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Well-posedness in vector optimization and scalarization

results

Melania Papalia ∗ Matteo Rocca †

Abstract

In this paper, we give a survey on well-posedness notions of Tykhonov’s type
for vector optimization problems and the links between them with respect to
the classification proposed by Miglierina, Molho and Rocca in [33]. We consider
also the notions of extended well-posedness introduced by X.X. Huang ([19],[20])
in the nonparametric case to complete the hierchical structure characterizing
these concepts.
Finally we propose a review of some theoretical results in vector optimization
mainly related to different notions of scalarizing functions, linear and nonlinear,
introduced in the last decades, to simplify the study of various well-posedness
properties.

1 Introduction

In scalar optimization the theory of well-posedness is described through two funda-
mental approaches. The first one, based on existence and uniqueness of the optimal
solution together with continuous dependence from problem’s data, extends to opti-
mization problems the classical idea of well-posedness for problems in mathematical
physics, due to the French mathematician J. Hadamard [16].
The second one, introduced by A.N. Tykhonov [35] in the early sixties, imposes, be-
sides existence and uniqueness of the global minimun point, a stability requirement
tested by the convergence of every minimizing sequence.
Hence, well-posedness properties are deeply linked to the behaviour of the objective
function with respect to a particular notion of minimizing sequence. Moreover, ev-
ery method building up sequences converging to some minimizer of the optimization
problem corresponds to approximately computing of the solution. For these reasons
well-posedness properties play an important role both from a theoretical point of
view and as useful tool in the convergence analysis of some algorithms.

These concepts have been widely studied in order to establish links between them
and to formulate some scalar extensions considering, for example, the relaxation of
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the uniqueness requirement (see e.g. the monographs [11],[29] for a review on this
topic).
In 1996 T. Zolezzi [37] introduced a notion of extended well-posedness, which is a
combination of Hadamard and Tykhonov ideas. The original problem is embedded
in a family of perturbed ones depending on a parameter and it is called well-posed in
the extended sense if every asymptotically minimizing sequence converges to some
solution. In this way the notion considers the behaviour of appropriate minimizing
sequences and, at the same time, realizes a continuous dependence of the solutions
on the parameter.

In vector optimization the image space is generally characterized by a partial
order endowed by a closed, convex, pointed cone and this caused some difficulties to
the generalization of well-posedness concepts. The concept of minimal value is not
uniquely determined, so one can distinguish between different degrees of minimality
([36]) as for example minimal value and weakly minimal value and, as a consequence,
the uniqueness requirement is too restrictive for vector functions; moreover, it is pos-
sible to choose several concepts of minimizing sequence ([26], [28]). So, while in the
scalar case the stability concerns only the behaviour of minimizing sequences as link,
through the objective function, between domain and image set, in vector optimiza-
tion the choice of a minimizing sequence concept leads to different formulations of
well-posedness that, implicitly, impose some geometrical features of the solutions in
the image space ([32],[33]).

The first attempts to generalize Tykhonov’s idea to vector optimization problems
can be found in [1],[28]. In the following years various concepts of well-posedness
were introduced and, as pointed out in [32] and [33], they can be listed into two main
classes characterizing different levels of analysis: pointwise and global. In the first
case the well-posedness notions are referred to a fixed solution point in the image
set or in the domain of the function, see for instance [4],[26],[10], for the concepts of
Tykhonov’s type and [21] with regards to the properties in the extended sense. In the
second set there are those definitions which involve the efficient frontier as a whole,
for example [4], [7], [13], [19],[20], [32]. Moreover Miglierina, Molho and Rocca in
[33] establish a hierchical structure in both classes. As further generalization, in
order to increase the number of problems satisfing a well-posedness property, in the
last years global notions based on the weakly efficient frontier appeared (for example
see [6] and [9]).
As recent contribution on this topic, in [34] the authors underline that extended
well-posedness notions are part of those global on the ground of the classification
proposed by Miglierina, Molho and Rocca when the parameter is fixed, hence they
investigate the links between global notions that involve the weakly efficient solutions
set.

To simplify the study of the well-posedness in the vector case, Miglierina, Molho
and Rocca ([33]) proposed a new method based on a scalarization procedure with a
nonlinear function. They establish the relationships between the well-posedness of
a vector optimization problem and the well-posedness of an appropriate scalarized
one. In this way they also construct a stronger link between the original ideas and
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their generalizations. Some links between well-posedness of vector problems and
of linearly scalarized ones have been investigated by Deng in [9], under convexity
assumptions.

In this survey, after a review of well-posedness properties where we take a particu-
lar care with regards to the global notions of Tykhonov’s type, we focus our attention
on linear and nonlinear scalarizing procedures that preserve well-posedness of the
different classes of notions listed above. The outline of the work is the following.
Section 2 is devoted to the problem formulation and the notation we refer through
the paper. In Section 3, following the hierchical structure of well-posedness notions
proposed by Miglierina, Molho and Rocca ([33]), we derive some examples to stress
the main differences between the generalizations and finally we show that for strictly
quasiconvex functions all the well-posedness notions coincide. Finally, in Section 4
we focus our attention on scalarization results, both nonlinear and linear.

2 Problem setting and notation

Consider a continuous vector function f : X ⊆ Rm → Rl, let X ⊆ Rm be a closed
set of admissible points, Y = f(X) ⊆ Rl be the image set and C ⊆ Rl a closed
convex pointed cone, with nonempty interior, inducing an order relation on Rl. So,

y ≤C w ⇐⇒ w − y ∈ C,

y <C w ⇐⇒ w − y ∈ intC.

In the following, B denotes the unit ball both in Rm and in Rl, (from the context
will be clear to which space we refer) and C+ the positive polar cone of C, defined
by

C+ = {v ∈ Rl : 〈v, c〉 ≥ 0, ∀c ∈ C}.

Let (X, f) the vector optimization problem given by

min f(x), x ∈ X.

A point x̄ ∈ X is called efficient solution for problem (X, f) when

(f(X)− f(x̄)) ∩ (−C) = {0}.

We denote by Eff (X, f) the set of all efficient solutions of the problem (X, f) and
by Min (X, f) the set of all minimal points, i.e. the image of Eff (X, f) through the
objective function f .
A point x̄ ∈ X is called weakly efficient solution for problem (X, f) when

(f(X)− f(x̄)) ∩ (−intC) = ∅.

We denote by WEff (X, f) the set of weakly efficient solutions of the problem (X, f)
and by WMin (X, f) the set of all weakly minimal points. We stress that in the
scalar case the notions of minimal point and weakly minimal point coincide.
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We recall also (see e.g. [36]) that a point ȳ ∈ f(X) is called strictly minimal point
for problem (X, f) when for every ε > 0 there exists δ > 0, such that

(f(X)− ȳ) ∩ (δB − C) ⊆ εB.

We denote by StMin (X, f) the set of strictly minimal points for problem (X, f). It
is easy to see that StMin (X, f) ⊆ Min (X, f) but the converse is not true in general.
The next result emphasizes the geometrical features of strictly minimal points.

Proposition 2.1. (see [5]) Let ȳ ∈ f(X). Then ȳ ∈ StMin (X, f) if and only if for
every sequences {zn}, {yn} with {zn} ⊆ f(X), yn ∈ zn + C and yn → ȳ, it holds
zn → ȳ.

3 Well-posedness for vector optimization problems

In this section we review the main notions of Tykhonov’s type, pointwise and global,
considering also extended well-posedness in the nonparametric case. Among various
mathematical tools thanks to which it is possible to introduce the stability conditions
([11]), we choose the minimizing sequences of points.

3.1 Pointwise well-posedness

Under the label pointwise well-posedness, Miglierina, Molho and Rocca ([33]) classify
those notions in which a minimal point or an efficient solution is fixed. In this way
pointwise concepts avoid uniqueness assumption but investigate a local condition of
stability, with reference to a single element.
E. Bednarczuk ([4]) and P. Loridan ([26]) consider a fixed minimal value, while D.
Dentcheva and S. Helbig ([10]) and X.X. Huang ([21]) a fixed efficient solution as
the original Tykhonov’s idea.

Definition 3.1. (see [26]) Let ȳ ∈ Min (X, f). A sequence {xn} ⊆ X is called
ȳ−minimizing sequence for problem (X, f), when there exists a sequence {εn} ⊆
C, εn → 0, such that f(xn) ≤C ȳ + εn.

Definition 3.2. (see [4]) Let ȳ ∈ Min (X, f). Problem (X, f) is said to be B–ȳ
well-posed if and only if every ȳ−minimizing sequence {xn} ⊆ X \ f−1(ȳ) admits a
subsequence {xnk} such that xnk → x̄ ∈ f−1(ȳ).

Definition 3.3. (see [26]) Let ȳ ∈ Min (X, f). Problem (X, f) is said to be L–ȳ well-
posed if and only if every ȳ−minimizing sequence admits a subsequence converging
to an element of f−1(ȳ).

The next definition is formulated considering the diameter of the level sets of the
function f as it is possible in the scalar case to identify Tykhonov well-posedness.
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Definition 3.4. (see [10]) Let x̄ ∈ Eff (X, f). Problem (X, f) is said to be DH–x̄
well-posed if and only if

inf
α>0

diamL(x̄, c, α) = 0, ∀c ∈ C,

where L(x̄, c, α) = {x ∈ X : f(x) ≤C f(x̄) + αc}.

Definition 3.5. (see [21]) Let x̄ ∈ Eff (X, f). Problem (X, f) is said to be H–x̄
well-posed if and only if ∀{xn} ⊆ X such that f(xn)→ f(x̄), xn → x̄.

The pointwise notions introduced by X.X. Huang ([21]) considering a perturba-
tion of the objective function coincide, in the nonparametric case, with the above
definition.
We know that DH–x̄ well-posedness implies H–x̄ well-posedness but the converse
is not true as shown in Example 2.1 in [21]. The same example shows that H–x̄
well-posedness implies neither L–ȳ well-posedness nor B–ȳ well-posedness.

Proposition 3.1. Let x̄ ∈ Eff (X, f)(X, f) and assume that ∀ε > 0, ∃δ > 0 s.t.

(f(X)− f(x̄)) ∩ (δB − C) ⊆ εB. (1)

Then (X, f) is H–x̄ well-posed if and only if it is DH–x̄ well posed.

Proof: We must show only one direction, i.e. H–x̄ ⇒ DH–x̄.
By contradiction (X, f) is not DH–x̄ well-posed. Since the problem is H–x̄ wel-posed,
there exist a sequence {xn} ⊆ X and n̄ ∈ N such that ∀n > n̄, α > 0, c ∈ C

f(xn) ≤C f(x̄) + αc, but f(xn) 6→ f(x̄),

and
xn ∈ L(x̄, c, α) but xn 6→ x̄.

This means that ∃ε > 0 s.t. f(xn) /∈ f(x̄) + εB, i.e. f(xn) − f(x̄) /∈ εB, and thus
6 ∃δ(ε), δ > 0 s.t. (f(X)− f(x̄))∩ (δB−C) ⊆ εB contradicting the assumption. �

Miglierina, Molho and Rocca in [33] complete the relationships between pointwise
notions with theoretical results and examples showing the main geometrical features
of each definition and summarize their work on this topic as in the following scheme
where, for simplicity, we omit the term well-posedness.

H–x̄
(1) ⇓ ⇑

DH–x̄
⇓ ⇑ f−1(ȳ) = x̄

L–ȳ
⇓ ⇑ f−1(ȳ) compact

B–ȳ
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3.2 Global well-posedness

In this subsection we review the main notions of global well-posedness, i.e. the
notions where the stability condition is investigated with reference to the whole
set of solutions. To get a tidy and complete comparison between the properties of
this class, we divide them in two groups: first we consider global well-posedness and
efficient solutions, then global well-posedness and weakly efficient solutions where we
present before the notions introduced by X.X. Huang rewritten in the nonparametric
case and then the other concepts. In each subsection we compare the notions between
them, we underline, when it is possible, the relationships with the previous concepts
and finally we stress the geometrical features characterizing the image set through an
example that permit us to achieve another well-posedness property which enlarge, in
some way, the class of well-posed problems. Then we compare the notions belonging
to the different groups in order to draw a final outline that will be our start point
to study well-posedness under generalized convexity assumptions.

3.2.1 Global well-posedness and efficient solutions

The passage from pointwise to global notions is traced by E. Bednarczuk ([4]),
considering the concept of B–minimizing sequence and the generalization of the
stability condition.

Definition 3.6. A sequence {xn} ⊆ X is called B–minimizing for problem (X, f),
when for each n ∈ N there exists εn ∈ C and yn ∈ Min (X, f) such that f(xn) ≤C
yn + εn, εn → 0.

Definition 3.7. (see [4]) Problem (X, f) is said to be B–well-posed if and only if

i) Min (X, f) 6= ∅;

ii) every B–minimizing sequence {xn} ⊆ X \Eff (X, f) admits a subsequence con-
verging to some element of Eff (X, f).

Proposition 3.2. (see [4]) Let Min (X, f) a compact set. If problem (X, f) is B–ȳ
well-posed for every ȳ ∈ Min (X, f), then (X, f) is B–well-posed.

Example 3.1. Let f : X ⊆ R2 → R2, f(x1, x2) = (x1, x1) with X = C = R2
+.

The only minimal value is (0, 0), while Eff (X, f) = {(0, x2) : x2 ≥ 0}. The problem
(X, f) is not B–well-posed as for example the B–minimizing sequence xn =

(
1
n , n

)
doesn’t admit any subsequence converging to some efficient solution.

To enlarge the class of well-posed problem, E. Bednarczuk proposed a new defi-
nition in which the stability condition is based on the distance, in the norm sense,
from the efficient solution set instead of the convergence of appropriate minimizing
subsequences.

Definition 3.8. (see [4]) Problem (X, f) is said to be Bw–well-posed if and only if
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i) Min (X, f) 6= ∅;

ii) for every B–minimizing sequence {xn} ⊆ X, d(xn,Eff (X, f))→ 0.

It is clear that B–well-posedness implies Bw–well-posedness, while the converse
is in general not true. The equivalence can be stated under the compactness of the
efficient set.

Proposition 3.3. Let Eff (X, f) be a nonempty compact set. If (X, f) is Bw–well-
posed then it is also B–well-posed.

Proof. We distinguish two cases:

1. Eff (X, f) = X means that there aren’t B–minimizing sequences out of the
efficient set and hence (X, f) is B–well-posed;

2. Eff (X, f) ⊂ X. By compactness assumption one has d(xn,Eff (X, f)) → 0 if
and only if ∃xnk → x̄ ∈ Eff (X, f) for every B–minimizing sequence.

The notion of Bw–well-posedness fails when the image set and the ordering cone
have some asymptote in common as the following example shows.

Example 3.2. Let f : X ⊆ R2 → R2, f(x1, x2) = (x1, x2) with X = {(x1, x2) ∈
R2 : x2 ≥ 0 or x2 ≥ −x1} and C = R2

+. The problem (X, f) is not Bw–well-posed
as for example the B–minimizing sequence xn = (−n, 0) doesn’t satisfy the stability
condition.

To avoid this difficulty, Miglierina and Molho proposed to relax the requirement
of convergence of the minimizing sequences also in the feasible region.

Definition 3.9. (see [32]) Problem (X, f) is said to be M–well-posed when for every
{xn} ⊆ X such that d(f(xn),Min (X, f))→ 0, one has d(xn,Eff (X, f))→ 0.

Miglierina and Molho in [32] proved that Bw–well-posedness implies M–well-
posedness while the converse is not true in general as it is showed in Example 3.2.
The converse is proved under an additional hyphotesis implying that all minimal
points are also strict minimal points [33]. For the reader convenience, we recall this
result.

Theorem 3.1. If (X, f) is M–well-posed and for every ε > 0 there exists δ > 0 such
that

(f(X)−Min (X, f)) ∩ (δB − C) ⊆ εB, (2)

then it is also Bw–well-posed.
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Note that Definition 3.9 is always satisfied when the efficient solution set is empty
and in this particular case there is no attention to the structure of the optimization
problem with reference to a weak concept of minimal points identified by the given
ordering cone. In the next subsections we focus on global definitions seeking a weaker
concept of efficient solution.
Till now, we can trace the following scheme:

B
⇓ ⇑ Eff (X, f) compact

Bw
⇓ ⇑ (2)

M

3.2.2 Global well-posedness and weakly efficient solutions

We introduce three notions due to X.X. Huang in [19] as generalization of the previ-
ous concepts and keeping attention to the original idea published by Zolezzi ([37]).

Definition 3.10. A sequence {xn} ⊆ X is called Hs–minimizing for problem (X, f),
if there exists c ∈ intC, tn > 0, tn → 0 such that f(X)− f(xn) + tnc 6∈ −C.

Definition 3.11. Problem (X, f) is said to be Hs–well-posed if and only if

i) WEff (X, f) 6= ∅;

ii) every Hs–minimizing sequence {xn} ⊆ X admits a subsequence converging to
some element of WEff (X, f).

Example 3.3. Let f : X ⊆ R2 → R2, f(x1, x2) = (x1, x2) with X = {(x1, x2) ∈ R2 :
x2 ≥ x1e

−x1 , x1 ≥ 0} and C = R2
+. The problem (X, f) is not Hs–well-posed as for

example the Hs–minimizing sequence xn = (n, ne−n) doesn’t admit any subsequence
converging to some weakly efficient solution.

The following notion of well-posedness is a generalization of B–well-posedness
and it has the detail to consider the set of minimal points in the formulation of
minimizing sequence while the stability condition is referred to the weakly efficient
solutions set.

Definition 3.12. A sequence {xn} ⊆ X is called H–minimizing for problem (X, f)
if there exist c ∈ intC, αn > 0, αn → 0, and yn ∈ Min (X, f) such that f(xn) ≤C
yn + αnc.

Definition 3.13. Problem (X, f) is said to be H–well-posed if and only if

i) WEff (X, f) 6= ∅;

ii) every H–minimizing sequence {xn} ⊆ X admits a subsequence converging to
some element of WEff (X, f).
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X.X. Huang in [19] pointed out that Hs ⇒ H, but the converse is not true in
general. In fact, the problem in Example 3.3 is H–well-posed but not Hs–well-posed.
The geometrical feature of the image set of a problem that doesn’t satisfy Defini-
tion 3.13 is the same we have already met considering Bw–well-posedness, i.e. the
presence of some asymptote in common with the ordering cone.

Example 3.4. Let f : X ⊆ R2 → R2, f(x1, x2) = (x1, x2) with X = {(x1, x2) ∈ R2 :
x2 ≥ −x1e

x1 , x1 ≤ 0} and C = R2
+. The problem (X, f) is not H–well-posed as for

example the H–minimizing sequence xn = (−n, nen) doesn’t admit any subsequence
converging to some weakly efficient solution.

To extend the class of well-posedness problems, Huang used the same trick of
distance instead of convergence of every minimizing sequence in the image set.

Definition 3.14. Problem (X, f) is said to be Hw–well-posed when for every {xn} ⊆
X such that d(f(xn),WMin (X, f))→ 0, there exists a subsequence converging to a
weakly efficient solution.

As in the parametric case, the following implications hold:

Hs ⇒ H ⇒ Hw.

Problem in Example 3.4 is Hw–well-posedness, while the problem in Example 3.2
is neither H–well-posed nor Hw–well-posedness, as for example the H-minimizing
sequence xn = (−n, 0) doesn’t admit any subsequence converging to some weakly
efficient solution.
As pointed out by Huang ([19]), any one of Definitions 3.11, 3.13, 3.14 implies that
WEff (X, f) is compact; so to establish the equivalence of these three notions with
a property in which there isn’t a requirement of convergence in the domain, it is
necessary to assume WEff (X, f) compact. A comparison with the notions based
on the efficient solutions, under the assumption Eff (X, f) = WEff (X, f), gives the
following outline

Hs
⇓

Bw = H
⇓ ⇓
M = Hw

(a)

where (a) = WEff (X, f) compact.
A proof of the equality between Bw–well-posedness and H–well-posedness can be
found in [34], while the link between M–well-posedness and Hw–well-posedness fol-
lows directly from definitions.
We note that Hw–well-posedness implies H–well-posedness under the same assump-
tions for which M–well-posedness implies Bw–well-posedness.
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Remark 3.1. Huang and Yang ([23]) introduced six different types of generalized
well-posedness in the extended sense inspired by the scalar notion due to Levitin-
Polyak ([25]) and the scalar generalization in [22] where the constraint is specified
by a function. It is worth noting that in our framework, i.e. the stability condition
is investigated with reference to an appropriate notion of minimizing sequence when
it belongs to the feasible region, the several notions presented in [23] coincide with
Hw, H and Hs–well-posedness.

In [6] the authors introduced a new notion of well-posedness of a vector optimiza-
tion problem and established a link with the same property of a vector variational
inequality of differential type, under generalized convexity assumption.

Definition 3.15. A sequence {xn} ⊆ X is called CGR–minimizing for problem
(X, f), when there exist c0 ∈ intC, εn ≥ 0, εn → 0 such that f(x)−f(xn)+εnc

0 /∈
−intC, ∀x ∈ X.

Definition 3.16. Problem (X, f) is said to be CGR–well-posed if and only if

i) WEff (X, f) 6= ∅;

ii) for every CGR–minimizing sequence d(xn,WEff (X, f))→ 0 as n→ +∞.

The problem in Example 3.4 is not CGR–well-posed.

Remark 3.2. The vector well-posedness in the extended sense introduced in [7]
coincides with CGR–well-posedness in the nonparametric case.

In [9] the author showed that coercivity implies well-posedness without any con-
vexity assumptions on problem data.

Definition 3.17. (see [9]) A sequence {xn} ⊆ X is called D–minimizing for problem
(X, f), when d(f(xn),WMin (X, f))→ 0.

Definition 3.18. Problem (X, f) is said to be D–well-posed if and only if

i) WMin (X, f) is closed;

ii) for every D–minimizing sequence d(xn,WEff (X, f))→ 0 as n→ +∞.

We underline that S. Deng introduced the previous definition in a particular
case, namely that the ordering convex pointed cone is always the paretian one, i.e.
C = Rl

+. In this work we consider the general case in which the cone satisfies the
requirements as specified in Section 2.

Theorem 3.2. Let WMin (X, f) be closed. If Problem (X, f) is CGR–well-posed,
then it is D–well-posed.

Proof: To prove the statement is equivalent to show that

{xn ∈ X : d(f(xn),WMin (X, f))→ 0} ⊆ {xn ∈ X : f(X)−f(xn)+εnc
0 /∈ −intC}.

By definition of minimal point, f(x)− f(x̄) /∈ −intC, ∀x ∈ X.
If d(xn,WEff (X, f)) → 0, one can find a sequence εn ≥ 0, εn → 0 and a vector
c0 ∈ intC such that definition 3.15 is satisfied. �
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The assumption WMin (X, f) closed in Theorem 3.2 cannot be avoided.

Example 3.5. Let f : X ⊆ R2 → R2, f(x1, x2) = (x2
1, e

x2), X = R2, C = R2
+.

The problem (X, f) is CGR–well-posed but not D, since WMin (X, f) is not closed.

The converse of Theorem 3.2 is not true in general, for instance problem in
Example 3.4 is not CGR–well-posed but it is D–well-posed.

Theorem 3.3. If problem (X, f) is D–well-posed and for every ε > 0 there exists
δ > 0 such that

(f(X)−WMin (X, f)) ∩ (δB − C) ⊆ εB, (3)

then it is also CGR–well-posed.

Proof: Suppose, to the contrary, that problem (X, f) is not CGR–well-posed, i.e.
∃{xn} ⊆ X that satisfies the following two properties:

1. {xn} is CGR–minimizing, i.e. ∃εn > 0, εn → 0, c0 ∈ intC such that f(X)−
f(xn) + εnc

0 /∈ −intC;

2. ∃α > 0 such that xn ∈ [WEff (X, f) + αB]c for all n large enough.

Either of the two following cases occur:

i) xn is such that d(f(xn),WMin (X, f)) → 0. In this case xn is also a D-
minimizing sequence and hence by the assumption problem (X, f) is D–well-
posed, it follows it is also CGR–well-posed as we ontradict the previous point
2.

ii) ∃δ > 0 and n0 ∈ N such that

f(xn) ∈ [WMin (X, f) + δB]c , ∀n > n0. (4)

Since {xn} is CGR–minimizing

f(X)− f(xn) + εc0 /∈ −intC

f(xn)− f(X)− εc0 /∈ intC

f(xn) ∈
[
f(X) + εc0 + intC

]c
.

So, ∀ȳ ∈WMin (X, f) one has ȳ + εc0 ∈ ȳ + δB, ∀n > n1 and hence

f(xn) ∈ [ȳ + δB + intC]c

and also
f(xn) ∈ f(X) ∩ [ȳ + δB + intC]c .

Recalling (4), we have a contradiction to the assumption (f(X)−WMin (X, f))
∩(δB − C) ⊆ εB.

�

11



Now, we compare CGR–well-posedness and D–well-posedness with the previous
notions, in particular with reference to the work of Huang we have the following
result.

Theorem 3.4. (see [34]) Let WEff (X, f) a compact set. Problem (X, f) is CGR–
well-posed if and only if it is Hs–well-posed.

The compactness assumption is fundamental only to show that CGR–well-po-
sedness implies Hs–well-posedness.

Example 3.6. Let f : X ⊆ R2 → R2, X = {(x1, x2) ∈ R2 : x2 ≥ 0 or x2 ≥
−x1}, C = R2

+. The problem (X, f) is CGR–well-posed, but not Hs, as, for exam-
ple, the Hs–minimizing sequence xn =

(
n,−n+ 1

n

)
doesn’t admit any subsequence

converging to a weak efficient solution.

The final outline, completed with all global definitions, is based on the following
assumptions

(-) Eff (X, f) = WEff (X, f)

(+) Eff (X, f) compact

(*) WEff (X, f) compact

(**) WMin (X, f) closed

(***) WEff (X, f) compact and WMin (X, f) closed.

(*)
B Hs = CGR

(+) ⇑ ⇓ (-) ⇓
Bw = H (**)⇓ (3) ⇑

(2) ⇑ ⇓ ⇓
M = Hw = D

(*,-) (***)

3.3 Generalized convex functions

In the previous subsection we point out that any new notion of well-posedness en-
larges, in some way, the class of problems characterized by that property, but an
interesting investigation about well-posedness properties consists to identify which
classes of fuctions satisfy, for sure, a given concept. It is known that, under appropri-
ate generalized convexity assumptions, some well-posedness properties are satified
(see for instance [6], [31], [32], [33]).
We recall some basic concepts of generalized convex functions.

Definition 3.19. (see [27]) A function f : X ⊆ Rm → Rl, X convex, is said to be:

12



i) C−convex if

f(tx+ (1− t)z)− tf(x)− (1− t)f(z) ∈ −C

for every x, z ∈ Rm and t ∈ [0, 1];

ii) C−quasiconvex if for every y ∈ Rl the level sets

Lev (f, y,X) := {x ∈ Rm : f(x) ∈ y − C}

are either empty or convex;

iii) strictly C−quasiconvex when for every y ∈ Rl and x, z ∈ X, x 6= z,

f(x), f(z) ∈ y − C

implies f(tx+ (1− t)z) ∈ y − intC for every t ∈ (0, 1).

The next proposition gives some characterizations of the strictly C−quasiconvex
functions.

Proposition 3.4. (see [7],[27]) Let f : X ⊆ Rm → Rl be continuous and strictly
C−quasiconvex. Then

i) WEff (X, f) = Eff (X, f);

ii) for every y ∈ Min (X, f), f−1(y) is a singleton.

Theorem 3.5. Assume WEff (X, f) be nonempty and bounded. If f : X ⊆ Rm →
Rl be continuous and strictly C−quasiconvex then all global well-posedness notions
coincide.

Proof: The proof follows from Proposition 3.4 and from the CGR–well-posedness of
C−quasiconvex functions, under compactness of WEff (X, f). �

Remark 3.3. One can easy check that in Theorem 3.5 the strictly C−quasiconvexity
cannot be replaced, without further assumptions, with the requirement that f is
C−convex as shows problem (X, f) in Example 3.3.

4 Well-posedness of scalarized problems

In this section we deal with the relationships between the well-posedness of a vector
optimization problem and the well-posedness of associated scalar ones. For this
subject we need to recall some scalar notions of well-posedness ([11],[26]).
Consider the scalar minimization problem (X,h) given by

minh(x), x ∈ X

where h : X → R, the feasible region X is a closed subset of Rm and denote by
arg min(X,h) the solution set of problem (X,h).

13



Definition 4.1. A sequence {xn} ⊆ X is called minimizing for problem (X,h),
when h(xn)→ infX h.

Definition 4.2. (see [35]) Problem (X,h) is said to be Tykhonov well-posed if and
only if

i) arg min(X,h) = {x̄};

ii) every minimizing sequence converges to x̄.

Towards vector optimization, the scalar generalizations of this notion relaxed the
requirement of uniqueness of the solution. In this direction, we meet the notion of
generalized Tykhonov well-posedness introduced by M. Furi and A. Vignoli in 1970
([15]).

Definition 4.3. Problem (X,h) is said to be generalized Tykhonov well-posed if and
only if

i) arg min(X,h) is a nonempty compact set;

ii) every minimizing sequence admits a subsequence converging to some element
of arg min(X,h).

As further generalization, E. Bednarczuck and J.P. Penot in 1992 remove any
assumption on the efficient set and formulate two stability concepts, respectively
topologically well-setness ([2]) and metrically well-setness ([3]).

Definition 4.4. Problem (X,h) is said to be topologically well-set when

i) arg min(X,h) 6= ∅;

ii) every minimizing sequence contained in X \ arg min(X,h) has a cluster point
in arg min(X,h).

Definition 4.5. Problem (X,h) is said to be metrically well-set when

i) arg min(X,h) 6= ∅;

ii) for every minimizing sequence {xn} ⊆ X, d(xn, arg min(X,h))→ 0.

4.1 Nonlinear scalarization and pointwise well-posedness

In [33] the authors use a scalarization procedure based on the so-called oriented
distance function from a point to a set. This function has been introduced by
J.B. Hiriart-Urruty ([17],[18]) to analyse the geometry of nonsmooth optimization
problems, to derive necessary optimality conditions and then it has been applied,
in several papers, to characterize the different types of efficient points as degrees of
minimality in a particular scalarized problem (see for example [30],[36]).
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Definition 4.6. Let A be a subset of a normed vector space Y . The oriented distance
function for A is ∆A(y) : Y → R ∪ ±{∞} defined as

∆A(y) = dA(y)− dY \A(y)

where dA(y) = infx∈A ‖y − x‖ .

The main properties of function ∆A are gathered in the following proposition
([36]).

Proposition 4.1. 1. If A 6= ∅ and A 6= Y then ∆A is real valued;

2. ∆A is 1-Lipschitzian;

3. ∆A < 0, ∀y ∈ intA, ∆A = 0, ∀y ∈ ∂A and ∆A > 0, ∀y ∈ intAc;

4. if A is convex, then ∆A is convex;

5. if A is a cone, then ∆A is positively homogeneous;

6. if A is a closed convex cone, then ∆A is nonincreasing with respect to the
ordering relation induced on Y , if y1, y2 ∈ Y then

y − z ∈ A ⇒ ∆A(y) ≤ ∆A(z)

if A has nonempty interior, then

y − z ∈ intA ⇒ ∆A(y) < ∆A(z).

We use the notation ∂A to denote the frontier of the set A and Ac for the
complementary of set A.
Now, consider the scalar problem (X,∆−C) associated to the vector problem (X, f)
given by

min ∆−C(f(x)− p), x ∈ X

where p ∈ Y = f(X). Using this scalar problem Miglierina, Molho, Rocca ([33])
derive the following results as link with the pointwise well-posedness of the vector
problem (X, f).

Theorem 4.1. Let ȳ ∈ Min (X, f). Problem (X,∆−C) with p = ȳ is topologically
well-set (according to definition 4.4), if and only if problem (X, f) is B-well-posed
at ȳ (definition 3.2).

We observe that no assumption of generalized convexity or monotonicity is re-
quired and that function ∆−C doesn’t imply any boundedness assumption on the
feasible region X.

Corollary 4.1. Let ȳ ∈ Min (X, f). Problem (X,∆−C) with p = ȳ is generalized
Tykhonov well-posed (according to definition 4.3), if and only if problem (X, f) is
L-well-posed at ȳ (definition 3.3).
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Corollary 4.2. Let x̄ ∈ Eff (X, f). Problem (X,∆−C) with p = ȳ is Tykhonov well-
posed (according to definition 4.2), if and only if problem (X, f) is DH-well-posed at
x̄ (definition 3.4).

Remark 4.1. A direct link between nonlinear scalarization and H–x̄ well-posedness
(Definition 3.5) is established in [12].

Thanks to the scalarization with oriented distance function, the results of this
subsection are equivalence, i.e. the pointwise well-posedness of the vector problem
is completely represented in a scalar model.

4.2 Nonlinear scalarization and global well-posedness

In Section 3 we distinguish global well-posedness notions involving the efficient fron-
tier from those considering the weakly efficient solutions. As we have already pointed
out, in scalar case efficient and weakly efficient points coincide, in other words, all
global notions of well-posedness generalizes the weak concept of well-setness. Hence,
to get a scalarized procedure for global notions in which the efficient frontier does
not include also weakly efficient solutions, we need to separate in some way the two
concepts, maybe checking different properties of the scalarizing function. Only after
a scalar characterization of solutions set, one can seek a scalar well-setness condition.

In [34] the authors propose a scalar problem associated to the vector one and
study the CGR-well-posedness. They used the approach based on the oriented
distance function ∆−C , considering the whole image set and not only a fixed minimal
point.
Let (X,h) the scalar problem defined as

minh(x), x ∈ X,

where h(x) = − infz∈X ∆−C(f(z)− f(x)).
The weak solutions of (X, f) can be completely characterized by the solutions of the
scalar problem (X,h).

Theorem 4.2. (see [34]) Let x̄ ∈ X. Then x̄ ∈WEff (X, f) if and only if h(x̄) = 0
(and hence x̄ ∈ Eff (X, f)).

Theorem 4.3. (see [34]) Problem (X,h) is metrically well-set (according to defini-
tion 4.5) if and only if problem (X, f) is CGR-well-posed (definition 3.16).

Because of the summary of the links between the different global notions,

i) Let WMin (X, f) be closed. (X,h) well-set ⇐⇒ (X, f) CGR–well-posed
⇒ (X, f) D–well-posed.

ii) Let WEff (X, f) be compact. (X,h) well-set ⇐⇒ (X, f) CGR–well-posed
⇐⇒ (X, f) Hs–well-posed ⇒ (X, f) H–well-posed ⇒ (X, f) Hs–well-posed.
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4.3 Linear scalarization and pointwise well-posedness

The links between well-posedness of a linearly scalarized problem and well-posedness
of a vector problem, are proved under convexity or generalized convexity assump-
tions.
Consider the scalar problem (X, gλ), associated to the vector problem (X, f), given
by

min gλ(x), x ∈ X,

where gλ(x) = 〈λ, f(x)− p〉 in which λ ∈ C+ ∩ ∂B and p ∈ Y = f(X).

Theorem 4.4. Let ȳ ∈ Min (X, f). If there exists λ̄ ∈ C+ ∩ ∂B such that prob-
lem (X, gλ̄) with p = ȳ is topologically well-set (according to definition 4.4) and
arg min(X, gλ̄) = f−1(ȳ), then (X, f) is B-well-posed in ȳ (definition 3.2).

Proof: Recalling Theorem 4.1, if ab absurdo problem (X, f) is not B-well-posed in
ȳ, then

∃xn ∈ X \ arg min(X,∆−C) such that ∆−C(f(xn)− ȳ)→ 0,

but 6 ∃xnk such that xnk → x̄ ∈ arg min(X,∆−C).

Since ∆−C(f(xn)− ȳ) = max{〈λ, f(xn)− ȳ〉 : λ ∈ C+ ∩ ∂B} (see [33]), it follows

0 ≤
〈
λ̄, f(xn)− ȳ

〉
≤ ∆−C(f(xn)− ȳ)

and recalling the assumptions, arg min(X,∆−C) = arg min(X, gλ̄) = f−1(ȳ). But
this means gλ̄(xn)→ 0, a contradiction with topologically well-setness of (X, gλ). �

The assumption arg min(X, gλ̄) = f−1(ȳ) cannot be avoided as the following
example shows.

Example 4.1. Let f : X ⊆ R2 → R2, f(x, y) = (x, 0) with X = C = R2
+. Let

λ̄ = (0, 1) and gλ̄(x, y) = 0. The set Min (X, f) = {(0, 0)}, all the assumptions
of Therorem 4.4 are satisfied except one: arg min(X, gλ̄) = X 6= f−1(0, 0) =
{(x, y) : x = 0, y ≥ 0}. Problem (X, gλ̄) is topologically well-set, but problem (X, f)
is not B-well-posed, for instance the B-minimizing sequence {xn} =

(
1
n , n

)
does not

converge.

Corollary 4.3. Let ȳ ∈ Min (X, f). If there exists λ̄ ∈ C+ ∩ ∂B such that problem
(X, gλ̄) with p = ȳ is generalized Tykhonov well-posed (according to definition 4.3)
and arg min(X, gλ̄) = f−1(ȳ), then (X, f) is L-well-posed in ȳ (definition 3.3).

Corollary 4.4. Let ȳ ∈ Min (X, f). If there exists λ̄ ∈ C+ ∩ ∂B such that prob-
lem (X, gλ̄) with p = ȳ is Tykhonov well-posed (according to definition 4.2) and
arg min(X, gλ̄) = f−1(ȳ), then (X, f) is DH-well-posed in x̄ (definition 3.4).
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Remark 4.2. The existence of a linear scalarized satisfing a well-posed notion
is a sufficient condition in order that problem (X, f) is pointwise well-posed. If
the ordering cone C satisfies the geometrical requirement C ⊆ Rl

+, the sufficient
condition can be tested by a single scalar problem (X, fi) where fi is a component
of the vector objective function f . In the most interesting case, i.e. the investigation
of DH-well-posedness in x̄, it is possible to prove that if there exists at least one
problem (X, fi) Tykhonov well-posed, then problem (X, f) is DH-well-posed in x̄.

Remark 4.3. The previous results permit us to identify a class of well-posed vector
problems which satisfy a further regularity condition, since there exists a vector
λ̄ such that the scalarized problem (X, gλ̄) is well-posed. We call this property
λ̄−well-posedness.

The link between well-posedness of a linearly scalarized problem and well-posed-
ness of the original one is weaker than the relation involving nonlinear scalarization,
since the results are only in one direction, but we haven’t yet imposed convexity or
generalized convexity requirements. In order to find a class of functions for which
the equivalence is valid we recall the notion of ∗−quasiconvexity, a particular subset
of C−quasiconvex functions ([14], [24]).

Definition 4.7. (see [14], [24]) A function f : X ⊆ Rm → Rl is said to be
∗−quasiconvex if and only if ∀λ ∈ C+ function 〈λ, f(·)〉 : X → R is quasiconvex.

The next result identifies the class of ∗−quasiconvex function as satisfing a
λ̄−well-posedness; for these functions it is possible to replace the well-posedness
analysis of the vector problem with both nonlinear and linear scalarization.

Theorem 4.5. Let f : X ⊆ Rm → Rl be ∗−quasiconvex and arg min(X, gλ̄) =
f−1(ȳ) be a bounded set. Then, problem (X, f) is B-well-posed in ȳ if and only if
∃λ̄ ∈ C+ ∩ ∂B such that

〈
λ̄, y − ȳ

〉
≥ 0, ∀y ∈ f(X) and (X, gλ̄) is topologically

well-set.

Proof: Recalling Theorem 4.4 we only need to prove one direction. As function
f is ∗−quasiconvex, the set (f(X) + C) is convex ([14]) and thanks to a classical
separation theorem, every ȳ ∈ Min (X, f) is unique solution of a scalarized problem.
Function gλ̄(x) is quasiconvex as linear combination of continuous functions and
hence problem (X, gλ̄) is topologically well-set since arg min(X, gλ̄) is bounded. �

Corollary 4.5. Let f : X ⊆ Rm → Rl be ∗−quasiconvex and arg min(X, gλ̄) =
f−1(ȳ) be a bounded set. Then, problem (X, f) is L-well-posed in ȳ if and only
if ∃λ̄ ∈ C+ ∩ ∂B such that

〈
λ̄, y − ȳ

〉
≥ 0, ∀y ∈ f(X) and (X, gλ̄) is generalized

Tykhonov well-posed.

Corollary 4.6. Let f : X ⊆ Rm → Rl be ∗−quasiconvex and arg min(X, gλ̄) = x̄.
Then, problem (X, f) is DH-well-posed in x̄ if and only if ∃λ̄ ∈ C+ ∩ ∂B such that〈
λ̄, y − ȳ

〉
≥ 0, ∀y ∈ f(X) and (X, gλ̄) is Tykhonov well-posed.
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We observe that Corollary 4.6 cannot be improved considering arg min(X, gλ̄)
unbounded or the larger class of C-quasiconvex functions as it is possible to see in
the following examples.

Example 4.2. Let f : X ⊆ R2 → R2, the identity function on X = {(x, y) ∈ R2 :
y ≥ −x} and C = R2

+. Function f is ∗−quasiconvex, problem (X, f) is DH-well-
posed in (0, 0), but it is not λ̄-well-posed for any λ̄ ∈ C+ ∩ ∂B.

Example 4.3. Let f : X ⊆ R → R2, f(x) = (x,−x3) with X = R and C = R2
+.

Function f is C-quasiconvex but not ∗−quasiconvex. Problem (X, f) is DH-well-
posed in 0, but it is not λ̄-well-posed for any λ̄ ∈ C+ ∩ ∂B.

4.4 Linear scalarization and global well-posedness

Consider a convex vector optimization problem, i.e. assume that X is convex and
f is C−convex. We recall that the functions gλ(x) = 〈λ, f(x)〉 with λ ∈ C+ \ {0}
are convex when f is C−convex ([27]). Consider the family of parametric scalar
problems (X, gλ) given by

min gλ(x) = 〈λ, f(x)〉 , x ∈ X,

where λ ∈ C+ ∩ ∂B.
By convexity assumptions follows that a point x ∈ X is a weakly efficient solution
for vector problem (X, f) if and only if it is an optimal solution for a scalar problem
(X, gλ).

Theorem 4.6. (see [8]) Let f : X ⊆ Rm → Rl be C−convex on the convex set X
and assume WMin (X, f) is closed.
If problems (X, gλ) are metrically well-set (according to definition 4.5) for every
λ ∈ C+ ∩ ∂B, then problem (X, f) is D-well-posed.

Proof: We know that an asymptotically minimizing sequence for problem (X, f), is
always asymptotically minimizing for problem (X,h) defined in the previous sub-
section.
Let xn be an asymptotically minimizing sequence for problem (X, f). Then h(xn)→
0 and by the compactness of C+ ∩ ∂B, there exists a sequence λn → λ∗ ∈ C+ ∩ ∂B
such that

min
λ∈C+∩∂B

〈λ, f(xn)− f(x)〉 = 〈λn, f(xn)− f(x)〉 ,

and hence
sup
x∈X
〈λn, f(xn)− f(x)〉 → 0,

i.e.
〈λn, f(xn)〉 − inf

x∈X
〈λn, f(x)〉 → 0.
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We observe that gλ(x) is a convex function for every λ ∈ C+ ∩ ∂B (see [27]) and
since λn → λ∗, it follows 〈λn, f〉 → 〈λ∗, f〉. Hence (see e.g. [29]),

gλn(xn) = 〈λn, f(xn)〉 → inf
x∈X
〈λ∗, f(x)〉 = inf

x∈X
gλ∗(x).

We claim that gλ∗(xn)→ infx∈X gλ∗(x).
Since λn → λ∗, ∀ε > 0, ∃n̄ such that ∀n > n̄

|〈λ∗, f(xn)〉 − 〈λn, f(xn)〉| < ε

2
,

i.e. |〈λ∗ − λn, f(xn)〉| < ε
2 . Hence, ∀n > n̄

0 ≤ 〈λ∗, f(xn)〉 − inf
x∈X
〈λ∗, f(x)〉

= gλ∗(xn)− inf
x∈X
〈λ∗, f(x)〉

= 〈λn, f(xn)〉 − inf
x∈X
〈λ∗, f(x)〉+ 〈λ∗ − λn, f(xn)〉

≤ 〈λn, f(xn)〉 − inf
x∈X
〈λ∗, f(x)〉+

ε

2
.

Since 〈λn, f(xn)〉 → infx∈X 〈λ∗, f(x)〉 and ε is arbitrary, we prove the claim. Hence
recalling the assumption of metrically well-setness on (X, gλ) the proof is completed.
�

In general, the reverse of the Theorem is not true as the following example shows.

Example 4.4. Let f : X ⊆ R2 → R2 defined as f(x1, x2) =
(
x2
1
x2
, x1

)
, C = R2

+

and X = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 1}. The objective function is C−convex,
WMin (X, f) = {(0, 0)}, WEff (X, f) = {(0, x2) : x2 ≥ 1} the problem is D-well-
posed since every D-minimizing sequence is identified when x1 tends to zero, but the
scalar problem (X, gλ) with λ = (1, 0) is not metrically well-set.
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