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Abstract

Ways of improving the efficiency of Monte-Carlo (MC) techniques are studied for
dynamic models. Such models cause the conventional Antithetic Variate (AV) technique
to fail, and will be proved to reduce the benefit from using Control Variates with nearly
nonstationary series. This paper suggests modifications of the two conventional variance
reduction techniques to enhance their efficiency. New classes of AVs are also proposed.
Methods of reordering innovations are found to do less well than others which rely
on changing some signs in the spirit of the traditional AV. Numerical and analytical
calculations are given to investigate the features of the proposed techniques.

Keywords: Dynamic models, Monte-Carlo (MC), Variance Reduction Technique
(VRT), Antithetic Variate (AV), Control Variate (CV), Efficiency Gain (EG), Response
Surface (RS).

J.E.L. Classification: C15.

∗We thank David Hendry for being a continuing source of inspiration for us. We also thank two anony-
mous referees for their comments.



1 Introduction

Unit roots have become a central theme of modern econometrics. Numerous studies of
the subject have used Monte-Carlo (MC) techniques. Yet we do not know how these MC
techniques, usually designed for stationary series, fare with nearly nonstationary ones.1 An
important aspect is the control of MC variability, which is shown here to increase with the
sample size in nearly nonstationary series. For example, when simulating quantiles of AR
statistics, this excess MC variation can be easily shown by using formula (10.29) of Kendall
and Stuart (1977, p.252) together with the thin long lower tails that are typical of AR
densities.

The study of MC techniques in dynamic models lags behind other —admittedly more
pressing— aspects of the subject. This paper will attempt to partially redress this imbalance
by presenting ideas on how to improve MC studies of autoregressive series, possibly with
roots close to unity. More specifically, Variance Reduction Techniques (VRTs) will be
suggested to cope with the problems of simulating dynamic models of this type.

VRTs are methods of combining different estimates obtained from using a single set of
generated random numbers more than once. When successful, they reduce MC impreci-
sion as explained in detail by Hendry (1984). Furthermore, unconventional uses for these
VRTs can be found, as we will discuss later. In addition to MC, we use response surfaces
and asymptotic results to compare the relative performance of various VRTs. Asymptotic
methods are employed in this context both in the econometrics and finance literature. As-
ymptotics for a large number of MC replicates are reported in Paruolo (2002), where VRT
are used to increase precision in test-power comparison. Ericsson (1991) employs small-
σ asymptotics.2 Finally, several other asymptotic methods are in use in finance; see e.g.
Takahashi and Yoshida (2005) and references therein.

The outline of the paper is as follows. First, the VRTs to be considered are defined in
Section 2. The new VRTs of this work will have to be compared to some benchmark. For
this reason, existing VRTs will be briefly defined alongside the new ones. Next, Section 3
compares these VRTs numerically and analytically (by response surfaces) in finite samples,
placing special emphasis on typical nearly nonstationary conditions without excluding the
possibility of stationarity from the study. In the response surface analysis, we show how
to bridge the gap in the distribution theory that arises from stationary and nonstationary
data by means of a simple function that will be given in (25).

The results show large efficiency gains (e.g. by an average factor of about 20 times)
for a few of the VRTs, leading to the ability to conduct faster and more precise MC in
the future. This is useful not just for academic econometricians. For example, in financial
econometrics, a trader may wish to price an option (which is an expectation) precisely and
quickly, in order to make a profitable trade that may otherwise be missed, and our VRTs
can be used for this purpose.

Section 4 then describes encompassing formulations for these VRTs, and looks at some
practical problems where they may be beneficially used. Some of these applications are
nonstandard, including an illustration of how to use the results of earlier sections to devise
a method of improving the efficiency of MC work on nearly nonstationary series. Other
possible unconventional uses of these VRTs include the derivation of power functions of
tests and numerical integration. It is worth stressing that all these benefits come at little
programming cost. Typically, only 2 or 3 lines of code are required to program these VRTs,
and they can be easily added to subroutines that generate random numbers.

In Section 5, we use large-sample asymptotic results to analyze the variance-reduction

1The term “near nonstationarity” is used in this paper to refer to autoregressive roots in the neighbour-
hood of unity, including a unit root.

2For the problem considered in this paper the statistics of interest is scale invariant, and small-σ asymp-
totics is not a viable option.



factor of various VRTs. We employ functional central limit theorems to study the behavior
of relevant statistics for unstable autoregressions; for stable autoregressions we use standard
central limit theorems together with covariance calculations. We are thus able to describe
the correlation coefficient between antithetic variates as an explicit function of the autore-
gressive parameter, where this correlation is the key element in the MC variance reduction
formula. Moreover, these results allow us to discuss analytically the choice of a rotation
parameter in some class of orthogonal antithetic variates.

Finally, concluding observations are made in Section 6.

2 VRTs: new and old

The two most prominent types of VRTs in econometrics will be considered in this work.
They are Antithetic Variates (AVs) and Control Variates (CVs). The failing of known forms
of AVs in dynamic models has been documented in Hendry (1984). Here, it will be shown
analytically that conventional CVs also fail when the variables are nearly nonstationary.
For reasons of simplicity, let the dynamic Data Generating Process (DGP) be

yt = αyt−1 + εt, (1)

where t = 1, ..., T , y0 = 0, εt ∼ IN(0, σ2). The reason for choosing this DGP is that it is
representative of the problems associated with the nearly nonstationary case. More general
ARMA processes where the orders may even be unknown will give rise to similar results
when treated as in Said and Dickey (1984), as long as determinsitics are not included. Also,
the study’s emphasis on near nonstationarity means that the choice of distribution for εt
in (1) is not crucial to the results, especially when T is not small; see Phillips (1987). So
(1) was adopted to keep complexity of the exposition at a minimum.

A DGP with zero intercept and trend was chosen to retain the nonstandard results
that arise in near nonstationarity with its associated unconventional problems. If any of
these parameters were nonzero, normality of distributions would be restored to the usual
statistics associated with (1) at the fast rates of T 3/2 and T 5/2, respectively. The choice
of DGP (1) should not be seen as restricting the validity of the new VRTs defined below.
Their general definition is independent of (1) in spite of being motivated by it, and can be
used in a variety of frameworks other than (1).

Ordinary Least Squares (OLS) yields a consistent estimate of α in (1), and is given by

bα :=X
t
ytyt−1/

X
t
y2t−1, (2)

where t = 1, . . . , T in the summation (t = 1 gives a zero term because y0 = 0). VRTs
have many uses, which we will illustrate with evaluating E(bα) when (α, σ2) belongs to the
parameter space {|α| ≤ 1, σ2 > 0} and T ∈ T ⊂ N. Here, the only difference with Hendry
(1984) is in allowing |α| = 1 within this parameter space.

A simple Monte Carlo technique would be to generate n = 1, . . . , N replications of the
series in DGP (1), and calculate N OLS estimates of α in (2). By taking the average of
these, one can estimate E(bα). This is called the ‘crude MC estimator’ and it is an unbiased
estimator of E(bα), with MC variance given by var(bα)/N . One can improve on the crude
MC estimator by using VRTs. VRTs re-use the same set {εt} once more, instead of simply
using it once as the crude MC estimator.

The computational cost of VRTs is represented by the ratio, κ say, of the computing
time required by the re-use of the set {εt} relative to the computing time required by an
additional replication of the crude MC estimator, which involves generating a new set of
{εt}. The ratio κ depends on the hardware and software solutions used in the implemen-
tation; usually one has κ < 1 and often κ ¿ 1. The benefits of VRTs are the ability to
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generate an estimator having the same expectation as bα, but be less variable by a factor
of 20 or so, as we will see in the next section; this is equivalent to having increased N by
a factor of 20 in the ratio var(bα)/N . A successful VRT can therefore lead to massive gains
in terms of efficiency and speed.

In general, AVs transform the set {εt} to an antithetic counterpart {ε−t } that is used to
generate another set of observations {y−t } which is also called antithetic. Then, the same
estimation method is applied to {y−t }, yielding a second estimate of α, denoted by bα− and
called the antithetic estimate. The antithetic transform is chosen so that bα and bα− have
the same expectation; this implies that the combined estimate

eα := 1

2

¡bα+ bα−¢ (3)

has also the same expectation of bα and bα− with variance
var(eα) = 1

4

¡
var(bα) + var ¡bα−¢+ 2cov(bα, bα−)¢ (4)

that is designed to be lower than the original var(bα). Following Hendry (1984), define the
associated Efficiency Gain (EG) as

EGv :=
var (bα)
var (eα) , (5)

where v is the name of the VRT associated with eα. When var(bα) = var(bα−) = η, say,
var(eα) simplifies to

var(eα) = η

2
(1 + ρ) , (6)

where ρ := corr(bα, bα−). In this case,
EGv =

2

1 + ρ
. (7)

The conventional AV uses
{ε−t } := {−εt} (8)

in an attempt to induce ρ < 0 which, if successful, would lead to EG > 2.
Unfortunately in the case of (1), the conventional AV fails: bα and bα− are identical, and

the combined estimator is no better than either of its components since corr(bα, bα−) = 1
and var(bα) = var

¡bα−¢ = var(eα). One way out of this impasse is to use another type of
estimator for bα−. For example, let bα− be based on Instrumental Variable estimation rather
than OLS. The two estimates of α would be numerically different but would be positively
correlated (especially in large samples), so that the variance of the combined estimator
given in (4) would be only marginally smaller than either bα or bα−. Because the expected
efficiency gain is not likely to be large, one has to think of another alternative for generating
{ε−t } and hence bα−.

The other direction that can be pursued in developing a different bα− is to reuse {εt}
differently. The general idea is to attempt to create a series {ε−t } which leads to an bα− that
is preferably negatively correlated with bα. Four general alternative techniques can now be
suggested.

The first new AV, denoted henceforth by AV1, is based on transforming the pair εi and
εj (i 6= j) that were generated as IN(0, σ2) into

ε−i := (±εi ± εj) /
√
2 and ε−j := (∓εi ± εj) /

√
2, (9)
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which will also be IN(0, σ2). This can be checked by taking expectations of powers of ε in
(9). If the estimator of interest is invariant to scale, as is the case here with bα, one can
omit the

√
2 factors to speed up the calculations.

The signs in (9) mean that the new method can generate, for example, ε−i as either
(εi + εj) /

√
2 or − (εi + εj) /

√
2. For now, only the upper signs from the general definition

(9) will be considered, because one wishes to isolate the separate influences of combining
innovations and of switching their signs. The sign-switching features of (9) will be tem-
porarily ignored, as they will be considered separately by other explicit VRTs here. The
encompassing generality of the formulation of (9) will be returned to later in Section 4.

Definition (9) does not constrain the order of the variates i and j (except that i 6= j),
though we shall also temporarily ignore this property to isolate the influence of combining
two innovations as opposed to reordering them. Successive pairs will be selected so that
j = i+ 1. Again, we shall come back to these features in Section 4 below.

Finally, we assume for simplicity that the sample size T is even. Otherwise, the last
value of the antithetic set, ε−T , would need to be generated as if it were εT+1.

The second antithetic variate, AV2, is one way of resampling {εt}, and it consists of
reversing the order of the original i.i.d. series to get

{ε−t } := {εT−t}. (10)

It has the small disadvantage of requiring all the innovations {εt} to be kept in storage, un-
like the previous method which only requires storage space for two consecutive innovations
at a time.

The third method, AV3, was mentioned but not tested by Hendry and Harrison (1974,
p.156). It is based on using

{ε−t } := {(−1)
t εt}, (11)

which alters the sign of every other εt. This method should do best when α is close to
0 because the values assumed by {εt} matter significantly less to the distribution of bα as
|α|→ 1 (see Phillips (1987)), and because α = 0 here gives deterministically

eα ≡ 1
2

¡bα+ bα−¢ = 1

2

X
t
(εtεt−1 − εtεt−1) /

X
t
ε2t−1 = 0 (12)

as the combined estimator, hence providing an infinite variance reduction relative to the
crude MC estimator. Note, however, that in this case eα is degenerate at 0, and it cannot
be considered as a realization of an estimator (with the same expectation as bα), which is
a nondegenerate random variable. Hence, in the MC simulations concerning AV3, we will
discard the case of α = 0.

Finally, AV4 is a very intuitive and easily applicable new VRT. It is cheap on both pro-
gramming and storage cost considerations. It relies on using exactly the same innovations

{ε−t } := {εt} (13)

to generate {yt} through the same DGP as before but with parameter(s) of interest of the
opposite sign, namely

yt = −αyt−1 + εt = βyt−1 + εt (14)

with β := −α. The new coefficient β is then estimated by OLS as in (2), and the negative
of the resulting estimate, −bβ, is the antithetic bα− for the generic AV form in (3). When
α = 0, {y−t } = {yt} and bα− ≡ −bβ = −bα, which causes eα to be zero deterministically as
in (12); a case which will be discarded in the MC simulations. Such an infinite variance
reduction is not expected for any other value of α, and it is clear that, as α moves away
from zero, the variance reduction will fall to finite levels both here and for AV3.
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One can think of the last two methods as switching the sign of the effect on yt of every
other εt to obtain the antithetic set {y−t }. AV3 does it directly by changing the sign of
every other εt, while AV4 does it indirectly by changing the sign of α through which lags
of εt affect yt. DGP (1) can be rewritten as

yt =
t−1X
j=0

αjεt−j , (15)

where it is obvious that a change in the sign of α affects every other εt−j term. For
autoregressive DGPs like (1), the two methods provide equal results since AV3 gives

y−t = (−1)
t
t−1X
j=0

(−α)j εt−j , (16)

while AV4 leads to

y−t =
t−1X
j=0

(−α)j εt−j . (17)

Given the respective definitions of bα− for AV3 and AV4, (16) and (17) give the same
combined estimator eα in the case of DGP (1). This equality is due to the choice of our
dynamic DGP, and does not necessarily hold for all other DGPs. For example, a static
DGP where the conventional AV works,

yt = αxt + εt, (18)

and where xt is not a lagged value of yt, causes AV3 and AV4 to be different. Static DGPs
are not the focus of this study.

One should be careful to provide the proper justification for using AV4 to simulate
moments of a certain order. In general, any AV is a statistically valid method of simulating
the moment of order k of an econometric estimator η if and only if E(bηk) = E(bηk−), wherebηk− is the k-th power of the antithetic estimator. For applying sign-switching AVs to DGP
(1), this condition reduces to the requirement that sgn(bηk) × E(bηk) is an even function of
η, so that changing the sign of η (directly or indirectly) in the DGP produces an antithetic
variate bηk− with exactly the same expected value as bηk.

For k = 1 and with DGP (1), this condition is violated for AV3 and AV4 when α = 0
as we have seen before. However, when α 6= 0, moment generating functions (White (1958,
1961), Abadir (1993b) and references therein) show that the distribution of bβ is the mirror
image of that of bα, thus warranting the use of the technique of AV4 to simulate moments
of any order or any other density-related properties such as quantiles. In addition, the
other AVs considered in this work satisfy the condition for the first two moments. So,
the optimal combination of an estimator and its antithetic counterpart is the simple (as
opposed to weighted) average given in the generic form (3).

The condition detailed in the previous paragraph is also satisfied by the general ARMA
models analyzed by Cryer, Nankervis and Savin (1989), who consider conditions for invari-
ance and mirror image of estimators; see also Haldrup (1996) for mirror image properties
in the case of time trends. The condition set here is not the same as the ones in Cryer et al.
(1989) because of the different focus of the two papers: theirs considers whole distributions,
whereas ours is only concerned with certain specific moments. Two different distributions
may have the same mean, thus satisfying our condition for the first order moment, but not
the one in Cryer et al. (1989). Their conditions are thus sufficient but not necessary for
the present application.
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As with AVs, CVs are meant to modify estimators like (2) so as to reduce MC variability.
The CVs under consideration in this work will be extensions of Hendry’s (1984, p.953),
which is denoted here by CV1. For CVs, the modified estimator of α takes the general form

eα := bα− c

h

X
t
εtyt−1, (19)

where h is a variant of

E
³X

t
y2t−1

´
=

(
σ2 T2 (T − 1) ( |α| = 1),
σ2 T (1−α

2)+α2T−1
(1−α2)2 ( |α| < 1). (20)

For CV1, only the stationary case was analyzed by Hendry (1984). The parameter c of (19)
was set at 1 there and h was taken to be the asymptotically dominant term of (20) for the
stationary case:

h = σ2T/(1− α2). (21)

Extending this definition to take account of near nonstationarity gives CV2 where c = 1
and h is given by (20). Finally, CV3 extends Hendry’s CV a step further by estimating the
minimum-variance version of (19). After generating all of the bαn (n = 1, ...,N) replications
of the MC experiment, let h be given by (20) and estimate the unrestricted regression

bαn = constant+ bc³X
t
εtyt−1/h

´
n
+ rn (22)

so that eαn := bαn − bc³X
t
εtyt−1/h

´
n
= constant+ rn,

where {rn} are the regression residuals and {eαn} are the N replications of the CV-modified
estimator. This process gives rise to the optimal (minimum variance) CV as is described
in Kleijnen (1974, pp.138-159). Its only disadvantage in comparison with CV1 or CV2 is
a minor computational requirement: a simple regression has to be run at the end of the
simulation experiment.

The storage requirements for all three CVs are the same if the series of estimators
generated in each replication are to be preserved for a study of moments other than just the
mean. A last remark should be made about h. Since it does not vary from one replication
to another, then its only purpose in CV3 is as a scale factor. It could be dropped from
expression (22) for CV3 without affecting the final results in any way. We shall not do so
here because it will be interesting to see how close the estimated c is, relative to the value of
1 which is assigned to c in the case of CV2. This analysis need not be repeated in practical
MC studies.

The weakness of these CVs as |α| approaches 1 can now be established analytically for
the first time by considering (19) and (20). The stabilizing normalization for

P
t εtyt−1 is

1/
√
h. Therefore, because of the swift convergence of

P
t εtyt−1/h = Op(1/

√
h) to zero as

|α| → 1 and T → ∞, CVs will fail under precisely these two conditions. In a way, CVs
are paying the price for the fast convergence of bα to α in the case of α near the unit circle
(e.g. see Evans and Savin (1981)), and little can be done by means of CVs to improve the
efficiency of the already super-consistent bα. Note that the stochastic components of the CVs
are essentially bα− α ≡

P
t εtyt−1/

P
t y
2
t−1 and

P
t εtyt−1/h, which differ only with respect

to the type of normalization (stochastic vs. deterministic) that is chosen for
P

t εtyt−1.
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Variable Mean Minimum Maximum
EGAV1 1.54 1.4 1.7
EGAV2 1.03 1.0 1.2
EGCV2 20.9 1.3 184
EGCV3 21.1 1.3 186bc 0.99 0.83 1.20

Table 1: Summary of MC results for the whole design.

3 Finite-sample results

DGP (1) was used with εt ∼ IN(0,1) to test the relative efficiency of the various VRTs
suggested above. The parameters of the experiment were

α = 0.00, 0.25, 0.50, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99, 1.00;

T = 26, 50, 100, 200, 400; N = 104; (23)

with α chosen to give more detail on (and more weight to) nearly nonstationary data, and
where T = 26 was chosen as the first sample size to accommodate AV1 (for convenience
only). There is no need to consider negative values of α for the purpose of this study
where efficiency comparison is the only concern, because efficiency is independent of the
sign of α; e.g. see Hendry (1984) or refer to the discussion of AV4 following (18) in Section
2. Furthermore, considering changes in efficiency (variance) is tantamount to comparing
mean squared errors because the biases of the modified estimators are the same as those of
the original OLS. This follows from the discussion after (18) for the AVs, and from (19) for
the CVs.

The results of the experiment are then summarized in two ways. First, descriptive
statistics are reported for EGv as a crude means of comparing VRTs. Then, response
surfaces are fitted to each EGv for an analytical explanation of how various VRTs fare as
α and T change.

Variable Mean Minimum Maximum
EGAV1 1.53 1.4 1.7
EGAV2 1.01 1.0 1.1
EGCV1 23.2 1.1 185
EGCV2 23.0 1.4 184
EGCV3 23.3 1.4 186bc 0.98 0.83 1.20

Table 2: Summary of MC results excluding |α| = 1.

Variable Mean Minimum Maximum
EGAV1 1.53 1.4 1.7
EGAV2 1.03 1.0 1.2
EGAV4,3 4.33 2.0 18
EGCV2 15.2 1.3 140
EGCV3 15.4 1.3 142bc 0.99 0.83 1.20

Table 3: Summary of MC results excluding α = 0.

Tables 1-3 give some summary statistics on EGv as well as on bc, the OLS estimated
value of the control coefficient of CV3 in (22). They cover different ranges of the parameter
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α because of the occasional distortions to the simple descriptive statistics introduced by
the two extremes 0 and 1 of |α|.3 EGCV1 is absent from Tables 1 and 3 because it excludes
|α| = 1 by definition. AV4,3 excludes α = 0 and so is absent from Tables 1 and 2. On
the whole, the following remarks can be made from the raw data (not listed here) and the
summary tables:

Remark 1. AV2 is the weakest VRT, while AV1 is the second weakest.4 They are the
only ones to show a slightly better performance for |α| = 1 than for |α| < 1. All the
others deteriorate (albeit from better initial levels) when |α| → 1, with AV1 performing
better than CVs and almost as well as AV4,3 when |α| = 1. On the other hand, the
performance of AV2 is quite poor and declines as T increases, and has a relatively high
memory cost. We would tend not to recommend methods that just reorder the innovations
if the purpose is variance reduction in dynamic MC. Such methods include the Bootstrap
which has nevertheless been successfully put to other uses. ¤

Remark 2. Sign-switching AVs (AV3 and AV4) are extremely efficient and provide stag-
gering efficiency gains. Their performance peaks at α = 0 where EG is infinite, and declines
exponentially to stabilize from |α| ≈ 0.75 onwards. Both are undoubtedly the best VRTs
for unit roots where they provide an efficiency gain of 2; but CVs outperform them in the
middle range of α, especially as T rises there. The average figure of 2 indicates by (4) and
(5) that the two antithetics bα− of AV3 and bα− of AV4 are independent of bα when |α| ≈ 1,
a finding that will be established analytically in Section 5. ¤

Remark 3. CV2 is less volatile than CV1 because the latter performs better as α→ 0 but
is rather poor at the other extreme (|α|→ 1) for understandable reasons (by construction).
The reversal in ranking occurs at |α| ≈ 0.8 for T < 100, and at |α| ≈ 0.9 for T ≥ 100.
The higher |α| in the second case is explained by the smaller asymptotic relative difference
between the normalization (h) of the two CVs; compare (20) with (21). As expected from
the optimum estimation of c, CV3 is by definition the most efficient of all three CVs for
each and every α, T . This property could be useful when N is small. In addition, it is more
flexible than CV1 because it can cope with any value of α. A common feature of the CVs is
that they suffer a marked deterioration of performance as |α|→ 1 and T increases; a result
in line with the analysis at the end of Section 2. ¤

Remark 4. The average value of bc (the OLS estimator of the optimum control coefficient)
is not statistically different from 1. The estimate of c is closest to 1 when |α| ≈ 1, CV2
and CV3 becoming almost identical. The gain (at little extra cost) from using CV3 instead
of CV2 comes from |α| ¿ 1 where CV2 is even weaker than CV1; and it increases as
T and/or N fall. The estimated bc rises stochastically as α and T increase, albeit with
increased volatility. This increased volatility is due to the problems of simulating near
nonstationarity where values of N need to be larger than usual to achieve a given level
of accuracy (e.g. see Lai and Siegmund (1983, last column of their Table 2) for a related
problem). This need for high N does not contradict the speedy convergence of unit-root
distributions to their asymptotics. It just means that the price paid for faster convergence
is increased volatility. To understand this, compare the standardization factors for (bα− α)
when |α| goes from being a stable to a unit root: multiplying (bα− α) by T instead of

√
T

amplifies the variability of the resulting statistic from one replication to the other. The
problem becomes very serious in explosive series with |α| > 1 where the normalization
factor is exponential (proportional to |α|T ) and depends on the initial observation of the

3The response surfaces given below are more sophisticated, and do not share these distortions.
4 In this section, AV1 refers to the narrow definition where the residual-rearrangement and sign-switching

features of the general definition of the method in (9) are temporarily ignored because they are covered by
AV2 and AV3/AV4, respectively.
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series (y0). The lesson is that one should be careful in drawing conclusions from simulations
of a system of series with significantly varying degrees of nonstationarity, especially if N is
fixed at the same level for all the series that are being simulated. ¤

The remainder of this section will be devoted to summarizing the features of each new
VRT by means of a Response Surface (RS). The RS ascertains the average behavior of
efficiency gains as α and T change, so as to understand and predict the performance of
the VRTs. Moreover as explained in Hendry (1984), a RS reduces the specificity of MC
experiments. Letting p1 = 1, 2, . . . and p2 = 0, 1, . . . , the explanatory variables are of the
form |α|Tp1 /T p2/2, sinh(α2)/T p1/2, and cosh(α2)T p1/2, with variables that are insignificant
at the 5% level dropped from the RS. In the case of AVs, we also have the limiting EGs
(that will be derived in Section 5) as additional explanatory variables; whereas in the case
of CVs, we add separate functions of |α| and T .

Hyperbolic functions can be defined as

cosh(z) :=
1

2
(ez + e−z) and sinh (z) :=

1

2
(ez − e−z). (24)

Their appearance is in line with some analytical results on autoregressions; see Abadir
(1993b). Powers of |α|T can be thought of as dummies representing unit roots asymptoti-
cally and near nonstationarity when T is finite; since:

|α|T = 1 for |α| = 1 (25)

|α|T ≈ 1 for |α| ≈ 1 and T <∞
|α|T ≈ 0 for |α| ¿ 1, or for |α| < 1 and T →∞.

This takes care of the different nature of distributional results for the cases of |α| ≈ 1 and
|α| ¿ 1. Such terms explain why there will be no evidence of structural breaks in the RSs
when the root is near unity, in spite of the radically different asymptotic theories required
by the two extremes 0 and 1 of |α|. Powers of |α|T could be used as weights in analytically
solving the problem of finding closed forms for general finite-sample distributions whose
range of applicability includes |α| 6= 1 as well as |α| = 1.5 There is some evidence that
this approach could bear fruit since finite-sample distributions are mixtures of the limiting
normal and the distribution under |α| = 1, with greater weight assigned to the latter for
typical T . For example, compare Phillips’ (1977, 1978a, and especially 1978b) finite sample
approximations for the distributions when |α| < 1 with the formulae in Abadir (1993a,
1995), or see the numerical results of Evans and Savin (1981). Abadir (1995) tackles this
problem from a different angle (an asymptotic one): unit root distribution functions provide
the general formulae that are encompassing generalizations of the standard normal which
arises in the limit for the Studentized t statistic when |α| 6= 1. The |α|T term can also be
interpreted as an exponential proxy for Hendry’s (1984, p.965) notion of “effective sample
size”, extended to the case when |α| ≥ 1. Hendry’s effective sample size, T (1 − α2), is
only valid for |α| < 1. For a different generalization of this term to include |α| 6= 1, see
Abadir (1993c). The disadvantage of the latter generalization is that it is discontinuous at
|α| = 1 and is useful only in asymptotic analysis, unlike the continuum provided by |α|T
throughout the range of α and T .

The RS of EGAV1 is

log(EGAV1) (26)

=− log(5 + α2) + 2.07
(0.005)
[0.004]

+ 0.21
(0.02)
[0.02]

|α|T − 0.82
(0.19)
[0.19]

|α|T /
√
T + 0.36

(0.07)
[0.06]

sinh(α2)/
√
T

5See Abadir (1992) for an asymptotic encompassing formula for the distributions of all statistics when
|α| = 1 .
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R̄2 = 0.83, S = 0.0218, CH(4, 42) = 1.77,

where:
(.) = conventional standard errors,
[.] = White’s (1980) heteroskedasticity-consistent standard errors,
R̄2 = the coefficient of determination after a degrees-of-freedom adjustment,
S = residual standard error,
CH(a, b) = Chow’s (1960) test for structural break at |α| = 1, distributed as F(a, b).

The first term of the RS is its asymptotic value when |α| < 1, up to an additive constant.
It is not estimated: the coefficient is restricted in accordance with the asymptotics of Section
5.2 (notice that log 8 = 2. 08). There is no evidence of heteroskedasticity, as is seen from
the small difference between the two types of standard errors. Furthermore, the 5% critical
value for F(4, 42) is 2.59, so there is no break at |α| = 1. The fit is good, but it can be
improved if one were to include more variables at the cost of interpretability and parsimony.
Here, we can see that increasing |α|T improves the efficiency gain (the gain increases with
α, but declines with T especially when α is small), which was noted in Remark 1 above.
The coefficient of the last term works in the same direction, while the impact of |α|T /

√
T

is smaller than the other terms because of the effect of a large T .
AV2 could be summarized by a RS similar to (26), but there is little point in doing so

here because of the breakdown of this method when T > 100, and because of its relative
cost; see (10) and the ensuing discussion.

The promising features of AV3 and AV4 can be described by the following RS, where
the first term is again from the asymptotics of Section 5.2:

log(EGAV4,3) = log(1 + α−2)− 0.0170
(0.0051)
[0.0049]

+ 0.28
(0.03)
[0.03]

cosh(α2)/
√
T (27)

R̄2 = 0.9998, S = 0.0163, CH(2, 46) = 1.17,

where the five data points pertaining to α = 0 have been replaced by five others that were
generated under |α| = 0.1, because α→ 0 leads to an infinite EG which creates a precision
problem for the regression. Notice that the figures for R̄2 are somewhat inflated by the
large variation in the left-hand side, especially as α→ 0. However, there is no break in this
relation as |α|→ 1, since the critical 5% value of F(2, 46) is 3.20. Together, the asymptotics
of Section 5.2 and hyperbolic functions are seen here to dramatically explain a lot of what
happens as α changes.

We now turn to CVs. The RS for all three are quite similar; to save space, only the RS
of CV3 (which is superior to the other two) will be reported.

log(EGCV3)

= 10.63
(0.54)
[0.97]

− 41.27
(6.05)
[5.75]

/
√
T − 6.79

(0.37)
[0.64]

cosh(α2) + 33.47
(5.69)
[4.64]

cosh(α2)/
√
T − 7.68

(2.18)
[1.15]

sinh(α2)/
√
T

+ 0.17
(0.030)
[0.031]

(1− |α|) log T − 0.72
(0.11)
[0.08]

³
1− |α|T

´
+ 0.079
(0.0065)
[0.0097]

³
1− |α|T

´√
T (28)

R̄2 = 0.99, S = 0.107, CH(5, 42) = 1.19.

Note that all the terms in the second line are zero when α = 1. Note also that for α = 1
and T → ∞, one finds that log(EGCV3) is predicted to converge to the finite number
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10.63− 6.79 cosh(1) = 0.15, i.e. (28) predicts that EGCV3 converges to 1.16. On the other
hand, when |α| < 1 (stationary case), the elements on the second line diverge as T → ∞
and log(EGCV3)/

√
T → 0.079, i.e. EGCV3 tends to ∞.

Here also, the fit is good and there is no evidence of either structural breaks at |α| = 1
or heteroskedasticity. Though still small, S is higher in (28) than in any other RS presented
in this work, due to the more volatile performance of CVs relative to the AVs considered
above. The fit of (28) appears to be worse for α very cose to 1, possibly due to the different
behavior for |α| = 1 and |α| < 1 as T →∞ discussed above; see also Section 5.

4 Uses and extensions of the VRTs

Caution should be exercised when employing VRTs in a dynamic context. There is a marked
change in efficiency gains as |α| and T vary jointly. Contrary to what classical asymptotic
theory suggests, doubling the sample size will have effects that are dependent on the level
of T instead of just halving the standard error of the modified estimator eα. The RS of the
previous section can be used to avoid such pitfalls by predicting how VRTs fare as |α| and
T change.

For increased efficiency gains when α 6= 0, one may combine more than one of the
VRTs described above, depending on their correlation and on the specific problem at hand
(e.g. magnitudes of α and T ). The best method of doing so was detailed by Davidson and
MacKinnon (1992) who show that the optimal combination of VRTs will be in the form of
a regression run in the same spirit as (22). In order for the researcher not to waste valuable
time generating VRTs that are not useful for the problem at hand, a priori selection of
VRTs should be made according to the criteria given earlier. These VRTs should then be
the inputs of the aforementioned regression.

Combinations of VRTs of different types are likely to do best, when using the method
of Davidson and MacKinnon (1992). This is an interesting area for future research. Given
their relatively strong performance in dynamic DGPs, CV3 and one of AV3 or AV4 are the
most prominent candidates. Moreover, because AV3 and AV4 have a good performance also
for unit roots while CV3 does well for intermediate persistence, combining the two types of
VRTs gives a smoother performance as persistence changes. Also, the exceptionally good
performance of AV3 and AV4 when T is small should remedy the weakness of CV3 in small
samples. In the more specific event of a nearly nonstationary DGP, the narrowly interpreted
AV1 —which is the only VRT (apart from the erratic AV2) to improve as |α| gets closer to
1— may also be added to the combination to yield even more efficiency gains.

The AVs presented earlier are special cases of what we can call an orthogonal-transform
AV. In particular, AV1-AV3 are all special cases involving premultiplication of ε := (ε1, ..., εT )0

by an orthogonal matrix, hence ε and its transformation have the same first two moments.
These orthogonal matrices were, respectively:

1. R := diag(Q1,Q2, . . . ), where Qi := ApiBωi (i = 1, . . . , T/2) with

Ap :=

µ
(−1)p 0
0 1

¶
, p ∈ {0, 1}; Bω :=

µ
cosω sinω
− sinω cosω

¶
, ω ∈ (0, 2π).

The 4 possible AV1s are obtained setting pi = p ∈ {0, 1} and ωi = ω = {14π,
5
4π}.6

The matrix Ap changes sign to the first innovation, while Bω describes a rotation
with angle ω. If Qi = Qj for all i, j, then R = IT/2 ⊗ Q1. This class contains
many variants; a simple set of k distinct R matrices, denoted by R1, . . . ,Rk, can for
instance be obtained by fixing pi = p ∈ {0, 1} and choosing angles ω1 < ω2 < · · · < ωk
in (0, 2π).

6One could also vary p, ω with i, but we will not do so here.
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2. S := (eT ,eT−1, . . . , e1), where ei is the i-th column of the identity matrix IT . More
generally, S can be chosen as any permutation of the columns of IT ; i.e. a permutation
matrix having exactly one element equal to 1 in any row (equivalent to sampling from
ε without replacement). A simple set of k distinct S matrices, denoted S1, . . . ,Sk,
can for instance be obtained by choosing k different permutations of the ordered set
{1, 2, . . . T}.

3. T := diag (−1, 1,−1, . . . ), where the typical element of the diagonal is (−1)i. This
class contains many variants; a simple set of k distinct T matrices, denoted T1, . . . ,Tk,
can for instance be obtained by setting Ti := diag(−Ii, Ii,−Ii, . . . ), where the last
block is possibly truncated so as to fit in a T × T matrix. (This corresponds to
generating the AV {(−1)κ(t)εt}, with κ (t) =

¥
t
i + 1

¦
). It is also possible to switch the

sign randomly, but independently of ε, rather than do it deterministically.

Although VRTs were only mentioned so far in connection with estimating the moments
of econometric estimators, it is possible to use them on a wider scale. For example, Rothery
(1982) reduced the uncertainty in estimating the MC power of a test by using the known
power of another as the control variate in a manner similar to CV1 and CV2 where c is
fixed at 1.7 Rothery’s technique could be extended to allow for the estimation of bc as in
CV3. Another example is in Durbin and Koopman (1997, espec. pp. 674-676), where
independence properties of the normal distribution are exploited to generate a new class of
AVs. CVs based on Taylor series are also given there.

VRTs can also be used to improve the accuracy of numerical integration routines (but
see Fang, Wang and Bentler (1994) for an alternative approach). Using MC in numerical
integration has become part of the Bayesian tool kit for analyzing posterior densities since
the seminal paper by Kloek and van Dijk (1978). Bayesian and other integration intensive
applications stand to benefit from using the new VRTs.

Another illustration of the wide and not necessarily standard applicability of VRTs
can be obtained by using the antithetic variates bα− as if they were actual estimates bα
from another replication, thus saving the time taken to generate half of the replications.
This procedure can be used in any simulation work involving bα, such as estimating the
distributions of any statistic associated with bα, under a null or under an alternative (e.g.
power).

The dependence of bα− and bα can be exploited as discussed above, see Davidson and
MacKinnon (1992). When bα− and bα happen to be independent, one can use them simply
as different replicates; this is what happens for AV3 and AV4 in the case of near nonsta-
tionarity, for all values of T , since EGAV4,3 ≈ 2 by RS (27) or by Remark 2 on the results
at the beginning of Section 3; see also the following Section 5 for an analytic proof.

5 Large-sample analytics

In this section, we study the asymptotic distribution of (bα, bα−) when T → ∞. We hence
obtain the limiting EGs for the new AVs, see the discussion at the end of Section 2. A
similar analysis is also applied to study the limit behavior of EGs for CVs. We discuss
AVs in Sections 5.1 and 5.2 for the nonstationary and the stationary cases, respectively; we
treat CVs in Section 5.3.

We start by introducting notation for AVs. Denote the initial sequence {εt} as {ε1,t} :=
{εt}, and we let {ε2,t} := {ε−t } indicate the AV innovations. Conformably, we indicate by
{y1,t} and {y2,t} the corresponding values of yt generated by the DGP (1). In order to
emphasize the dependence on T , we indicate by bα1,T the crude MC estimate of α based on

7This method assumes that the distribution of the test used as CV can be calculated explicitly; see
Paruolo (2002) on the influence of estimation of critical values in comparing test powers by simulation.
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{y1,t} and by bα2,T the one obtaind from {y2,t}. The combined estimator is indicated byeαT := 1
2 (bα1,T + bα2,T ), where E(bα1,T ) = E (eαT ) = E (bα2,T ).

In the light of the discussion of the last section, we extend the definition of AV1 to
include all transformation of the type Bω, excluding the sign-swithing effect associated
with A1.8 Specifically, recall that T is even, and let t = 1, . . . , T , and m = 1, . . . , T/2. For
AV1 we fix a given angle ω ∈ (0, 2π), and we employ the following pairs of definitions for t
odd (t = 2m− 1) and t even (t = 2m):

ε2,2m−1 := cos (ω) ε1,2m−1 + sin (ω) ε1,2m
ε2,2m := − sin (ω) ε1,2m−1 + cos (ω) ε1,2m.

Moreover, recall that in the present notation ε2,t := ε1,T−t for AV2 and ε2,t := (−1)tε1,t
for AV3. AV4 is defined differently, but gives the same AV bα2,T as AV3, so we do not
distinguish AV3 from AV4 in this section, and we refer to them as AV4,3.

We let bθT := (bα1,T , bα2,T )0 be the 2× 1 vector of α estimates, so that eαT = 1
2ı
0bθT where

ı := (1, 1)0 and consider limits as T → ∞. Because of the consistency of estimators bαi,T ,
i.e. plim bαi,T = α, also plim eαT = α. Moreover if bθT satisfies some limit theorem of the
type aT := T q(bθT − αı)

w→ a∞ = Op (1) (where q = 1 for α = 1 and q = 1
2 for |α| < 1),

then also T q (eαT − α)
w→ 1

2ı
0a∞ = Op (1), and the limit distribution of eαT can be deduced

from the one of bθT . Hence, one can use the limit random vector a∞ as an approximation
to the distribution of bθT for finite T .

Let mT := E (aT ), VT := var (aT ), and note that var(bθT ) = T−2qVT . Substituting in
(6) one finds

var(eαT ) = 1

4T 2q
ı0VT ı. (29)

Let also Σ := var (a∞). Under regularity conditions, VT converges to Σ as aT
w→ a∞. If

these conditions are met, then one can use Σ as guidance for VT in (29).
Each AVj implies a different VT and Σ. We label Σj the limiting variance matrix

for AVj and indicate by ρj the implied correlation coefficient. One can discuss which AV
methods is bound to give the highest variance reduction in (29) for large values of T by
comparing

ı0Σjı (30)

for j = 1, 2, and 4, 3. This comparison can be based on values of the correlation ρj in the
case of equal variances, see (7). In particular we indicate the limit value of EGv as

EGAVj∞ :=
2

1 + ρj
. (31)

5.1 AVs, nonstationary case

Let α = 1 and define the normalized partial sums for i = 1, 2

si (u) := σ−1T−1/2
bTucX
t=1

εit = σ−1T−1/2yi,bTuc,

8The effect of switching the sign is already investigated through the study of AV4,3.
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and s (u) := (s1 (u) , s2 (u))0 . In this case q = 1 in the normalization aT := T q(bθT − αı),
where

aiT := T (bαiT − 1) = P
t si
¡
t−1
T

¢ ¡
si
¡
t
T

¢
− si

¡
t−1
T

¢¢
1
T

P
t si
¡
t−1
T

¢2
=

1
2

³
si (1)

2 −
P

t

¡
si
¡
t
T

¢
− si

¡
t−1
T

¢¢2´
1
T

P
t si
¡
t−1
T

¢2 ,

which is a functional of si (u) for u in UT := { t
T , t = 2, ..., T}. One has aiT = ψ (si)+op (1),

where the functional ψ is defined as

ψ(x) :=
1
2

¡
x2 (1)− 1

¢R 1
0 x

2 (τ) dτ

for any function x(τ) in the space D[0, 1] of cadlag functions on [0,1]. We notice that ψ is a
continuous functional in the sup metric, provided the denominator is different from 0 a.s.,
which holds in the case of x equal to Brownian motions (BMs). Note that for the partial
sums si, one has

ψ (si) =

1
2

³
si (1)

2 − 1
´

1
T

P
t si
¡
t−1
T

¢2 .
We also note that ψ(x) is an even functional, in the sense that, given the function x :=
x(τ) and its reflection across the time axis −x := −x(τ), then ψ (−x) = ψ (x), because
x(τ)2 = (−x(τ))2, 0 ≤ τ ≤ 1, both in the numerator and denominator of ψ.

We wish to characterize the dependence between a1T and a2T for large T . In order to do
this we study the weak limits of partial sums s1 (u) and s2 (u) in the following lemma. We
denote by W (u) a vector Brownian motion with variance V , i.e. with W (u) ∼ N(0, uV )
and by B (u) a standard vector Brownian motion, i.e. W (u) with V = I2.

Lemma 1. When α = 1, the following holds, for various AVj.

1. For AV1, s (u) w→W (u) where W (u) is a Brownian motion with

V =

µ
1 cos (ω)

cos (ω) 1

¶
.

2. For AV2, µ
s1 (u)
s2 (u)

¶
w→
µ R u

0 dB1 (τ)R 1
1−u dB1 (τ)

¶
=

µ
B1 (u)

B1 (1)−B1 (1− u)

¶
,

i.e. both s1 (u) and s2 (u) converge to a univariate standard Brownian motion, with
the property that the second one, B1 (1)−B1 (1− u), is the Brownian motion obtained
by reversing the time of the first one, B1 (u).

3. For AV4,3,
s (u)

w→ B (u)

where B(u) is a standard vector Brownian motion.

Proof. Cases AV1 and AV4,3: we apply a Cramér-Wold device. Consider real λi, i = 1, 2,
λ := (λ1, λ2)

0 and define

s3 (u) := λ0s(u) =
2X

i=1

λisi (u) = σ−1T−1/2
bTucX
t=1

ctε1t,
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where for AV1 one finds c2m−1 = λ1+λ2 (cos (ω)− sin (ω)), c2m = λ1+λ2 (cos (ω) + sin (ω)),
m = 1, . . . , T/2, while for AV4,3 ct = λ1 + (−1)t λ2. Applying the univariate FCLT for
martingale differences, see Brown (1971), one sees that

s3 (u)
w→W3 (u) u = [0, 1]

with W3 (u) a Brownian motion with variance v := limT→∞ T−1
PT

t=1 c
2
t . For AV1,

v =
1

2

³
(λ1 + λ2 (cos (ω)− sin (ω)))2 + (λ1 + λ2 (cos (ω) + sin (ω)))

2
´

= λ21 + 2 (cos (ω))λ1λ2 + λ22 = λ0V λ

which implies the expression of V given in the statement of case 1. For AV4,3

v = λ21 + λ22 + 2λ1λ2 lim
T→∞

T−1
TX
t=1

(−1)t = λ21 + λ22 = λ0I2λ,

where we have used the fact that for integer p one has

2pX
i=1

(−1)i = 0. (32)

This shows convergence of the finite dimensional distributions of s(u) to B(u). Tightness
follows as in Brown (1971) Theorem 3.

Case AV2 follows as a direct application of time reversal of random walks and the
associated limit BM.

Remark 5. AV1 generates correlated BMs. The correlation can be chosen to be positive
or negative by choice of the angle ω. For instance ω = π/4 gives a correlation of

√
2/2

while ω = 3π/4 gives a correlation of −
√
2/2. In order to maximize correlations one can

choose a small number δ and set ω = δ for highly positive and ω = π−δ for highly negative
correlations.

Note, however, that the correlations generated by choice of ω may not help variance
reduction for the functional ψ, because it is even. Note in fact, that if two univariate
BMs W1 and W2 have correlation ρ, then W1 and −W2 have correlation −ρ. However,
ψ (W2) = ψ (−W2), so that generating BMs with positive or negative correlations will have
the same effect on eαT in the limit.

For the choice ω = π/4 used in previous sections, we have estimated ρ1 by simulating
ψ (s1) and ψ (s2) for T = 1000, 5000, 10000 and N = 10000, and calculating the correlation
between MC replications. We have obtained estimates of ρ1 equal to 0.24, 0.23, 0.24 for
the 3 values of T . We can hence infer that the large T value of ρ1 is about 0.24. This gives
EGAV1∞ = 2/1.24 = 1. 61, while the RS of Section 3 gave essentially the same because
exp (− log(6) + 2.07 + 0.21) = 1. 63. ¤

Remark 6. AV2 generates time-reversed BMs, B1 and B←1 say. Note that the functional
ψ (x) depends on the last value of the argument function x, which is equal for both BM,
and on the area under the squared path of x, which is not equal for B1 and B←1 . In fact
by a simple change of variable t = 1− τ , one hasZ 1

0
B←1 (τ)

2 dτ =

Z 1

0
(B1(1)−B1(1− τ))2 dτ =

Z 1

0
(B1(1)−B1(t))

2 dt

=

Z 1

0
B1(t)

2 dt+B1(1)
2 − 2B1(1)

Z 1

0
B1(t) dt.
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Figure 1: AV correlations as function of α: ρ1 (dotted line and diamonds, ω = 1
4π), ρ2

(solid line and filled dots) and ρ3 (dashed line and filled dots).

Hence one expects AV2 replicates bα1,T , bα2,T to be correlated.
Also for AV2, we have estimated ρ2 by simulating ψ (s1) and ψ (s2) for T = 1000, 5000,

10000 and N = 10000, and calculating the correlation between MC replications. We have
obtained estimates of ρ2 equal to 0.74 for all 3 values of T . We can hence infer that the
large T value of ρ2 is about 0.74. This gives EGAV2∞ = 2/1.74 = 1. 15. ¤

Remark 7. AV4,3 generates independent BMs B1 and B2. Hence also ψ (B1) and ψ (B2)
will be independent, and hence ρ3 in (31) is null. This gives EGAV4,3∞ = 2; while the RS
of Section 3 gave exp (log(2)− 0.0170) = 1. 97.

The same remarks given above apply to AV4,3 when (−1)t is substituted by some other
centered periodic function of t, e.g. like (−1)κ(t), κ (t) =

¥
t
i + 1

¦
. In this case 2p needs to

be replaced by ip in (32), where i is the period of the periodic function.
One can enquire how fast this independence is attained for AV4,3 in simulations with

finite T . To this end, (32) above shows that s1
¡
t
T

¢
and s2

¡
t
T

¢
are independent under

Gaussian ε1t also for finite T , when t is even. When t is odd, E
¡
s1
¡
t
T

¢
s2
¡
t
T

¢¢
= 1

T . ¤

5.2 AVs, stationary case

Let |α| < 1, and set q = 1
2 in the normalization of aT := T 1/2(bθT − αı), where

aiT := T 1/2 (bαiT − α) :=
NiT

DiT
:=

T−1/2
P

t yi,t−1εi,t
T−1

P
t y
2
i,t−1

.

In the case of |α| < 1, yt is stationary and ergodic, i.e.

DiT := T−1
X

t
y2i,t−1

a.s.→ Di := E
¡
y2i,t
¢
=

σ2

1− α2
.

It is hence natural to consider the approximation aiT = biT + op (1) with

biT :=
NiT

Di
:=

T−1/2
P

t yi,t−1εi,t

E
³
y2i,t

´ .
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Figure 2: Influence of ω on ρ1 as a function of α, |α| < 1: upper dashed line ω = 0, solid
line ω = 1

4π, lower dashed line ω =
1
2π.

Note that E(bi,T ) = 0 and

var (bi,T ) =
σ2

TD2
i

X
t
E
¡
y2i,t−1

¢
→ σ2

Di
= 1− α2.

The following lemma summarizes results in the stationary case.

Lemma 2. When |α| < 1, bT := (b1,T , b2,T )0 is Op(1) for T →∞, and

var (bT )→ Σ :=
¡
1− α2

¢µ 1 ρ
ρ 1

¶
,

where the values of the correlation term ρ are given below for the various AVj, using the
notation ρj for AVj:

for AV1, ρ1 =
1 + α2

2
cos2 ω and EGAV1∞ =

4

2 + (1 + α2) cos2 ω
;

for AV2, ρ2 = 1 and EGAV2∞ = 1;

for AV4, 3, ρ3 = −
1− α2

1 + α2
and EGAV4, 3∞ = 1 +

1

α2
.

Proof. The proof of this lemma is given in the Appendix.

The correlation terms ρj are continuous functions in α for −1 < α < 1, but not all ρj
are continuous as |α|→ 1; see Fig.1. It is likely that these could be bridged if a DGP with
local-to-unity parameter is adopted; e.g. see Phillips (1987) for a definition of such a DGP
and its relation to ours. For the current setup, we can note the following:

Remark 8. The AV1 correlation ρ1 is always positive, and hence implies not-so-big variance
reductions. It tends to cos2 ω when |α| → 1 and to 1

2 cos
2 ω for α = 0. For ω = π/4, for

instance ρ1 → 1
2 for |α| → 1 and ρ1 =

1
4 for α = 0. The correlation ρ1 is discontinuous at

|α| = 1. From Remark 5 above, ρ1 = 0.24 when α = 1, ω = π/4. Hence, limα→1 ρ1 = 1
2 6=

0.24 and EG improves when |α| reaches 1. ¤
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Remark 9. The choice of ω influences the variance reduction properties of AV1. When
ω → 0, the performance is worst, because cos2 ω = 1; for ω = π/2 the performance is best,
because in this case ρ1 = 0 for all α. This is shown graphically in Fig. 2 for −1 < α < 1.

The case ω = π/2 implies that the antithetic ε2t is formed by interchanging consecutive
ε1t and changing the sign for odd t, i.e. ε2,2m = −ε1,2m−1, ε2,2m−1 = ε1,2m. Comparing
this to the effect of AV4, 3, which just changes the sign for odd t, we see that interchanging
consecutive ε1t has an adverse effect on variance reduction. ¤

Remark 10. The AV2 correlation ρ2 equals 1 for all |α| < 1. Hence it gives no variance
reduction. The correlation ρ2 is discontinuous at |α| = 1. From Remark 6 above, ρ2 = 0.74
when α = 1. Hence, limα→1 ρ2 = 1 6= 0.74 and EG improves when |α| reaches 1. ¤

Remark 11. The AV4, 3 correlation ρ3 equals 0 when |α|→ 1 and equals −1 for α = 0. It
gives negative correlations for all −1 < α < 1, and hence implies bigger variance reductions
than AV1. The correlation ρ3 is continuous at α = 1. In fact limα→1 ρ3 = 0 where ψ(s1)
and ψ(s2) are also independent thanks to Lemma 1, which implies ρ3 = 0 when α = 1.
AV4, 3 has the best performance in terms of EGv, and also presents a continuous behavior
as |α|→ 1. ¤

5.3 CVs

We next study the EG of control variates for large T . We consider the case of CV3 as a
representative case; minor modifications apply for other CVs. Let bα− α = NT/DT , where
NT := T−1/2

P
t yt−1εt and DT := T−1

P
t y
2
t−1 with a notation similar to the one in Section

5.2. By properties of least squares, the fact that E(NT ) = 0 , and using the discussion in
Davidson and MacKinnon (1992) bottom of page 206, one finds that

EGCV3T =
1

1− ξ2T
, where ξT := corr

µ
NT

DT
,

NT

T−1/2h

¶
= corr

µ
NT

DT
, NT

¶
. (33)

Note that, being defined as a correlation coefficient, ξT is scale-invariant in both arguments;
both can then be scaled appropriately and independently as T increases.

Equation (33) applies both for α = 1 and for |α| < 1. Under regularity conditions,
when T grows large and |α| < 1, DT

a.s.→ D, a constant and hence ξT converges to
corr (NT/D,NT ) = corr (NT , NT ) = 1. This implies that EGCV3T → ∞ for |α| < 1,
in accordance with the prediction of (28).

When α = 1 instead, both NT /DT and NT — when appropriately scaled — have the non-
degenerate weak limits 1

2

¡
B21(1)− 1

¢
/
R 1
0 B

2
1(τ)dτ and

1
2

¡
B21(1)− 1

¢
respectively, where

B1 is a standard Brownian motion, see Section 5.1. Hence under regularity conditions ξT
converges to

ξ := corr

Ã
1
2

¡
B21(1)− 1

¢R 1
0 B

2
1(τ)dτ

,
1

2

¡
B21(1)− 1

¢!
.

We have simulated ξ discretizing the Brownian motion as a random walk with T steps for
T = {103, 104, 105, 5× 105}, using 105 replications; we obtained the following values for ξ:
0.5080, 0.5076, 0.5036, 0.4972. Regressing these values of ξ on a constant, T−1/2, and T−1,
we get the prediction of ξ = 0.4969 for T =∞. On the basis on this estimate, one finds

logEGCV3∞ = log
1

1− ξ2
= log

1

1− 0.49692 = 0.28.

This prediction is similar to the prediction of formula (28). A test that γ1+γ3 cosh(1) = 0.28
in regression (28), where γ1 and γ3 indicate the contant and the coefficient of cosh(α

2), gave
an F(1,47) statistics of 1.70 with p-value of 0.198; hence the prediction of (28) and of (33)
are not statistically different for α = 1, T =∞.
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6 Conclusions

This paper has investigated the effectiveness of a few VRTs in the context of dynamic
DGPs. The best performers were new VRTs, with some providing staggering efficiency
gains and thus potential for large time and/or precision gains. In general, the most efficient
of all was AV4, a new VRT that relies on generating antithetic parameter estimates by
inverting the sign of these parameters in the DGP. The resulting antithetic variate was
always nonpositively correlated to the crude MC estimates, thereby reducing the variance
of the combined estimator by large factors of 2 or more. Equally good but for the slower
generation of estimators, AV3 was overall next best to AV4. AV3 relied on Hendry and
Harrison’s (1974) untried suggestion of changing the sign of every other residual.

This and many other methods that reformulate innovations were shown to be special
cases of the new encompassing orthogonal-transform AV, which has a simple and conve-
nient general formulation. Another special case of it was AV2 which applied some of the
Jackknife/Bootstrap philosophy to variance reduction in dynamic MC. It seemed the least
promising VRT for autoregressive series. Clearly however, this does not preclude the suc-
cessful use of the Jackknife/Bootstrap philosophy in other areas and towards other ends.

Finally, the performance of CVs —as represented by the optimum CV3— was encouraging
the closer α was to 0, in which case it improved with T . Large efficiency gains of 15 times
were quite common, though AV3 and AV4 outperformed CVs whenever |α| was in the
neighborhood of 0 or 1, particularly when T was not large.

The invariance of the performance of AV3 and AV4 with respect to T , and their inde-
pendence from bα when |α| ≈ 1 meant that they could be used for the fast generation of
additional nearly nonstationary data for any sample size, thus reducing simulation times.
This is a new and hitherto unknown general function that some VRTs may now serve in
simulation under certain conditions.

The benefit derived from this unconventional application of VRTs was to allow the
possibility of saving a significant amount of time in any future MC study of ARMA series
with one autoregressive root near unity and stable/invertible remaining roots. The exact
method for doing so was described in the latter part of Section 4, and it shows that simu-
lating nearly nonstationary series is not as uniquely problematic as it might have seemed
earlier: in spite of the need for a larger number of replications to counteract the significant
increase in MC volatility as |α| and T increase, AV3 and AV4 could be used unconven-
tionally to compensate for such a requirement when |α| ≈ 1. Other VRTs can be used to
fulfill such a function for cases when |α| > 1. AV1 is one candidate, given its improved
performance for α2 close to 1.

In addition to summarizing the results, the response surfaces used in the paper had
the following benefits. First, they allowed for a smaller number of replications than would
otherwise be needed because they reduce specificity. Second, they predict the range of
beneficial application of a VRT by calculating the magnitude of the efficiency gain. Third,
by comparing fitted and actual values, they detect features like increased MC volatility as
|α| and T grow. The implication of this latter result for simulating Wiener processes is
particularly important. These processes are typically generated by discrete random walks
(α = 1) with a large number of observations (T → ∞). These are precisely the two
ingredients that will increase MC variability, and one needs to be aware that a number of
replications that is larger than usual is needed in that context. More generally, normalized
Ornstein-Uhlenbeck processes are approximated by DGP (1), and their accuracy can now
be controlled better.

It can be shown analytically that the results of this paper are applicable to vector
autoregressions and error-correction mechanisms. For technical details of the necessary
matrix transformations, see Abadir, Hadri and Tzavalis (1999). The magnitude of efficiency
gains will depend on a mixture of the eigenvalues of an autoregressive matrix. Stable
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systems will behave like a stable AR, purely nonstationary systems like a random walk.
Cointegrated systems will produce linear combinations that depend primarily on the extent
of a rank-deficiency parameter.

References

Abadir, K.M. (1992), A distribution generating equation for unit-root statistics, Oxford
Bulletin of Economics and Statistics, 54, 305-323.

Abadir, K.M. (1993a), The limiting distribution of the autocorrelation coefficient under a
unit root, Annals of Statistics, 21, 1058-1070.

Abadir, K.M. (1993b), OLS bias in a nonstationary autoregression, Econometric Theory, 9,
81-93.

Abadir, K.M. (1993c), On the asymptotic power of unit root tests, Econometric Theory, 9,
187-219.

Abadir, K.M. (1995), The limiting distribution of the t ratio under a unit root, Econometric
Theory, 11, 775-793.

Abadir, K.M., K. Hadri and E. Tzavalis (1999), The influence of VAR dimensions on esti-
mator biases, Econometrica, 67, 163-181.

Brown B.M. (1971), Martingale central limit theorems, Annals of Mathematical Statistics,
42, 59-66.

Chow, G.C. (1960), Tests of equality between sets of coefficients in two linear regressions,
Econometrica, 28, 591-605.

Cryer, J.D., J.C. Nankervis and N.E. Savin (1989), Mirror-image and invariant distributions
in ARMA models, Econometric Theory, 5, 36-52.

Davidson, R. and J.G. MacKinnon (1992), Regression-based methods for using control vari-
ates in Monte Carlo experiments, Journal of Econometrics, 54, 203-222.

Durbin, J. and S.J. Koopman (1997), Monte Carlo maximum likelihood estimation for non-
Gaussian state space models, Biometrika, 84, 669-684.

Ericsson, N.R. (1991), Monte Carlo methodology and the finite sample properties of instru-
mental variables statistics for testing nested and non-nested hypotheses, Economet-
rica, 59, 1249-77.

Evans, G.B.A. and N.E. Savin (1981), Testing for unit roots: 1, Econometrica, 49, 753-779.
Fang, K.-T., Y. Wang and P.M. Bentler (1994), Some applications of number-theoretic

methods in statistics, Statistical Science, 9, 416-428.
Haldrup, N. (1996), Mirror image distributions and the Dickey-Fuller regression with a

maintained trend, Journal of Econometrics, 72, 301-312.
Hendry, D.F. (1984), Monte Carlo experimentation in econometrics, in: Z. Griliches and

M.D.Intriligator (eds), Handbook of Econometrics, vol.2, Amsterdam: North-Holland.
Hendry, D.F. and R.W. Harrison (1974), Monte Carlo methodology and the small sample

behaviour of ordinary and two-stage least squares, Journal of Econometrics, 2, 151-
174.

Kendall, M. and A. Stuart (1977), The advanced theory of statistics, vol.1. 4th ed. London:
Charles Griffin & Co.

Kleijnen, J.P.C. (1974), Statistical techniques in simulation, part I, New York: Marcel
Dekker.

Kloek, T. and H.K. van Dijk (1978), Bayesian estimates of equation system parameters: an
application of integration by Monte Carlo, Econometrica, 46, 1-19.

20



Lai, T.L. and D. Siegmund (1983), Fixed accuracy estimation of an autoregressive parameter,
Annals of Statistics, 11, 478-485.

Paruolo, P. (2002), On Monte Carlo estimation of relative power, Econometrics Journal, 5,
65-75.

Phillips, P.C.B. (1977), Approximations to some finite sample distributions associated with
a first-order stochastic difference equation, Econometrica, 45, 463-485.

Phillips, P.C.B. (1978a), Edgeworth and saddlepoint approximations in the first-order non-
circular autoregression, Biometrika, 65, 91-98.

Phillips, P.C.B. (1978b), A note on the saddlepoint approximation in the first order non-
circular autoregression, Cowles Foundation Discussion Paper No.487, Yale University.

Phillips, P.C.B. (1987), Towards a unified asymptotic theory for autoregression, Biometrika,
74, 535-547.

Rothery, P. (1982), The use of control variates in Monte Carlo estimation of power, Applied
Statistics, 31, 125-129.

Said, S.E. and D.A. Dickey (1984), Testing for unit roots in autoregressive-moving average
models of unknown order, Biometrika, 71, 599-607.

Takahashi, A. and N. Yoshida (2005), Monte Carlo simulation with asymptotic method,
Journal of Japanese Statistical Society, 35, 171-203.

White, H. (1980), A heteroskedastic-consistent covariance matrix estimator and a direct test
for heteroskedasticity, Econometrica, 48, 817-838.

White, J.S. (1958), The limiting distribution of the serial correlation coefficient in the ex-
plosive case, Annals of Mathematical Statistics, 29, 1188-1197.

White, J.S. (1961), Asymptotic expansions for the mean and variance of the serial correlation
coefficient, Biometrika, 48, 85-94.

Appendix

Proof of Lemma 2. For all AVs, we observe that b1,T and b2,T satisfy the central limit
theorem for martingale differences, Brown (1971) Theorem 2; specifically b1,T

w→ N(0, 1 −
α2). This implies that bT := (b1,T , b2,T )0 is Op(1). In order to calculate var (bT ), we note
that var (bi,T )→ 1− α2 and that

cov(b1,T , b2,T ) =
1

T

A

D1D2
(34)

where A =
PT

s=2

PT
t=2 ast and ast := E (y1,s−1ε1,sy2,t−1ε2,t) .

We compute A below in different subsections for each AV. Let Et (·) indicate expec-
tations conditional on Ft := σ{ε1,t−j , j ≥ 0}. We also define γ12 (t) := E (y1,ty2,t) and
γ12 := limt→∞ γ12 (t). In the following we only need that ε1,t has 0 third moment; this is
implied by simmetry and existence of 3-rd absolute moments, as for the case of Gaussian
ε1,t.

AV1

Let a := d := cosω, b := −c = sinω. We note that ε2,t depends on ε1,t−1, ε1,t, for t even
and ε1,t, ε1,t+1 for t odd; hence y2,t is Ft-measurable for t even and Ft+1-measurable for t
odd. More precisely for t = 2m− 1 (t odd) one has

ε2,t = aε1,t + bε1,t+1, y2,t = aε1,t + bε1,t+1 + αy2,t−1 (35)

where y2,t−1 ∈ Ft−1, whereas for t = 2m (t even)

ε2,t = cε1,t−1 + dε1,t, y2,t = gε1,t + hε1,t−1 + α2y2,t−2 (36)

21



where g := d+ αb, h := c+ αa and y2,t−2 is Ft−2-measurable. Sometimes in the following
the observation y2,t is Ft-measurable for t even suffices.

We first prove that ast = 0 for t+ 2 ≤ s and s ≤ t− 2, i.e.

A =
TX
t=2

t+1X
s=t−1

ast =: A1 +A2 +O(1). (37)

where A1 :=
PT/2−1

m=1 (a2m−2,2m−1 + a2m−1,2m−1 + a2m,2m−1) includes the terms for t odd
and A2 :=

PT/2−2
m=1 (a2m−1,2m + a2m−1,2m + a2m+1,2m) the one for t even. In fact for t+1 ≤

s− 1 one has y2,t−1is Ft-measurable ε2,t is Ft+1-measurable, and Ft+1 ⊆ Fs−1

ast = E(y1,s−1ε1,sy2,t−1ε2,t) = E (Es−1 (ε1,s) y1,s−1y2,t−1ε2,t) = E(0) = 0

For s = t− 2 one has instead

ast = E(y1,s−1ε1,sy2,t−1ε2,t) = E (y1,t−3ε1,t−2 Et−2 (y2,t−1ε2,t)) = 0

because Et−2 (y2,t−1ε2,t) = 0; this follows from the fact that ε2,t is uncorrelated by con-
struction with y2,t−1 given the past, and because ε2,t (which depends on ε1,t−1, ε1,t, ε1,t+1)
is unaffected by conditioning on Ft−2. The same argument holds when setting s < t− 2.

We next consider ast for t−1 ≤ s ≤ t+1, distinguishing the cases of t odd or even. For
s = t− 1 and t even one finds

ast = E(y1,t−2ε1,t−1 (aε1,t−1 + bε1,t + αy2,t−2) (cε1,t−1 + dε1,t)) = αcσ2γ12 (t− 2) .

Here we have used the fact that ε1,t has 0 third moment. For s = t− 1 and t odd one finds
ast = E(y1,t−2ε1,t−1y2,t−1 (aε1,t + bε1,t+1)) = 0 by conditioning on Ft−1.

For s = t and t even one finds

ast = σ4 (ac+ db) + σ4α2dγ12 (t− 2) = σ4α2dγ12 (t− 2)

because ac+ db = 0, see (35), (36). Again here we have used the fact that ε1,t has 0 third
moment. For s = t and t odd one finds ast = aσ2γ12 (t− 1).

For s = t + 1 and t even, one has ast = 0, while for s = t + 1 and t odd one finds
ast = αbσ2γ12 (t− 1). Summarizing:

A1 =

T/2−1X
m=1

(a2m−1,2m−1 + a2m,2m−1) =
T/2−1X
m=1

(a+ αb)σ2γ12 (2m− 2) ,

A2 =

T/2−2X
m=1

(a2m−1,2m + a2m,2m) =

T/2−2X
m=1

¡
αc+ α2d

¢
σ2γ12 (2m− 2) ,

A =
¡
1 + α2

¢
cos (ω)σ2

T/2−2X
m=1

γ12 (2m− 2) +O(1),

where a + αb + αc + α2d =
¡
1 + α2

¢
cosω and we note that the covariances γ12 (t) are

summed for t even.
In order to calculate γ12 (t) for t even, write y2,t = α2y2,t−2+ηt where ηt := gε1,t+hε1,t−1,

g := d + αb, h := c + αa see (36). Next set t = 2m, write y2,2m = α2y2,2(m−1) + η2m, and
solve the recursions in m to find

y2,2m =
m−1X
i=0

α2i
¡
gε1,2(m−i) + hε1,2(m−i)−1

¢
.

22



Represent y1,t in a similar way as

y1,2m =
m−1X
i=0

α2i
¡
ε1,2(m−i) + αε1,2(m−i)−1

¢
.

Hence, because b+ c = 0,

γ12 (2m) =
m−1X
i=0

E
¡
α2i
¡
ε1,2(m−i) + αε1,2(m−i)−1

¢¢ ¡
α2i
¡
gε1,2(m−i) + hε1,2(m−i)−1

¢¢
=

= σ2g
m−1X
i=0

α4i + σ2αh
m−1X
i=0

α4i = σ2 (g + αh)
1− α4m

1− α4
= σ2 cosω

1− α4m

1− α2

Moreover for T →∞
T/2−2X
m=0

γ12 (2m) =
σ2 cosω

1− α2

µ
T

2
− 2− 1− α2T−4

1− α4

¶
=

T

2

σ2 cosω

1− α2
+O(1) =

T

2
γ12 +O(1)

where γ12 :=
¡
1− α2

¢−1
σ2 cosω = limm→∞ γ12 (2m). Hence

T−1A =
1

2

¡
1 + α2

¢ ¡
1− α2

¢−1
cos2 (ω)σ4 +O(1)

and substituting into (34)

cov(b1,T , b2,T ) =
A

TD1D2
→ cos2 (ω)

2

¡
1 + α2

¢ ¡
1− α2

¢
.

AV2

Recall that for AV2 one has ε2,t = ε1,T−t; the following representations hold:

y1,s−1 =
s−2X
j=0

αjε1,s−1−j , y2,t−1 =
t−2X
i=0

αiε2,t−1−i =
t−2X
i=0

αiε1,T−t+1+i

and hence

ast := E (y1,s−1ε1,sy2,t−1ε2,t) =
t−2X
i=0

s−2X
j=0

αi+j E(ε1,s−1−jε1,sε1,T−t+1+iε1,T−t) . (38)

Indicate subscripts in the last term in (38) as follows n1 := s−1−j, n2 := s, n3 := T−t+1+i,
n4 := T − t. In order for the expectation on the r.h.s. of (38) to be nonzero, n1, ..., n4 must
be equal in pairs. Note in fact that they cannot be all equal because of the presence of at
least 1 lag between the terms that originate from t, t − 1, and s, s − 1. One has 2 cases:
case 1, with n1 = n3, n2 = n4, and case 2, with n1 = n4, n2 = n3.

In case 1 one has s− 1− j = T − t+ 1 + i and s = T − t implies i = −(j + 2) which is
outside the range of i = 0, ..., t − 1. This is because if s = T − t, then y1,s−1 involves the
past while y2,t−1 involves the future, with no overlap. Hence case 1 gives 0 contribution to
ast.

Consider next case 2, with s− 1− j = T − t and s = T − t+ 1 + i. This is equivalent
to i = j and s− T + t− 1 = i. Consider a given fixed t; then there are as many values of s
as i = 0, ..., t− 2 with s ≥ T − t+ 1 for which ast = α2iσ4. Hence

T−1A =
σ4

T

TX
t=2

t−2X
i=0

α2i =
σ4

T

TX
t=2

1− α2(t−1)

1− α2
=

σ4

1− α2
+ o(1)

and thus

cov(b1,T , b2,T ) =
1

T

A

D1D2
→ σ4

1− α2

¡
1− α2

¢2
σ4

= 1− α2.
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AV4,3

We proceed as for AV1, recalling that for AV4,3 one has ε2,t = (−1)t ε1,t. In this case all
terms

ast := E (y1,s−1ε1,sy2,t−1ε2,t)

are equal to 0 for s < t by conditioning on Ft−1. Simmetrically for t < s one has ast = 0
by conditioning on Fs−1. Hence one is left with

at := att = E
¡
y1,t−1ε1,ty2,t−1 (−1)t ε1,t

¢
= (−1)t σ2 E(y1,t−1y2,t−1) = (−1)t σ2γ12 (t− 1) .

Moreover, one finds for t = 2p (t even)

γ12 (t) = E(y1,ty2,t) = E

Ã
t−1X
i=0

αiε1,t−i

!Ã
t−1X
i=0

αi (−1)t−i ε1,t−i

!
=

=
t−1X
i=0

α2i (−1)t−i E(ε21,t−i) = (−1)t σ2
t−1X
i=0

α2i (−1)i = 1− α2t

1 + α2
σ2,

where we have used the following fact, listing first the even and then the odd terms,

t−1X
i=0

α2i (−1)i =
p−1X
m=0

³
α2·2m − α2·(2m+1)

´
=
¡
1− α2

¢ 1− α4p

1− α4
=
1− α4p

1 + α2
.

When t is odd we use recursions and the previous expression to find

γ12 (t) = E(y1,ty2,t) = E
¡
(αy1,t−1 + ε1,t)

¡
αy2,t−1 + (−1)t ε1,t

¢¢
= α2 E(y1,t−1y2,t−1)− σ2 =

µ
1− α2t−2

1 + α2
α2 − 1

¶
σ2

=
α2 − α2t − 1− α2

1 + α2
σ2 = −1 + α2t

1 + α2
σ2.

Hence substituting in at for t even (t− 1 odd) one finds at = σ2γ12 (t− 1) = −σ4 1+α
2t

1+α2 ,

while for t odd (t− 1 even) one has at = −σ2γ12 (t− 1) = −σ4 1−α
2t

1+α2
. Hence, recalling that

T is even

A =
TX
t=2

at =

T/2X
m=2

a2m−1 +
T/2X
m=1

a2m = −
T

2

σ4

1 + α2
− T

2

σ4

1 + α2
+O(1).

Hence T−1A→ −σ4
¡
1 + α2

¢−1 and therefore
cov(b1,T , b2,T ) =

1

T

A

D1D2
→ −σ4 1

1 + α2

¡
1− α2

¢2
σ4

= −1− α2

1 + α2
¡
1− α2

¢
.
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