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Weakened subdifferentials and
Fréchet differentiability of real functions*

Ivan Ginchev'

Abstract

Let X be a real Banach space and f : X — R U {4o00}. It is well known that the
Clarke subdifferential 9° f(x) of the function f at x € intdom f is a singleton if and
only if f is strongly differentiable (then 0° f(x) = {Dsf(x)}, where D, f () is the strong
subdifferential of f at ). Simple examples show that there exist Fréchet differentiable at x
functions f, for which 9° f(x) is not a singleton. In such a sense the Clarke subdifferential
is not an exact generalization of the differential of a differentiable function. In the present
paper we propose a new subdifferential 0% f(z), called the weakened subdifferential of f
at x, which preserves the nice calculus rules of the Clarke subdifferential, and for X finite
dimensional, is a singleton 0" f(x) = {C} if and only if f is Fréchet differentiable at x,
and then ( = Dpf(x).

Key words: generalized subdifferentials.

2000 Mathematics Subject Classification: 49]52.

1 Introduction

In this paper X denotes a real Banach space with norm || - ||, and X* is its dual. The open
unit ball in X is denoted by B. The set of the real numbers is denoted by R. We put also
R =R U {+00}.

Let f : X — R be locally Lipschitz near z € intdom f and v € X. The Clarke directional
derivative of f at x in direction v is defined by

fo(z,v) :limsuplAf(y,v,t), (1)
y—ax,t|0 t
where Af(y,v,t) = (f(y+tv) — f(y)). The Clarke subdifferential 0° f(x) of f at x is defined
by
0° fx)={ € X" | (& v) < fo(z,v) forallv € X} .

*A shorten version is published as: 1. Ginchev, Weakened subdifferentials and Fréchet differentiability of real
functions, In: Mathematics and Informatics - Reality and Perspectives, 19-30, VSU “Chernorizets Hrabar” Uni-
versitetsko Izdatelstvo, Varna 2007 (ISBN 978-954-715-376-9).
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The Clarke subdifferential is closely linked to the strict differentiability. We remind that
the function f : X — R is strictly differentiable at « € intdom f if there exists
an element D,f(z) € X*, called the strict differential of f at x, such that f°(z,v) =
limy_.. 110 1 Af(y,v,t) = (D, f(z), v) . The following theorem holds.

Theorem 1 (Clarke [2]). Let f : X — R, x € intdom f and ( € X*. Then the following
assertions are equivalent:

a) f is strictly differentiable at x and D, f (z) = (,
b) f is Lipschitz near x and O° f(x) is the singleton {(}.

The following simple example shows that there exist Frechet differentiable at = functions f, for
which 0° f(z) is not a singleton.

Example 1. The function f : X — R defined by

x?sin(1/z T
R e

is Frechet differentiable, but not strictly differentiable, at x = 0. The Frechet differential is
D f(0) = 0 and does not coincide with the Clarke subdifferential 0° f(0) = [—1, 1].

The purpose of the present paper is to propose a new subdifferential 9" f(x), called the weak-
ened subdifferential of f at x, which preserves the good calculus rules of the Clarke subdiffer-
ential 0° f(x) [2], and such that 0" f(z) is the singleton {Dp f(x)} if and only if there exists
the Fréchet differential Dy f(x). This task is fulfilled, at least in the finite-dimensional case
(though the weakened subdifferential is defined for functions in arbitrary normed spaces). In
the last section it is underlined that the inclusion 0" f (z) C 0° f(x) makes the weakened subdif-
ferential more sensitive than the Clarke subdifferential in applications to optimization problems.
At the same time, in opposite to many existing in the literature generalized subdifferentials, see
Aubin, Frankovska [1], Pshenichnyi [4], and elsewhere, it preserves the nice calculus rules of
the Clarke subdifferential. This observation gives some advantage of the weakened subdiffer-
entials with respect to other generalized subdifferentials, and motivates eventual further their
investigation.

2 The weakened derivative

In this section we define the notion of the weakened directional derivative f*(x,v) of a given
function f : X — R at a point z € intdom X in direction v € X. The function f is not
supposed to be Lipschitz near z. If v € X we put

1
f¥x,v) = lim limsup sup =-Af(y,v,t). )
k—oc {10 yeax+ktB

In this definition f*(z,v) € RU{—o0c0} U {+00}.

The following propositions give the basic properties of the weakened derivative.

2



Proposition 1. Let f : X — R, x € int dom f.

a) The function f*(z,-) : X — RU{—o00} U {+o0} is sublinear, i. e. positively homogeneous
and subadditive.

b) If f is Lipschitz with constant K near x, so is f*(x,-).

c) The following inequality is true
fz,v) < fo(x,v). 3)

d) It holds

[z, —v) = (= f)"(z,v) = — limy_. liminf, g inf e jup %Af(y, v, ).

Proof. a) Let A > 0 and suppose that £ > 0 and ¢ > 0 are fixed numbers. Put 7 = M\, k = k/\.
Then

1
SAS( M0 0) = A5y +00) = f() = AZAf(y,0,7).

We have also x + ktB = x + (k/\)7B. Since t — 0" is equivalent to 7 — 07, and k¥ — oo to
Kk — 00, we get easily

1
f(z, ) = lim limsup sup —Af(y, \v,t)
k—o0 tl0  yexz+ktB

1
= A lim limsup sup —-Af(y,v,7)=Af“(z,v),
k=00 710  y€x+kTB

which shows that f*(x,-) is positively homogeneous. We prove now that f*(z,-) is subaddi-
tive. Let vy, vo € X. Fix k > 0 and ¢ > 0. Then
1 1 1
; Af(yvvl + UQat) = ; Af(yavht) + E Af(y + tvlaUQat) .
Put z = y + tvy, Kk = k+ ||v1||. Now k& — oo is equivalent to k — oo, and if y € = + kt B, then
z=y+try €x+ (k+||vi])tB=z+rtB.

Therefore

1
[z, v1 + v2) = lim limsup sup —-Af(y,v1 + vy, 1)
k—oo 410 yeax+ktB

1 1
< lim limsup sup =-Af(y,v1,t)+ lim limsup sup -—-Af(z,v9,t)
k—oco {10 yex+ktB K—=00  t|0  z€x+ktB

- fw(:L’,Ul) + fw(x7v2) :

b) Let f be Lipschitz of range K near z and vy, v € X. Then for sufficiently small £ > 0 we
have

AL, 0) = FAf (0 t) 7+ t0) = Sy + )

< Af(y,vg,t)—i—KHm _UQ||7

~+ | ==



whence we obtain easily
[z 0) < f9z,00) + Kllor — va|
Interchanging v; and v, we get

1 (2, 01) = [ (2, 02) || < Ko — va].

¢) In fact formula (2) takes lim sup in ¢ — 0", y — x belonging to a narrower set in comparison
to formula (1), whence (3) follows immediately.

d) We have . . .
z Af(ya _U7t) = _g Af(y - tU,U,t) = Z A(_f)(zv _th) 3

, Ko = k + ||v]|. We have then

where z =y — tv. Put Ky = k — |jv
. . 1
(=f)(z,v) = lim limsup sup -A(—f)(z,v,t)
K1—00 tl0 zE€x+r1lB

1
< lim limsup sup -Af(y,—v,t) = f*(z, —v)
k—oo 10 yext+ktB T

< lim limsup sup 1A(—f)(z,v,t) = (—f)“(z,v).

k2700 |0 z€x+kotB

This chain of inequalities proves d). 0

Further we use the notations:
L*f*(x) =sup{f*“(x,v) |ve B}, L.f"()=inf{f"(x,v)|ve B}.
Proposition 2. a) It holds

—L' () < Lof"(x) < L' f7(x).

b) The function f*“(x,-) is Lipschitz if and only if L* f*(z) < oo, in which case L* f*(x) is the
minimal Lipschitz constant for f*(x,-).

Proof. a) We have

—L7f*(x) = —sup {f* (2, —v) | v € B} = —sup{(=f)"“(z,v) | v € B}

1
= —sup4 lim limsup sup -A(—f)(y,v,t)|vE B
k—oo 410 yeatktB T

: N : 1
= inf {klggohr?lénfyeﬂim ;Af(y,v,t) |v e B}

1
< inf{ lim limsup sup —-Af(y,v,t)|v e B}
k—oo t|0 yex+ktB t

=inf {f“(z,v) |v e B} = L.f"(z) <sup{f“(x,v) |ve B} = L"f(z).



b) Obviously, if L*f*(z) = oo, then the function f*(x, ) is not Lipschitz. Let L* f*(x) < oc.
It is clear that f*(z, -) cannot be Lipschitz of range less than L* f*(x). For arbitrary v, vy € X
we have

fw,0) = 9, (v=20) +v0) < fU(w, v —vo) + [ (2, 00) < L[ () lv —wol [+ [ (x, vo) .

Interchanging v and v, we get

17 (@, 0) = f (2, vo)l| < L7 () [lv = wvol| -

Corollary 1. If f : X — R is Lipschitz with constant K near x, then L* f*(r) < K.

Proof. According to Proposition 1 b) the function f*(x, -) is Lipschitz of range K and therefore
L f“(x) < K. O

The following example shows that the property b) from Proposition 2 cannot be reverted.
Example 2. The function f : R — R,

/2 sin
oy = { R 270

is not Lipschitz near x = 0, but it possesses a Lipschitz weakened derivative f*(0,v) = 0.

To show that the function f in this example is not Lipschitz near x = 0 put

1 1
Then z,, — 0, y, — 0 and
f(xn)_f(yn): 4n — 00 as mn — 0o
To—ya 37020 —3/2)7 |

We conclude this section with an example showing that the finiteness of L, f"“(z) does not
imply the finiteness of of L* f*(x) and consequently the Lipschitz property of f*(z,-).

Example 3. The function f : R — R, f(x) = |z|'/?, satisfies

row={ 52

Therefore L. f*(0) = 0 and L* f*(0) = 0.



3 The weakened subdifferential

Let f : X — R, z € intdom f. We introduce the weakened subdifferential 0" f(z) of f at z
as
0f(z) ={C € X" | (¢,v) < f¥x,v) forallv € X} .

We denote by || - ||« the norm in X*, that is ||(]|. = sup {({,v) | v € X, ||v|| < 1}, and by B.
the open unit ball in X*. The weakened gradient obeys the following properties, which we give
without proof.

Proposition 3. a) 0" f(x) is convex and weak*-closed subset of X*.
b) 0% f(x) is nonempty if and only if
L.f*(z) > —o0. 4)

If this condition is satisfied, then there exists at least one element ( € 0% f(x), such that ||C||. <
—L, f*(x). We have in this case

fe(a,v) =sup{(¢,0) | ( € 0¥ f(x)} (5)

where fv(x,-) is the closed hull of the convex function f*(zx,).

c)If L* f*(x) < oo, then " f(x) is nonempty weak*-compact convex subset of X* and

[ (@, v) = sup {{¢,v) [ C € 0" f(x)} . (6)

In particular

L7 f*(z) = sup{||C]l | C € 9" f(x)} - ()
d) 0" f(z) C 0°f(x).

Proof. a) Let (1, (3 € 0¥ f(x) and 0 < X\ < 1. Then the vector ( = (1 — \)(; + A\, satisfies
for arbitrary v € X the inequality

(€)= (1 =X){C,v) + MG, 0) < (1= N2, 0) + Af(z,0) = [*(x,0) .

Hence ¢ € 0" f(x) which shows that 0" f (z) is convex.

If ¢, € 0V f(x) converges weakly* to ( € X* and v € X, then
(€)= lim (G} < 7(2,0).

Therefore ¢ € 0¥ f(x) and 0" f(x) is weakly* closed.

b) Let condition (4) be not satisfied. Suppose that ( € 0¥ (z) and let vy € B be such that
f¥(z,v9) < —||C]|+- Then the following chain of inequalities must be find

F(,v0) < =[ICll < =lIClHlvoll < =[G, vo)| < (G w0) < f*(, 00),

a contradiction. Therefore 0 f(z) = () in the case L. f*(z) = —oc.
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Suppose that L. = L, f*(x) > —oo. Consider the sets A; = {(v,r) € X xR | r < L|jv[|}
and Ay = {(v,r) € X xR | r > f*(x,v)}. The sets A; and A, are convex cones in X x R.
To check this property remind that L < f*(x,0) = 0, hence both —L||v|| and f*“(z,v) are
sublinear in v.

The sets A; and A, do not intersect. Indeed, for each (v, 7) € Ay, v # 0, it holds
r > [ (z,0) = vl £z, 0/[]v]]) > (vl L,

and hence (v,7) ¢ A .
The set A; is obviously open in X x R.

According to the Separation Theorem (see e. g. [6]) there exists a hyperplane
H:(-¢v)+ar=0p, (€X", «a, feR,

separating A; and A,.

The set A; does not admit a vertical separating hyperplane, therefore o # 0. Without restriction
assume that « = 1. Since (0, r) belongs to A; for r < 0 and to A, for 7 > 0, we see that § = 0.
Therefore H : r = ((, v). We obtain from here that

r < (¢, v) for (v,r) € Ay, 1> {(C,v)for (v,7) € Ay .

Since for all v € X it holds (v, f“(x,v)) € Ay, we get f*(x,v) > ((,v), v € X, which shows
that ¢ € 0" f(z).

On the other hand (v, L||v||) € Ay, whence L ||[v]| < (¢,v) and (¢, —v) < —L|| —v|| forv € X.
This inequality shows that ||(|| < —L.

The function f*(z,-) is convex. It is simple to check using the sublinearity of f*(x,-) that for
its conjugate

(fw)*(x7C> = Sup{<C,U> - f“’(x,v)}

veX
it holds
(f) (2, ¢) = 6(C | 9° [ (=),
where §(- | 0V f(z)) denotes the indicator of 0" f(x). Therefore

0*(v] 0" f(x)) = sup{(C,v) | ¢ € " f(x)} = (f*)"(z,v) = (f)"(z,v).

¢) In Proposition 2 we showed that f*(z, -) is Lipschitz of range L* f*'(x). In particular f*(z, -)

is continuous and therefore (f)"(x,v) = f*(x,v), whence formula (6) follows from (5). In-
deed, we have

L*f*(z) = sup f¥(z,v) =sup sup [f“(z,v)
veB veB Cedv f(x)

= sup sup f“(z,v) =sup{|[(]l. | (€ d”f(zx)},

cedw f(z) vEB
which proves (6).
The weak* compactness of 0" f(z) follows from the Alaoglu Theorem (see Rudin [5]).



d)Let ¢ € 0% f(x). If v € X, then
(Cv) < f(x,0) < fo(x,0).
Therefore ( € 0°f(x). O

Introducing

L*f°(z) =sup{f°(xz,v) |ve B}, L.f°(x)=inf {f°(x,v) |v e B},

we can reformulate Proposition 3 for the Clarke gradient of not necessarily Lipschitz near
x functions. In particular 0° f(x) is empty if and only if L,f°(z) = —oo. The inequality
f¥(z,v) < f°(x,v) implies

Lf"(x) < Lf(x) and L'f*(x) < L'f°(a).

In particular L, f°(z) = —oc implies L, f*(z) = —oo.

In connection with assertion b) of the above proposition, the next example shows that the weak-
ened subdifferential can be empty.

Example 4. The function f : R — R, f(x) = 2'/3, has at x = 0 weakened derivatives

400, v>0,
fe(0,v) = 0, ,0=0,
-0, v<0,

whence L, f"(x) = —oc and 0% f(z) = 0.

4 Differentiability

In this section we investigate the case, when 0" f(x) consists of a single point. To characterize
this situation we introduce the following definition. We say that the function f : X — R has
a weakened differential D, f(z) € X* at the point x € int dom f, if 0" f(x) is the singleton

{Dwf(z)}.

Here is our main result.

Theorem 2. Let f be weakened differentiable at x. Then

a) f(z,v) = (Dy f(x),v) for each v € X. In particular f*“(z,-) is Lipschitz with constant
[ D f ()
b) The Gdteaux derivative D¢, f(x) exists and D, f(x) = D¢ f(z).

Proof. a) Obviously

fO(@,0) = max{(C,v) | ¢ € 0¥ f(x)} = (Duf(x),v).



b) Recall that f is said to possess a Gateaux differential D f(x) € X*, if for all v € X it holds
(De f(z),v) = limyo 1 Af(z,v,t). The Gateaux differentiability of f at = and the equality
D¢ f(z) = Dgf(z) follows from the equality (D, f(z),v) = limyo tAf(z,v,t), which in
turn follows by the following chain.

(Dwf(x),v) = =(Duf(z), —0) = =f*(2,—v) = =(=f)" (2, )

1
< —limsup —Af(z,v,t) = liminf — Af(z,v,t)
10 t t]0 t

< limsup%Af(x,v,t) = (Dyf(z),v).
t10

This chain of inequalities shows that
1
(Duf(@),v) = lim 7 Af(,v,8), ®)

which gives that f is Gateaux differentiable and D,, f(z) = D¢ f(x). O

Remark 1. The following assertion is true: For each real k > 0 it holds

(Duf (), 0) = !

= m
t10,ycx+ktB t

Af(y,v.t).
The proof can be obtained in the same way as the proof of Theorem 2 b.

Recall that f : X — R is said to possess an Hadamard differential Dy f(z) € X* at 2 €

int dom f, if for all v € X it holds (Dp f(z),v) = limy o tAf(z,v,t) uniformly in v € V,

where V' is an arbitrary compact set in X. Obviously, when X is finite-dimensional, then f is
Hadamard differentiable at x if and only if f is Fréchet differentiable at z.

The following theorem strengthens Theorem 2 for Lipschitz functions and is proved by similar
estimations.

Theorem 3. If f : X — R is weakened differentiable and Lipschitz near x, then it is also
Hadamard differentiable and D, f(x) = Dy f(x). If in addition X is finite dimensional, then
there exists the Fréchet differential Dp f(x) and D, f(x) = Dp(z).

Proof. Let V' C X be arbitrary compact set. We must show that (8) holds uniformly in v € X

Put for brevity ( = D,, f(x) and let f(z) be Lipschitz near x of range K. Fix vy € X and let v
be another point of X. Then

|%Af(x,v,t) - <C7U>‘ = }%Af(xvv()?t) - <C>UO>
o (@ 10) = f(a+t0) = (G0 = w)]
< |5 8 10,0) = (G 00)| + K [0 = voll + 1 1o = wo]

Let ¢ > 0. Then there exists 0 = d(¢,v) > 0, such that
1 1
|¥Af(:v,v0,t) — (¢ wo)| < € for 0<t<§d.
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Letv € U(vg) := v + 5 B. Then we obtain

(KfHCII*)
1
\;Af(w,v,t) —(¢,v)] <e. )

Let V. C U(vy)U---UU(v,) and 6 = min{d(e/2,v;) | ¢ = 1, ..., n}. Inequality (9) is
satisfied for 0 < ¢ < ¢ and arbitrary v € V. Therefore ( = Dy f(x).

Since for finite-dimensional spaces the concept of Fréchet and Hadamard differentials coincide,
we have in this case ( = Dpf(x). O

We put an open question: Is an Hadamard differentiable and Lipschitz near x function f also
weakened differentiable?

The following example shows, that the final part of Theorem 3 is not true for infinite dimen-
sional Banach spaces.

Example 5. Let X = (', i.e. the elements of X are sequences of reals v = (xy,1,...), for
which ||x|| = Y772, x| < oo, Putg; : R — R, pi(t) = t|"*1i, i = 1,2, .... Define the
function f : X — R by

flx) = { 2t i), 2l <1,

+oo, |z > 1.

Then f is Lipschitz with constant 1 near x = 0. The weakened subdifferential 0" f(x) is the
singleton {0}, whence D,,f(0) = Dy f(0) = 0. The Fréchet derivative D f(0) however does
not exist.

The following reasonings explain the example.

Obviously for € B we have 0 < ¢;(z;) < |;| and f(z) is the sum of a series with non
negative members majorized by Y .-, |z;| = ||z|| < oco. Hence f is finite on B and 0 €
int dom f.

Let z, y € B. Using the Mean Value Theorem we see that

F@) = 1) = 3 7 (e — i) < D &l — il

i=1
where

& = sign (’Z/z‘ + 0:(|zi| — |yz‘)) Hyzl + 0:(|i| — |yz‘| ;o 0<0;<1.
It is easy to get now |¢;| < 1 and consequently the Lipschitz condition of range 1

|f($)—f(y)|Sz:|90i—yz‘|:||=’7U—y||7 T,y € B.
=1

Now we prove that f*(0,v) = 0. Lety = ¢/, { € X, ||{|| < k where k > 1. Then again using
the Mean Value Theorem we obtain as above

1 - ;
|5 A0, 0] < (e llol) Y ol 10
=1

10



Let € > 0. Choose the integer m so that
S e
2 S R el

Then fory € ktB,0 <t < 1, we have

1 m 1
|2 Af v )] < G+ lloll) 3 fol 1+ S e
=1
1
< G+ Iloll) ol 11 + 5 & < 2

for [t|Y/™ < (¢/(2(k + ||o]) |[v]])). Hence £*(0,v) = 0 and 8 f(z) = {0}.

The Fréchet derivative D f(0), if exists, should be zero, since the Gateaux derivative is zero.
Then
|f(z)| =of[lz]) as z—0.

However this relation is not true. Indeed, if ¢/ = (0, ..., 1, 0, ...) (the only unit is on i-th
place), then

f(tei> _ i ml/i
Y

does not tend uniformly in i to zero as ¢ — 07, a contradiction.
Thus for a locally Lipschitz weakened differentiable function the Fréchet derivative does not
necessary exist. According to Theorem 3 this is not the case when X is finite dimensional. The

next theorem shows that the Fréchet derivative for a weakened differentiable function on a finite
dimensional space exists even without the the hypothesis that f is Lipschitz near z.

Theorem 4. Let X be finite-dimensional. If f : X — R is weakened differentiable, then it is
also Fréchet differential and Dr f(x) = D, f(x).

Proof. Suppose that dim X = n and let {e', ..., €"} be a basis of unit vectors. Let

For each v € T we put Eco {y1€e', ..., 1,€"} and let d, = dist (0, E,). Obviously d, > 0.
This is true, since £, is compact and 0 ¢ FE., (otherwise the vectors el, ..., y,e” would be
linearly dependent).

Put d = min{d, | v € I'}. Let v € B. Then for some y € I" we have

n n n n
v = Zviez = Z |Uz'|%‘€l = Z |Uz'|%'€Z = Z |Ui|7i€la ec k..
i=1 i=1 i=1 i=1

Therefore

n

L= ol =D foslllell = d > fos| > d v -
j=1

J=1

11



Thus for each v € B, there exists v € I', such that

v=> aiyet, 0<a;<1/d. (10)
=1

Suppose that f is weakened differentiable at  and ( = D,, f(z). Take € > 0 and choose 6 > 0
such that

1 €
|5 Afps) = (Cp) | < - d (1)
foreachp =+e',i=1,2,....,n,0<s<4d,y € x4 (n — 1)sB. Choose v € B, and let
v be represented as in (10). Puta = oy + -+ + . Let ¢y < -+ < &, be a permutation of
(v, ..., ). Then
1 ~ 1 _
| Af@0,) = (o) < DS Af g, 658 (12)
j=1

where A
J

Yo = @, yJZI+tZO_éZ’7,éI, j:].,...,n,.
i=1

(here 7, and & denote the corresponding to &; permutation of ~y; and e’). We have for 0 < ¢t <
od

1 . .
|2 A1), a7, 8) = (G a7 < = (13)

If o; = O this inequality is obvious. If &; > 0 it follows from (11) with s = ;¢ and y = y;.
Indeed, we have

)
O<S:O_éjt§8dd:6,
j—1
yioi=xz+t Y ame €x+ait(n—1)B=x+(n—1)sB
=1

(here we use that ¢&; is a permutation of «;) and

1 L .
‘2 Af(yj—haj’Yje]vt) - <C7aj7j€]‘
1

_ s s _ £ £
= ‘aAf(yj_l,aj%ej,t) — <C,aﬂje]‘ < @ ﬁd < =,
]

3

Inequality (13) applied to (12) gives
1 €
;Af('rﬂ}?t) - <<7U>|l Sn—=¢
n

forall v € Band 0 < t < dd, which shows that f is Fréchet differentiable and Dp f(z) =

In general the Fréchet differentiability is stronger than the weakened differentiability.
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Theorem 5. If f is Fréchet differentiable at x, then it is also weakened differentiable at x and

Proof. Fixv € X and k > ||v||. Puty = x + ty; with ||y1]] < k, and ( = Dp f(x). Then

|3 80,0~ (G,0)

1 1 (14)
< !;A(y,vﬂh,t)—(C,v+y1>!+!;A(w,y1,t)— (Cyn) |-

Fix ¢ > 0. The Fréchet differentiability of f gives that there exists 6 > 0, such that for each
z € (||v]] + k)B and 0 < ¢t < 0 we have

’%A($,Z,t)—<cjz>’< %5.

Since both y; and v + y; are in (||v]| + k) B, we get from (14).

1
‘;A(y,'l},t) - <Cav> ‘ <e.
This observation shows that f*(z,v) = ((,v) and consequently Dp(z) = D, (). O

Combining Theorems 4 and 5 we get the following result, formulated in a similar manner to
Theorem 1.

Theorem 6. Let X be finite-dimensional and let f : X — R, x € int dom f and ( € X*. Then
the following assertions are equivalent:

a) f is Fréchet differentiable at x and D f(x) = (,
b) f is Lipschitz near x and 0" f (z) is the singleton {(}.

S The regularity condition

In the next section we introduce some basic calculus rules for the weakened gradient. In some
of these rules the following regularity condition is important. We say that f is weakened regular
(or briefly w-regular) at z if the next three requirements are satisfied:

i) L*f*(z) < oo,

i) For all v € X there exists the usual one-sided directional derivative

1
f(z,v) = ltil%l ;Af(x, v, t),

iii) For all v € X itholds f'(z,v) = f*“(z,v).

Replacing in iii) f*(x,v) by f°(z,v) we obtain the notion of Clarke regularity. The inequalities
f(x,v) < fax,v) < f°(z,v) show that the weakened regularity is weaker than the Clarke
regularity. Here there are some conditions that guarantee weakened regularity.

13



Proposition 4. a) If f is weakened differentiable (in particular Fréchet differentiable), then it
is w-regular at x.

b) If f admits a Gateaux differential D¢ f(x) and if it is w-regular at x, then it is weakened
differentiable at x and D¢ f(x) = D, f(z).

c) A finite linear combination with nonnegative scalars of functions w-regular at x is w-regular
at .

Proof. a)Let ( = D,, f(z). Then f*(x,v) = ((,v). The definition of the weakened derivative
gives that for each ¢ > 0 there exists § = d(x, v, &) > 0, such that the inequality

|%Af(x,v,t)—(<,v>| <e

holds for 0 < ¢ < 4. Therefore the directional derivative f'(x, v) exists and f'(z,v) = ((,v) =
f(z,v).

b) Put ( = D¢ f(z). Then (¢,v) = f'(z,v) = f“(x,v), whence we see that f is weakened
differentiable at z and D,, f(z) = .

c¢) The general case follows by obvious induction from the case of two functions. Since
(s f)(z,0) = s f'(w,0), (s f)"(z,0) = s f*(x,0),
for s > 0, it suffices to prove that
(fFr+ ) =+ (15)
The existence of (f* + f?)’ is evident and
(Fr+ ) =D+ ="+ =+ )

The last inequality is clear from the definition of the weakened directional derivative. Since the
opposite inequality is always true, we obtain (15). [

6 Calculus rules

In this section we give formulas facilitating the calculation of 0% f(x), when f is build up from
simple functionals through linear combination, by maximization, composition and so on. In all

these rules the condition
L7 f*(z) < o0 (16)

occurs to play an important role. As we saw in Proposition 2 this is satisfied if and only if
f*(z,v) is Lipschitz in v, which in turn is weakening of the condition f to be Lipschitz near z.
For brevity we omit the proofs of the calculus rules.

Proposition 5 (Scalar Multipliers). If the function f satisfies (16), then for any real s it holds
O(sf)(x) =s0"f(x). (17)
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Proof. If s > 0, then (17) follows from
(sf)"(z,v) = sf*(x,v).

It suffices now to prove (17) for s = —1. In this case ¢ € 9*(—f)(x) is equivalent to

(€)= (=¢—v) < (=f)"(z,—v), veX,
and consequently to ( € —0" f(x). O

Proposition 6 (Local Extrema). If the function f satisfies (16) and attains a local extremum at
x, then

0€d”f(x). (18)

Proof. Since 0¥ (—f)(xz) = —0" f(z) it suffices to consider the case of a local minimum. Then
0< f(x,0) < fx,v), veX,
whence (18) follows immediately. [
Proposition 7 (Finite Sums). If L. f{"(x) < 00, i =1, 2,...,n, then
0" (Z si f,(x)) Y si0"fi(x). (19)
i=1 i=1
This inclusion turns into an equality in each of the cases:

i) All but at most one of the functions f; are weakened differentiable (in particular Fréchet
differentiable).

ii) All the functions f; are w-regular and all the scalars are non-negative (or more general, all

the functions signs; f; are w-regular).

Proof. In view of Proposition 5 and obvious induction argument it suffices to consider the case
n =2, s; = S, = 1. We must prove that

(fi+f2)" < (fu)" + (f2)",
which is clear from the definition of the weakened directional derivative.

i) Adding all the weakened differentiable functions together we reduce the proof to the case
of two functions f; + fo with fi; being weakened differentiable and therefore (f)"(x,v) =
(D f1(x,v)). The equality in (19) follows by the equality

(fi + f2)“(z,v) = (Dufi(z),0) + (f3') (2, 0),
which easily follows from the definition of the weakened derivative.

ii) Like above we may confine to the sum of two w-regular functions f; + fo. The assertion is
deduced from the inequalities

(f1)“(z,0) + (f2)" (2, 0) = (/1) (z,0) + (f2) (2, 0)
= (fl + f2)/(£13',’0) < (fl =+ f2)w<$7v) < (fl)w(x7v> + (fQ)w((L’,U).
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We are going to establish a Lebourg type Mean Value Theorem for the weakened subdifferential.
Given z and y in X, we denote by [z, y] and (z, y) correspondingly the closed and open line
segment with end points z and y. Using the notation x; = (1 — ¢)z + ty, then

[x7y]:{xt|03t31}7 (xay):{l’tlo<t<]_},
We prove first the following lemma.

Lemma 1. Let x and y be fixed points in X and let the continuous function f fulfills L* f*(z,) <
oo for each t € [0, 1]. Then the function

9:00, 1] =R, g(t) = f(x)

satisfies the inclusion 0V g(t) C (0" f(xy),y — x.

Proof. In this inclusion the two closed convex sets are in R and hence they are intervals. There-
fore, it suffices to prove that for v # +1 we have

max {8°g(t) v} < max {(9" f(zy), (y — 2)0)} -

This follows from

1
g“(t,v) = lim limsup sup  — Ag(s,v, )
k=00 A0 settkA[-1,1] A

1
= lim limsup  sup —Af(zs,v(y —x),\)
k—oo X0 set+kA[-1,1]

= lim lim sup sup = Af(z,o(y —x), \)
k—oo X0 zemi+kA|y—z| B
= [z, v(y — x)) = max {{0" f(z), (y — x)v)} .
O

Proposition 8 (Mean Value Theorem). Let x and y be points in X and let the continuous
function f fulfills L* f*(x;) < +oo, where z; = (1 — t)x + ty, for all t € [0, 1]. Then there
exists a point u in the segment (z, y), such that

fy) = f(z) = (0" f(u), y —z).
Proof. Consider the function

0:00,1] =R, 0(t) = f(z) +t(f(z) = fly)).

This function is continuous on [0, 1] and satisfies (0) = 6(1) = f(x), so there is a point ¢ in
(0, 1) at which 6 attains a local minimum or maximum. By Proposition 6 we have 0 € 00(z).
Applying Propositions 5 and 6 and Lemma 1 we obtain

0€0%f(w) + (f(x) = fy)) C(0“f(u),y —2) + [(x) = f(y),

where u = x;. ]

16



Corollary 2. Let f be continuous on the convex set V. C X and let sup {L*f"(z) |x € V} =
K < oo. Then f is Lipschitz with constant K on'V'.

Proof. Let x, y € V. Then for some u € (z, y) we have

fly) = fx) = (0" f(u),y — x)

and therefore

fy) = f(x) < sup [f“(u,y —x)| < sup L*f“(u)[ly — 2| < Klly — ]

u€lz, y] u€(z, y)

]

The considered calculus rules show much similarities between the weakened and the Clarke
generalized gradient both in the formulations and in the proves. We give further two chain rules
for the weakened subdifferentials. We skip the proofs, since they are obtained similarly to the
analogous chain rules for the Clarke subdifferentials. We use in the formulation the following
agreement. The component functions of a function A : X — R" are denoted by hy, ..., h,.
The components of an operator ¢ € L(X,R") are denoted by (3, ..., (,. We put

0"h(z) ={C| G € (h)*(z),i=1,...,n}.
The space (R™)* is identified with R™ and an element o € 0" h(x) is an n-dimensional vector
(a1, ooy Q).

Proposition 9 (Chain Rule I). Suppose that the function h : X — R" is Lipschitz near x and
the function g : R™ — R is Lipschitz near h(z). Then the weakened gradient 0% f(x) of the
function f = g o h is not empty and

0“f(z) ceonv{ao( | a€ dg(h(zx)), ¢ € 0Vh(x)}

- W{Zaz- 0G|l o€ 0g(h(x)), ¢ € awhxx)} ,

i=1
where conv denotes the weak” closed convex hull and can be replaced by conv if X is finite-
dimensional. An equality holds under any one of the following additional hypotheses:

i) Each h; is w-regular at x, g is w-regular at h(z) and every element o of 0" g(h(x)) has
nonnegative components.

ii) The function g is weakened differentiable at h(x) and n = 1 (in this case conv is superflu-
ous).

iii) Each h; is weakened differentiable at h(x) (and then conv is superfluous).

Proposition 10 (Chain Rule II). Suppose that the function h : X — R" is continuous at x and
satisfies the condition max,<;<, L*(h;)"(x) < oo, and let the function g : R" — R is Lipschitz
near h(x). Then the weakened gradient 0" f (x) of the composition f = g o h is not empty and

0“f(x) Cconv{ao( | a e d°g(h(z)), ¢ € 0“h(x)} ,

where 0° stands for the Clarke subdifferential and conv can be replaced by by conv if X is
finite-dimensional.
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The following three propositions are straightforward application of the above chain rules.

Proposition 11 (Pointwise Maxima). Suppose that the functions f1, ..., f, satisfy the condi-
tion max<;<, L*(f;)"(x) < oo, Define the function f(r) = maxi<;<n fi(x) and let 1(x) be
the set of indexes for which f;(x) = f(z). Then 0% f(x) is not empty and

0" f(x) c{0"fi(x) | i€ I(x)} .

If the functions f;, i € I(x), are w-regular at x, then the inclusion can be replaced by an
equality, and the function f is w-regular at x.

Proposition 12 (Products). Let f; and f, satisfy
max (L*fi(x), L" f3' () < o0 (20)
Then the weakened subdifferential 0" ( fi f2)(x) is not empty and
" (fif2)(x) C 0° fi(z) fo(2) + fi(x) 0 fa(z) .

If in addition f,(x) > 0, fo(x) > 0, and if both fy and fy are w-regular at x, then the inclusion
can be replaced by an equality, and f1 f5 is w-regular at x.

Proposition 13 (Quotients). Let fi and fo satisfy (20), and suppose that fo(x) # 0. Then the
weakened subdifferential 0" (f1/ f2)(x) is not empty and

0" (fi/ f2)(w) C (0" fi(x) folw) — fr(x) 0" fo(2)) / f3 ().

If in addition fi(z) > 0, fo(x) > 0, and if both f, and — fo are w-regular at x, then the
inclusion can be replaced by an equality, and f,/ f5 is w-regular at .

7 Final Remarks

The initial motivation of this work was applying similar approach to that of Clarke [2] to define
a subdifferential of the function f : X — R, such that the single-valuedness of the subd-
ifferential at a given point x to be equivalent to the Fréchet differentiability of f at x (as it
is known the Clarke subdifferential is related to the strict differentiability). We fulfilled this
task, defining the notion of the weakened subdifferential, at least in the finite-dimensional case,
see Theorem 6. The inclusion 0" f(z) C 0°f(z), motivating the name weakened for the new
subdifferential, shows that the weakened subdifferential 0 f(x) can be more sensitive in appli-
cations than the Clarke subdifferential 0° f (). For instance, consider the optimization problem
g(x) = f(x) + ex — extr, where f(z) is the function from Example 1 and ¢ # 0. Then
obviously x = 0 is not a solution of this problem. This can be established applying weakened
subdifferentials on the base of Proposition 6, since 0 ¢ 0¥g(0) = {c}. At the same time,
when —1 < ¢ < 1, this does not follow by analogous assertions for the Clarke subdifferential,
since 0 € 0°¢(0) = [-1 4 ¢, 1 + ¢]. This observation could serve as an impulse to investigate
whether it is possible to strengthen other known results replacing the Clarke subdifferential
by the weakened subdifferential. A strong motivation to prefer the weakened subdifferential
instead of other existing generalized subdifferentials, e. g. [3], is that the weakened subdif-
ferential, as the previous section demonstrates, preserves the good calculus rules of the Clarke
subdifferential.
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