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On constrained set-valued optimization∗

Ivan Ginchev† Matteo Rocca‡

Abstract

The set-valued optimization problem minC F (x), G(x)∩(−K) 6= ∅, is considered,
where F : Rn  Rm and G : Rn  Rp are set-valued functions, and C ⊂ Rm

and K ⊂ Rp are closed convex cones. Two type of solutions, called w-minimizers
(weakly efficient points) and i-minimizers (isolated minimizers), are treated. In
terms of the Dini set-valued directional derivative first-order necessary conditions
for a point to be a w-minimizer, and first-order sufficient conditions for a point to
be an i-minimizer are established, both in primal and dual form.

Key words: Set-valued optimization, First-order optimality conditions, Dini
derivatives.

Math. Subject Classification: 49J53, 49J52, 90C29, 90C30, 90C46.

1 Introduction

The constrained set-valued optimization problem (svp)

minCF (x), G(x) ∩ (−K) 6= ∅ , (1)

is considered, where F : Rn  Rm and G : Rn  Rp are set-valued functions (svf)
with non-empty values, and C ⊂ Rm and K ⊂ Rp are closed convex cones. First order
optimality conditions in terms of the Dini set-valued directional derivative are derived.
The obtained results generalize those of [3] from vector to set-valued problem, and of
[1] from unconstrained to constrained problem. Recently optimality conditions for svp
are studied mainly by means of epiderivatives, e. g. in [4], [5] and [2]. We consider the
optimality conditions based on directional derivatives as certain alternative of those based
on epiderivatives. Some comparison of the two methods is done in [1].
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2 Preliminaries

The space Rk is considered with the usual topology. It is generated by an arbitrary
norm. Since all the norms in Rk are equivalent, we make use of this sometimes choosing a
special norm. The dual pairing in Rk is a denoted 〈·, ·〉. It is a mapping Rk × (Rk)∗ → R,
where (Rk)∗ stands for the dual of Rk. In fact (Rk)∗ can be identified with Rk as linear
and topological spaces, but when Rk is considered with a norm, the dual space (Rk)∗ is
supplied with the dual norm. When Rk is supplied with an Euclidean norm, then (Rk)∗

can be identified with Rk also as a norm space. The notations Bk and B̄k are used for
the open and closed unit balls, and Bk(x

0) and B̄k(x
0) for the open and closed unit balls

with center x0.
For a given closed convex cone M ⊂ Rk its positive polar cone is defined by M ′ = {ξ ∈
(Rk)∗ | 〈ξ, x〉 ≥ 0 for all y ∈ M}. When x0 ∈ M we put M ′[x0] = {ξ ∈ M ′ | 〈ξ, x0〉 = 0}
and M [x0] = (M ′[x0]))′. It holds M ⊂ M [x0].
When Rk is considered with a concrete norm, the distance from a point x ∈ Rk to a set
A ⊂ Rk is given by d(x, A) = inf{‖x − y‖ | a ∈ A}. The oriented distance from x to A
is defined by D(x, A) = d(x, A)− d(x, Rk \ A). When M ⊂ Rk is a proper closed convex
cone, then D(x,−M) = sup{〈ξ, x〉 | ξ ∈ M ′, ‖ξ‖ = 1}. We define the oriented distance
D(P, A) from a set P ⊂ Rk to the set A ⊂ Rk putting D(P, A) = inf{D(x, A) | x ∈ P}.
Using the oriented distance we introduce the following notation. Let M ⊂ Rk be a
cone and let a be a real number. Then we put M(a) = {x ∈ Rk | D(x, M) ≤ a ‖x‖}.
The weakly efficient frontier (w-frontier) w-MinMA and the properly efficient frontier (p-
frontier) p-MinMA of A are defined respectively by w-MinMA = {x ∈ A | A∩(x−int M) =
∅} and p-MinMA = {x ∈ A | ∃ a ∈ (0, 1) : A ∩ (x−M(a)) = {x}}.
The set of the feasible points of svp (1) is defined by G = {x ∈ Rn | G(x) ∩ (−K) 6=
∅}. Further N (x0) denotes the family of the neighbourhoods of x0. We deal with local
solutions of (1), which in any case are pairs (x0, y0), y0 ∈ F (x0), with x0 feasible. Here
we use the following concepts of solutions for problem (1). The pair (x0, y0), x0 ∈ Rn,
y0 ∈ F (x0), is said a w-minimizer (weakly efficient point) if there exists U ∈ N (x0) such
that x ∈ U ∩ G implies F (x) ∩ (y0 − int C) = ∅ (then necessary y0 ∈ w-MinCF (x0)).
The pair (x0, y0) is said an i-minimizer (isolated minimizer) if there exists U ∈ N (x0)
and a constant A > 0 such that D(F (x) − y0,−C) ≥ A ‖x− x0‖ and y0 ∈ p-MinCF (x0)
for x ∈ U ∩ G (the concept of i-minimizer is norm-independent, since all norms in finite-
dimensional spaces are equivalent).
The svf Φ : Rn  Rk is said locally Lipschitz at x0 ∈ Rn, if there exists U ∈ N (x0) and
a constant L > 0, such that for x1, x2 ∈ U it holds Φ(x2) ⊂ Φ(x1) + L ‖x2 − x1‖ B̄k. The
svf Φ is said locally Lipschitz, if it is locally Lipschitz at each x0 ∈ Rn. Given a cone
M ⊂ Rk, we say that Φ is locally M -Lipschitz at x0 if the svf x  Φ(x) + M is locally
Lipschitz at x0. The svf Φ is said locally M -Lipschitz, if it is locally M -Lipschitz at each
point x0.
The cone M ⊂ Rk is said pointed if (−M)∩M = {0}, and M is contained in a half-space
of Rk. If Rk is supplied with an Euclidean norm, then the cone M is said non-obtuse, if
〈x1, x2〉 ≥ 0 for all x1, x2 ∈ M . Each non-obtuse cone is pointed. The following result
converts in some sense this statement.

Lemma 1 ([1]) If M ⊂ Rk is a pointed closed convex cone, then there exists an Euclidean
norm in Rk with respect to which M is a non-obtuse cone.
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The next lemma is essential for the proof of the optimality conditions for (1).

Lemma 2 ([1]) Let M ⊂ Rk be a non-obtuse closed convex cone and M \ {0} 6= ∅. Let
the svf Φ : Rn  Rk be C-Lipschitz with constant L in U ∈ N (x0) and y0 ∈ Φ(x0).
Suppose that for some σ ∈ (0, 1/2) it holds Φ(x0) ∩ (y0 −M(2σ)) = {y0}. Then for each
x ∈ U and each y ∈ Φ(x) ∩ (y0 −M(σ)) it holds

‖y − y0‖ ≤ L(1 + σ)

σ
‖x− x0‖ .

Our aim is to obtain optimality conditions for svp (1) in terms of Dini derivatives. For
the svf Φ : Rn  Rk the Dini derivative of Φ at (x0, y0), y0 ∈ Φ(x0), in direction u ∈ Rn

is defined as the upper limit

Φ′(x0, y0; u) = Limsup
t → 0+

1

t

(
Φ(x0 + tu)− y0

)
.

3 First-order optimality conditions

Theorem 1 (Necessary Conditions, w-minimizers) Consider svp (1) with C ⊂ Rm

and K ⊂ Rp closed convex cones, and F : Rn  Rm and G : Rn  Rp svf. Let the pair
(x0, y0), x0 ∈ Rn, y0 ∈ F (x0), be a w-minimizer of svp (1), and let z0 ∈ G(x0) ∩ (−K).
Then

∀u ∈ Rm : (F ×G)′(x0, (y0, z0); u) ∩ (−(int C × int K[−z0]) = ∅ . (2)

Proof. Suppose the contrary, that there exists (ȳ0, z̄0) ∈ (F × G)′(x0, (y0, z0); u0), such
that ȳ0 ∈ −int C, z̄0 ∈ −int K[−z0]. Let ȳ0 = limk(1/tk)(y

k−y0), z̄0 = limk(1/tk)(z
k−z0),

where yk ∈ F (x0 + tku
0) and zk ∈ G(x0 + tku

0) for some tk → 0+ and u0 ∈ Rn. These
equalities imply that yk → y0 and zk → z0, and the boundedness of the sequences {yk}
and {zk}.
Let η̄ ∈ K ′, ‖η̄‖ = 1. We show that there exists a positive integer k(η̄) and a neighbour-
hood V (η̄) of η̄, such that 〈η, zk〉 < 0 for k > k(η̄) and η ∈ V (η̄). For this purpose we
consider the following cases:
10. η̄ ∈ K ′[−z0]. Since z̄0 ∈ −int K[−z0], we have

lim
k

1

tk
〈η̄, zk − z0〉 = 〈η̄, z̄0〉 < 0 .

Therefore there exists k(η̄), such that for all k > k(η̄) it holds 〈η̄, zk〉 < 〈η̄, z0〉 = 0. Now
the boundedness of the sequence {zk} implies the existence of a neighbourhood V (η̄) of
η̄, such that 〈η̄, zk〉 < 0 for all k > k(η̄).
20. η̄ ∈ K ′ \ K ′[−z0]. We have 〈η̄, z0〉 < 0, whence 〈η̄, zk〉 < 0 for all k > k(η̄) with
suitable k(η̄). This implies as above 〈η, zk〉 < 0 for all k > k(η̄) and η ∈ V (η̄) with
suitable neighbourhood V (η̄) of η̄.
The set Γ = {η ∈ K ′ | ‖η‖ = 1} is compact, whence Γ ⊂ V (η̄1) ∪ . . . ∪ V (η̄s) for some
η̄1, . . . , η̄s ∈ Γ. Let k0 = max(k(η̄1), . . . , k(η̄s)). Take k > k0. Then 〈η, zk〉 < 0 for all
η ∈ Γ, and hence for all η ∈ K ′. Therefore zk ∈= int K ⊂ −K. In other words, the points
x0 + tku

0 are feasible.
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According to the made assumption ȳ0 = limk(1/tk)(y
k−y0) ∈ −int C. Therefore yk−y0 ∈

−int C for all sufficiently large k, a contradiction to the hypothesis that (x0, y0) is a w-
minimizer of (1). 2

Remark 1 Condition (2), which can be referred to as primal form condition, can be
substituted by the equivalent dual form condition

∀u ∈ Rn \ {0} : ∀ (ȳ0, z̄0) ∈ (F ×G)′(x0, (y0, z0); u) :
∃ (ξ, η) ∈ C ′ ×K ′[−z0], (ξ, η) 6= (0, 0) : 〈ξ, ȳ0〉+ 〈η, z̄0〉 ≥ 0 .

(3)

Theorem 2 (Sufficient Conditions, i-minimizers) Consider svp (1) with C ⊂ Rm

pointed closed convex cone, K ⊂ Rp closed convex cone, F : Rn  Rm locally C-Lipschitz
svf, and G : Rn  Rp locally Lipschitz svf. Suppose that the pair (x0, y0), x0 ∈ Rn,
y0 ∈ F (x0), is such that y0 ∈ p-MinCF (x0), and there exists z0 ∈ G(x0) for which

∀u ∈ Rn \ {0} : (F ×G)′(x0, (y0, z0); u) ∩ (−(C ×K[−z0])) = ∅ . (4)

Suppose also that the svf G satisfies the following condition:

G(x0, z0) :
∃U ∈ N (x0) : ∃ ` > 0 : ∀x ∈ U :

G(x) ∩ (−K) 6= ∅ ⇒ G(x) ∩ ` ‖x− x0‖ B̄p(z
0) ∩ (−K) 6= ∅

Then (x0, y0) is an i-minimizer of svp (1).

Proof. We can assume without loss of generality that Rm (the image space of F ) is
supplied with an Euclidean norm, with respect to which the cone C is non-obtuse. We
may assume that F is C-Lipschitz with constant L > 0 on B̄n(x0). Suppose that (x0, y0)
is not an i-minimizer. Fix a sequence εk → 0+. According to the assumption, there exist
sequences tk → 0+, and uk ∈ Rn, ‖uk‖ = 1, such that:

10. G(x0 + tku
k) ∩ (−K) 6= ∅,

20. D(F (x0 + tku
k)− y0,−C) < εktk.

Passing to a subsequence, we may assume that uk → u0, and 0 < tk < r.

By the C-Lipschitz property of F we have

D(
1

tk

(
F (x0 + tku

0)− y0
)
,−C) < εk + L ‖uk − u0‖ .

Let yk ∈ F (x0+tku
0) be such that D(ȳk,−C) < εk+L‖uk−u0‖, where ȳk = (1/tk)(y

k−y0).
The sequence {ȳk} is bounded, which follows from the following reasoning. Since y0 ∈
p-MinCF (x0), there exists σ, 0 < σ < 1/2, such that F (x0) ∩ (y0 − C(2σ)) = {y0}.
Let k be such that εk + L‖uk − u0‖ < L, whence D(yk − y0,−C) < Ltk. Then it
holds ‖ȳk‖ ≤ L (1 + 1/σ). Indeed, assume on the contrary, that ‖ȳk‖ > L (1 + 1/σ), or
equivalently ‖yk − y0‖ > L (1 + 1/σ) tk. We have

D(yk − y0,−C) < Ltk
σ

Ltk(1 + σ)
‖yk − y0‖ < σ ‖yk − y0‖ .

This inequality shows that yk − y0 ∈ −C(σ), whence, from Lemma 2 we get

‖yk − y0‖ ≤ L (1 + σ)

σ
‖(x0 + tku

0)− x0‖ = L

(
1 +

1

σ

)
tk ,
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a contradiction.
We proved that the sequence {ȳk} is bounded and ‖ȳk‖ ≤ L (1 + 1/σ) for all sufficiently
large k. Passing to a subsequence, we may assume that ȳk → ȳ0, whence ‖ȳ0‖ ≤ L (1 +
1/σ) and ȳ0 ∈ F ′(x0, y0; u0). Taking a limit in the inequality D(ȳk,−C) < εk +L‖uk−u0‖
we get D(ȳ0,−C) ≤ 0. Since C is closed, this inequality gives ȳ0 ∈ −C.
The hypothesis G(x0, z0) together with the condition G(x0 + tku

k) ∩ (−K) 6= ∅ give
that G0(x

0 + tku
k) ∩ (−K) 6= ∅, where G0(x) = G(x) ∩ ` ‖x − x0‖ B̄p(z

0). The local
Lipschitz property of G gives that there exists a point zk ∈ G(x0 + tku

0) such that
D(zk, G0(x

0 + tku
k)) ≤ Ltk ‖uk − u0‖ (here we suppose that G is locally Lipschitz with

constant L on r B̄n). From the triangle inequality we get ‖zk − z0‖ ≤ (` + L‖uk − u0‖) tk.
Putting z̄k = (1/tk)(z

k − z0), we have ‖z̄k‖ ≤ (` + L‖uk − u0‖) ≤ ` + 2L. Therefore the
sequence z̄k is bounded. Passing to a subsequence we may assume that z̄k → z̄0.
The construction of zk yields the existence of z̃k ∈ G0(x

0 + tkuk) ∩ (−K), such that
zk ∈ z̃k + Ltk ‖uk − u0‖ B̄p, whence for arbitrary η ∈ K ′[−z0], ‖η‖ = 1, we have

〈η, z̄k〉 =
1

tk
〈η, zk〉 ≤ 1

tk
〈η, z̃k〉+ L ‖uk − u0‖ ≤ L ‖uk − u0‖ .

Here we have used 〈η, z̃k〉 ≤ 0, a consequence of z̃k ∈ −K. Taking the limit in the above
inequality, we get 〈η, z̄0〉 ≤ 0, whence

D(z̄0,−K[−z0]) = sup{〈η, z̄0〉 | η ∈ K ′[−z0], ‖η‖ = 1} ≤ 0 .

Regarding that K ′[−z0] is closed, this gives z̄0 ∈ −K[−z0].
We have used the same sequence tk → 0+ to construct both ȳ0 and z̄0, hence we have
(ȳ0, z̄0) ∈ (F ×G)′(x0, (y0, z0); u0). So far we have proved that (ȳ0, z̄0) ∈ −(C ×K[−z0]).
On the other hand condition (4) gives (ȳ0, z̄0) /∈ −(C ×K[−z0]), a contradiction. 2

Remark 2 Condition (4), which can be referred to as primal form condition, can be
substituted by the equivalent dual form condition

∀u ∈ Rn \ {0} : ∀, (ȳ0, z̄0) ∈ (F ×G)′(x0, (y0, z0); u) :
∃ (ξ, η) ∈ C ′ ×K ′[−z0], (ξ, η) 6= (0, 0) : 〈ξ, ȳ0〉+ 〈η, z̄0〉 > 0 .

(5)

The next example shows that without condition G(x0, x0) Theorem 2 is not true.

Example 1 Consider problem (1) with n = 1, m = 1, p = 2, C = R+, K = R2
+, F :

R → R arbitrary single-valued differentiable function, and G : R  R2 given by G(x) =
[(|x|,−1), (−|x|, 0)]. Let x0 = 0, y0 = F (x0), z0 = (0,−1). All conditions of Theorem
2, with exception of G(x0, z0), are satisfied, independently on the concrete function F .
In particular K[−z0] = R+ × R and (F × G)′(x0, (y0, z0); u) = (F ′(0)u, G′(x0, z0; u)),
where G′(x0, z0; u) = {|u|} × R+, which verifies condition (4). Since any point x ∈ R is
feasible, problem (1) is equivalent to the optimization problem min F (x), x ∈ R. But, if
for instance F (x) = −x2, the point x0 is not an i-minimizer.

The following theorem is a modification of Theorem 2 and is proved similarly.
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Theorem 3 Consider svp (1) with C ⊂ Rm and K ⊂ Rp pointed closed convex cones, and
F : Rn  Rm and G : Rn  Rp respectively locally C-Lipschitz and locally K-Lipschitz
svf. Suppose that the pair (x0, y0), x0 ∈ Rn, y0 ∈ F (x0), is such that y0 ∈ p-MinCF (x0),
and there exists z0 ∈ G(x0) for which z0 ∈ p-MinKG(x0) and condition (4) holds. Suppose
also that the svf G satisfies condition G(x0, z0). Then (x0, y0) is an i-minimizer of svp
(1).

When the functions F and G are single-valued, then problem (1) transforms into the vector
optimization problem minCF (x), G(x) ∈ −K, and Theorems 1 and 2 reduce to those
proved in [3]. Then the conditions y0 ∈ p-MinCF (x0) and G(x0, z0) are automatically
satisfied.
Though condition G(x0, z0) does not appear in Theorem 1, the interesting applications of
this theorem could be those in which G(x)∩(−K) possess points near z0. Indeed, suppose
that ∀ ` > 0 : ∃U ∈ N (x0) : ∀x ∈ U : G(x) ∩ (−K) 6= ∅ ⇒ G(x) ∩ ` ‖x − x0‖ B̄p(x

0) ∩
(−K) = ∅ . Then (F ×G)′(x0, (y0, z0); u) = ∅ for all u ∈ Rn, and condition (2) is satisfied
for arbitrary svf F .
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