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Zero variance in Markov chain Monte Carlo with an
application to credit risk estimation

Dario Bressanini∗, Fabrizio Leisen†, Antonietta Mira‡, Paolo Tenconi §

Abstract

We propose a general purpose variance reduction technique for Markov Chain Monte
Carlo estimators based on the Zero-Variance principle introduced in the physics lit-
erature by Assaraf and Caffarel ( 1999). The potential of the new idea is illustrated
with some toy examples and a real application to Bayesian inference for credit risk
estimation.
Keywords: Markov chain Monte Carlo, Metropolis-Hastings algorithm, Variance re-
duction, Zero-Variance principle.

1 Main idea

We are interested in estimating the expected value of a function f with respect to a, possibly
unnormalized, probability distribution π:

µf =

∫
f(x)π(x)dx∫
π(x)dx

. (1)

Markov chain Monte Carlo methods (MCMC, Metropolis et al. 1953, Hastings 1970, Tierney,
1994), estimate integrals using a large but finite set of sample points, xi, i = 1, · · · , N ,

∗Dip. di Sc. Chimiche Fisiche e Matematiche, Università dell’Insubria, Como, Italy.
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†Dip. di Economia Università dell’Insubria, Via Monte Generoso 71, 21100 Varese, Italy.
(email: fleisen@eco.uninsubria.it)
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collected along the sample path of an ergodic Markov chain, P , having π (normalized) as its
unique stationary and limiting distribution:

µ̂f =
1

N

N∑
i=1

f(xi). (2)

We have that
µf = µ̂f + ∆µf

where ∆µf is the statistical error associated with the fact that the length of the simulated
Markov chain path, N , is finite. For large enough N , standard statistical arguments lead to
the following expression of the error:

∆µf = Kf
σf√
N

where the constant Kf is proportional to the amount of correlation along the sampled chain
and σf is the standard deviation of f under π (assumed to be finite).

Recent literature (Peskun, 1973; Liu, 1996; Tierney, 1998; Tierney and Mira, 1999; Mira
and Geyer, 2000; Green and Mira, 2001), aimed at reducing the statistical MCMC error,
∆µf , by reducing the correlation along the Markov chain, that is, by reducing Kf .

In this paper we suggest instead to reduce the error by replacing f with a different
function, f̃ , obtained by properly re-normalizing f . The function f̃ is constructed so that
its expectation, under π, equals µf , but its variance with respect to π is smaller (this is a
standard variance reduction technique used in Monte Carlo simulation, see Ripley, 1987).
To define f̃ , an operator, H, and a trial function, φ, are introduced. We require that H is
Hermitian (symmetric for finite state spaces, and real in all practical applications) and∫

H(x, y)
√
π(y)dy = 0. (3)

The trial function φ(x) is a rather arbitrary function which is only required to be integrable.
We define the renormalized function to be

f̃(x) = f(x) +

∫
H(x, y)φ(y)dy√

π(x)
= f(x) + ∆f(x). (4)

As a consequence of (1) and (3) we have that

µf = µf̃ (5)
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that is, both functions f and f̃ can be used to estimate the desired quantity via Monte Carlo
or MCMC simulation. However, the statistical error of the resulting estimator can be very
different. The optimal choice for (H,φ) can be obtained by imposing that f̃ is constant and
equal to its average, that is, by requiring

σf̃ = 0,

which is equivalent to require that
f̃ = µf .

The latter, together with (4), leads to the fundamental equation:∫
H(x, y)φ(y)dy = −

√
π(x)[f(x)− µf ]. (6)

In most practical applications equation (6) cannot be solved exactly, still, we propose to find
an approximate solution in the following way. First choose H verifying (3) (in Section 2 we
will suggest two general recipes to construct H). Second, parametrize φ and optimally choose
the parameters by minimizing σf̃ over a finite set of points generated according to the Markov
chain P . Finally, a much longer MCMC simulation is performed using µ̂f̃ instead of µ̂f as
the estimator. Note that the proposed approach can be used to obtain variance reduction
also in Monte Carlo simulation if we can get i.i.d. draws from the target distribution π.

2 Choice of H

2.1 Discrete case

Denote with P (x, y) a transition matrix reversible with respect to π (we identify a Markov
chain with the corresponding transition matrix of kernel):

π(x)P (x, y) = π(y)P (y, x), ∀x, y.

The following choice of H

H(x, y) =

√
π(x)

π(y)
[P (x, y)− δ(x− y)]

satisfies the requirements, where δ(x− y) is the Dirac delta function: δ(x− y) = 1 if x = y
and zero otherwise. With this choice of H, letting φ̃ = φ√

π
, equation (4) becomes:

f̃(x) = f(x)−
∫
P (x, y)[φ̃(x)− φ̃(y)]dy. (7)

The main difficulty with (7) is the evaluation of the integral.
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2.2 Continuous case

If x ∈ <d we can consider the operator:

H = −1

2

d∑
i=1

∂2

∂x2
i

+ V (x) (8)

where V (x) is constructed to fulfill equation (3):

V (x) =
1

2
√
π(x)

d∑
i=1

∂2
√
π(x)

∂x2
i

. (9)

In this setting we have that

f̃(x) = f(x) +
Hφ(x)√
π(x)

. (10)

This is the function we will use in the examples considered in the following. To obtain the first
and second order derivatives we used the R function “hessian” from the library “numDeriv”
which evaluates an approximate Hessian of a scalar function using finite differences. Note
that for calculating f̃ with the operator (8) the normalizing constant of π(x) is not needed!

3 Choice of φ

The optimal choice of φ is the exact solution of the fundamental equation. In real applica-
tions, typically, only approximate solutions, obtained by minimizing σf̃ , are available. The
particular form of φ is very dependent on the problem at hand, that is on π, and on f .
However an important point to notice is that, if we parametrize φ in terms of c =

∫
φ(x)dx

and then minimize σf̃ with respect to c, the optimal choice of c is

c = − [Eπ(f(x)∆f(x))]2

Eπ(∆f(x))2

and, for this value of the parameter, from (4) we obtain

σ2
f̃

= σ2
f −

[Eπ(f(x)∆f(x))]2

Eπ(∆f(x))2
. (11)

Since the correction factor in (11) that leads from σ2
f to σ2

f̃
is always negative, regardless

of the choice of φ, a variance reduction in the MCMC estimator is obtained by replacing f
with f̃ in (2).
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4 Examples of variance reduction in Monte Carlo case

In this section we present a few toy examples to demonstrate the power of the proposed
technique. In particular we consider as target distributions:

1. Univariate and bivariate Gaussian distributions,

2. Univariate and bivariate standard Student-T distributions.

The functions of interest, f , are:

• f(x) = x and f(x) = x2 in the univariate case,

• f(x1, x2) = x1, f(x1, x2) = x2
1 and f(x1, x2) = x1x2 in the bivariate case.

In the results presented we sample T = 150 values from π.

4.1 Univariate Gaussian distribution

Consider as target a normal distribution N(µ, σ2) with non-normalized density π(x) =

exp(−1
2

(x−µ)2

σ2 ). In this case the theoretical functions φ that solve (6) are respectively for
f1(x) = x and f2(x) = x2:

φ1(x) = (−2σ2x) exp

{
−1

4

(x− µ)2

σ2

}
;

and

φ2(x) = (−σ2x2 − 2µσ2x) exp

{
−1

4

(x− µ)2

σ2

}
.

In Table 1 we show simulation results for f1(x) = x, f2(x) = x2 and the associated f̃1(x)
and f̃2(x). Despite of the small sample, a great reduction in variance is achieved and the
final estimated variance is nearly zero.

4.2 Univariate Student-T distribution

In this section we proceed as in the previous one but taking the univariate Student-T distri-
bution with g degrees of freedom, T (g), as the target. Suppose that g > 2. In this case the
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Table 1: N(1, 2), f1(x) = x, f2(x) = x2.

f1 f̃1 f2 f̃2

µ̂f 0.912 1 2.824 3
σ̂2
f 2.013 2.28e-22 9.377 3.53e-21

Table 2: Univariate Student-T with df=5, f1(x) = x, f2(x) = x2.

f1 f̃1 f2 f̃2

µ̂f -0.271 1.65e-12 1.834 1.666
σ̂2
f 1.778 5.19e-22 20.536 1.32e-23

Table 3: Bivariate Normal, µ=(2,1), (σ2
1, σ2

2)=(4,1), ρ=0.6 f1 = x1, f2 = x2
1, f3 = x1x2.

f1 f̃1 f2 f̃2 f3 f̃3

µ̂f 1.703 2 6.518 8 2.582 3.2
σ̂2
f 3.654 3.48e-20 7.199 4.63e-18 13.053 5.76e-20

Table 4: Bivariate Student-T, df=7, f1 = x1, f2 = x2
1, f3 = x1x2.

f1 f̃1 f2 f̃2 f3 f̃3

µ̂f 1.703 1.31e-11 6.518 1.4 2.582 -1.06e-12
σ̂2
f 3.654 8.85e-21 71.992 4.07e-19 13.053 2.03e-22
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non-normalized density is π(x) =
(

1 + x2

g

)− g+1
2

and the theoretical functions φ that solve

(6) are, respectively, for f1(x) = x and f2(x) = x2:

φ1(x) =

(
2

3

1

1− g
x3 + 2

g

1− g
x

)(
1 +

x2

g

)− g+1
4

and

φ2(x) =

(
1

2

1

2− g
x4 +

g

2− g
x2

)(
1 +

x2

g

)− g+1
4

.

Also in this case the simulation results displayed in Table 2 show an estimated variance close
to zero.

4.3 Bivariate Gaussian

We consider here a two dimensional vector, x = (x1, x2), having a bivariate normal distri-
bution with mean vector equal to µ = (µ1, µ2), standard deviations equal to σ = (σ1, σ2),
and correlation coefficient ρ. The theoretical φ functions for f1(x) = x1, f2(x) = x2

1 and
f3(x) = x1x2, are, respectively:

φ1(x1, x2) =
(
−2σ2

1x1 − 2ρσ1σ2x2

)√
π(x1, x2);

φ2(x1, x2) =

{[
−ρ2 σ4

1

σ2
1 + σ2

2

− σ2
1

(
1− ρ2

)]
x2

1 +

[
−ρ2 σ2

1σ
2
2

σ2
1 + σ2

2

]
x2

2 +

[
−ρ σ3

1σ2

σ2
1 + σ2

2

]
x1x2

+

[
−2µ1σ

2
1 + 2ρ

σ3
1σ2

σ2
1 + σ2

2

µ2 − 2ρ2 σ2
1σ

2
2

σ2
1 + σ2

2

µ1

]
x1

+

[
−2σ1σ2µ1ρ− 2ρ

σ1σ
3
2

σ2
1 + σ2

2

µ1 + 2ρ2 σ2
1σ

2
2

σ2
1 + σ2

2

µ2

]
x2

}√
π(x1, x2);

φ3(x1, x2) =

{[
−ρ σ3

1σ2

σ2
1 + σ2

2

]
x2

1 +

[
−ρ σ1σ

3
2

σ2
1 + σ2

2

]
x2

2 +

[
−2

σ2
1σ

2
2

σ2
1 + σ2

2

]
x1x2

+

[
−2

σ4
1

σ2
1 + σ2

2

µ2 − 2ρ
σ1σ

3
2

σ2
1 + σ2

2

µ1

]
x1 +

[
−2

σ4
2

σ2
1 + σ2

2

µ1 − 2ρ
σ3

1σ2

σ2
1 + σ2

2

µ2

]
x2

}√
π(x1, x2).

We consider first a standard bivariate Gaussian target and then move on to the case where
µ = (2, 1), σ = (2, 1) and ρ = 0.6. In Table 3 we report the results obtained and we have
again a near zero variance.
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4.4 Bivariate Student-T

We conclude the Monte Carlo simulation with theoretical knowledge of the φ’s functions,
with the simulation of a bivariate T-Student distribution. The theoretical φ functions for
f1(x) = x1, f2(x) = x2

1 and f3(x) = x1x2, are, respectively:

φ1(x1, x2) =

(
2

2− 3g
x3

1 +
2

2− 3g
x1x

2
2 +

6g

2− 3g
x1

)√
π(x1, x2);

φ2(x1, x2) =

{[
1

4

3− 2g

(2− g)(1− g)

]
x4

1 +

[
−1

4

1

(2− g)(1− g)

]
x4

2 +

[
1

2

1

2− g

]
x2

1x
2
2

+

[
1

2

g(3− 2g)

(2− g)(1− g)

]
x2

1 +

[
−1

2

g

(2− g)(1− g)

]
x2

2

}√
π(x1, x2);

φ3(x1, x2) =

(
1

2

1

1− g
x3

1x2 +
1

2

1

1− g
x1x

3
2 +

g

1− g
x1x2

)√
π(x1, x2).

The simulation results are reported in Table 4 and confirm the reduction of variance to zero.

4.5 A first discussion of the gained insight

As shown in the previous subsection, in the Monte Carlo framework this method works well
when the theoretical φ is available. However, in most practical applications, two problems
may arise:

1. The impossibility to sample directly from the target distribution;

2. The unavailability of the theoretical φ.

To overcome the first problem one could use MCMC simulation techniques, however it would
be questionable if the machinery introduced at the beginning of this paper works properly
also in a MCMC setting. The answer is affirmative, indeed it is straightforward to show that
when the exact φ is available, i.e. the φ satisfying equation (6), Cov(f̃(X0), f̃(Xk)) goes to
zero, this is confirmed by our simulations.

The second problem is more delicate but, as pointed out in Section 3, any choice of φ
reduces the variance. The choice of φ remains an open question we want to address here. In
the previous examples we showed that the theoretical φ’s take the form P (x)

√
Target where

P (x) is a polynomial. In the examples we provide, we noticed the influence of the following
two factors on the degree of the polynomial P (x):

a) The degree of the function f(x);
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b) The structure of the target.

Regarding the first of the two, a simple suggestion would be to control it by imposing P (x)
to have the same degree of f(x). The second factor varies strongly among problems faced,
so it is difficult to give a general suggestion, however our experiments confirm some kind
of robustness of results about a misspecification of the φ function. As an example we tried
to impose a first order P (x) for an univarite student target distribution, whose theoretical
φ requires a third degree polynomial, when one is interested in Eπ(f). We obtained a
promising 93% variance reduction, so a little decrease of performance with respect to the
exact φ, confirmed even on MCMC samples.

5 Variance reduction in MCMC case and examples

We leave here the Monte Carlo framework, focusing henceforth on random draws obtained
resorting to MCMC methods. We start referring to the examples studied in Section 4, if we
estimate Eπ(f) by running a Markov chain by using the exact theoretical φ, we obtain results
similar to the Monte Carlo case. In the Tables 5, 6, 7, 8 we report the simulation results.
These are obtained by simulating 1000 points with a random walk Metropolis Hastings with
an optimally scaled Normal proposal distribution (see Roberts and Rosenthal, 2001) and
then discarding the first 850 points so that the number of MCMC actual points compare to
the number of MC draws used in Section 4 (i.e. T = 150).

5.1 Gaussian-Gaussian model

Consider the following model for s iid observations yi:

l(yi|θ) ∼ N(θ, σ2
y) i = 1, · · · , s;

where σ2
y is the known variance and θ is the parameter of interest. We assume a conjugate

Normal prior:
h(θ) ∼ N(µθ, τ

2
θ )

where µθ and τ 2
θ are known hyperparameters. It is well known that posterior distribution of

the parameter of interest is
π(θ|y1, · · · , ys) = N(µπ, σ

2
π)

where

µπ =
µθσ

2
y + sτ 2

θ y

σ2
y + sτ 2

θ
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Table 5: N(1, 2), f1(x) = x, f2(x) = x2.

f1 f̃1 f2 f̃2

µ̂f 0.080 1 3,193 3
σ̂2
f 2.563 4.8e-20 13.209 1.31e-19

Table 6: Univariate Student-T with df=5, f1(x) = x, f2(x) = x2.

f1 f̃1 f2 f̃2

µ̂f 0.095 2.08e-12 1.55 1.666
σ̂2
f 1.551 1.08e-22 4.077 6.51e-24

Table 7: Bivariate Normal, µ=(2,1), (σ2
1,σ2

2)=(4,1), ρ=0.6 f1 = x1, f2 = x2
1, f3 = x1x2.

f1 f̃1 f2 f̃2 f3 f̃3

µ̂f 1,683 2,549 5.366 8 2.136 3.2
σ̂2
f 2 2,01e-16 33.937 1.193e-14 7.14 7.11e-17

Table 8: Bivariate Student-T, df=7, f1 = x1, f2 = x2
1, f3 = x1x2.

f1 f̃1 f2 f̃2 f3 f̃3

µ̂f -0.09 7.29e-10 1.049 1.4 -0.038 -4,31e-12
σ̂2
f 1.04 1.02e-17 5.44 1.92e-17 1.254 1.95e-21
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and

σ2
π =

σ2
yτ

2
θ

σ2
y + sτ 2

θ

here y is the sample mean. In this setting we considered f(θ) = θ and:

φ(θ) = φ1(θ).

As a concrete example we used σy = 3, µθ = 0, τθ = 3 and generated the actual sample of size
s = 10, from a Gaussian distribution with mean equal to one and standard deviation equal
to 3. The posterior distribution has µπ = 1.7487 and σπ = 0.904. The estimated mean and
standard deviations of these distributions are presented in Table 9. Again, the advantage in
terms of variance reduction of the method proposed is clear.

Table 9: Bayesian model, f(θ) = θ, N = 500.

f f̃

µ̂f 1.7736 1.7399
σ̂2
f 0.8838 0.0362 (96% reduction)

5.2 Poisson-Gamma model

As a second model we consider the well known Poisson-Gamma model where:

l(yi|θ) ∼ Po(θ) i = 1, · · · , s;

h(θ) ∼ Ga(α = 4, β = 4).

We extract s = 30 values from a Po(θ = 4) distribution, we then

1. run a first MCMC simulation of length 1000 with a burn-in of 100;

2. minimize the variance on this first simulation and save the parameters;

3. run 100 parallel MCMC chains, each of length 10000 (after a burn-in of 150 steps);

4. compute, on each chain, f and f̃ .
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We are interested in the first moment of the posterior distribution, in this case we have
the exact solution:

β +
∑s

i=1 yi
α + s

= 4.058824

The inspection of parallel chains, for example at 500 iterations, shows that f̄500 = 4.060625.
¯̃f500 = 4.058843 and σ(f500) = 0.0150 while σ(f̃500) = 0.001777.

A variance reduction by a factor of nearly ten is achieved. Figure 1 and Figure 2 depict
the results obtained.

● ● ● ● ● ● ● ● ● ●

0 2000 4000 6000 8000

4.
00

4.
05

4.
10

Mean + − 2*Std−Dev of Parallel Chains

Iterations

mcmc
Zero−Variance

● ● ● ● ● ● ● ● ● ●

Figure 1: Poisson-Gamma: Parallel Chains

5.3 Logistic regression

We now consider a logistic regression model, commonly used in statistical practice. We
simulate dependent binary data as follows:

l(yi|θ) ∼ Be(θi) i = 1, ..., 100;

θi =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
, xi ∼ N(0, 1);

setting β0 = 0.5 , β1 = 1.5, while assuming of an improper prior on each parameter.
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Figure 2: Poisson-Gamma: Single Chain

The posterior distribution does not have a closed form, however we resort to its normal
approximation and therefore choose a φ with a structure similar to the optimal φ for the
normal case. In the Tables 10 and 11, the resulting variance reductions are reported.

Table 10: Logit Model, β0 f(β0) = β0, N = 300.

f f̃

µ̂f 0.5676 0.5629
σ̂2
f 0.0923 0.0018 (80% reduction)

6 A simplified credit risk model

We now estimate the parameters of a logistic regression for creditworthiness, using a sample
of 124 firms that gave rise to problematic credit and a sample of 200 healthy firms (so that
n = 324). The models proposed is the following

π
(
β|y, x

)
∝

n∏
i=1

θyi

i (1− θi)1−yi p
(
β
)

; (12)
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Table 11: Logit Model, β1 f(β1) = β1, N = 300.

f f̃

µ̂f 2.0089 1.9758
σ̂2
f 0.1839 0.0122 (93% reduction)

Yi ∼ Be(θi) θi =
exp

(
xTi β

)
1 + exp

(
xTi β

) , i = 1, · · · , n;

where xi is a vector of four balance sheet indicators, including the intercept. We use a non
informative improper prior distribution on β = (β1, β2, β3, β4, β5). This real data set has
already been analyzed in Mira and Tenconi (2004), where a random effects model in the
intercept was assumed.
We run an initial Markov Chain using a canonical Metropolis Hastings of length 300 (after
a burn in of 700) and over this initial sample we estimate the optimal parameters of the φ
function for each j dimension and for fj(β1, β2, β3, β4, β5) = βj, j = 1, . . . , 5.

φj (β) =
(
γj1β1 + γj2β2 + γj3β3 + γj4β4 + γj5β5

)√
π
(
β|y, x

)
j = 1...5.

The optimization gave these estimates:

j γ̂j1 γ̂j2 γ̂j3 γ̂j4 γ̂j5
1 -0.09457704 -0.01333198 -0.05751499 -0.04640937 0.01208364
2 -0.01507528 -0.15816491 0.05934955 0.01612018 0.05508849
3 -0.05629736 0.06052546 -0.19269449 0.01473065 -0.03554821
4 -0.046095866 0.019266392 0.014117965 -0.101136218 0.003513808
5 0.0105972810 0.0597459884 -0.0345264631 0.0001133164 -0.0624642257

while the mean and variance for each parameter are reported in Table 12,
where fj(β1, β2, β3, β4, β5) = βj, j = 1, . . . , 5.
After performing a longer MCMC simulation of length 6000 (with a burn in of 1000 points),
we obtain the results reported in Table 13:

While after 600000 MCMC iterations (with a burn in of 100000) we achieve the results
reported in Table 14.

So with 5000 iterations only, the zero-variance estimators is close to the 500 000 MCMC
results. This means that, to have results similar to the variance reduction technique, we
must run a 100 times wider sample.
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Table 12: Credit Risk Model, initial sample estimation

j µ̂fj
µ̂f̃j

σ̂2
fj

σ̂2
f̃j

% variance reduction

1 -1.4761 -1.4339 0.0507 0.0015 97.04
2 -1.0337 -1.0138 0.0664 0.0018 97.28
3 -0.2858 -0.2830 0.0825 0.0043 94.78
4 -0.9687 -0.9746 0.0630 0.0007 98.88
5 0.8279 0.7756 0.0317 0.0012 96.21

Table 13: Credit Risk Model, N=6000 points

j µ̂fj
µ̂f̃j

σ̂2
fj

σ̂2
f̃j

% variance reduction

1 -1.4045 -1.4431 0.0435 0.0032 92.64
2 -0.9831 -1.0122 0.0795 0.0028 96.47
3 -0.2810 -0.3078 0.1081 0.0097 91.02
4 -0.9466 -0.9716 0.0523 0.0007 98.66
5 0.7737 0.7762 0.0323 0.0019 94.11

Table 14: Credit Risk Model, N=600000 points

j µ̂fj
σ̂2
fj

1 -1.4354 0.0450
2 -1,0138 0.0820
3 -0.2941 0.0950
4 -0.9709 0.0510
5 0.7778 0.0310
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7 Some tricks to speed up the simulation

When the operator defined in (8) is used, the function f̃ takes the form

f̃(x) = f(x) +
(Hφ)(x)√

π(x)
.

Hφ(x) has to be computed on each point in the sample path, therefore when unavailable
analytically, we must compute numerically the second order derivative that appears in the
H operator. This is a time-consuming operation, however, by using some tricks we are able
to speed up the necessary computations.

We have suggested to use functions having the form φ(x) = P (x)
√
π(x) where P (x) is

a polynomial. As the following theorem shows, this choice reduces the calculation of Hφ(x)
to a first order derivative.

Theorem 1. Assume
φ(x) = P (x)

√
π(x)

where P (x) is a polynomial. Then

(Hφ)(x) = −1

2

d∑
i=1

[√
π(x)

∂2

∂x2
i

P (x) + 2

(
∂

∂xi
P (x)

)(
∂

∂xi

√
π(x)

)]
. (13)

Before giving a proof of the proposition, some comments are required. Indeed, in (13)
a second order derivative still appears but it is applied to a polynomial function and can
thus be computed analytically. This theorem therefore reduces the computation to the first
order derivative of the square root of the target. Also recall that the target has been already
evaluated over all possible values x during the MCMC simulation: these values can thus be
stored and re-used in the evaluation of f̃ .

Proof. We must take the derivative of φ(x) twice with respect to a generic coordinate i:

∂2

∂x2
i

φ(x) = P (x)
∂2

∂x2
i

√
π(x) +

√
π(x)

∂2

∂x2
i

P (x) + 2

(
∂

∂xi
P (x)

)(
∂

∂xi

√
π(x)

)
.
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Then

(Hφ)(x) =

(
−1

2

d∑
i=1

∂2

∂x2
i

φ(x)

)
+ φ(x)V (x)

= −1

2

d∑
i=1

[
P (x)

∂2

∂x2
i

√
π(x) +

√
π(x)

∂2

∂x2
i

P (x) + 2

(
∂

∂xi
P (x)

)(
∂

∂xi

√
π(x)

)]

+
1

2

d∑
i=1

P (x)
∂2

∂x2
i

√
π(x)

= −1

2

d∑
i=1

[√
π(x)

∂2

∂x2
i

P (x) + 2

(
∂

∂xi
P (x)

)(
∂

∂xi

√
π(x)

)]

Corollary 2. Suppose that φ(x) = P (x)
√
π(x) and P (x) = P (x1, . . . , xd) is a first degree

polynomial in Rd, i.e.

P (x) =
d∑
i=1

aixi ai ∈ R.

Then

(Hφ)(x) = −
d∑
i=1

[
ai

(
∂

∂xi

√
π(x)

)]
Proof. It follows from Theorem 1 by noting that

∂

∂xi
P (x) = ai

∂2

∂x2
i

P (x) = 0

Remark 3. With the previous theorem f̃ becomes

f̃(x) = f(x)− 1√
π(x)

d∑
i=1

[
ai

(
∂

∂xi

√
π(x)

)]
.

A “logarithmic” version of the previous formula is also available:

f̃(x) = f(x)− 1

2

d∑
i=1

[
ai

(
∂

∂xi
lnπ(x)

)]
.
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Corollary 4. In the Credit Risk model of section 6

(Hφj)(β) = −
5∑
i=1

[
γi

(
∂

∂βi

√
π
(
β|y, x

))]
Proof. It follows from Theorem 2.

We conclude this section with an intuition useful to avoid the numerical optimization,
necessary to find a φ close to the optimal one. In the Credit Risk Model we noticed a great
similarity of the matrix Γ = {γji }i,j=1,...,5 to the matrix −2Σ, where Σ is the estimated (from
the MCMC output) covariance matrix of the target distribution.

This intuition is confirmed by the theoretical φ we obtained for the normal case when
f(x) = xi, described in section 4.1 and 4.3, as the coefficients of the polynomial are the
elements of the i-th row of the target covariance matrix multiplied by −2. In the next
subsection we will use the above mentioned tricks to reduce the variance in a complex credit
risk model that builds on the simplified one introduced in Section 6.

7.1 An extended credit risk model

It is commonly accepted that the amount of credit risk is different among sectors. In Mira
and Tenconi (2004) a hierarchical logistic regression model was proposed with the purpose
to capture the sector specific baseline risks and to obtain a best fit of data. This model is
reproposed here to investigate the zero variance principle on a highly parametrized model.
The data contains 7513 firms allocated among j = 7 sectors, firm specific balance sheet
indicators, xij, and default events, yij . The model presents a hierarchical structure in the
intercepts αj, allowing for greater variation among sectors, overcoming at the same time
overfitting issues:

π
(
α, β, µa, σ

2
α|y, x

)
∝

7∏
j=1

nj∏
i=1

θ
yij

ij (1− θij)1−yij

7∏
j=1

p
(
αj|µα, σ2

α

)
p (µα) p

(
σ2
α

)
p
(
β
)

θij =
exp

(
αj + xTijβ

)
1 + exp

(
αj + xTijβ

)
with

β ∼MN
(
0, σ2I4 = 64

)
αj|µα, σ2

α ∼ N
(
µα, σ

2
α

)
µα ∼ N

(
0, σ2 = 64

)
σ2
α ∼ Ga(α =

9

5
, r =

25

9
).

18



We focus on the functionals fk
(
η
)

= ηk where η is the vector of all parameters, i.e η =
(α, β, µα, σα). The φ functions are choosen as in Section 6 and the following steps are taken:

1. a Markov chain of lenght 50000 is run, discarding the first 10000 steps as burn-in, to
obtain a sample from π

(
η|y, x

)
;

2. the target variance-covariance matrix of η, Σπ, is estimated along the chain simulated

at step 1. This estimate, Σ̂, it used to parametrize the φ functions to compute f̃ with
the “fast version” of our algorithm, i.e.

f̃k
(
η
)

= fk
(
η
)
− 2Σ̂× O ln

(
π
(
η|y, x

))
;

3. We evaluate f̃k
(
η
)

on a second MCMC sample of length 3000.

The results, in terms of variance reduction, for all parameters of interest, are presented in
Table 15 which shows an average variance reduction of 78,95%. If we exclude the hyper
parameters, η12 and η13, which are of little interest for credit risk estimation, the variance
reduction goes up to 85,49%.

Table 15: Variance reduction for complex credit risk model

k ηk µ̂fk
µ̂f̃k

σ̂2
fk

σ̂2
f̃k

% variance reduction

1 η1 = α1 -6.5122 -6.4548 1.8261 0.7731 57.67
2 η2 = α2 -5.3699 -6.5122 0.1546 0.0166 89.24
3 η3 = α3 -5.1055 -5.1296 0.0884 0.0113 87.21
4 η4 = α4 -4.8881 -4.9179 0.0876 0.0086 90.16
5 η5 = α5 -5.2247 -5.2446 0.0869 0.0112 87.14
6 η6 = α6 -3.9072 -3.9560 0.1057 0.0170 83.91
7 η7 = α7 -6.3274 -6.3539 0.1097 0.0131 88.06
8 η8 = β1 -0.0942 -0.0901 0.0032 0.0005 83.83
9 η9 = β2 -1.2452 -1.2649 0.0999 0.0078 92.23
10 η10 = β3 -1.4105 -1.4295 0.0415 0.0049 88.26
11 η11 = β4 0.0870 0.0868 0.0027 0.0002 92.73
12 η12 = µα -5.2806 -5.3548 0.3840 0.1114 70.98
13 η13 = σα 1.3738 1.4248 0.1883 0.1601 15.00
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8 Rao-Blackwellization

Rao-Blackwellization (Casella and Robert, 1996) can be seen as a special case of the variance
reduction technique proposed in this paper. The Rao-Blackwellization idea is to replace
f(xi) in µ̂ by a conditional expectation, Eπ[f(xi)|h(xi)], for some function h or to condition
on the previous value of the chain thus using E[f(xi)|xi−1 = x] instead. Changing an
expectation with a conditional expectation naturally reduces the variance of the resulting
MCMC estimator. The functions Eπ[f(xi)|h(xi)] and E[f(xi)|xi−1 = x] can be considered
as special instances of f̃ which do not minimize σf̃ but certainly reduce it. This suggests

general guidelines that can be adopted to construct φ based on which we obtain f̃ . In real
applications, typically Eπ[f(xi)|h(xi)] or E[f(xi)|xi−1 = x] are not available in closed form,
still, the researcher may have some intuition on the parametric form of such functions (or
estimate them via pilot runs of the Markov chain). This intuition might aid the design of φ.

9 Conclusions

We have presented the advantages, in a statistical setting, of a general purpose variance
reduction technique which has been originally suggested in the physics literature (Assaraf
and Caffarel, 1999). Not only the zero variance physics principle has been adapted to the
statistical framework but it has also been extended from Monte Carlo to Markov chain
Monte Carlo simulation. The extent by which the variance of Monte Carlo and MCMC
estimators can be reduced, is illustrated via some toy examples and a complex credit risk
Bayesian model, fitted to a real dataset. The overall performance of the proposed technique is
quite astonishing: in simple cases zero variance is indeed achieved, while in more complicated
models, when the exact solution to the fundamental equation cannot be obtained analytically,
a variance reduction between 80% and 95% is obtained. Moreover, useful tricks are proposed
to dramatically speed up the application of the method to statistical modelling. Connections
with the Rao-Blackwellization principle known in the MCMC literature are explored and
exploited to better apply the zero-variance technique in a Bayesian setting.
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