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Experimental Testbeds for ECOSEL: A Market Framework for  

Private Provision of Forest Ecosystem Services 

 

Sándor F. Tóth, Sergey S. Rabotyagov and Gregory J. Ettl 

University of Washington, Seattle 

Abstract 
 

We attempt to design a market framework (which we call ECOSEL) for private provision of 
forest ecosystem services.  ECOSEL is a non-regulatory framework that uses a voluntary 
public good provision mechanism (in a form of an auction) in conjunction with a multi-
objective optimization algorithm to create a market for forest ecosystem services. It is 
expected to be attractive to the demand side of the ecosystem service market since only 
Pareto-efficient bundles of services are offered for auction, and it is expected to be attractive 
to the supply side as well by creating a source of non-timber income for forest landowners. 
ECOSEL is capable of flexible response to demand for other relevant dimensions of forest-
related environmental amenities such as biodiversity, viewshed or recreational services.  
Following Roth’s (2002) advice on behavior of economists as “market engineers”, we use 
both experimental economics to improve the design of the ecosystem services market. 
Concurrently, we provide experimental evidence on the efficiency and revenue-generating 
properties of a multi-good subscription game of incomplete information.  

 

Introduction 

 

Many forest benefits are public goods characterized by various degrees of non-excludability 

and non-rivalry. It is usually impractical (or morally unjustifiable) to exclude one from enjoying 

a scenery or an old-growth forest patch even if the individual did not pay for the privilege. 

Ecosystem services such as carbon sequestration or nutrient cycling can serve as examples of 

pure public goods. As is well-known in public economics, conventional markets typically under-

provide these goods. In the forest ecosystem service context, the consequences of these under-

provisions can be severe as forest landowners or other decision makers will likely choose the 

most profitable land use or management alternative available to them. Real estate development 
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or conversion to non-forest uses compromise or eliminating forest ecosystem services. In the 

United States alone, hundreds of thousands of hectares of non-federal forestland are lost each 

year due to urban sprawl (Alig et al. 2003) – a process partly induced by our inability to reward 

landowners for forest preservation and associated ecosystem service provision. Intensive timber 

production can also lead to decreased provision of ecosystem services. Command-and-control 

responses to these market failures, such as the State of Washington’s Forest Practices Rules 

provide little to no incentive for landowners to enhance ecosystem services from their land. On 

the extensive margin, strict regulation provides an incentive for forest landowners to convert 

their land to a non-forest use, with very negative consequences for ecosystem services. On the 

intensive margin, command-and-control measures provide no incentive to provide the ecosystem 

services beyond the legally mandated minimum.  A functional market for ecosystem services 

would allow forest-dependent communities to diversify their revenue sources reducing reliance 

on volatile timber markets, and could allow the timber industry to better align their forest 

management to reflect the values of the public concerned with environmental issues.  

Voluntary alternatives to regulatory approaches for creating desired ecosystem services 

include certification schemes and auctions. Certification providers such as the Forest 

Stewardship Council (FSC) promote ecosystem services by labeling forest products that are 

produced in sustainably managed forests. Extensive monitoring mechanisms are in place to 

ensure that on-the-ground management, as well as the entire supply chain, is in compliance with 

the certification standards. The mechanism captures a unique market segment of players who are 

willing to pay extra dollars for sustainably produced forest products. Auctions have also been 

applied to determine the market prices of other ecosystem-related products such as carbon 

emissions credits (Buckley et al. 2006) or the location of sewage treatment plants (Minehart and 
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Neeman 2002). Reverse auctions, where the auctioneer is the buyer and the bidders are the 

sellers have been used to distribute public funds for the production of ecosystem services 

(Greenhalgh et al. 2007). In a reverse auction, the government encourages landowners to bid on 

services they can provide on a competitive basis. Landowners submit proposals as to how they 

will provide key ecosystems services, such as reduced phosphorus pollution, sedimentation, or 

increased wildlife habitat, targeted by a conservation program. Stoneham at al. (2002) describes 

the BushTender program’s use of reverse auctions to maintain biodiversity in Victoria, Australia. 

A similar reverse auction approach has been used near military bases where adjacent landowners 

bid to provide habitat for endangered species (McKee and Berrens 2001). 

The concept 

We propose ECOSEL as an alternative, non-regulatory approach that is different from ex-

isting mechanisms. The rationale behind ECOSEL is the following. A landowner can manage his 

or her land in a variety of ways within the constraints of the applicable laws and regulations. 

Some management alternatives lead to more, while others lead to less environmental services for 

the public. For example, a forest landowner might decide to clear-cut his forest and convert it to 

a non-forest use. This would likely compromise the ability of the land to provide forest habitat 

for wildlife, sequester carbon or potentially clean water for downstream users. Alternatively, the 

same landowner could preserve the forest cover and retain many ecosystem functions. This 

option, however, would result in opportunity costs for the landowner due to forgone timber or 

development revenues, or both. The goal of  ECOSEL is to provide a decentralized mechanism 

to pay compensation to the landowner for the minimum costs that are associated with the desired 

changes in management. ECOSEL achieves this by combining forest ecosystem service 

optimization component with an auction component. 
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The ecosystem service optimization component: 

Typically, there are a large number of compromise management alternatives available for the 

landowner between polar solutions such as complete development versus preservation. Some of 

these compromises are Pareto-efficient with respect to the environmental outputs that they would 

lead to, and with respect to the associated implementation cost. In this context, a management 

alternative is Pareto-efficient if none of the associated environmental outputs or the associated 

cost can be improved (i.e., increased for environmental outputs, or decreased for costs) without 

compromising another output. The notion of Pareto-optimality is critical because it helps finding 

management options that lead to different bundles of forest ecosystem services in the most 

(opportunity) cost-efficient way possible. ECOSEL identifies these cost-efficient options for a 

given forestland, time period, and a predefined set of ecosystem outputs. While the number of 

Pareto-efficient management plans can be high, it is ultimately a finite number as most of the 

landowner’s decisions are discrete choices. We use multiobjective optimization  to explicitly 

capture the tradeoffs between ecosystem services and implementation costs. 
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Figure 1.  Pareto-optimal forest management plans for Pack Forest, Washington. 
Each point on the 3-dimensional surface represents a management plan, or 
equivalently, an ecosystem services bundle. Only five of the bundles are labeled and 
the net timber revenues on the vertical axis are hidden in compliance with Pack For-
est policies. 

 

The outcome of the optimization process is a production possibilities frontier (e.g., Figure 1) 

for the relevant ecosystem service outputs, from which total and marginal ecosystem service 

production costs can be derived. This key feature of the tool is far from trivial: a significant 

obstacle to functioning ecosystem markets is often a lack of understanding of the underlying 

natural production processes, and a lack of easily identifiable least-cost ecosystem production 

options. Indeed, the notion of “costs” and “tradeoffs” is only relevant when minimum costs of 

producing a particular combination of ecosystem services are identified. The ECOSEL 

optimization component entails the use of detailed data on the physical characteristics of the 

forest, as well as simulation and GIS modeling to generate the Pareto-efficient set of tradeoffs 
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between ecosystem services and costs. As a practical matter, ECOSEL seeks to provide potential 

sellers with a tool to develop the supply function for their unique forest condition and the unique 

combination of ecosystem service outputs. This may significantly increase the interest in the 

program among forest landowners, many of whom lack the capacity to develop such supply 

surfaces themselves.  

The market (auction) component: 

Once a set of Pareto-efficient management plans is identified, an auction takes place where 

dollar bids are solicited for each selected plan. The opportunity costs found through optimization 

serve as the bases for the reserve prices to be used in the auction. The management plan for 

which the combined value of bids exceeds the corresponding reserve price by the largest margin 

(i.e., a profit-maximizing plan) at the end of the auction is implemented by the landowner. The 

landowner is obliged to implement the winning plan, which in turn leads to the bundle of 

services that were desired by the bidders. Should the bids fall short of the lowest reserve price, 

all bids are returned to the participants and the auction concludes without any forest management 

commitments put in place. Legal contracts are in place to ensure that the plan is implemented in 

due course and no unjustifiable deviations occur. 

 

Thus, the auction component of ECOSEL can be thought of as a multi-good voluntary public 

goods contribution game with a predefined provision point and refundable contributions (a.k.a., 

subscription game, Admati and Perry, 1991). Economic theory suggests that a mechanism like 

ECOSEL may be able to provide an efficient level of ecosystem services while earning a profit 

for the landowner (e.g., Bagnoli and Lipman 1989; Menezes et al. 2001; Barbieri and Malueg 

2008). While many voluntary mechanisms for public goods provision have been proposed (e.g.,  
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Ledyard 1995), the subscription game has the following attractive features leading to us choosing 

it as the basis of ECOSEL: 1) it is very simple, especially in comparison to other public good 

provision mechanisms, and can be easily understood by market participants; 2) it is easily 

extended to the context of multiple bundles of multiple ecosystem services; 3) it has attractive 

theoretical (Bagnoli and Lipman, 1989; Barbieri and Malueg, 2008) and experimental properties 

(e.g., Bagnoli and McKee, 1991).  

A simple characterization of the proposed auction mechanism can be given by letting I 

denote the set of bundles of ecosystem services that are available in the auction, and by letting K 

denote the set of players who are bidding for these services.  Assume that each Player k K∈ has 

a certain value (or indirect utility), k
iv  associated with each Bundle i I∈ . Finally, let k

ib denote 

the final bid that Player k places on Bundle i and let ir  denote the reserve price for Bundle i. The 

following characterize the ECOSEL game. 

(1) Social Surplus: If the provision game – which is open to all potential buyers –  is 

successful and one of the management plans, say Bundle i wins, social welfare will increase by 

social surplus iSS , which is the sum of the resulting net benefits to the bidders and the resulting 

net benefits to the provider (Eq. 1): 

 

 ( )k k k k
i i i i i i i

k K k K k K

SS v b b r v r
∈ ∈ ∈

= − + − = −∑ ∑ ∑      (1) 

 

As it is evidenced by Equation (1), social surplus will only depend on the values that the 

players assign to the winning scenario and on the associated reserve price. Figure 2 provides a 

more intuitive exposition of this result: The amount by which the total of bids exceeds the 
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reserve price only affects the bidders’ and the provider’s respective shares in the benefits. The 

sum of the two shares, which is the social surplus, remains constant as long as the total value of 

the bids exceeds the reserve price. If the bids do not exceed the reserve price, then the social 

surplus is zero. Thus, we describe the efficiency of the provision mechanism not only in terms of 

the surplus generated for the consumers, but also in terms of overall economic efficiency. 

Existence of seller surplus does not undermine the efficiency of the mechanism, as it only serves 

to redistribute the social surplus from the bidders (consumers) to the seller (forest landowner). 

 

 

  

 

 

 

Figure 2.  Social surplus generated by the ECOSEL subscription game 
depends only on the combined value that the players assign to the winning 
bundle of services and the associated reserve price. 

 

(2) Theoretical Welfare Maximum: The Theoretical Welfare Maximum is reached at Bundle i 

if, of all the bundles of ecosystem services that are available in the auction, it is Bundle i that is 

collectively valued the highest by the players relative to the associated reserve price (Eq. 2):   

k k
i i j jj Ik K k K

v r Max v r
∈

∈ ∈

− = −∑ ∑        (2) 

(3) Winning Conditions: There are two necessary conditions for Bundle i to win. First, the 

total value of bids on Bundle i must exceed the reserve price (Inequality 3). Second, the amount 

ir

k
i

k K
b

∈
∑

k
i

k K
v

∈
∑
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of this excess must be greater than the excesses at any of the other bundles (Eq. 4). These two 

conditions together are a sufficient to determine if a particular bundle is winning in the auction. 

 

0k
i i

k K
b r

∈

− ≥∑           (3) 

k k
i i j jj Ik K k K

b r Max b r
∈

∈ ∈

− = −∑ ∑        (4) 

 

4) Efficiency: An outcome of the ECOSEL subscription game is efficient if (2), (3) and (4) all 

hold, i.e., if the winning management scenario maximizes social surplus. If only inequality (3) 

holds, the management plan that leads to Bundle i is welfare-improving, but both (3) and (4) 

must hold for the plan to be economically optimal. 

An illustration  

This section, which is based on Tóth et al. (2008), illustrates the ECOSEL optimization 

component using the University of Washington’s 4,300 ac Pack Forest as an example. Pack 

Forest is a self-sustaining operation with revenue coming from timber production. The dual 

mission of the forest is to demonstrate sustainable forest stewardship and to generate revenues to 

support students and other programs at the College of Forest Resources, University of 

Washington. Since Pack Forest is located near the Tacoma metropolitan area, the real estate 

value of the land is estimated to be significantly higher than its timber value. This puts the 

property at risk of conversion to development, which would compromise one of its core 

missions. To reduce conversion risk, the administration is interested in increasing revenues from 

ecosystem services rather than by intensifying timber production. The case study simulates the 

choices and constraints that thousands of private forest landowners face in the region. 
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We identify spatiotemporally explicit forest management plans for Pack Forest over 45 years 

(2005-2050) that would lead to Pareto-optimal combinations of carbon sequestration, old-forest 

habitat production and timber revenues.  For simplicity, carbon sequestration was defined based 

on the net change of carbon content in standing timber between 2005 and 2050 given a particular 

management plan. “Old-forest” habitat was defined as the total area of forest stands that would 

be older than 115 years at the end of the planning horizon if a given management plan was 

implemented. 

The following three-objective mathematical programming model was used to generate the 

management plans. The model was solved using specialized, discrete, multi-objective 

optimization techniques introduced and tested in Tóth et al. (2006) and Tóth and McDill (2009). 

The details are given in the Appendix.  

The Pareto-efficient solutions found for the three-objective model are shown in Figure 1. 

Each point represents a management plan in terms of projected carbon sequestration, old-forest 

habitat production and timber revenues that would be achieved if the plans were implemented. 

The 3-dimensional production possibilities frontier (a.k.a., efficient or tradeoff frontier) on 

Figure 1 illustrates the tradeoffs that are associated with the production of the three outputs. Of 

the many bundles found, the Director of Pack Forest selected five (Bundle 1, 3, 28, 31, 43) for 

hypothetical bidding. While Bundle 1 represents the management alternative that would 

maximize net timber revenues for the landowner, the other four plans would lead to more of one 

or both of the non-timber outputs at gradually increasing opportunity costs (vertical axis). The 

reserve prices of the bundles were calculated based on forgone timber revenues and forgone 

development rights. While the forgone timber revenues were obtained directly from the solutions 
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of the mathematical program, the value of development rights was arbitrarily set to a symbolic 

value. 

 

 

Figure 3.  The final snapshot of the bidding chart used to symbolically sell old-forest 
habitat and carbon sequestration services from Pack Forest, Washington. The black 
bars are the reserve prices and the light/dark grey bars represent the aggregate value 
of the bids that were placed on the bundles (dark grey=those below the reserve price; 
light grey=those above the reserve price).  

 

To simulate how a real auction at Pack Forest, three preliminary auctions were organized. 

The 75 participants of the first auction included forest landowners, timber industry, academia, 

state officials and representatives of environmental and conservation organizations. Each 

participant was given an endowment of $10 that he or she could either keep or use in the auction. 

The five bundles shown on Figure 1 plus a Transfer of Development Rights (TDR) option were 

used for the experiment. The reserve prices were adjusted to the total dollar amount that was 

given to the participants. The TDR option was assigned the lowest reserve price as it would 

allow maximum managerial flexibility for the landowner as long as no development occurs 
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(Figure 2). The other options would not only preclude development but they would also require 

that the landowner follows a particular management plan. As a reward for successful bidding, 

and to emulate the public goods nature of the real outcome, the auctioneers pledged to double the 

winning bids and donate money to forest conservation causes, to purchase carbon offsets, or 

donate to an academic organization. The donations to these three entities were proportional to the 

ecosystem services outputs that would result from the winning scenario (that is, a management 

plan which generates relatively more carbon sequestration, if selected, entailed a promised 

donation to be mostly used for purchasing carbon offsets). If the TDR bundle won, donation to 

an academic institution would be made to mirror the public goods associated with forest 

preservation other than habitat preservation or carbon sequestration. The bidding took place in 

three rounds where the current totals of the bids were displayed on a large screen in a chart 

similar to the one on Figure 3. The final result of the first mock auction is shown in Figure 3. 

Bundle 3 was the winning scenario, generating $153 for the hypothetical seller. 65% of the dollar 

endowment was used in the. A similar mock auction played with a small class of University of 

Washington undergraduates resulted in Bundle 43 winning. The third preliminary auction 

involved 14 bidders who represented a variety of environmental organizations interested in forest 

ecosystem services. This time, the purchasing power of the players was adjusted to their stated 

annual conservation budgets. This information was acquired from the bidders anonymously prior 

to the mock auction. The dollar amounts to be allocated to the players for use in the experiment 

were proportional to the stated budgets. As a result, those players who represented organizations 

with large conservation budgets were given much larger funds than those who reported smaller 

budgets. A random monetary endowment was provided to those who did not volunteer a 

conservation budget or volunteered a small amount. Two sessions, each comprising several 
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rounds of bidding, were arranged. Communication among bidders was not allowed in the first 

but it was allowed in the second session. The players were not informed about the second session 

prior to the auction.    

The “non-communication” session resulted in the TDR bundle winning, the 

“communication” session resulted in Bundle 3 winning. Forty two percent of the endowment was 

used in the “non-communication” auction, and 52% was used in the “communication” auction.   

While preliminary “mock” auctions with potential ecosystem service buyers are interesting in 

possibly providing a glimpse of the distribution of ecosystem service preferences among the 

potential buyers, they suffer from several shortcomings which we try to address in our laboratory 

work.1 First, since we did not induce the utilities that the bidders place on ecosystem services, we 

have no way of judging an outcome as to its efficiency. This is quite problematic as we aim to 

design a mechanism which has good efficiency properties. Second, the degree of dominance and 

experimental control was low. Participants, who are professionally involved in forestry issues, 

seemed to be distracted by minute details of forest management and thus may not have viewed 

the bundles the way we intended for them to view it (lack of dominance). The first mock auction 

suffered from a lack of experimental control as it was conducted at the conclusion of a 

professional meeting and the participants were tired. Finally, we do not yet have enough 

systematic replications of each auction setup in order to draw conclusions from the experimental 

trials with actual ecosystem service bundles. For these reasons, we turn to the laboratory in the 

hope of learning more about the performance of the ECOSEL auction component.  

Laboratory Experiments 

The auction component of ECOSEL can be thought of as a multiple-good, discrete public 

good subscription game with incomplete information. While the theoretical properties of a 
                                                 
1 Individual-level analysis of bids is being conducted concurrently, but is outside of the scope of this paper.  
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complete-information subscription game has been studied (e.g., Bagnoli and Lipman, 1989; 

Admati and Perry, 1991; Marx and Matthews, 2000), and encouraging welfare properties have 

been established, games of incomplete information have proven to be much less tractable. Even 

static, two-player problems generate a profusion of equilibria and more exact characterizations 

require strong simplifying assumptions (Alboth et al., 2001; Barbieri and Malueg, 2007, 2008; 

Laussel and Palfrey, 2003; Menezes et al., 2001). The general consensus in the theoretical 

literature seems to be that, under incomplete information, the subscription game is not efficient 

(i.e., there is a positive probability that a good is not provided in cases when it is efficient) 

(Menezes et al., 2001; Laussel and Palfrey, 2003; Barbieri and Malueg, 2007). However, 

Menezes et al. (2001) establish that a subscription game (where contributions are refunded if a 

threshold is not met) is superior to a contribution game (where no refunds are made). Also, Bar-

bieri and Malueg (2008) show that a subscription game can act as a profit-maximizing selling 

mechanism over all incentive-compatible selling mechanisms. However, we are not aware of any 

theoretical or experimental study of an incomplete information subscription game with multiple 

goods2.  

Experimental research on the performance of public good subscription games started with 

Bagnoli and McKee (1991) setting out to test Bagnoli and Lipman’s (1989) theoretical findings 

of good efficiency properties of such games.  While Bagnoli and McKee (1991) found strong 

evidence that the subscription game results in efficient public good provisions, their results were 

challenged by Mysker et al. (1996). Uncertainty regarding subject pool effects (Cadsby and 

Maynes, 1996), incomplete information about valuations (Marks and Croson, 1999), the number 

                                                 
2 Providing a mathematical characterization for the ECOSEL mechanism would be a significant contribution to the 
theory given the potential wide applicability of the provision mechanism.  We hope to build a theoretical foundation 
that would give rise to insights regarding some classes of equilibria and revenue-generating properties of the game.   
 



 16

of subjects in the contributor’s pool (Rondeau et al., 2000), and the effect of challenge and 

matching gifts both in the field and the laboratory settings (Rondeau and List, 2008) make 

generalizations regarding the efficiency of the production of ecosystem provisions difficult. The 

preponderance of evidence suggests we should include certain design features: a presence of 

discrete thresholds in contributions (Isaac et al., 1989; Suleiman and Rapoport, 1992; Dawes et 

al., 1986), or a full refund in case the contributions don’t exceed the threshold (Isaac et al., 1989; 

Rapoport and Eshed-Levy, 1989; Cadsby and Maynes, 1999; Marks and Croson, 1998), however 

other features of the mechanism are not as clear, and demand further investigation.  We seek to 

find an auction design which has the highest probability of achieving an efficient outcome (since 

we are using an induced value framework, this is observable in the laboratory), with the sec-

ondary (non-mutually exclusive) goal of maximizing seller revenue.  

Design and nuisance variables 

We explore the properties of our subscription game under the following conditions: 1) subject 

preference heterogeneity, with subject preferences being private information; 2) varying number 

of subjects in each auction and varying subject endowments; 3) random subject matching in each 

auction. These are essentially “nuisance” variables, and, although we could choose to fix either 

or all of them at a particular level, the choice was made to let it vary. The motivation mainly lies 

in the practical realm: in any realistic ecosystem service auction setting, buyer pools, their 

preferences and endowments are outside of the auctioneer’s control.  

The following were chosen to be the design variables, as neither economic theory nor 

experimental economics literature provide sufficient guidance for our context (i.e., multiple, 

mutually-exclusive units, incomplete information setting). First, the number of bundles of 

ecosystem services presented for the auction might affect the auction performance: a small 
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number of bundles might provide insufficient flexibility so that each subject is unsatisfied with 

the choices offered, while a large number of bundles may prove to be too difficult for the 

subjects to analyze and this might result in scattered bids preventing convergence towards a 

potentially successful outcome (as in Bagnoli et al., 1992). 3Second, it is not clear if threshold 

costs (reserve prices) should be disclosed to the bidders, or they should be kept hidden and the 

players would be notified only if a particular reserve price has been met. Although with repeated 

contribution rounds and disclosure of whether the bid totals exceeded the threshold, a 

coordinated group of bidders would have no difficulty closely bracketing the true reserve price, 

such coordination is not guaranteed ex ante. Finally, we wish to explore the impact of subject 

communication on auction efficiency and seller revenue: on one hand, subject communication 

may act to erode seller profits as bidders coordinate to just exceed reserve prices (thereby 

undermining the incentives for seller participation in ecosystem markets), while on the other 

hand, subject communication might help to focus the buyers and increase the provision of 

ecosystem services. 

Hypotheses 

Thus, we expect that the 3 treatments will have the following impact on auction efficiency and 

seller revenue: 

Number of bundles presented: 

H1E: While in reality, we might consider that not all bidders might find the offered set of 

ecosystem service bundles to be ideal, in the experimental setting, every buyer’s 

                                                 
3 An interesting extension would be explore endogenous bundle selection by the subjects in a two-stage process, 
where the initial set of bundles undergoes a selection process, and a reduced number is ultimately offered up for 
auction. Second, the buyers may strategically withhold their contributions if they anticipate that a better auction 
might be forthcoming in the future, and that the auctioneers might be offering an inferior auction first. We propose 
to empirically investigate such behavior by manipulating the subjects’ information sets regarding the auction 
sequence. 
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preferences over bundles are fully described. Thus, we expect coordination problems to 

be present, and, therefore, we hypothesize that the higher the number of bundles offered, 

the greater the coordination problem, and, in turn, the lower the contributions to the 

efficient bundle, and the lower the economic efficiency of the auction.  

H1R: Using the same reasoning, we expect that higher number of bundles leads to lower 

seller revenues.  

Threshold cost (reserve price) disclosure 

H2E: We expect coordination problems to be stronger in the case that threshold costs are 

not disclosed, as some bidding rounds might be “used up” on threshold cost discovery, as 

opposed to tacit or explicit bidder cooperation. Thus, we expect the auctions without 

threshold cost disclosure have lower contributions toward the efficient bundle and lower 

economic efficiency of the auction.  

H2R: However, uncertainty over the bundle cost may lead to over-contributions in the 

cases where a bundle actually wins. Conditional on a project winning, we expect seller 

revenue to be higher in auctions where threshold costs were not disclosed.  

Subject communication:  

H3E: Although we do not expect subject communication to significantly affect free-

riding, we do expect it to reduce the extent of the coordination problem. Thus, we expect 

that auctions with subject communication allowed have higher contributions toward the 

efficient bundle and have higher economic efficiency.  

H3R: Subject communication should reduce the share of the overall surplus being lost to 

the seller. We expect subject communication treatment to lead to lower seller revenues.  
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Experimental design and procedures 

The three binary treatment variables (number of bundles (high/low), threshold cost 

disclosure (yes/no), communication on bidding strategies allowed (yes,no)) implies 8 auction 

types to be tested in a full factorial design. We use the following orthogonal fractional factorial 

design in 4 auction types: T1 (No communication, 3 bundles offered, threshold costs disclosed), 

T2 (No communication, 5 bundles offered, threshold costs not disclosed), T3 (Communication 

allowed, 3 bundles, threshold costs not disclosed), and T4 (Communication allowed, 5 bundles, 

threshold costs disclosed).  Each auction was replicated 4 times with a different subject pool.  

Subjects were recruited among University of Washington undergraduates across a variety 

of disciplines. In order to preserve dominance, no mention of “public goods” or “ecosystem 

services” was on the recruitment flyer or during the experimental session until the post-auction 

debriefing questions. Our design (see Appendix) planned on 60 subjects participating. Out of 65 

subjects recruited, 11 did not arrive, leaving our total subject pool at 54. Five classrooms were 

reserved for the study. Subjects arrived in the larger classroom (those arriving on time were paid 

a $5 on-time bonus), and were given an introductory presentation with the examples (see 

Appendix). A brief self-test and a sociodemographic survey were completed. Each subject 

received an envelope containing instructions, the sociodemographic questionnaire, and 4 

envelopes guiding them to the appropriate auction classroom. A Latin squares design was used to 

assign a sequence of 4 auctions to 4 rooms, and each subject received a randomly assigned 

auction sequence and the corresponding room assignments.  

Each subject was endowed with either 10 or 20 Experimental Monetary Units (EMUs) for 

each auction, with the exchange rate of 1 EMU being equal to 25 cents.4 Each subject had a 0.5 

                                                 
4 At the end of the experiment, the exchange rate was recalibrated to 1 EMU = 40 cents to bring the average subject 
per hour earnings in line with the State of Washington minimum wage rate ($8.55/hour).  
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probability of receiving either 10 or 20 EMUs as endowment for each of the auctions. EMUs did 

not carry over from auction to auction. Each auction had 5 bidding (contribution) rounds, and 

subjects were informed of the total bids and whether any bundle was winning after each round. 

All subjects were informed that Round 5 was the last round which determined the auction 

outcome. The entire experimental session lasted 3.5 hours.  

Subject utilities and payoffs 

In reality, we expect potential ecosystem service bidders to hold heterogeneous preferences over 

ecosystem service X (tons of carbon sequestered), and Y (old-forest habitat area). We induce 

heterogeneous preferences over X and Y via the following payoff function : 

௞ݒ 
௜ ൌ ቊߙ௞ ௜ܺ ൅ ௞ߚ ௜ܻ ൅ ௞ݓ െ ܾ௞

௜  ݂݅ ∑ ܾ௞
௜ െ ௜ݎ ൒ max௝൫∑ ܾ௞

௝௄
௞ୀଵ,௝אூ\௜ െ ௝൯ݎ ൒ 0, ܽ݊݀ ௄

௞ୀଵ
݁ݏ݅ݓݎ݄݁ݐ݋ ௞ݓ

 

where ݇ indexes subjects, ݅, ݆ א  ௞ is the subject’sݓ ,index bundles offered at auction ܫ

endowment, ܾ௞
௜  is the subject’s bid on winning bundle ݅,  and ߙ௞, ௞ߚ ൒ 0 represent the subject’s 

induced preferences over bundle ݅’s “carbon sequestered”, ௜ܺ, and “old-forest habitat area”, ௜ܻ. 

The subject only pays her bid if the bundle she bids for actually wins (full refund is given), and 

the seller (experimenter) gets to keep any excess of subjects’ bids over the reserve prices ݎ௜ (no 

rebates are given).  While there exists some experimental evidence (REFS) that the presence of 

various forms of rebates might enhance the contributions to a threshold public good, we chose 

not to pursue the rebate treatment (partially motivated by the fact that in order for the ecosystem 

auction to be attractive to sellers, a chance of positive seller profit would have to be offered, and 

that chance is taken away by a presence of full rebates). The ௜ܺ and ௜ܻ numbers for each bundle 

were a scaling of the actual carbon sequestration potential and old-forest habitat area of the 

bundles developed for Pack Forest (see above). The preference parameters were drawn from 

{0,1,2}, with the restriction that no subject were to get both ߙ௞ ൌ 0 and ߚ௞ ൌ 0.  
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 The following Table summarizes the bundles presented to the subjects, the assumed 

consequences for “carbon sequestration” and “old-forest habitat”, and their threshold costs as 

share of the (design) group endowment. The relative costs of all bundles represented the relative 

opportunity costs of changing management at Pack Forest.  

Table 1. Bundles presented to participants. 

Bundle ௜ܺ, for 
auctions 
with 
bundles A, 
B, C: T1 
and T3 

௜ܻ, for 
auctions 
with 
bundles A, 
B, C: T1 
and T3 

 ௜, % ofݎ
group 
endowment

௜ܺ ,for 
auctions 
with 
bundles A, 
B, C, D, E: 
T2 and T4 

௜ܻ ,for 
auctions 
with 
bundles A, 
B, C, D, E: 
T2 and T4 

 ௜, % ofݎ
group 
endowment 

A 2.5 5.3 0.1 2.8 3.2 0.09 

B 7.7 5.0 0.33 2.5 5.3 0.1 

C 9.7 7.5 0.5 7.7 5.0 0.33 

D - - - 7.7 7.0 0.36 

E - - - 9.7 7.5 0.5 

 

Due to the linear nature of payoffs and costs, every subject’s most preferred bundle was either 

bundle C (in auctions T1 and T3) or bundle E (in auctions T2 and T4), and, consequently, those 

bundles represent the socially optimal bundles. However, although bundles’ net social benefits 

grow as we go down the column in the table above (i.e., a move from A to B to C, etc. passes the 

Kaldor-Hicks compensation test), such moves are not unanimously preferred by all the subjects 

(thus they do not represent a Pareto-improvement).  

Results 

Table below presents some of the overall results. 16 total auctions were run as part of the main 

experiment, and the remaining 11 participant packets were used to run 4 more auctions in a class 
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taught by one of the authors5. In 20 total auctions, the public good was provided 50% of the time. 

In the original 16 trials, the public good was provided 9 times (56.25% of the time). Thus, the 

mechanism is not fully efficient. Average relative efficiency (measured as the ratio of obtained 

net benefits to the maximum possible net benefits) was 0.42 across all trials. Fully efficient 

bundle (or “project”, as it was described to the participants) was attained in 3 auctions, however, 

in those auctions where a threshold was reached, only 1 out of 10 auctions generated relative 

efficiency of less than 2/3 (and was still over 60%). Each of the auctions ending in a provision of 

a public good generated a positive profit for the seller, with an average of 3.1 EMUs (or an 

average profit margin of 3%).  In this sense, the performance of the mechanism in terms of 

generating a profit for the seller of a public good is encouraging.  

 Hypothesis testing: relative efficiency 

We first turn to testing the impact of the treatment variables on the relative efficiency of the 

auction mechanism. Relative efficiency of the auction was regressed on the treatment dummies 

and on the dummy variable, “rd4win”, which indicates whether the auction had a bundle winning 

after the next-to-last bidding round, Round 4. The Table below presents the estimates from an 

OLS model and a double-limit Tobit model (since one could think of “latent” relative efficiency 

which is censored by 0 from below and by 1 from above).  

 

 

 

 

                                                 
5 Subsequent analysis deals with the 16 auction trials. Results from the pool of 20 trials are available upon request. 
The authors feel that experimental control in the classroom experiment may have been compromised somewhat as 
some students indicated that they did not really anticipate receiving cash after a regularly scheduled class meeting. 
The class experiments, however, were timed to be of pedagogical value and place right after the discussion of public 
goods and before a game theory unit.  
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Table 2. Impacts on auction-level relative efficiency. 

  OLS        Double‐limit Tobit (Lower bound=0, 
Upper bound=1) 

  Estimate  S.E.  t‐value  p‐value  Estimate  S.E.  t‐value  p‐value 
Comm.  0.1367  0.2031  0.6700  0.5138  0.1861  0.3856  0.4800  0.6295 
3 Bundles  0.0140  0.1759  0.0800  0.9379  ‐0.3260  0.3723  ‐0.8800  0.3811 
Disclosure  0.3167  0.1759  1.8000  0.0969  0.3864  0.3522  1.1000  0.2726 
Rd4win  0.5649  0.2031  2.7800  0.0166  0.9002  0.3987  2.2600  0.0240 

 ࣌ ‐  ‐  ‐  ‐  0.7045  0.2294  3.0700  0.0021 
                 
Adj. R2  0.6005      Log‐likelihood  ‐13.6752      
N  16        16      

 
 The data available does not allow for sharp predictions regarding the effects of subject 

communication or the number of bundles presented on the relative efficiency of the auction. 

However, the hypothesis that disclosing the threshold costs may aid in coordination and thus 

increase overall auction efficiency does find some limited support. Also, the fact that the 

presence of a Round 4 winner is significant and positively affects relative efficiency in both 

models suggests that once multiple public goods are introduced, overcoming coordination 

problems becomes an important component in the successful provision of a public good. More 
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Table 3. Summary of laboratory results 

Trial  Endowment, 
EMUs 

Efficient 
Total  
Benefit 
(TB) 

Efficient 
Threshold 
Cost (TC) 

TB/TC  
Ratio 

Actual 
TB‐TC 

Actual 
Relative 
Effici‐
ency 

Threshold,  
% of  

endowment 

Seller 
Profit 

Profit 
Margin 

Rd5. 
Closest  
contribu‐ 

tion 

Rd5. 
Closest 
Thres‐
hold 

Shortfall  Shortfall, % 
of endow‐

ment 

T1R1  320  476  185  2.6  0  0  0.58  0  0%  36  37  1  0% 

T1R2  110  187  65  2.9  76  0.62  0.59  2  3%  15  13  ‐2  ‐2% 

T1R3  100  208  100  2.1  0  0  1.00  0  0%  62  66  4  4% 

T1R4  160  195  85  2.3  77  0.7  0.53  2  2%  19  17  ‐2  ‐1% 

T2R1  230  275  130  2.1  0  0  0.57  0  0%  13  23  10  4% 

T2R2  190  246  120  2.1  0  0  0.63  0  0%  80  120  40  21% 

T2R3  160  218  90  2.4  118  0.92  0.56  10  11%  75  65  ‐10  ‐6% 

T2R4  240  323  135  2.4  127  0.68  0.56  2  1%  29  27  ‐2  ‐1% 

T3R1  150  202  90  2.2  0  0  0.60  0  0%  17  18  1  1% 

T3R2  180  252  110  2.3  104  0.73  0.61  4  4%  26  22  ‐4  ‐2% 

T3R3  220  305  115  2.7  190  1  0.52  11  10%  126  115  ‐11  ‐5% 

T3R4  200  270  140  1.9  0  0  0.70  0  0%  110  140  30  15% 

T4R1  110  181  75  2.4  100  0.94  0.68  13  17%  67  54  ‐13  ‐12% 

T4R2  230  343  150  2.3  0  0  0.65  0  0%  100  108  8  3% 

T4R3  200  354  115  3.1  239  1  0.58  2  2%  117  115  ‐2  ‐1% 

T4R4  150  224  85  2.6  139  1  0.57  4  5%  91  85  ‐6  ‐4% 

T1RAnd  180  187  90  2.1  0  0  0.50  0  0%  15  18  3  2% 

T2RAnd  200  165  100  1.7  52  0.8  0.50  12  12%  32  20  ‐12  ‐6% 

T3RAnd  160  206  80  2.6  0  0  0.50  0  0%  11  16  5  3% 

T4RAnd  140  198  70  2.8  0  0  0.50  0  0%  49  50  1  1% 

Mean  181.50  250.75  106.50  2.37  61.10  0.42  0.60  3.10  3%  54.50  56.45  1.95  1% 

Standar
d Dev. 

52.24  77.22  30.31  0.35  73.68  0.44  0.11  4.53  5%  38.75  42.60  13.06  7% 
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data is likely needed to say something more definitive about the impact of communication and 

number of bundles on relative auction efficiency. 

 Hypothesis testing: seller profit 

Current data appears insufficient to support our conjectures on the impact of auction design on 

seller profit. For instance, hypothesis H2R speculates that, conditional on a bundle winning, the 

seller profits from auctions where threshold costs were not disclosed are higher than seller profits 

from auctions where a public good was provided but threshold costs were disclosed. While the 

average of seller profits in non-disclosure treatments was indeed higher than in disclosure 

treatments, the difference was not statistically significant. 

Contributions toward the efficient bundle 

 One thing to note from Table 3 is that in many auction trials, the public good provision 

failed by a very small fraction of the total group endowment. In this regard it is interesting to 

ask: do Round 5 contributions toward the efficient bundle differ systematically across our 

treatments? Indeed, if any treatment can positively affect the total contributions, then any future 

auction designed utilizing such treatment is going to be more likely to succeed.6 Furthermore, as 

the following Figure demonstrates, in a quite a few cases, the efficient bundle was successful at 

accumulating contributions in non-binding contribution rounds, only to fall short in the final 

round. Are any treatments more successful in demonstrating at least some convergence of bids to 

the threshold level? 

                                                 
6 Note that the “Shortfall” column in the Table above does not just present the shortfall of contributions necessary to 
win the efficient public good, but instead shows the smallest shortfall in contributions across all available bundles. 
Analysis of contributions to inefficient bundles can proceed in the same fashion.  
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Figure 4. Contributions to the efficient bundle (project), by auction type. 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 2 3 4 5

Sh
ar
e 
of
 T
hr
es
ho

ld
 C
os
t

Contribution Rounds

T1R1 Efficient Project Bids

T1R2 Efficient Project Bids

T1R3 Efficient Project Bids

T1R4 Efficient Project Bids

T1 Class Efficient Project Bids

T3R1 Efficient Project Bids

T3R2 Efficient Project Bids

T3R3 Efficient Project Bids

T3R4 Efficient Project Bids

T3 Class Efficient Project Bids

T2R1 Efficient Project Bids

T2R2 Efficient Project Bids

T2R3 Efficient Project Bids

T2R4 Efficient Project Bids

T2 Class Efficient Project Bids

T4R1 Efficient Project Bids

T4R3 Efficient Project Bids

T4R4 Efficient Project Bids

T4 Class Efficient Project Bids



 27

The average contributions to the efficient bundle are significantly higher in the auctions with 

communication allowed (p=0.02) than in the auctions without communication between 

participants (participants were explicitly instructed not to discuss their endowments or their 

actual payoffs, which was to remain private information). Other treatments, however, did not 

affect average contributions to the efficient bundle.  

 However, an examination of the bidding dynamics between auctions with a small number 

of bundles and a large number of bundles does suggest that a smaller number of bundles might 

lead to more ready identification of the efficient bundle by the participants. Figures 5 and 6 

below show the bidding behavior in these auctions over the bidding rounds.  

 Preliminary Conclusions 

 The experimental testing of the auction component of ECOSEL serves a dual purpose: 

first, it will inform the design of an actual ecosystem auction. The real-world implications of 

running an auction with legally binding commitments both on the part of the buyers and the 

seller (e.g., forest manager) are important and experimental test-beds are providing us with 

information needed to avoid costly mistakes or failure to get the actual auction off the ground. 

Second, data obtained from current and future experiments will allow us to empirically test the 

impacts of important design variables on the performance of a multi-good public good 

subscription game of incomplete information. The ability of bidders to coordinate their 

contributions toward the efficient bundle appears to be an important determinant of auction 

efficiency, while communication significantly raises the average contributions to the efficient 

bundle. More data appears to be needed for reaching any conclusions regarding the effect of 

other design variables.  
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Figure 5. Contributions to the efficient bundle (project), auctions with 3 bundles presented. 
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Figure 6. Contributions to the efficient bundle (project), auctions with 5 bundles presented. 
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APPENDIX 

 

 The model formulation 
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where the decision variable is: 

mtx = a binary decision variable whose value is 1 if management unit m is to be harvested in period t.  In 
other words, mtx represent a harvesting prescription for management unit m.  When t = 0, the 
value of the binary variable is 1 if management unit m is not harvested at all during the planning 
horizon (i.e., 0mx  is the “do-nothing” alternative for management unit m). Note: in some cases, 

the index j is used to denote the harvest period. In these cases mjx  is the same as mtx  if j t= ; 
 

the auxiliary/accounting variables are: 
tH = the total volume of sawtimber in mbf harvested in period t; and 

 

the parameters are: 
M = the set of management units in the forest ( 186M =  for Pack Forest); 

T  = the set of planning periods in the planning horizon ( 9T = for Pack, assuming 5-year long periods 
and a 45-year long planning horizon); 

mA = the area of management unit m in acres; 

mtc = the discounted net revenue per hectare if management unit m is harvested in period t, plus the 
discounted residual forest value based on the projected state of the stand at the end of the planning 
horizon; 
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mts = the amount of carbon sequestered in management unit m over the entire planning horizon if unit 
m is cut in period t; 

mtv = the volume of sawtimber in mbf/acre harvested from management unit m in period t; 

ltb = a lower bound on decreases in the harvest level between periods t and t+1; 

htb  = an upper bound on increases in the harvest level between periods t and t+1; 
C = one cover, or groups of contiguous management units, whose combined area is just above the 

maximum harvest opening size; 
= the set of all covers; 

mJ = the set of all prescriptions under which management unit m meets the minimum age requirement 
for old-forest habitat at the end of the planning horizon (in 2050); 

T
mtAge = the age of unit m at the end of the planning horizon if it is cut in period t; and 

T
Age = the target average age of the forest at the end of the planning horizon. 

 
 

Some set theoretical notation:  
M = number of elements in set M; and 

\{0, max }
T

t T t∀ ∈ = all members of set T except the largest member and zero. 
 

Equation 1 maximizes the discounted net revenues from the forest over the planning horizon, plus 
the discounted residual value of the forest. This is the traditional, commodity production option. 
Equation 2 maximizes the net carbon sequestered in the forest over the entire planning horizon. 
Coefficient set mts is calculated using the Pack Forest’s Landscape Management System and is based on 
the net change in carbon content of standing timber over the 45 year planning horizon. Equation 3 
maximizes the combined area of stands that older than 115 yrs at the end of the planning horizon. 
Constraint set 4 ensures that each management unit in the forest can only be harvested at most once 
during the planning horizon. Since none of the stands in Pack Forest are managed on a rotation shorter 
than 50 years, which is longer than the 45 year planning horizon, this restriction is reasonable. 

Constraint sets 5-7 ensure that the total harvest volume flow will not fluctuate too much from one 
period to the next. Bounds ltb  and htb determine the percentage by which the harvest volume can go 
below or above the level in the previous period. 

Inequalities 8 are the green-up constraints that ensure that the size of contiguous clearcuts never 
exceeds a certain limit. The maximum harvest opening size is 120 acres defined by the Forest Practices 
Rules of the state of Washington. We used a 100 acre limit in this experiment further restricting the 
extent of clearcuts. The formulation of these constraints requires either the complete enumeration of 
covers (contiguous sets of units whose combined area just exceeds the maximum opening size) using 
McDill et al.’s (2002) Path Algorithm, or only a partial enumeration using Tóth at el.’s (In Review) 
dynamic ARM concept. ARM refers to the Area Restriction Model, a term coined by Murray (1999) for 
harvest scheduling. 

Constraint 13 ensures that the area-weighted average age of the forest at the end of the planning 

horizon will be at least
T

Age .  Different average ending ages can be defined for each forest type or 
species. Along with the harvest flow and the green-up constraints, these restrictions prevent the forest 
from overharvesting. Constraints 10 identify mtx as binary. 
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Instructions 
Thank you for agreeing to take part in this experiment conducted by University of Washington 
researchers.  This project provides an opportunity to earn a considerable amount of money, but 
only if you are careful to follow directions, make good decisions, and pay attention to the 
decisions that others are making.  Therefore, it is important for you (and for our research!) that 
you take your time to understand the instructions.  These instructions are your private 
information. Please do not communicate with the other participants unless expressly encouraged 
to do so.  If you have any questions, please ask us. 
Throughout the experiment we will use Experimental Monetary Units (EMUs) rather than U.S. 
dollars.  At the end of the experiment your EMU earnings will be converted to U.S. dollars at an 
exchange rate of 1 EMU = 0.25 U.S. dollars (25 cents).  
You have picked an envelope containing a randomly assigned sequence of experiments that you 
will participate in.  A computer randomly generated that sequence, and it is important that you 
follow your own instructions for the duration of the experiment.  We have 4 different classrooms 
where experiments are conducted simultaneously.  Your envelope contains your individual 
sequence of classrooms.  Please move to the classroom indicated when we ask you.  
Your task 
The experiment consists of you participating in a series of mock auctions. Each auction will last 
for 5 bidding rounds.  At the beginning of each auction, you will be given a randomly assigned 
amount of EMUs.  We will refer to that amount as your “endowment”.  Your EMUs do not carry 
over between auctions: that is, you cannot use the EMUs you used in one room in another room.  
You are assigned EMUs in each experiment and it is important to remember that each auction is 
a new research trial.  However, your EMUs accumulate, and at the end of the experiment you 
will be paid (total EMUs accumulated/4) dollars.  Therefore you should seek to maximize your 
EMUs in each auction. 
In each auction, you and other participants in your room will be presented with a number of 
‘projects’.  You may contribute (bid) any fraction of your endowment to any of the presented 
projects.  Each project has a threshold cost associated with it.  If the sum of participants’ bids 
exceeds the project threshold cost, the project will “win” and you will earn the amount of EMUs 
indicated on your instructions sheet.  Your earnings is the “value” you place on the project.  Only 
one project can “win”.  If contributions to more than one project exceed the threshold cost, for 
the project for which contribution exceed the cost by the largest amount, wins.  Contributions in 
excess of the threshold cost are kept by the experimenter.  
You can bid for multiple projects, but the sum of your bids cannot exceed your endowment.  If a 
project does not “win”, you do not have to actually pay your bid.  However, if the project you bid 
for “wins”, you MUST surrender the EMUs you bid on that project.  If no project accumulates 
enough bids to cover its cost, you get to keep your endowment, but you earn no additional 
money.   
After each round of bidding, you will be informed of 1) the total bids for each project and 2) 
whether any project is “winning”. If, after the last round of bidding, a project “wins”, you must 
put the EMUs you bid on the winning project in the envelope and hand it to us.  
 
Example and Control Questions 
In order for you to better understand the auction, let’s go through a simple example.  The values 
below are NOT the values you will see in actual auctions, and are for illustrative purposes only.  
Let’s walk through the bidding rounds of a sample auction: 
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 Projects, costs, and earnings 
Project Threshold Cost, 

EMUs 
Your earnings if 
project wins, EMUs 

A 100 5 
B 200 12 
C 300 15 
 
Suppose your endowment is 10 EMUs. Now, the bidding starts, and we orient you to the auction: 
Round 1 
Project Threshold Cost, 

EMUs 
Your earnings 
if project wins, 
EMUs 

Your bid, 
EMUs 

Total group 
bid, EMUs 

Project 
winning? 

A 100 5 2 150 Yes 
B 200 12 3 210 No 
C 300 15 5 250 No 
 
Both projects A and B have sufficient bids to cover their threshold costs, but total bids for A 
exceeds the cost by 50 EMUs, while total bids for B exceed the cost by only 10 EMUs, so, after 
Round 1, A is “winning”. 
Round 2 
Project Threshold Cost, 

EMUs 
Your earnings 
if project wins, 
EMUs 

Your bid, 
EMUs 

Total group 
bid, EMUs 

Project 
winning? 

A 100 5 0 130 No 
B 200 12 5 240 Yes 
C 300 15 5 250 No 
 
Both project A and B have sufficient bids to cover their threshold costs, but total bids for B 
exceed the cost by 40 EMUs, while the total bids for A exceed the cost by only 30 EMUs, so, 
after Round 2, B is “winning”.  
 
Round 3 
Project Threshold Cost, 

EMUs 
Your earnings 
if project wins, 
EMUs 

Your bid, 
EMUs 

Total group 
bid, EMUs 

Project 
winning? 

A 100 5 0 110 No 
B 200 12 3 220 Yes 
C 300 15 6 280 No 
 
Round 4 
Project Threshold Cost, 

EMUs 
Your earnings 
if project wins, 
EMUs 

Your bid, 
EMUs 

Total group 
bid, EMUs 

Project 
winning? 

A 100 5 0 110 No 
B 200 12 0 215 No 
C 300 15 8 320 Yes 
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Round 5 (Final round) 
Project Threshold Cost, 

EMUs 
Your earnings 
if project wins, 
EMUs 

Your bid, 
EMUs 

Total group 
bid, EMUs 

Project 
winning? 

A 100 5 0 102 No 
B 200 12 2 210 Yes 
C 300 15 3 298 No 
 
The auction ends, with project B “winning”.  Since you bid 2 EMUs on project B, you have to 
give us 2 EMUs.  Your bid on project C does not have to be paid, since project C did not win.  In 
addition, you win 12 EMUs (so your net gain from this auction is 12-2=10 EMUs). 
Self Test—Let’s see how well you understand the procedure. 

1. If we give you 20 EMUs for the first auction, and 15 EMUs for the second auction, how 
many EMUs do you have to bid with in auction 2? ______________ 

2. If the sample auction above ended after Round 3, 
a. Which projects would “win”? _____ 
b. How much would you be required to pay? ___ 
c. What would be your earnings from the auction? ____ 

3. If, at the end of the entire experiment, you have accumulated 45 EMUs from Auction 1, 
20 EMUs from Auction 2, 40 EMUs from Auction 3, and 55 EMUs from Auction 4, 

a. How many EMUs have you accumulated at the end? _______ 
b. How many dollars would you be paid for your participation? _______ 
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Setup 
We use 4 rooms, and a Latin squares design to assign auction types to rooms. Each room 
will see 4 auctions (“runs”).  The assignment of auction types to Rooms is the following: 
 
    
 
Runs  
Rooms ↓ 

1 2 3 4 

R1 (EEB 025) T1 T2 T3 T4 
R2 (EEB 026) T2  T3 T4 T1 
R3 (EEB 042) T3 T4 T1 T2 
R4 (EEB 054) T4 T1 T2 T3 

 

Allocation of subjects to auctions 

    

Auction 
Type 
Assignment         

Room 
Assignment     

Subject ID Run 1 Run 2 Run 3 Run 4   Run 1 Run 2 Run 3 Run 4 

1 1 3 2 4   1 2 4 1 

2 1 4 2 3   1 3 4 4 

3 2 4 3 1   2 3 1 2 

4 3 1 2 4   3 4 4 1 

5 2 4 3 1   2 3 1 2 

6 1 2 4 3   1 1 2 4 

7 1 3 4 2   1 2 2 3 

8 1 4 3 2   1 3 1 3 

9 2 4 1 3   2 3 3 4 

10 4 3 2 1   4 2 4 2 

11 1 4 2 3   1 3 4 4 

12 1 4 3 2   1 3 1 3 

13 3 1 4 2   3 4 2 3 

14 4 3 1 2   4 2 3 3 

15 1 3 4 2   1 2 2 3 

16 4 1 3 2   4 4 1 3 

17 2 3 1 4   2 2 3 1 

18 1 4 3 2   1 3 1 3 

19 1 2 4 3   1 1 2 4 

20 2 1 4 3   2 4 2 4 

21 1 3 2 4   1 2 4 1 

22 1 4 2 3   1 3 4 4 

23 2 3 1 4   2 2 3 1 

24 3 2 1 4   3 1 3 1 
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25 2 4 3 1   2 3 1 2 

26 1 3 4 2   1 2 2 3 

27 3 4 1 2   3 3 3 3 

28 4 2 1 3   4 1 3 4 

29 1 4 3 2   1 3 1 3 

30 2 1 4 3   2 4 2 4 

31 2 4 3 1   2 3 1 2 

32 2 4 1 3   2 3 3 4 

33 3 1 4 2   3 4 2 3 

34 1 2 4 3   1 1 2 4 

35 3 1 4 2   3 4 2 3 

36 1 2 3 4   1 1 1 1 

37 1 3 4 2   1 2 2 3 

38 2 1 4 3   2 4 2 4 

39 3 4 2 1   3 3 4 2 

40 1 2 4 3   1 1 2 4 

41 3 2 1 4   3 1 3 1 

42 2 3 1 4   2 2 3 1 

43 1 2 3 4   1 1 1 1 

44 4 3 2 1   4 2 4 2 

45 1 3 4 2   1 2 2 3 

46 1 4 2 3   1 3 4 4 

47 1 2 3 4   1 1 1 1 

48 4 2 1 3   4 1 3 4 

49 3 2 4 1   3 1 2 2 

50 4 1 3 2   4 4 1 3 

51 4 2 1 3   4 1 3 4 

52 4 3 2 1   4 2 4 2 

53 2 1 4 3   2 4 2 4 

54 2 4 1 3   2 3 3 4 

55 2 4 3 1   2 3 1 2 

56 1 4 2 3   1 3 4 4 

57 2 3 1 4   2 2 3 1 

58 3 4 1 2   3 3 3 3 

59 1 4 3 2   1 3 1 3 

60 3 2 4 1   3 1 2 2 
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Subject Utilities 

Uit = alpha(it)*Xt + beta(it)*Yt, where alpha is the subject’s preference for component X of 

the proposed project ( “carbon”) and beta is the subject’s preference for the component Y of the 

proposed project ( “mature forest habitat”) 

Subject 
ID alpha(i1) beta(i1) alpha(i2) beta(i2) alpha(i3) beta(i3) alpha(i4) beta(i4)

1 0 1 1 1 2 1 2 1
2 1 1 2 2 2 1 1 2
3 1 1 0 2 1 1 1 1
4 1 2 2 2 2 1 2 0
5 2 2 0 1 2 2 0 1
6 2 2 2 2 2 1 0 2
7 2 2 1 0 1 1 1 0
8 1 1 1 1 2 1 1 0
9 0 1 0 2 2 0 1 2

10 2 1 2 2 0 2 0 2
11 2 2 1 1 2 2 2 1
12 0 1 0 1 1 0 2 2
13 1 1 2 1 2 1 0 1
14 2 2 0 1 1 0 2 2
15 1 2 2 2 1 2 0 2
16 2 2 1 1 1 2 1 0
17 2 0 1 2 2 0 0 1
18 1 2 2 2 1 1 1 2
19 2 1 2 2 0 1 0 1
20 2 1 1 1 1 0 0 2
21 1 1 1 2 0 1 1 2
22 1 1 0 1 1 1 2 2
23 0 1 1 1 1 2 2 2
24 2 2 2 2 1 1 1 0
25 0 1 2 1 2 2 2 2
26 2 1 1 0 2 2 2 1
27 0 2 2 2 2 2 2 2
28 2 1 1 2 1 2 1 0
29 2 0 1 1 2 2 0 2
30 2 1 0 1 1 2 2 1
31 2 2 1 1 0 2 1 0
32 1 2 2 1 1 1 1 0
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33 0 1 2 2 1 1 2 1
34 2 2 2 2 1 1 2 2
35 2 0 0 1 2 1 1 1
36 1 2 1 1 1 2 1 2
37 1 2 1 1 1 2 2 1
38 1 0 1 1 1 2 1 2
39 1 2 2 0 1 1 1 1
40 2 1 0 1 1 1 0 2
41 2 2 1 1 2 2 2 2
42 1 2 0 2 2 1 2 1
43 1 0 0 1 2 2 0 2
44 1 2 1 2 2 0 1 2
45 2 0 1 2 2 2 0 2
46 2 0 2 0 1 0 1 1
47 2 1 1 2 0 1 0 1
48 1 1 2 2 1 0 0 1
49 1 2 1 0 2 0 2 0
50 1 1 1 2 0 2 0 2
51 2 2 2 0 1 0 2 1
52 1 1 0 2 2 1 1 2
53 0 1 1 2 0 2 0 2
54 1 1 2 0 0 1 2 0
55 2 1 2 1 1 0 1 2
56 2 0 2 1 1 0 1 0
57 1 1 1 1 0 1 1 0
58 1 2 1 1 2 0 0 2
59 1 2 0 2 0 1 0 1
60 2 1 0 1 1 1 1 2

 

Subjects are endowed with an amount of EMUs before each auction. Thus, we need to 
create 4 endowments (w(it)). Subject endowments are drawn from {10,20}. The 
following table gives the endowments: 
 

Subject 
ID w(i1) w(i2) w(i3) w(i4) 

1 10 20 20 20 
2 20 10 10 10 
3 10 10 20 20 
4 10 20 10 10 
5 20 10 20 20 
6 10 20 10 20 
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7 10 20 20 10 
8 10 10 10 10 
9 10 10 10 20 

10 10 10 10 20 
11 10 10 20 10 
12 20 20 20 20 
13 20 20 10 20 
14 20 10 10 10 
15 20 10 10 20 
16 10 10 20 20 
17 10 20 20 10 
18 10 20 10 20 
19 20 20 20 20 
20 10 10 10 20 
21 20 10 10 20 
22 10 10 20 10 
23 20 10 10 10 
24 10 20 10 10 
25 20 20 20 20 
26 10 10 10 20 
27 20 10 10 10 
28 20 20 10 20 
29 20 10 20 20 
30 10 10 10 10 
31 20 20 20 10 
32 20 10 10 20 
33 20 10 10 10 
34 10 20 10 20 
35 20 10 10 20 
36 20 20 10 10 
37 20 20 20 10 
38 20 10 20 10 
39 10 20 20 10 
40 20 20 10 10 
41 20 10 10 20 
42 20 20 20 20 
43 20 10 10 10 
44 20 10 20 10 
45 20 20 10 10 
46 20 10 10 10 
47 10 10 10 20 
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48 20 20 20 20 
49 20 20 10 20 
50 10 10 20 10 
51 20 20 10 20 
52 20 10 20 10 
53 20 20 20 10 
54 10 20 20 10 
55 20 10 10 20 
56 20 20 10 10 
57 20 20 20 10 
58 10 20 10 10 
59 10 20 10 20 
60 20 10 10 10 
 

 


