assumption is equivalent to the assumption that g varies regularly at 0 with a

priori given exponent τ ∈ (−1, 0). This corresponds to setting τ = τ = τ , for

given τ ∈ (−1, 0), in Theorem 1(iii)c. Note that, in contrast to Elbers and Ridder

(1982)’s finite-mean assumption, Heckman and Singer (1984)’s assumption implies

that lims→0 g(s) = limv→∞M(v) =∞.

• Ridder and Woutersen (2003) take a different angle, and assume that 0 < lims→0 λ(s) <

∞. This implies that λ varies slowly at 0. In turn, this corresponds to setting

τ = τ = 0 in Theorem 1(iii)a.

Note that, in all three cases, point identification is obtained by not only assuming that

λ and g vary regularly in one of their tails (as in Theorem 1(iii)), but also by a priori

fixing the corresponding exponent of regular variation. In terms of Theorem 1, in each

case, τ = τ is set to a known constant, so that ρ = 1.

4 Conclusion and Extensions

Our main result corrects a flaw in proof of the non-parametric identification of the GAFT

model in Ridder (1990). We obtain a new necessary and sufficient condition under which

the GAFT model is non-parametrically identified up to obvious normalizations. The

GAFT model is not identified if we can find observationally equivalent GAFT triplets

that are not related by these normalizations. We also provide novel sufficient conditions
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for non-parametric identification in terms of the GAFT model’s primitives. Section 3 uses

this to clarify and unify the previous results on the non-parametric identification of the

MPH model for single spell data, which is a special case of the GAFT model.

Our results have relevance beyond the MPH model for single spell data. They can

easily be extended to a competing-risks setting, and used to interpret and extend the

identification results of Heckman and Honoré (1989) and Abbring and Van den Berg

(2003). They can also be applied to Honoré and de Paula (2010)’s recent analysis of an

optimal stopping game. All three papers study multivariate extensions of the MPH and

GAFT models, and rely on multivariate versions of restrictions on the behavior of g near

0, as in Theorem 1(iii)c. Finally, Abbring (2011) shows that many of the identification

arguments for MPH and GAFT models, including those in this paper, can be adapted

to a class of mixed hitting-time models that specify durations as the first time a Lévy

process hits a threshold that may depend on both observed covariates and an unobserved

heterogeneity factor.

The GAFT model for duration analysis is closely related to transformation models

for the analysis of general continuous variables. Horowitz (1996) and Chiappori and

Komunjer (2009) analyzed the semiparametric and nonparametric identification of trans-

formation models. They do not rely on tail conditions like our sufficient conditions, but

instead assume continuous variation in the covariates. For example, suppose that X is an

interval in R. Let (Λ, φ,G) and (Λ̃, φ̃, G̃) be observationally equivalent GAFT triplets that

satisfy (A-1)–(A-3). Moreover, instead of (A-4), assume that φ and φ̃ are continuously

differentiable, with φ′(x0) 6= 0 and φ̃′(x0) 6= 0 for some x0 ∈ X . Then, in the spirit of

Horowitz (1996),

φ′(x)

φ(x)
· Λ(t)

λ(t)
=
∂F (t|x)/∂x

∂F (t|x)/∂t
=
φ̃′(x)

φ̃(x)
· Λ̃(t)

λ̃(t)
; t ∈ (0,∞), x ∈ X ;
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implies that

λ

Λ
= ρ

λ̃

Λ̃
and

φ′

φ
= ρ

φ̃′

φ̃
, with ρ ≡ φ′(x0)

φ(x0)
· φ̃(x0)

φ̃′(x0)
∈ (0,∞).

In turn, this implies the characterization of the observationally equivalent GAFT triplets

in Theorem 1(i). In this argument, direct continuous variation with the covariates substi-

tutes for Theorem 1’s evaluation of F (·|x0) and F (·|x1) near the common limits of their

supports.

The present paper’s analysis requires data for only two covariate values. It also applies

in that case that x is discrete, where the results for continuously varying x cannot be

used. The binary valued case shows that the GAFT model with continuously varying x

is (heavily) overidentified. If we fix x0 and let x1 take values in X then we can identify

Λ and G for each x1 such that φ(x0) 6= φ(x1). The binary case only requires that Λ and

G are the same in the subpopulations with covariate values x0 and x1; different x1 could

identify different Λ and G.

The binary covariate case can also be applied to the common situation in which dura-

tions are discretely observed, but continuous regressor variation is available. Ridder (1990)

shows that, without further assumptions, identification breaks down when durations are

only observed in intervals; and that identification can be restored by exploiting continuous

and parametric variation with the covariates. In the context of the MPH model, Brinch

(2011) noted that Elbers and Ridder (1982)’s results for continuously observed durations

and discrete covariate values can be applied to this problem by simply exchanging the

roles of time and the covariates.6 This idea extends to our analysis.

For example, suppose that F (t|x) is known for only two values t0 and t1 of t such

that 0 < t0 < t1 < ∞. Consider two GAFT triplets (Λ, φ,G) and (Λ̃, φ̃, G̃) that are

6Ridder (1990) essentially focuses on a GAFT model in which F (t|x) is only observed for one value
of t in (0,∞) (and where it is in addition known that limt→0 F (t|x) = 0 and limt→∞ F (t|x) = 1). For
this case, he provides both a nonidentification result and a semiparametric identification result that relies
on parametric structure on φ. For the MPH special case, Brinch (2011) points out that such parametric
structure is not needed when F (t|x) is known for at least two values of t in (0,∞).

15



observationally equivalent with such data: G [φ(x)Λ(t)] = F (t|x) = G̃
[
φ̃(x)Λ̃(t)

]
for all

t ∈ {t0, t1} and all x ∈ X . Suppose that both these triplets satisfy (A-1)–(A-3) (note that

this implies that 0 < Λ(t0) < Λ(t1) < ∞ and 0 < Λ̃(t0) < Λ̃(t1) < ∞). For the sake of

simplicity, let X = (0,∞), and assume that φ and φ̃ satisfy the conditions on Λ in (A-2).

In particular, this requires that φ(x) and φ̃(x) attain all values in (0,∞) if x varies over

X . It also requires that φ and φ̃ are strictly increasing functions of a scalar covariate, but

this can easily be relaxed, as shown in Appendix C. Then, Theorem 1 applies directly;

with Λ(t0), Λ(t1), Λ̃(t0), and Λ̃(t1) taking the roles of φ(x0), φ(x1), φ̃(x0), and φ̃(x1); and

φ and φ̃ substituting for Λ and Λ̃. Therefore, up to obvious normalizations we can non-

parametrically identify the regression function and G and the transformation is identified

at the interval boundaries.
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Appendices

A Proof of Lemma 2

By Definition 1, observational equivalence of (Λ, φ,G) and (Λ̃, φ̃, G̃) implies that

G̃
[
φ̃(x0)Λ̃(t)

]
= G [φ(x0)Λ(t)] and (11)

G̃
[
φ̃(x1)Λ̃(t)

]
= G [φ(x1)Λ(t)] (12)

for all t ∈ (0,∞). Because Λ̃ : (0,∞) → (0,∞) is bijective by (A-2), and φ̃(x0) > 0 and

φ̃(x1) > 0 by (A-4), changing variables to s = φ̃(x0)Λ̃(t) in (11) and to s = φ̃(x1)Λ̃(t) in

(12) gives

G̃(s) = G

{
φ(x0)Λ

[
Λ̃−1

(
s

φ̃(x0)

)]}
and (13)

G̃(s) = G

{
φ(x1)Λ

[
Λ̃−1

(
s

φ̃(x1)

)]}

for s ∈ (0,∞). In turn, because G is strictly increasing by (A-3), this implies that

φ(x0)Λ

[
Λ̃−1

(
s

φ̃(x0)

)]
= φ(x1)Λ

[
Λ̃−1

(
s

φ̃(x1)

)]
, s ∈ (0,∞).

Changing variables to t = Λ̃−1(s/φ̃(x0)) and rearranging, using that Λ̃−1 is bijective and

φ̃(x0) > 0, and that Λ is invertible by (A-2), gives

Λ−1

(
φ(x0)

φ(x1)
Λ(t)

)
= Λ̃−1

(
φ̃(x0)

φ̃(x1)
Λ̃(t)

)
, t ∈ (0,∞). (14)

With β ≡ φ(x0)/φ(x1) and β̃ ≡ φ̃(x0)/φ̃(x1), we can write (14) more succinctly as

Λ−1 ◦ β · Λ = Λ̃−1 ◦ β̃ · Λ̃ (15)
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or, by inverting the left- and right-hand sides,

Λ−1 ◦ β−1 · Λ = Λ̃−1 ◦ β̃−1 · Λ̃. (16)

By composing the left- and right-hand sides of (15) and (16) n times with themselves, we

obtain the equivalent relation

Λ−1 ◦ βn · Λ = Λ̃−1 ◦ β̃n · Λ̃, n ∈ Z (17)

(note that this equation is trivially satisfied if n = 0). Using that K = Λ ◦ Λ̃−1, and a

change of variables to s = Λ̃(t), (17) implies

βnK(s) = K(β̃ns), s ∈ (0,∞), n ∈ Z. (18)

Assumption (A-2) implies that K(s) > 0 for s ∈ (0,∞). So, we can take the derivative of

the logarithm of (18) for s ∈ (0,∞). Multiplying the result of this by s gives (1).

Finally, because (1) holds for all integer n, it should hold in the limit as n→ −∞ or

n→∞. This gives (2).

B Boundary Cases

The boundary cases that τ = −1 and τ = −1 are excluded from Theorem 1(iii)a–(iii)d

because, in them, ρ = (τ + 1)/(τ + 1) is not defined and Part C of Theorem 1’s proof

breaks down. Intuitively, in these cases, the tail behavior of F (·|x) provides comparatively

little information about the model primitives.

To gain some intuition for this, let (Λ, φ,G) and (Λ̃, φ̃, G̃) be observationally equivalent

GAFT triplets that satisfy (A-1)–(A-4). For any x0, x1 ∈ X ; observational equivalence
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implies that

1− G̃
[
φ̃(x0)

φ̃(x1)
φ̃(x1)Λ̃(t)

]
1− G̃

[
φ̃(x1)Λ̃(t)

] =
1− F (t|x0)

1− F (t|x1)
=

1−G
[
φ(x0)
φ(x1)

φ(x1)Λ(t)
]

1−G [φ(x1)Λ(t)]
, t ∈ (0,∞), (19)

Now consider, for example, Theorem 1(iii)d. Suppose that g and g̃ vary regularly at ∞

with exponents τ ∈ (−∞,−1] and τ ∈ (−∞,−1]. Then, again by Feller’s Lemma, 1−G

and 1− G̃ vary regularly at ∞ with exponents τ + 1 ∈ (−∞, 0] and τ + 1 ∈ (−∞, 0]. By

the definition of regular variation (Definition 2), (19) converges to

[
φ̃(x0)

φ̃(x1)

]τ+1

= lim
t→∞

1− F (t|x0)

1− F (t|x1)
=

[
φ(x0)

φ(x1)

]τ+1

(20)

as t → ∞ (note that φ̃(x1)Λ̃(t) → ∞ and φ(x1)Λ(t) → ∞ as t → ∞). Without loss of

generality, by (A-4), take x0 and x1 such that φ(x0) < φ(x1). Then, Lemma 1 implies

that φ̃(x0) < φ̃(x1) as well.

If both τ ∈ (−∞,−1) and τ ∈ (−∞,−1), as in Theorem 1(iii)d, then

lim
t→∞

1− F (t|x0)

1− F (t|x1)
∈ (1,∞). (21)

Conversely, (21) and regular variation of g and g̃ imply that τ , τ ∈ (−∞,−1). In this

case, φ and φ̃ are related as in Theorem 1(i).

If τ = τ = −1, then

lim
t→∞

1− F (t|x0)

1− F (t|x1)
= 1. (22)

Conversely, (22) and regular variation of g and g̃ imply that τ = τ = −1. In this case, φ

and φ̃ may be related as in Theorem 1(i), for example if (Λ, φ,G) = (Λ̃, φ̃, G̃). However,

(20) does not imply that they are; in particular, in this case, (20) is satisfied for all φ and

φ̃.
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The other boundary case of Theorem 1(iii)d occurs if τ = τ = −∞. In this case, g

and g̃ vary rapidly at ∞. Rapidly varying functions (De Haan, 1970, Section 1.1) satisfy

Definition 2 with τ = −∞ or τ = ∞ (De Haan, 1970, Section 1.1) if we define, for

α ∈ (0,∞),

α∞ ≡


0 α < 1,

1 if α = 1,

∞ α > 1;

and α−∞ ≡


∞ α < 1,

1 if α = 1, and

0 α > 1.

This gives the following generalization of regular variation.

Definition 3. A function k : (0,∞)→ (0,∞) is τ -varying at 0 (at ∞), τ ∈ [−∞,∞], if

k(αs)/k(s)→ ατ as s→ 0 (s→∞) for every α ∈ (0,∞).

If g and g̃ are −∞-varying, and still φ(x0) < φ(x1), then

lim
t→∞

1− F (t|x0)

1− F (t|x1)
=∞. (23)

Conversely, if g, g̃ are τ , τ -varying and (23) holds, then τ = τ = −∞. As in the other

boundary case, φ and φ̃ may be related as in Theorem 1(i), but (20) does not guarantee

that they are.

Taken together, this implies that GAFT triplets that satisfy the sufficient condition

in Theorem 1(iii)d cannot be observationally equivalent to GAFT triplets that satisfy a

boundary case of this same condition. The following lemma summarizes this result and

extends it to the other boundary cases.
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Lemma 3. Let (Λ, φ,G) and (Λ̃, φ̃, G̃) be observationally equivalent GAFT triplets that

satisfy (A-1)–(A-4). Let x0, x1 ∈ X be such that φ(x0) 6= φ(x1).

(i). If λ, λ̃ are τ , τ -varying at 0; with necessarily τ , τ ∈ [−1,∞]; then

lim
s→0

F−1(s|x0)

F−1(s|x1)
∈


{0,∞} ⇐⇒ τ = τ = −1,

(0, 1) ∪ (1,∞) ⇐⇒ τ , τ ∈ (−1,∞), and

{1} ⇐⇒ τ = τ =∞.

(ii). If λ, λ̃ are τ , τ -varying at ∞; with necessarily τ , τ ∈ [−1,∞]; then the same result

holds if we take the limit s→∞.

(iii). If g, g̃ are τ , τ -varying at 0; with necessarily τ , τ ∈ [−1,∞]; then

lim
t→0

F (t|x0)

F (t|x1)
∈


{1} ⇐⇒ τ = τ = −1,

(0, 1) ∪ (1,∞) ⇐⇒ τ , τ ∈ (−1,∞), and

{0,∞} ⇐⇒ τ = τ =∞.

(iv). If g, g̃ are τ , τ -varying at ∞; with necessarily τ , τ ∈ [−∞,−1]; then

lim
t→0

1− F (t|x0)

1− F (t|x1)
∈


{0,∞} ⇐⇒ τ = τ = −∞,

(0, 1) ∪ (1,∞) ⇐⇒ τ , τ ∈ (−1,∞), and

{1} ⇐⇒ τ = τ = −1.

Proof. (i). First, suppose that λ, λ̃ are τ , τ -varying at 0 with τ , τ ∈ [−1,∞]. Define

λ?(s) ≡ λ(1/s). Let

Λ?(s) ≡ Λ(1/s) =

∫ 1/s

0

λ(u)du =

∫ ∞
s

u−2λ?(u)du

and note that s 7→ s−2λ?(s) is (−τ − 2)-varying at ∞. By Lemma 1.2.2 in De Haan

21



(1970)7, Λ? is (−τ − 1)-varying at ∞. Consequently, Λ is (τ + 1)-varying at 0 and,

by Corollary 2.2.1 in De Haan (1970), Λ−1 is (τ + 1)−1-varying at 0 (here, we take

(τ + 1)−1 =∞ if τ = −1 and (τ + 1)−1 = 0 if τ =∞). Similarly, it follows that Λ̃−1

is (τ + 1)−1-varying at 0. By observational equivalence

Λ̃−1
[
φ̃(x1)

φ̃(x0)
φ̃(x1)

−1G̃(s)
]

Λ̃−1
[
φ̃(x1)−1G̃(s)

] =
F−1(s|x0)

F−1(s|x1)
=

Λ−1
[
φ(x1)
φ(x0)

φ(x1)
−1G(s)

]
Λ−1 [φ(x1)−1G(s)]

, s ∈ (0,∞);

(24)

so that

[
φ̃(x1)

φ̃(x0)

] 1
τ+1

= lim
s→0

Λ̃−1
[
φ̃(x1)

φ̃(x0)
φ̃(x1)

−1G̃(s)
]

Λ̃−1
[
φ̃(x1)−1G̃(s)

]
= lim

s→0

F−1(s|x0)

F−1(s|x1)
= lim

s→0

Λ−1
[
φ(x1)
φ(x0)

φ(x1)
−1G(s)

]
Λ−1 [φ(x1)−1G(s)]

=

[
φ(x1)

φ(x0)

] 1
τ+1

.

With φ(x0) 6= φ(x1) and Lemma 1, this gives the desired result.

(ii). Next, let λ, λ̃ be τ , τ -varying at ∞ with τ , τ ∈ [−1,∞]. By Lemma 1.2.2 and

Corollary 2.2.1 in De Haan (1970), Λ−1 is (τ+1)−1-varying at∞ and Λ̃−1 is (τ+1)−1-

varying at ∞. With observational equivalence, in particular (24), this implies that

[
φ̃(x1)

φ̃(x0)

] 1
τ+1

= lim
s→∞

Λ̃−1
[
φ̃(x1)

φ̃(x0)
φ̃(x1)

−1G̃(s)
]

Λ̃−1
[
φ̃(x1)−1G̃(s)

]
= lim

s→∞

F−1(s|x0)

F−1(s|x1)
= lim

s→∞

Λ−1
[
φ(x1)
φ(x0)

φ(x1)
−1G(s)

]
Λ−1 [φ(x1)−1G(s)]

=

[
φ(x1)

φ(x0)

] 1
τ+1

.

With φ(x0) 6= φ(x1) and Lemma 1, this gives the desired result.

(iii). Now, suppose that g, g̃ are τ , τ -varying at 0 with τ , τ ∈ [−1,∞]. By an argument

7Lemma 1.2.2 in De Haan (1970) is an extension to τ -varying functions of the Lemma in Feller (1971,
Section VIII.9) used in the main text.
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as that for Λ and Λ̃ in (i), G is τ + 1-varying at 0 and G̃ is τ + 1-varying at 0. With

observational equivalence; in particular

G̃
[
φ̃(x0)

φ̃(x1)
φ̃(x1)Λ̃(t)

]
G̃
[
φ̃(x1)Λ̃(t)

] =
F (t|x0)

F (t|x1)
=
G
[
φ(x0)
φ(x1)

φ(x1)Λ(t)
]

G [φ(x1)Λ(t)]
, t ∈ (0,∞);

this implies that

[
φ̃(x0)

φ̃(x1)

]τ+1

= lim
t→0

G̃
[
φ̃(x0)

φ̃(x1)
φ̃(x1)Λ̃(t)

]
G̃
[
φ̃(x1)Λ̃(t)

]
= lim

t→0

F (t|x0)

F (t|x1)
= lim

t→0

G
[
φ(x0)
φ(x1)

φ(x1)Λ(t)
]

G [φ(x1)Λ(t)]
=

[
φ(x0)

φ(x1)

]τ+1

.

With φ(x0) 6= φ(x1) and Lemma 1, this gives the desired result.

(iv). Finally, suppose that g, g̃ are τ , τ -varying at ∞ with τ , τ ∈ [−∞, 1]. By Lemma

1.2.2 in De Haan (1970), 1−G is τ + 1-varying at ∞ and 1− G̃ is τ + 1-varying at

∞. With observational equivalence, in particular (19), this implies that

[
φ̃(x0)

φ̃(x1)

]τ+1

= lim
t→∞

1− G̃
[
φ̃(x0)

φ̃(x1)
φ̃(x1)Λ̃(t)

]
1− G̃

[
φ̃(x1)Λ̃(t)

]
= lim

t→∞

1− F (t|x0)

1− F (t|x1)
= lim

t→∞

1−G
[
φ(x0)
φ(x1)

φ(x1)Λ(t)
]

1−G [φ(x1)Λ(t)]
=

[
φ(x0)

φ(x1)

]τ+1

.

With φ(x0) 6= φ(x1) and Lemma 1, this gives the desired result.

C Discrete Duration Data

Suppose that, in contrast to the setup in Section 2, the data provide us with F (t|x) for

only two distinct values t0, t1 ∈ (0,∞) of t and all x ∈ X . Without loss of generality, let

t0 < t1. With such data, two GAFT triplets (Λ, φ,G) and (Λ̃, φ̃, G̃) are observationally
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equivalent if G [φ(x)Λ(t)] = F (t|x) = G̃
[
φ̃(x)Λ̃(t)

]
for all t ∈ {t1, t2} and all x ∈ X .

Consider the following alternatives for (A-2) and (A-4):

(A-2?). φ : X → (0,∞) is such that, for some covariate path ξ : (0,∞) → X , Ψ ≡ φ ◦ ξ

can be written as Ψ(s) =
∫ s

0
ψ(u)du, s ∈ (0,∞), for some ψ : (0,∞)→ (0,∞) that

is integrable on finite intervals, and lims→∞Ψ(s) =∞.

(A-4?). Λ(t0) ∈ (0,∞) and Λ(t1) ∈ (0,∞) are such that Λ(t0) < Λ(t1).

Assumption (A-2?) requires that there exists a covariate path ξ such that Ψ ≡ φ ◦ ξ

satisfies the conditions on Λ in (A-2): Ψ is absolutely continuous on bounded intervals

and strictly increasing, lims→0 Ψ(s) = 0, and lims→∞Ψ(s) = ∞. The following result

shows that such a covariate path can be determined from the data.

Lemma 4. Let (Λ, φ,G) and (Λ̃, φ̃, G̃) be observationally equivalent GAFT triplets that

satisfy (A-1), (A-2?), (A-3), and (A-4?). Let ξ : (0,∞) → X be a covariate path such

that Ψ ≡ φ◦ ξ satisfies the conditions on Λ in (A-2). Then, Ψ̃ ≡ φ̃◦ ξ satisfies these same

conditions.

Proof. Observational equivalence implies that

G [Ψ(s)Λ(t0)] = F (t0|x) = G̃
[
Ψ̃(s)Λ̃(t0)

]
, s ∈ (0,∞). (25)

Because Ψ is absolutely continuous on bounded intervals and nondecreasing; and, by (A-

3), G is absolutely continuous; the left-hand side of (25), as a function of s, is absolutely

continuous on bounded intervals (and on (0,∞), because it is monotone and bounded).

Moreover, (A-2?) and (A-3) imply that it is strictly increasing, converges to 0 as s → 0,

and converges to 1 as s→∞.

The right-hand side of (25) should have these same properties. Because, by (A-3), G̃ is

absolutely continuous and strictly increasing, with lims→0 G̃(s) = 0 and lims→∞ G̃(s) = 1;

this requires that Ψ̃ is absolutely continuous on bounded intervals and strictly increasing,

lims→0 Ψ̃(s) = 0, and lims→∞ Ψ̃(s) =∞.

24



Lemma 4’s assumption that φ satisfies (A-2?) ensures that the covariate path ξ ex-

ists. Lemma 4 shows that, in (A-2?), the same covariate paths can be used across all

observationally equivalent GAFT triplets. More constructively, such covariate paths can

be identified with the paths ξ such that s 7→ F [t0|ξ(s)] is absolutely continuous and

strictly increasing, with lims→0 F [t0|ξ(s)] = 0 and lims→∞ F [t0|ξ(s)] = 1. For example,

if F (t0|x) = h(θ′x) with h increasing, then a sufficient condition is that one of the com-

ponents of θ is nonzero, the corresponding x has ’large’ support and h is 0 and 1 at the

boundary of that support.

Assumption (A-4?) ensures that F (t0|x) 6= F (t1|x). Note that, because t0 < t1, (A-2)

is sufficient for (A-4?). Because we do not need assumptions on Λ(t) for t 6∈ {t1, t2}, (A-2)

is not necessary.

Together, Assumptions (A-2?) and (A-4?) ensure that Theorem 1 can be applied to

data on F [t|ξ(s)] for t ∈ {t0, t1} ⊂ (0,∞) and s ∈ (0,∞), with Ψ ≡ φ ◦ ξ taking the

role of Λ and Λ(t0) and Λ(t1) taking the roles of φ(x0) and φ(x1). To this end, consider

observationally equivalent GAFT triplets (Λ, φ,G) and (Λ̃, φ̃, G̃). Define Ψ̃ ≡ φ̃ ◦ ξ and

K ≡ Ψ ◦ Ψ̃−1. Then, Theorem 1 gives Ψ = cΨ̃ρ, Λ(t0) = dΛ̃(t0)
ρ, Λ(t1) = dΛ̃(t1)

ρ, and

G̃ (s) = G (cdsρ) for all s ∈ (0,∞); for some c, d ∈ (0,∞); if and only if K ′ varies regularly

at 0 and ∞ with exponent ρ − 1 ∈ (−1,∞). With these relations between (Λ, φ,G) and

(Λ̃, φ̃, G̃) in hand, and observational equivalence, it is easy to show that φ = cφ̃ρ.

We summarize this result as a corollary to Theorem 1.
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Corollary 1. Let (Λ, φ,G) and (Λ̃, φ̃, G̃) be observationally equivalent GAFT triplets that

satisfy (A-1), (A-2?), (A-3), and (A-4?). Let ξ : (0,∞) → X be a covariate path, as in

(A-2?), such that Ψ ≡ φ ◦ ξ satisfies the conditions on Λ in (A-2). Define Ψ̃ ≡ φ̃ ◦ ξ and

K ≡ Ψ ◦ Ψ̃−1, with derivative K ′ : (0,∞) → (0,∞) almost everywhere. Let ρ ∈ (0,∞).

Then,

(i). for some c, d ∈ (0,∞),

φ = cφ̃ρ,

Λ(t0) = dΛ̃(t0)
ρ,

Λ(t1) = dΛ̃(t1)
ρ, and

G̃ (s) = G (cdsρ) for all s ∈ (0,∞)

if and only if

(ii). K ′ varies regularly at 0 and ∞ with exponent ρ− 1.

Conditions Theorem 1(iii)c and (iii)d continue to be sufficient for Corollary 1(ii). The-

orem 1(iii)a and (iii)b can be straightforwardly adapted to sufficient conditions in terms

of the tails of ψ and ψ̃ (which in turn require conditions on X and φ).
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