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In this study we apply a spatial conditional logit model to determine factors influencing

land cover change in three contiguous counties in West Georgia between 1992 and 2001

using point (pixel) based observations of land characteristics. We found that accessibility to

population and population growth affect not only development of rural lands and

transition between agricultural and forestry uses, but also influence changes between forest

types. The model could be used to project land use–land cover change at watershed or

subwatershed level and thus serve as a valuable tool for county and city planners.
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Driven by landowners seeking maximization

of economic benefits, change in land use

patterns affects both human and natural

systems, and is recognized as the key factor

of environmental change (Bockstael). Land

use change often produces negative external-

ities such as congestion, air and water

pollution, loss of biodiversity, wildlife habitat

fragmentation, and increased flooding. When

the majority of a land base is privately owned,

as in the U.S. South, it is important to

understand how socioeconomic and environ-

mental factors affect private landowners’

decisions concerning land use.

There is a considerable demand for small

scale, spatially explicit land use change models

that could be integrated into multidisciplinary

studies of ecological and social implications of

urbanization to predict changes in ecosystem

services such as water quality and plant

biodiversity (Lockaby et al.). Furthermore,

because the dynamics of rural land use is

influenced by human activity and urbaniza-

tion, and is an important determinant of

ecosystem services, it is important to model

not only patterns of urban land use develop-

ment, but also changes between rural land

use–land cover types at the watershed level.

The objective of this study is to build a

spatially explicit econometric model of chang-

es between an exhaustive set of land cover–

land use and forest management types using

remotely sensed data and to use this model for

predicting dynamics of land use–land cover

and forest type change at watershed and

subwatershed level.

The paper is organized as follows. In the

next section we present an overview of the
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relevant literature on economics of land use

change. In the following section we describe

the study area. Then we lay out a discrete

choice model of land use change and the

corresponding econometric model, followed

by description of data. The remaining sections

present the results of spatial conditional logit

estimation of the model of land cover–land use

change, validation of the model, prediction of

land cover–land use change for the next two

decades, and conclusions.

Literature Review

Following the classic land use theory devel-

oped by David Ricardo and Johann von

Thünen, the vast majority of the econometric

studies of land use model land use patterns in

terms of relative rent to alternative land uses,

which depends on land quality and location.

There is a broad variation in approaches to

model land use with respect to data aggrega-

tion, dynamics, scale, and scope.

Depending on the data availability, land

use–land cover could be modeled at the

individual or aggregate level. Aggregate data

describe areas or proportions of certain land

use categories within a well defined geographic

area, such as a county, as a function of

socioeconomic variables and land characteris-

tics aggregated at the level of the geographic

unit of observation (Alig and Healy; Parks and

Murray; Stavins and Jaffe; Zhang and Nagu-

badi). Models based on individual level or

disaggregate data use parcels (Carrión-Flores

and Irwin; Irwin and Bokstael), sample plots

(Kline, Moses, and Alig; Lubowski, Plantinga,

and Stavins), or remotely sensed (Chomitz and

Gray; Turner, Wear, and Flamm) data.

A distinction should be made between

studies that model allocation of land among

different uses and studies that model land use

change. The models of land use allocation that

utilize aggregate data estimate proportions of

land shares (Miller and Plantinga), while those

utilizing disaggregate data estimate the prob-

ability of allocating a particular parcel or plot

to one of the alternative land uses (Nelson et

al.). Comparing pooled, fixed effects, and

random effects specifications of the cross-

sectional time-series model of allocation of

land use shares, Ahn, Plantinga and Alig

conclude that pooled specification does not

adequately control for cross-sectional varia-

tion in dependent variables. As a result, the

models’ parameters measure a combination of

spatial and temporal effects and cannot be

used for making inferences regarding land use

change or land use change predictions. They

suggest that a specification with cross-section-

al fixed effects provides a better measure of

temporal relationship. However, the use of

cross-sectional fixed effects requires a relative-

ly long time series and prevents the use of

explanatory variables that do not have tem-

poral variation (like land quality). In contrast,

models of land use change use plot- or parcel-

based observation of land characteristics over

several periods to directly measure land use

transitions. These transitions are modeled

using either the discrete choice approach

(Bockstael; Kline; Lubowski, Plantinga, and

Stavins; Polyakov and Zhang) or survival

analysis (Irwin and Bockstael).

The scale of land use models affects the

choice of explanatory variables. In the small

scale models, the relative rents to alternative

land uses (which determine land use and drive

land use change) are assumed to be a function

of site characteristics (e.g., land quality) and

location (e.g., distance to the central business

district). In the large scale models, spatial

variability of prices, economic and climatic

conditions allows us, in addition to site

characteristics and location, also to include

variables such as observable returns to agricul-

ture, forestry, and residential uses (Lubowski,

Plantinga, and Stavins; Miller and Plantinga) or

property taxes (Polyakov and Zhang).

Finally, econometric land use models vary

broadly by scope. While large scale models

usually model exhaustive sets of land uses

(Lubowski, Plantinga, and Stavins), most of

the small scale, spatially explicit econometric

models of land use change are restricted to the

analysis of conversion from rural to developed

land uses (Bockstael; Carrión–Flores and Irwin;

Irwin and Bockstael). One of the few exceptions

is the work by Turner, Wear, and Flamm who

model changes between forest, grass, and
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unvegetated land covers. Furthermore, to our

knowledge, no small scale, spatially explicit

econometric model of land use change has been

used to quantify and predict changes between

both land uses and forest types.1

Study Area

Our study area is in the Georgia Piedmont, a

region that displays rapid development and

ranks highest among the regions in terms of

percentage increase in developed land area in

the 1990s. Within this region we study land

use change in three contiguous counties:

Muscogee, Harris, and Meriwether. Despite

being contiguous, these counties exhibit a

broad range of population pressures and

patterns of land uses and land use change

from urban (Muscogee County) to rural

(Meriwether County). Columbus, located in

Muscogee County, is the third largest city in

Georgia. Muscogee County accounts for 80%

of the population of the three-county region.

However, during the 1990s it had a moderate

population growth. The population of Harris

County, which is located north of Muscogee

County and is becoming its bedroom commu-

nity, increased by one third during the same

period, while the population of Meriwether

County remained almost unchanged (Ta-

ble 1).

Figure 1 shows the population density in

2000 and change of population density be-

tween 1990 and 2000. It reveals that popula-

tion increases around populated places and, at

the same time, declines in the immediate

proximity to centers of the most populated

places, especially Columbus. Furthermore,

land is being converted to developed use at a

greater rate than the population increase.

According to data collected by the National

Resources Inventory (NRI), during the period

1992–1997 the average annual increase of the

area of developed land in these three counties

was 4.1%, while the average annual increase of

population in the 1990s was 0.6% (Table 1).

Thus, the ‘‘elasticity’’ of land development

with respect to population growth was nearly

seven. Most of the developed land was

converted from forest. However, due to

simultaneous conversion of agricultural land

to forest land, the proportion of forest land

did not change much, while agricultural lands

declined by one third between 1987 and 1997.

These patterns of population growth and land

1 However, Nagubadi and Zhang model land use

and forest type allocation using aggregate (county

level) data, and Majumdar, Polyakov, and Teeter

model changes between nonforest land uses and forest

types using Forest Inventory Analysis sample plot

data for Alabama.

Table 1. Population and Land Use Statistics in Harris, Meriwether, and Muscogee Counties

Characteristics

County

TotalHarris Meriwether Muscogee

Population:

Person, 2000 23,695 22,534 186,291 232,520

Person/km2, 2000 19 17 325 75

Annual % change, 1990–2000 3.3 0.1 0.4 0.6

Agricultural lands:

% of land base, 1997 6.3 10.2 5.5 7.8

Annual % change, 1992–1997 20.3 23.1 24.7 22.5

Forest lands:

% of land base, 1997 78.3 80.5 24.8 69.3

Annual % change, 1992–1997 20.4 0.8 22.1 0.0

Developed lands:

% of land base, 1997 6.9 5.9 29.8 10.7

Annual % change, 1992–1997 4.6 4.1 3.8 4.1
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use change are a reflection of discontinuous

low density development that is often cited as

urban sprawl (Bogue).

The Theoretical Model

Our modeling approach is based on the

assumption that land use and land cover

spatial patterns and their changes are results

of decisions of the owners of individual land

parcels or cells in the landscape. A landowner

chooses to allocate a parcel of land of uniform

quality to one of J possible alternative uses.

We assume that the landowner’s decision is

based on the maximization of net present

value of future returns generated from the

land. The landowner’s expectations concern-

ing future returns generated by different land

uses are drawn from the characteristics of the

parcel and historical returns.

Let Wni be the return or net present value

of parcel n in use i, which depends on

characteristics of a parcel such as land quality

and location, as well as economic conditions.

Converting a parcel from use i to alternative

use j involves a one time conversion cost Cnij,

which depends on the land uses that a parcel is

being converted from and to, the characteris-

tics of the parcel, as well as institutional

settings such as zoning regulations. Let Unj |i 5

Wnj 2 Wni 2 Cnij be the landowner’s utility of

converting a parcel to new land use j

conditional on current land use i. The parcel

could be converted to land use j if Unj |i is

positive. Furthermore, the parcel will be

converted to a land use, for which the utility

of conversion is the greatest. The parcel will

remain in current land use (Cnii 5 0; Uni |i 5 0)

if Unj |i , 0 ; j ? i.

Neither return for each of the land uses nor

conversion costs are directly observable for

individual parcels. However, there are observ-

able attributes of plots xn that are related to

either returns or conversion costs. Further-

more, there might be spatial dependencies Znj

because some of the spatially related factors

affecting decisions are not observable directly.

Utility of land use change can be expressed as

Unj |i 5 Vnj |i + enj, where Vnj |i 5 V(xn, Zni) is the

representative utility and enj captures the

Figure 1. Spatial Patterns of Level and Change of Population Density in Three West Georgia

Counties

652 Journal of Agricultural and Applied Economics, August 2008



factors that are affecting utility, but not

included into representative utility, and are

assumed to be random. The probability of

converting parcel n to land use j is

ð1Þ
Pnj ij~Prob Unj ijwUnk ij Vk=j

� �
~Prob Vnj ijzenjwVnk ijzenkVk=j

� �

Depending on assumptions about the den-

sity distribution of random components of

utility, several different discrete choice models

could be derived from this specification

(Train). Assuming random components are

independent and identically distributed (iid)

with a type I extreme value distribution, we

obtain a conditional logit model (McFadden):

ð2Þ Pnj ij ~
exp Vnj ij
� �

PJ
k~1

exp Vnk ij
� �

The representative utility of converting

parcel n from land use i to land use j could

be expressed as a linear combination of

observable attributes of plots (xn), land use

specific parameters (bj), transition specific

parameter (anij), and spatial dependencies

across decision makers (Znj~
PS

s~1 rnsysj,t{1):

ð3Þ

Vnj ij~V xnð Þ~anijzbj
0xn{bi

0xn

z
XS

s~1

rnsysj,t{1

where rns is a coefficient representing the

influence parcel s has on parcel n and ysj,t21 is

equal to 1 if parcel s was in land use j, and 0

otherwise. In spatial statistics, r usually takes

a form of a negative exponential function of

the distance (Dns) separating two units of

observation:

ð4Þ rns~lexp {
Dns

c

� �
,

where l and c are parameters, and

ð5Þ

Znj~
XS

s~1

ljexp {
Dns

c

� �
ysj,t{1

~lj

XS

s~1

exp {
Dns

c

� �
ysj,t{1:

Substituting (3) and (5) into (2), we obtain:

ð6Þ

Pnj,tji,t{1

~½exp aijzb0jxn,t{1{b0ixn,t{1

�

z
XS

s~1

rnsysj,t{1

!#

7
XJ

k~1

expðaijzb0kxn,t{1

"
{ b0i xn,t{1

z
XS

s~1

rnsysk,t{1

!#

~fexp½aijzb0j xn,t{1

z lj

XS

s~1

exp {
Dns

l

� �
ysj,t{1

#)

7
XJ

k~1

exp½aijzb0jxn,t{1

(

z lj

XS

s~1

exp {
Dns

l

� �
ysk,t{1

#)

To remove an indeterminacy in the model

we restrict aij 5 0 ;i 5 j and bj 5 0, where J

is the reference outcome (land use). The

estimation of spatial dependency r requires

estimation of parameters lj and c. One of the

ways to do this is through the search

procedure over a range of numbers by trying

out different values of c while estimating the

value of lj as standard parameters in the

conditional logit model (Mohammadian and

Kanaroglu).

Because land use change is modeled in a

relatively small region, we assume that prices

and costs are constant across the study

area and do not affect relative rents and

land use choice behavior (Bockstael; Turner,

Wear, and Flamm). The factors that are

variable within the study area and influence

relative rents to alternative land uses are (i)

location of sample point relative to employ-

ment and market centers, populated places,

and transportation networks; (ii) restriction of

land use through protected areas on public or

private lands; and (iii) physical site character-

istics.
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Location is a factor that has been widely

used in land use modeling literature to

explain allocation of land to alternative uses.

Following Alonso’s adaptation of von Thü-

nen’s location rent model, urban rent that

drives conversion of land from rural to urban

use is commonly explained by such measures

of location as distance to central business

district (Bockstael) or population density

(Alig and Healy; Hardie and Parks). Alloca-

tion of land between agricultural and forestry

uses is also affected by the location. In

particular, accessibility to markets and acces-

sibility to populated places determine costs of

transporting labor and other inputs to the

site and commodities to the markets. Because

agriculture is a more labor and capital

intensive land use than forestry and usually

yields higher returns, accessibility to markets

and populated places has greater impact on

agricultural rent than on forestry rent. As a

result, the slope of the location rent function

for agricultural land use is steeper than the

slope of the location rent function for

forestry land use. Therefore, rural lands with

relatively greater accessibility to markets and

population are more likely to be converted to

or retained in agricultural land use, and rural

lands in remote locations are more likely to

be converted to or retained in forestry use. A

number of empirical studies of tropical

deforestation model the effect of accessibility

to markets on conversion of undisturbed

forests to agriculture (Chomitz and Gray;

Parks, Barbier, and Burgess). However, to

our knowledge, there were no attempts to

model impact of accessibility to markets and

population on land use change between

agriculture and forestry in a region with

intensive forest management, such as the U.S.

South.

Within forestry use, intensity of forest

management is also affected by location. On

the one hand, a forest is managed more

intensively when it is closer to the mill

(Ledyard and Moses). On the other hand,

intensity of forest management is adversely

affected by population pressure or proximity

to populated places (Munn et al.; Polyakov,

Majumdar, and Teeter; Wear et al.). We

assume that location (accessibility to popula-

tion and wood processing facilities) affects

changes between forest management types

because these changes are driven by differenc-

es in intensity of forest management.

Following the previous arguments, we

hypothesize that by affecting relative rents to

alternative land uses, location (accessibility to

jobs, markets, and population) influences

changes both between rural and developed

land uses, between agricultural and forestry

uses, and between forest cover types (forest

management types).

It is a challenge to quantify the effect of

location when multiple employment, market,

and population centers influence each parcel

of land simultaneously. Regional scientists

traditionally evaluate and compare their

influences using gravity potential, which is

proportional to the size (usually population)

of the center and inversely proportional to

the squared distance between the center and

the parcel of interest. Because the influences

of multiple centers on a given parcel are

additive, Hoover suggests aggregating gravity

potentials into a single index. This approach

has been used by a number of land use

change studies (Kline, Azuma, and Moses;

Kline, Moses, and Alig; Majumdar, Poly-

akov, and Teeter; Polyakov and Zhang).

Because the data about sizes of employment

centers (e.g., number of jobs) and market

centers are not available at the resolution

sufficient for our analysis,2 we use popula-

tion to characterize the size of population

centers, as well as the size of employment

and market centers. To quantify accessibility

to jobs, markets, and population, we calcu-

late the population gravity index (PGI) using

2 The data about location of pulp mills and

sawmills are available for the study region. We have

experimented with distance to pulp mill, distance to

sawmill, and the mills’ gravity indices. However, none

of these variables was significant in our model.

Apparently, high concentrations of sawmills and pulp

mills and a developed transportation network create

competition for raw materials and may annihilate

local differences in rent attributable to the proximity

to wood processing facilities.
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the traditional specification3 suggested by

Hoover:

ð7Þ PGIi~
X

k

Pk

D2
ki

V k : Dkiƒ80 km,

where PGIi is the population gravity index

for parcel i, Pk is the population of census

block k within 80 km (,50 mi.) from each

parcel, and Dki is the distance between parcel

i and census block k in kilometers.4 Because

the distribution of PGI is heavily skewed

toward zero, in our model we use the natural

logarithm of PGI. The 1990 and 2000 census

block data for the PGI calculation are

obtained from ESRI Data and Maps (ESRI

1999, 2005).

The other factor that affects accessibility of

a parcel is the proximity to a transportation

network. We hypothesize that proximity to

roads and highways may have a different

effect on relative rents to different land uses

and forest types. In particular, proximity to

highway may be irrelevant for the rural land

uses, and have both a positive effect and

negative externality effect for the developed

(residential) use. Distances from each sample

plot to the nearest road and to the nearest

highway are calculated using TIGER/Line

spatial data from the U.S. Census Bureau.

The restrictions of land use change are

taken into account using ‘‘Conservation

Lands’’ dummy variable, which takes a value

of 1 if a parcel of land is located on

conservation easements managed by the U.S.

Fish and Wildlife Service and the U.S. Army

Corps of Engineers, military reservations,

state parks, state wildlife management areas,

or private conservation lands. The informa-

tion about conservation lands is obtained

from the Georgia Spatial Data Clearinghouse

(GSDI). We assume that parcels located on

the conservation lands are less likely to be

converted to developed or agricultural uses,

and more likely to be converted to less

intensively managed forest types (e.g., hard-

woods or mixed).

Among observable physical characteristics

of the site, we use slope.5 We hypothesize that

the site on a steeper slope is less likely to be

converted to agricultural or developed land

uses. The value for the slope attribute is

derived from the Digital Elevation Model

(DEM) obtained from the Georgia Spatial

Data Clearinghouse (GSDI).

Land Use and Land Cover Data

To develop a model of land use–land cover

transitions, we need information about land

cover characteristics for a set of sample points

in at least two points in time. We use two

National Land Cover Datasets (NLCD):

NLCD 1992 and NLCD 2001 based on

satellite images taken around 1992, and 2001,
3 Other specifications of either numerator or de-

nominator of gravity in Equation (7) are possible. For

example, Kline, Moses, and Alig use square root of

population. We believe that nonlinear transformation

of the numerator is inappropriate because it results in

the value of the gravity index being dependent on the

way populated places are defined, and in case of census

blocks would lead to inconsistency between censuses

because census block boundaries are often redefined.

Other specifications have also been used for the

denominator in Equation (7). For an overview, see

Song. By testing several specifications with different

exponents on distance, we have found that that

specification with squared distance performed best in

terms of log likelihood ratio.
4 Other studies that employ a gravity index to

model land values or land use change use the three

largest cities in the region (Shi, Phipps, and Coyler) or

three nearest cities with a population greater than

5,000 persons (Kline, Moses, and Alig) to calculate

gravity index.

5 Soil quality is a physical characteristic of the site

that affects transitions between agricultural and forest-

ry uses and is most widely used in econometric models

of land use change (Hardie and Parks). We do not use

soil quality in our model because the Soil Survey

Geographic (SSURGO) Database, which contains soil

quality data (prime farmland) at sufficient resolution, is

available for only part of the study area. We estimated

our model with the soil prime farmland explanatory

variable for the area where SSURGO data are

available. In the standard conditional logit model, the

coefficients for the land quality variable are significant

and have expected signs (prime farmland is more likely

to be converted to agricultural use and less likely to be

converted to forestry use). However, in the spatial

conditional logit model, the presence of spatial lag

variable for agricultural lands makes the land quality

variable insignificant. This indicates that the spatial lag

variable captures land quality characteristics of the site.
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respectively. The resolution of NLCD data

sets is 30 m; the study area is covered by over

2 million 30330 m pixels. However, these

data sets cannot be used directly to model

land cover transition on a point (pixel) basis.

First, the classification schemes of these two

data sets are slightly different; some land cover

types of NLCD 1992 cannot be matched with

land cover types of NLCD 2001 and vice

versa. Second, the accuracy is not good

enough to model land cover transition on a

pixel basis. Finally, NLCD land cover classi-

fications do not differentiate between devel-

oped land use and a transportation network,

and do not identify clear–cuts and young

plantations among other (nonforest) barren,

grasses, and shrub land cover types. Trans-

portation infrastructure has distinctively dif-

ferent patterns of transition than the rest of

developed uses. Similarly, clear-cuts and

young plantations are land cover types that

belong to forestry land use; they have different

land cover change patterns than nonforestry

barren land, grasses, or shrubs.

Correction of these problems required

manual reclassification and validation of

initial data sets. Because manual validation

would be not feasible for every pixel of NLCD

data sets, we have performed a systematic

sampling by placing a 750-m rectangular grid

over the study area, yielding 5,313 30330 m

sample points. The values of land cover types

from NLCD 1992 and NLCD 2001 data sets

were assigned to sample points. A GIS layer

with sample point polygons was overlaid with

black and white aerial orthophotos with 1-m

resolution dated 1992 and with color aerial

orthophotos with 0.8-m resolution dated 2003.

The land cover values of the sample points

were then visually validated and corrected or

reclassified, if necessary, according to the

NLCD 2001 classification scheme with addi-

tional differentiation of transportation, clear-

cut, and young plantation land cover types (21

types total). Based on the analysis of occur-

rence of different land use–land cover types in

a data set, we have collapsed the number of

land use–land cover types to 11: developed,

transportation, forestry–clear-cut, forestry–

hardwood, forestry–softwood, forestry–

mixed, woody wetland, agriculture, wetland,

water body, and other. The transition matrix

of land use–land cover types is shown in

Table 2.

Estimation and Results

We model transition between land uses–land

cover types over a 9-year interval (1992–2001).

Because there is virtually no transition to and

from such land use–land cover types as woody

wetlands, wetlands, and water bodies (see

Table 2), we excluded them from the consid-

eration. As the transition to developed and

transportation land uses are practically irre-

versible, they were excluded from the list of

Table 2. Land Use–Land Cover Transitions, 1992–2001 (Number of Sample Points)

Land Cover–Land Use

1992

Land Cover–Land Use 2001

DV TR FC FH FS FM AG WW WL WB O Total

Developed (DV) 336 336

Transportation (TR) 224 224

Forest, clear-cut (FC) 1 7 233 3 1 2 247

Forest, hardwood (FH) 25 1 62 1,127 18 26 7 3 7 1,276

Forest, softwood (FS) 28 2 186 2 1,088 34 9 6 1,355

Forest, mixed (FM) 39 3 64 169 131 502 5 3 2 918

Agriculture (AG) 9 2 32 491 7 541

Woody wetland (WW) 1 238 2 241

Wetland (WL) 5 1 6

Water body (WB) 1 106 107

Other (O) 2 1 3 56 62

Total 440 230 313 1308 1,505 565 513 238 6 115 80 5,313
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initial land use–land cover types. Finally, there

is no theoretical explanation of conversion to

and from ‘‘other’’ land use–land cover types.

Therefore this type was excluded from the

model as well. As a result, in our model we

consider seven final ( j) land use–land cover

types (developed, transportation, clear-cut,

deciduous forest, coniferous forest, mixed

forest, and agricultural), and five initial (i)

land use–land cover types or alternatives (all

the preceding except for developed and

transportation).

The spatial CL model of land use–land

cover change was estimated using SAS 9.1

(SAS Institute, Inc.) over a range of values of

parameter c subject to maximization of log–

likelihood function. The maximum of log–

likelihood function (22,221) was reached at c

5 3.5. The McFadden pseudo-R2 5 0.733

indicates a good of fit of the model. The

results of the spatial CL model estimation are

presented in Table 3.

The coefficients for plot attribute variable

indicate the effects a particular attribute has

on probabilities of transitions to each of the

final land uses relative to the probability of

transition to the reference land use (agricul-

tural). For example, a significant and positive

coefficient of developed land use for the Log

PGI variable indicates that the higher the

value of Log PGI is, the greater is the

probability of development relative to the

probability of conversion to agricultural use.

Because the values of coefficients and their

errors depend on the choice of reference

outcome (land use–land cover), we tested joint

significance of all coefficients for each of the

variables using the log likelihood ratio test.

Log likelihood ratio values and their signifi-

cance are presented in the last column of

Table 3. The coefficients for each variable are

jointly significant at 1% level.

It is difficult to interpret the coefficients

in a conditional logit model because the

effect of the variable on a particular transi-

tion probability is jointly determined by all

the coefficients for this variable. In Table 4

we presented marginal effects of the explana-

tory variables on the transition probabilities

and their errors estimated at the sample

mean.6 Marginal effects of the explanatory

variables, calculated separately for each initial

land use (see Table 5), while being consistent

with marginal effects calculated at the mean of

the full sample, provide some additional

insights about the factors affecting land use–

land cover changes.

The marginal effects for conservation lands

dummy indicate that on conservation lands

the most likely transition is to mixed forest,

while development or transition to agricultural

use are the least likely (Table 4). Further

analyzing the marginal effect of initial land

use–cover types (Table 5), we observe that the

probability of hardwood or mixed forest being

harvested (converted to clear-cut) is adversely

affected by the conservation lands status.

Also, on conservation land, mixed forest is

less likely to be converted to softwood forest;

mixed or hardwood forest is more likely to

remain mixed or hardwood forest, and agri-

cultural land is more likely to be converted to

softwood forest.

Accessibility to population (as indicated by

PGI) and population growth (as indicated by

PGI rate of change) significantly influence

conversion between land uses and the forest

land cover types. First of all, conversion to

developed land use is more likely with higher

accessibility to population and population

growth.7 This is consistent for development

of agricultural lands as well as all forest cover

types (Table 5). Second, higher accessibility of

population increases the probability of con-

version to agricultural land and adversely

affects the probability of conversion of agri-

cultural lands to softwood forest (conversion

of agricultural lands to forest in most of the

7 The elasticity of the probability of development

with respect to PGI rate of change calculated at the

mean of the sample is equal to 6.7, indicating that a

1% increase in PGI (population density) leads to a

6.7% increase of probability of development. This

corresponds with 0.6% annual population growth and

4.1% annual increase of developed lands shown in

Table 1.

6 The marginal effect of attribute m of a sample

plot on the probability of transition to land use–land

cover type j is LPj



Lxm~Pj bjm{

PJ
k~1 bkmPk

� �
. The

standard errors of marginal effects are calculated

using the delta method (Greene).
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cases is conversion to softwood forest).

Finally, PGI and/or PGI rate of change affect

the probabilities of important transitions

between forest cover types. Both PGI and

PGI rate of change affect conversion of clear-

cuts to either hardwood or softwood forest

with accessibility to population and popula-

tion growth adversely affecting the probability

of conversion to softwood forest (a more

intensively managed forest management type,

usually pine plantations). High values of PGI

decrease the probability of clear-cuts of

hardwood and mixed forests. Higher PGI rate

of change negatively affects conversion of all

forest types to softwoods and increases the

probability of converting softwood forest to

hardwood or mixed forest (less intensively

managed forest types). The effects of PGI and

PGI rate of change on transition between

forest types indicate that landowners are not

willing to manage forest intensively, and, in

particular, invest in plantations in a proximity

to locations with growing population because

of the higher chance of development in the

near future. Furthermore, forests located near

populated places are more likely to be

managed for amenity values. This corresponds

with findings of Munn et al.; Polyakov,

Majumdar, and Teeter; and Wear et al.

The slope of the site negatively affects the

probability of development and transition to

agricultural land use because steeper slopes

increase development costs and impede agri-

cultural operations. At the same time, slope

positively affects the probability of conversion

to mixed forest and conversion of agricultural

lands to softwood forest. Development is

more likely closer to highways and roads.

Proximity to roads decreases the probability

of clear-cuts and increases the probability of

conversion to mixed forest.

Positive and significant values of marginal

effects for spatial lags are shown for clear-cut,

hardwood and mixed forest, and agriculture.

Conversion to and retention of these land

uses are more likely in proximity to the

concentration of these land uses in a previous

period.

None of the explanatory variables explains

transition to transportation land use. The

possible reason for this is that there are very

few instances of conversion to transportation

land use in our data set. However, on the

positive side, this means that roads do not

pose an endogeneity problem in our model.

Validation and Projections

The challenge of using the results of land use–

land cover change model for simulation stems

from the fact that discrete choice models yield

probabilities of conversions (Bockstael). For

example, in our sample during the study

period an average parcel of softwood forest

has a 0.849 chance to remain softwood forest,

a 0.007 chance to be developed, a 0.127

chance to be clear-cut, a 0.009 chance to be

converted to hardwood, and a 0.004 chance

to be converted to mixed forest or agricultural

use. Direct evaluation of the forecasting

performance of the model is not possible.

Simply assuming that the parcel will be

converted to the land use–land cover type

according to the highest probability of

conversion would yield no change for most

of the parcels because retention of the current

land use–land cover type often has the highest

probability.

We evaluated the forecasting performance

of the spatial conditional logit model using

information indices and statistics developed

for evaluating the performance of discrete

choice models by Hauser.8 He suggests using

information index I(A; X) to quantify infor-

mation provided by the explanatory variables:

ð8Þ I A; Xð Þ~ 1

N

XN

n~1

XJ

j~1

dmjln
p aj xnj
� �
p aj

� �
 !

,

where p(aj) is the prior (without the model)

likelihood of land use–land cover type j, p(aj |

xn) is land use–land cover type j predicted by

the model, and dmj is the binary variable

indicating land use–land cover type j observed

at sample plot m. The information measure is

compared with the expected information

8 For evaluating performance of land use change

models these indices were used by Kline, Azuma, and

Moses, and Wear and Bolstad.

Polykov and Zhang: Population Growth and Land Use Dynamics 661



provided by the model:

ð9Þ EI A; Xð Þ~ 1

N

XN

n~1

XJ

j~1

p aj xnj
� �

ln
p aj xnj
� �
p aj

� �
 !

The information index I(A; X) is normally

distributed with a mean of EI(A; X) and a

variance of V(A; X):

ð10Þ

V A; Xð Þ~ 1

N

XN

n~1

XJ

j~1

p aj xnj
� �

ln
p aj xnj
� �
p aj

� �
 !" #2

8<
:
{

XJ

j~1

p aj xnj
� �"

ln

|
p aj xnj
� �
p aj

� �
 !#2

9=
;,

which allows testing the accuracy of the model.

The index of prior (before observing X)

entropy:

ð11Þ H Að Þ~{
XJ

j~1

p aj

� �
ln p aj xnj

� �

is a benchmark of uncertainty in the system

and allows measuring the proportion of

uncertainty explained by the model:

ð12Þ U2~I A; Xð Þ=H Að Þ:

Furthermore, the log-likelihood ratio LLR

5 2n 3 I(A; X) is x2 distributed with degrees

of freedom equal to the number of coefficients

in the model and allows testing the signifi-

cance of the empirical model.

To evaluate the forecasting performance of

our model, we have conducted within-sample

and out-of-sample predictions of land use–

land cover change probabilities for the study

period. We used two approaches for out-of-

sample predictions. First, we randomly select-

ed 10% of sample plots as a validation data

set, estimated the model using the remaining

90% of sample plots, and applied model

coefficients to predict transition probabilities

for the validation data set. Second, we

reserved sample plots of one county as a

validation data set, estimated the model using

sample plots of the two remaining counties,

and predicted transition probabilities for the

validation data sets. This was repeated for

each county. Information indices and statistics

calculated for within-sample and out-of-sam-

ple predictions are presented in Table 6. The

U2 values suggest that the proportion of

uncertainty explained by the empirical model

is relatively high and are comparable with

McFadden pseudo-R2 (Table 3). The t-statis-

tics computed based on the projected land

use–land cover transition probabilities suggest

that the empirical model is accurate, while the

log-likelihood ratios (LLR) indicate that

model is statistically significant.

To predict land cover change for the 20-

year period, we applied coefficients of the

spatial CL model of land use–land cover

change to the full NLCD 2001 dataset

covering three counties. Before applying the

model, we used color aerial orthophotos with

0.8-m resolution to reclassify developed land

use into transportation and developed, and to

separate clear-cuts and young plantations

from ‘‘shrub–scrub,’’ ‘‘grassland–herba-

ceous,’’ and ‘‘barren land’’ land covers.

For the period of projection, we assumed

that population changes with the same rate

it was changing during 1990–2000 period. For

Table 6. Information Indices and Statistics Computed for the Forecasting Model Applied to

Validation Data Sets

n H(A; X) I(A; X) EI(A; X) V(A; X) t-Statistic U2 LLR

Within sample 4,274 1.5248 1.0050* 1.0052 0.6642 0.0002 0.6591 8,591*

Out of sample:

Random 10% 439 1.5213 0.9491* 1.0130 0.6848 0.0772 0.6239 833*

Harris county 1,766 1.5418 0.9469* 0.9441 0.6393 0.0035 0.6141 3,344*

Meriwether county 1,906 1.5278 1.0547* 1.1290 0.5793 0.0976 0.6904 4,021*

Muscogee county 602 1.4805 1.1870* 1.3515 1.0583 0.1599 0.8018 1,429*

* Significant at 1%.
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example, if the population of some census

block increased by 20% during 1990–2000,

we assumed that it will increase with the

same rate during the next two decades. The

estimated spatial CL model coefficients were

combined with projected PGI to calculate

the probabilities of land cover type changes

for each at 10-year intervals. Following

Bockstael (1996), predicted probabilities were

translated into percentages. This approach

does not allow for predicting the exact land

use–land cover type for each individual

Figure 2. Distribution of Population Gravity Index and Prediction of Change in Developed

and Agricultural Land Uses and Softwood Forests at Watershed Level
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pixel.9 However, aggregation of land use–land

cover shares to particular geographic areas

allows projecting land use–land cover dynam-

ics for these areas. For illustration, we

aggregated our projections to 12-digit hydro-

logic units.10 The dynamics of developed and

agricultural land uses and softwood forest

type are presented in Figure 2. The greatest

increase of the proportion of developed lands

is predicted for the outskirts of the city of

Columbus in the north of Muscogee County

and the south of Harris County. Another

location with predicted significant increase in

proportion of developed lands is the northern

part of Meriwether County, where develop-

ment is caused by proximity to the Atlanta

metropolitan area and the I-85 corridor. An

increase in the proportion of softwood forests

is predicted for the northern part of Harris

County and southern part of Meriwether

County, while some increase in the proportion

of agricultural land use is predicted for the

eastern part of Meriwether County. For the

purposes of the WestGA Project (Lockaby et

al.) similar aggregations were obtained for 26

smaller watersheds (300 to 2700 ha) selected

across three counties that are used to address

the effects of urbanization on water quality,

biodiversity, and ecosystem processes.

Conclusions

This article presents a spatial conditional logit

model of land cover–land use change in three

West Georgia counties during the period

1992–2001. The use of spatial lag allows

spatial correlation between observations of

the same sample plot to account for the panel

data. The results show that both the level and

change of PGI (a measure of accessibility to

population) are important factors affecting

allocation of land between rural and devel-

oped uses, between agricultural and forestry

uses, and between forest management types.

The contribution of this study lies in the

following areas. First, we implement a spa-

tially explicit econometric model of land use–

land cover change that models changes

between rural and urban uses, between agri-

cultural and forestry uses, and between forest

cover types. This model can be used to

forecast land use change at a small (subwa-

tershed and watershed) scale and serve as a

useful tool for ecologists, hydrologists, and

city and county planners. Second, our model

simultaneously describes land use changes

occurring among several different land use

classes, as opposed to modeling changes for

each initial land use separately. This allows

better utilization of land use change data

where probabilities of changes are relatively

low and probabilities of retention are relative-

ly high. Third, we find that accessibility to

population drives not only the transition of

rural land uses to developed land and alloca-

tion between forestry and agricultural uses,

but also transition between forest cover types

(forest management types).

There are several limitations and short-

comings of this study, however, that we hope

to correct in the future. First, the conditional

logit model assumes that the independence of

the irrelevant alternatives (IIA) property

holds. This is a very strong assumption. It

can be relaxed by applying nested or random

parameter logit models. Second, we do not

take into account zoning, which determines,

among other things, possibility and maxi-

mum density of development. Finally, alter-

native scenarios of population growth could

be explored. For example, the opening in

2008 of the new automotive plant in West

Point, GA, which is adjacent to the study area,

could have a large impact on population

growth and thus land use in the neighboring

watersheds.

[Received June 2007; Accepted November 2007.]
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