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An extension of Peskun ordering to

continuous time Markov chains

Fabrizio Leisen∗and Antonietta Mira†

July 27, 2006

Abstract

Peskun ordering is a partial ordering defined on the space of transi-
tion matrices of discrete time Markov chains. If the Markov chains are
reversible with respect to a common stationary distribution π, Peskun
ordering implies an ordering on the asymptotic variances of the result-
ing Markov chain Monte Carlo estimators of integrals with respect to π.
Peskun ordering is also relevant in the framework of time-invariance es-
timating equations in that it provides a necessary condition for ordering
the asymptotic variances of the resulting estimators.

In this paper Peskun ordering is extended from discrete time to con-
tinuous time Markov chains.

Key words and phrases: Peskun ordering, Covariance ordering, Ef-
ficiency ordering, MCMC, time-invariance estimating equations, asymp-
totic variance, continuous time Markov chains.

1 Introduction

The class of Markov chains (MC) that are stationary with respect to
a specified distribution, π, play an important role in two separate but
connected fields, namely Markov chain Monte Carlo methods (MCMC),
[7] and time-invariance estimating equations (TIEE), [1].

In MCMC we are interested in estimating the expected value of a
function f with respect to a distribution π: Eπf . If we cannot compute
such integral analytically either because the state space is too large or
because π and/or f are too complicated, we can construct a Markov chain
that has π as its unique stationary and limiting distribution. We then
run the Markov chains for n time-steps, and produce a simulated path:
x1, x2, · · ·xn, possibly after a burn-in period that allows the Markov chain
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to forget its initial distribution and to reach the stationary regime. We
then estimate µ = Eπf , by

µ̂n =
1

n

n
X

i=1

f(xi).

Under regularity conditions, the strong law of large numbers and the
central limit theorem, [16], ensure that µ̂ is asymptotically unbiased and
give an expression for its asymptotic variance.

Time-invariance estimating equations is a general framework to con-
struct estimators for generic models. Suppose we have a model indexed by
a parameter, πθ, and we are interested in estimating θ. We can construct
a Markov chain that has the model of interest as its stationary distribu-
tion. If we equate to zero the generator of the Markov chain, applied to
some function, S, defined on the sample space and evaluated at the data,
x, we obtain an unbiased estimating equation. A natural way to evalu-
ate the performance of time-invariance estimators is the Godambe-Heyde
asymptotic variance [6]. In [10] the authors show that Peskun ordering is
a necessary condition for Godambe-Heyde ordering.

Both in the MCMC and the TIEE framework we have some degrees of
freedom on how to choose the Markov chain since, given the distribution
or the model of interest, there are many Markov chains that are stationary
with respect to it. In the MCMC context this rises the following ques-
tion: given two Markov chains, Q1 and Q2, both ergodic with respect to
π, which one produces estimators of Eπf with smaller asymptotic vari-
ance? The similar question in the TIEE framework is the following: given
two Markov chains stationary with respect to πθ, which one produces
time-invariance estimators of θ with smaller Godambe-Heyde asymptotic
variance?

The first one who addressed the above question in the MCMC frame-
work was Peskun, [11], who defined a partial ordering on the space of
discrete time Markov chains defined on finite state spaces. The ordering
was later extended by Tierney [17] to general state space Markov chain
but the discrete time assumption was retained. In their papers, Peskun
and Tierney, demonstrate that their respective orderings imply an order-
ing on the resulting MCMC estimators in terms of asymptotic variances,
i.e. in terms of their efficiency. A related partial ordering, the covariance
ordering, was later introduced by Mira and Geyer [9]. While Peskun or-
dering gives a sufficient condition for efficiency ordering, the covariance
ordering is both necessary and sufficient. Thus the covariance ordering is
equivalent to the efficiency ordering.

The related question in the TIEE framework was first addressed by
Mira and Baddeley [10]. The Authors show that Peskun ordering gives a
necessary but not sufficient condition to Godambe-Heyde ordering.

Both in the MCMC and in the TIEE framework one often has to
deal with continuous time Markov chains. In particular, in the MCMC
framework, there has been more than one successful attempt to construct
an efficient proposal distribution in a Metropolis-Hastings algorithm, by
using the Euler discretizations of the transition probabilities of a Langevin
diffusion process that has π as its stationary distribution. The seminal
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paper along these lines appeared in the physics literature [5] and the
idea was only later brought into the mainstream statistical literature in a
discussion by Besag [2]. Theoretical convergence properties, in terms of
speed of convergence to stationarity, of these type of MCMC algorithms
have been extensively studied, see for example [12, 13, 14]. On the other
hand, up to our knowledge, there is still no theoretical discussion of the
properties of these diffusion Metropolis-Hastings type algorithms in terms
of the asymptotic variance of the resulting estimators, i.e. in terms of
efficiency orderings. As for the TIEE framework, there are state-space
models that naturally appear as stationary distributions of continuous
time processes. Just to give one example a Gibbs point processes can be
seen as the stationary distribution of a spatial birth and death process.
For more examples refer to [1]. In order to study the performance of
the resulting time-invariance estimators in this context the extension of
Peskun ordering proposed in this paper would be highly beneficial.

The aim of this paper is to extend Peskun ordering to the case of
continuous time Markov chains. Despite the fact that Peskun ordering
can be relevant in two different general frameworks, as we noted above,
we will mainly focus on the MCMC context which is the original context
where Peskun ordering was introduced. Furthermore we will consider
finite state spaces (our results can be easily extended to countable state
spaces). General state space Markov chains will be studied in further
research.

2 Ordering of Markov chains relevant for

MCMC purposes

2.1 Efficiency ordering

We begin by giving some definitions and setting up the notation.
Let Q = {qij}ij∈E be a time-invariant transition matrix i.e.

qij = P (Xt+1 = j|Xt = i), ∀t,

where the MC takes values on a finite state space E .
We identify Markov chains with the corresponding transition matrices.
Let S the class of Markov chains stationary with respect to some given

distribution of interest, say π; R the subset of the reversible ones and
L2(π) be space of all functions that have a finite variance with respect to
π.

Let v(f, Q), the limit, as n tends to infinity, of n times the variance
of the MCMC estimator, µ̂n, computed on a π-stationary chain updated
using the transition matrix Q.

Definition 2.1 Let Q1, Q2 ∈ S. Q1 is uniformly more efficient than Q2,

Q1 �E Q2, if v(f, Q1) ≤ v(f, Q2) for all f ∈ L2(π).
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3 Peskun ordering for discrete time Markov

chains

Assume that Q ∈ S i.e.
πQ = π.

Definition 3.1 Given two Markov chains Q1, Q2 ∈ S , we say that Q1

is better than Q2 in the Peskun sense and write Q1 �P Q2 if

q
1
ij ≥ q

2
ij , ∀i 6= j

Theorem 3.1 Given two Markov chains Q1, Q2 ∈ R if Q1 dominates Q2

in the Peskun sense then Q1 dominates Q2 in the efficiency ordering, i.e.

Q1 �P Q2 ⇒ Q1 �E Q2.

The first use of Peskun ordering appears in Peskun [11] where the author
shows that the Metropolis-Hastings algorithm, [7], the main algorithm
used in MCMC, dominates a class of competitors reversible with respect
to some π, all with the same propose/accept updating structure and with
symmetric acceptance probability (see also [4]).

4 Continuous time Markov chains for MCMC

simulations

Let {X(t)}t∈<+ be a continuous time MC (CTMC) taking values on a
finite state space E . Let

G = {gij}i,j∈E

be the generator of the MC. G is a matrix with row sums equal to zero,
having negative entries along the main diagonal and positive entries oth-
erwise. Assume that the MC is reversible, this condition, usually checked
on the MC transition matrix, can also be checked on the generator by
requiring that

πigij = πjgji ∀i, j ∈ E .

Let I be the identity matrix, c = supi |gii| and v ≥ c, then

Pν = I +
1

ν
G

is a stochastic matrix. Note that, if G is reversible with respect to π,
then so is Pν , ∀ν. We could use such CTMC for MCMC purposes
in the following way. Assume without loss of generality that f has zero
mean and finite variance under π, f ∈ L2

0(π), and furthermore assume
that f belongs to the range of the generator of the CTMC, G. Suppose
we are interested in estimating µ =

R

f(x)π(dx). Construct a CTMC
{X(t)}t∈<+ ergodic with respect to π, fix t > 0 and take

µ̂nt =
1√
n

Z nt

0

f(X(s))ds
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to be the MCMC estimator. By Theorem 2.1 in [3], µ̂nt converges weakly
to the Wiener measure with zero drift and variance parameter

v(f, G) = −2 < f, g >= −2

Z

f(x)g(x)π(dx) ≥ 0

where g belongs to the domain of the generator and is such that: Gg = f .
In Proposition 2.4 of [3], Bhattacharya, proves that v(f, G) > 0 for

all nonconstant (a.s. π) bounded f in the range of G, provided for some
t > 0 and all x, the transition probability P (t, x, dy) and the invariant
measure π are mutually absolutely continuous. If however G is reversible,
then v(f, G) > 0 for all nonzero f in the range of G without the additional
assumption of boundedness and mutual absolute continuity.

5 Peskun ordering for continuous time

Markov chains

We now introduce the generalized version of Peskun ordering for CTMC:

Definition 5.1 Let G1 = {g1
ij} and G2 = {g2

ij} be two CTMC. We say

that G1 dominates G2 in the Peskun sense and write G1 �P G2 if

g
1
ij ≥ g

2
ij , ∀i 6= j

The following theorem mimics the one in [16]:

Theorem 5.1 If G1 �P G2 and if the corresponding CTMC are re-

versible, then G2 − G1 is a positive operator.

Proof:

Let
c1 = sup |g1

ij |, c2 = sup |g2
ij | and ν ≥ max(c1, c2).

Define

P
1
ν = I +

1

ν
G

1 and P
2
ν = I +

1

ν
G

2
.

Then we have that

G
1 = ν(P 1

ν − I) and G
2 = ν(P 2

ν − I).

If G1 �P G2 it follows that P 1
ν �P P 2

ν by the same definition of P 1
ν and

P 2
ν . By Lemma 3 in Tierney [16] it then follows that P 2

ν −P 1
ν is a positive

operator. After observing that

G
2 − G

1 = ν(P 2
ν − P

1
ν )

we immediately get the result we want. �

We are now ready to prove the main result of the paper:

Theorem 5.2 If G1 �P G2 and if the corresponding CTMC are re-

versible, then

v(f, G
1) ≤ v(f, G

2)

for all functions f in the range of the generators, where v(f, G1) and

v(f, G2) are the asymptotic variances of estimators µ̂n obtained by simu-

lating the CTMC that have G1 and G2, respectively, as generators.
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Proof:

We know (from [3]) that, for all functions f in the range of the generators,
we have:

v(f, G
1) = −2 < f, g

1
> and v(f, G

2) = −2 < f, g
2

>

where g1 and g2 belong to the domain of the generators and are such that:

G
1
g
1 = f, and G

2
g
2 = f. (1)

Therefore we have:

v(f, G
1) = −2 < G

1
g
1
, g

1
> and v(f, G

2) = −2 < G
2
g
2
, g

2
> .

Define:
Hβ = G

1 + β(G2 − G
1) and gλ = g

1 + λ(g2 − g
1)

where 0 ≤ β ≤ 1 and 0 ≤ λ ≤ 1. Let

hλ(β) = −2 < Hβgλ, gλ > .

Then:
h

′

λ(β) = −2 < (G2 − G
1)gλ, gλ >

and the derivative is non positive for every λ because G2−G1 is a positive
operator. It follows that h

′

λ(β) is a decreasing function in β for any λ.
We thus have that

hλ(0) ≥ hλ(1), ∀λ ∈ [0, 1]

and if we take λ = 0 we get:

h0(0) = v(f, G
1) and h0(1) = −2 < G

2
g
1
, g

1
> .

We thus have:

v(f, G
1) ≥− 2 < G

2
g
1
, g

1
>

= − 2 < G
2(g1 − g

2 + g
2), (g1 − g

2 + g
2) >

= − 2 < G
2(g1 − g

2), (g1 − g
2) >

− 2 < G
2(g1 − g

2), g2
>

− 2 < G
2
g
2
, (g1 − g

2) > −2 < G
2
g
2
, g

2
>

= − 2 < G
2(g1 − g

2), (g1 − g
2) >

− 2 < G
2
g
1
, g

2
> +2 < G

2
g
2
, g

2
>

− 2 < G
2
g
2
, g

1
> +2 < G

2
g
2
, g

2
>

− 2 < G
2
g
2
, g

2
>

= − 2 < G
2(g1 − g

2), (g1 − g
2) >

− 2 < G
1
g
1
, g

1
> +2 < G

2
g
2
, g

2
>

− 2 < G
1
g
1
, g

1
> +2 < G

2
g
2
, g

2
>

− 2 < G
2
g
2
, g

2
>

= − 2 < G
2(g1 − g

2), (g1 − g
2) >

+ v(f, G
1) − v(f, G

2)

+ v(f, G
1) − v(f, G

2) + v(f, G
2).

(2)

6



The fourth equality in (2) follows from

< G
2
g
1
, g

2
>=< g

1
, G

2
g
2

>

because G is a self-adjoint operator. Furthermore

< g
1
, G

2
g
2

>=< g
1
, G

1
g
1

>

because of (1) and finally we have

< g
1
, G

1
g
1

>=< G
1
g
1
, g

1
> .

Also,
< G

2
g
2
, g

1
>=< G

1
g
1
, g

1
>

again because of (1). The last equality in (2) follows from

v(f, G
1) = −2 < G

1
g1, g1 >

and similarly for G2. As a result we obtain:

v(f, G
2) − v(f, G

1) ≥ −2 < G
2(g1 − g

2), (g1 − g
2) > ≥ 0

and therefore:
v(f, G

2) ≥ v(f, G
1).

�

6 Conclusions

For Markov chains taking values on finite state spaces, we have extended
Peskun ordering from discrete to continuous time. The extension we pro-
pose has, potentially, many applications both in the MCMC context and
in the TIEE framework. Indeed, in these settings, Peskun ordering for
discrete time MC has been extensively used to give necessary and/or suf-
ficient conditions for efficiency of the resulting MCMC and time-invariance
estimators.

We plan to investigate the extension of Peskun ordering to continuous
time general state space Markov chains, in further research.
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