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Asymptotic results for a generalized Pólya urn and applications

to clinical trials

Irene Crimaldi∗ - Fabrizio Leisen†

April 26, 2007

Abstract

In this paper a new Pólya urn model is introduced and studied; in particular, a strong law of large
numbers and two central limit theorems are proven. This urn generalizes a model studied in Berti et
al. (2004), May et al. (2005) and in Crimaldi (2007) and it has natural applications in clinical trials.
Indeed, the model include both delayed and missing (or null) responses. Moreover, a connection with
the conditional identity in distribution of Berti et al. (2004) is given.

1 Introduction

We consider the following experiment. An urn contains b ∈ N
∗ black and r ∈ N

∗

red balls. Let us suppose given two sequences (ri)i≥0 and (ui)i≥0 of integers such
that

r0 = u0 = 0 < r1 ≤ u1 < r2 ≤ u2 < r3 ≤ u3 < . . . .

At each time n ≥ 1, a ball is drawn from the urn and then it is put again in
the urn. Moreover, at each time ui the urn is updated in the following way: for
each j with ui−1 +1 ≤ j ≤ ri, we put in the urn other Nj balls of the same color
as the ball drawn at time j. The numbers Nj are randomly chosen in N

∗. The
way in which the number Nj is chosen may depend on j but it must be suitably
independent of the results of the choices for the preceding numbers and of the
preceding drawings (see sec. 2). The special case in which ri = ui = i for all i
is just the case of the generalized Pólya urn studied in Berti et al. (2004) and
in Crimaldi (2007). Moreover, if we take ri = ui = i for all i and the random
variables Nj identically distributed, then we fall in the case considered in May
et al. (2005).

In clinical trials this urn can be used to allocate patients to two different
treatments. The black balls represent the first treatment, while the red balls
represent the second; at each time n ≥ 1 a patient is allocated to a treatment by
picking a ball and observing its color. The introductions Nj represent, according
to the interpretation of May et al. (2005), the responses. At time ui, a part of
these responses, precisely those associated to an index j with ui−1 + 1 ≤ j ≤ ri,
arrives with delay. The responses associated to an index j with ri + 1 ≤ j ≤ ui

are considered null or missing because of various facts: for example, decease of
∗Department of Mathematics, University of Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy.
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the patient for reasons that we can’t connect to the treatments, responses that
are missed from the analysis laboratory, or responses that the doctor considers
irrelevant for future allocations. Hu-Zhang (2004) and Zhang et al. (2007) have
introduced interesting urn models with delayed responses which differs from
ours in the structure and in the mechanism of updating so that they can be
applied to different situations. On the contrary, the purposes and the type of
the given results are similar. In the last section of this paper, the reader can
find another experiment that can be formalized by the model we study.

Let us denote by Yn the indicator function of the event {black ball at time n},
that is, in the language of clinical trials, the indicator function of the event
{first treatment to patient n}, then the random variable Cn =

∑n
i=1 Yi counts

the number of patients assigned to the first treatment in the first n trials. In
Section 3, we prove a Strong law of large numbers for (Yn)n≥1, i.e.

1

n

∑n
i=1 Yi

a.s.−→ V,

where V is also the almost sure limit of Vn = E[Yn+1|Fn] (with (Fn)n≥0 the
natural filtration associated with the model). In the language of clinical trials,
this means

Cn

n

a.s.−→ V. (1)

Moreover, we prove two central limit theorems: precisely, under suitable condi-
tions, we obtain that

√
n
(

E[Yn+1 | Gn] − V
) D−→ ν1, (2)

and
√

ri(n)

(Cri(n)

ri(n)

− Vn

) D−→ ν2, (3)

where D means “convergence in distribution” and ν1 and ν2 are suitable “ mix-
tures” of Gaussian distributions that are formally defined in Sections 4 and 5.
Actually, we show that stronger convergences hold for the two above sequences:
almost sure conditional convergence (in the sense of Crimaldi, 2007) for the first
sequence and stable convergence (see, for instance, Jacod-Memin, 1981) for the
second one. The proof of (2) is based on a limit theorem for martingales which
has been proved in Crimaldi (2007) and it employs the same technique used in
that paper; while, in order to prove (3), we apply a classical result regarding
the stable convergence. Moreover, for the first central limit theorem, we illus-
trate also an example; while, for the second one, we give for the particular case
ri = ui (but not necessarily equal to i) for all i, a set of conditions, which are less
difficult to be verified in practice than the general conditions of the theorem.

Finally we can note that, if we consider the proposed model by a more dee-
per theoretical point of view, then we can say that, with respect to a suitable
filtration (Gn)n≥0, the sequence (Yn)n≥1 has all the property of conditionally
identically distributed (cid, abbreviated) sequences, introduced in Berti et al.
(2004), except the adaption to the filtration. The study of non adapted se-
quences of random variables is very interesting because sometimes the request
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of adaptation can be restrictive. Thus it could be a fertile ground for further
researches. To the best of our knowledge the only paper on this argument is
Jayte (2002), which deals with non adapted martingale.

The literature on urn models is very wide. For instance, in addition to the
above cited papers, the reader may look at Hill et al. (1980), Gouet (1993),
Dirienzo (2000), Kotz et al. (2000), Janson (2006), Muliere et al. (2006).
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Figure 1: An example of sequences (ri), (ui)

2 The model and preliminary results

Let us set

li = ri − ui−1 for each i ≥ 1,

i(n) = sup{i ≥ 0 : ui ≤ n} for each n ≥ 0.

Given a sequence (µi)i≥1 of probability measures on (N∗)⊗li , it is possible to
build a probability space (Ω,A, P ) and, on it, a sequence (Yn)n≥1 of random
variables with values in {0, 1} and a sequence (Li)i≥1 of random vectors of the
form

Li = [Nj : ui−1 + 1 ≤ j ≤ ri]

such that the following conditions are satisfied:

(a) For each n ≥ 0, a version of the conditional distribution of Yn+1 given the
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σ-field

Fn :=

σ(Y1, . . . , Yu1 , L1, Yu1+1, . . . , Yu2 , L2, . . . , Yui(n)−1+1, . . . , Yui(n)
, Li(n), Yui(n)+1, . . . Yn)

= σ(Y1, . . . , Yn) ∨ σ(Li : 1 ≤ i ≤ i(n)) (where F0 := {∅, Ω})

is the kernel
(

B(1, Vn(ω))
)

ω∈Ω
, where B(1, p) denotes the Bernoulli distribution

with parameter p and Vn is the random variable defined by1

Vn :=
(

b +
∑i(n)

i=1

∑ri

j=ui−1+1 YjNj

)(

b + r +
∑i(n)

i=1

∑ri

j=ui−1+1 Nj

)−1

.

(b) For each i ≥ 1, the random vector Li = [Nj : ui−1 + 1 ≤ j ≤ ri] has
distribution µi and it is independent of the sub-σ-field

Fui−1
∨ σ(Yui−1+1, . . . , Yui

).

With this formalization, for each n ≥ 1, the random variable Yn denotes the
indicator function of the event {black ball at time n} and the random variable
Vn represents the proportion of black ball in the urn at time n.

By condition (a), we have E[Yn+1|Fn] = Vn for each n ≥ 0. Moreover, if we
set

Hn := σ(Yj : 1 ≤ j ≤ ri(n)) ∨ σ(Li : 1 ≤ i ≤ i(n)) (where H0 := {∅, Ω}),
we also have E[Yn+1|Hn] = Vn. Finally, by this equality and condition (b), if we
set

Gn := Hn ∨ σ(Li(n)+1),

we also have E[Yn+1|Gn] = Vn. Indeed, for each n ≥ 0, only the two following
cases are possible:

1) i(n + 1) = i(n) and so n + 1 < ui(n)+1;

2) i(n + 1) = i(n) + 1 and so n + 1 = ui(n)+1.

In both cases, since i(ui(n)) = i(n), the sub-σ-field Hn ∨ σ(Yn+1) is contained in
the sub-σ-field

Fui(n)
∨ σ(Yui(n)+1, . . . , Yui(n)+1

).

Thus, by assumption (b), the random variable Li(n)+1 is independent of the
sub-σ-field Hn ∨ σ(Yn+1).

Proposition 2.1. The sequence (Vn)n≥0 is a martingale with respect to the
filtration G = (Gn)n≥0 (and the filtration H = (Hn)n≥0).

Proof. Since (Vn)n is H-adapted and Hn ⊂ Gn for each n, then it suffices to
prove that (Vn)n is a G-martingale. To this end, we observe as above that, for
each n ≥ 0, only the two following cases are possible:

1) i(n + 1) = i(n);

2) i(n + 1) = i(n) + 1.

1Throughout this paper we use the convention that
Pb

a = 0 if b < a.
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In the first case, we have Vn+1 = Vn and so E[Vn+1| Gn] = Vn. In the second
case, if we set

Sn := (b + r +
∑i(n)

i=1

∑ri

j=ui−1+1 Nj), (4)

then we can write

Vn+1 = S−1
n+1(VnSn +

∑ri(n+1)

j=ui(n+1)−1+1 YjNj)

= S−1
n+1(VnSn +

∑ri(n)+1

j=ui(n)+1 YjNj).

It follows that

E[Vn+1 | Gn] = S−1
n+1

(

VnSn +
∑ri(n)+1

j=ui(n)+1 NjE[Yj | Gn]
)

.

On the other hand, for each j with ui(n)+1 ≤ j ≤ ri(n)+1, we have i(j−1) = i(n)
and so we have

E[Yj | Gn] = E[Yj | Gj−1] = Vj−1 = Vn.

Thus, we obtain E[Vn+1|Gn] = Vn.

Remark 2.2. Since each random variable Yn takes values in {0, 1}, the above
proposition implies that, for each real function f on {0, 1}, the sequence of
conditional expectations (E[f(Yn+1)|Gn])n≥0 is a G-martingale. However, we can
not conclude that the sequence (Yn)n≥1 is G-conditionally identically distributed
in the sense of Berti et al. (2004) because it is generally not G-adapted. On the
other hand, the sequence (Yn)n≥1 is adapted with respect to the filtration F =
(Fn)n≥0 but (Vn)n≥0 can not be an F -martingale. For example, if we consider
the particular case in which the random variables Nj are deterministic, we have

E[Vuk
| Fuk−1] = S−1

uk

(

Vuk−1Suk−1 +
∑uk−1

j=uk−1+1 YjNj +
∑rk

j=uk
NjE[Yj | Fuk−1]

)

= S−1
uk

(

Vuk−1Suk−1 +
∑uk−1

j=uk−1+1 YjNj +
∑rk

j=uk
NjVuk−1

)

which is equal to Vuk−1 if and only if uk−1 + 1 = uk = rk, that is uk = rk = k
for all k ≥ 0. This is the case of the generalized Pólya urn studied in Berti et
al. (2004) and in Crimaldi (2007).

3 The strong law of large numbers

The sequence (Vn)n≥0 is a uniformly bounded martingale and so it converges
almost surely and in L1 to a bounded random variable V . This random variable
V is also the limit of the sequence of the empirical means

Mn =
Cn

n
=

1

n

∑n
j=1 Yj.

More precisely, we have the following proposition.

Proposition 3.1. The sequence (Mn)n≥1 converges in L1 and almost surely to
the random variable V .

Proof. The sequence (Mn)n is uniformly bounded and so it suffices to prove
only the almost sure convergence. To this end, we start with observing that, by
definition, we have Vn = E[Yn+1 | Fn] and the sequence

Zn =
∑n

j=1 j−1 (Yj − Vj−1) =
∑n

j=1 j−1
(

Yj − E[Yj | Fj−1]
)
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is obviously an F -martingale. Moreover, since each random variable Yj takes va-
lues in {0, 1}, we have supn E[Z2

n] < ∞. Hence, the martingale (Zn)n converges
almost surely. Kronecker’s lemma ensures that

1
n

∑n
j=1 (Yj − Vj−1)

a.s.−→ 0.

Now, we recall that, if (an)n and (bn)n are any real sequences, then 1
n

∑n
k=1 akbk →

ab whenever an ≥ 0 for each n, 1
n

∑n
k=1 ak → a and bn → b. Therefore, since

Vj−1 converges almost surely to V , we obtain

1
n

∑n
j=1 Vj−1

a.s.−→ V

and so
Mn = 1

n

∑n
j=1 (Yj − Vj−1) + 1

n

∑n
j=1 Vj−1

a.s.−→ V.

Remark 3.2. Since each random variable Yn takes values in {0, 1}, the above
result implies that, for each real function f on {0, 1}, the sequence

1
n

∑n
j=1 f(Yj)

converges in L1 and almost surely to the random variable Vf = f(0)(1 − V ) +
f(1)V . Indeed, we have

1
n

∑n
j=1 f(Yj) = 1

n

∑n
j=1 f(0)(1 − Yj) + 1

n

∑n
j=1 f(1)Yj

= f(0)
(

1 − 1
n

∑n
j=1 Yj

)

+ f(1)
n

∑n
j=1 Yj.

4 A central limit theorem

We are going to prove the following limit theorem.

Theorem 4.1. Let us set

Qk :=

{

0 if 0 ≤ k < u1 − 1

(
∑i(k+1)

i=1

∑ri

h=ui−1+1 Nh)
−1
∑ri(k+1)

j=ui(k)+1 Nj if k ≥ u1 − 1

and

Qk,j :=

{

0 if 0 ≤ k < u1 − 1

Nj (
∑i(k+1)

i=1

∑ri

h=ui−1+1 Nh)
−1 if k ≥ u1 − 1.

Moreover, let us set
Wn :=

√
n(Vn − V ).

Further, let us denote by Kn a version of the conditional distribution of Wn

given Gn.

Suppose that the following conditions are satisfied:

(i) n
∑

k≥n Q2
k

a.s.−→ H, where H is a positive real random variable.

(ii)
∑

k≥0 k2 E[Q4
k] < ∞.

(iii) n
∑

k≥n

∑ri(k+1)

j=ui(k)+1 Qk,j

∑j−1
h=ui(k)+1 Qk,h

a.s.−→ 0.
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Then, for almost every ω in Ω, the sequence
(

Kn(ω, ·)
)

n
of probability mea-

sures converges weakly to the Gaussian distribution

N
(

0, H(ω)(V (ω) − V 2(ω))
)

.

In other words, for each bounded continuous function f on R, the conditional
expectation E[f(Wn)|Gn] converges almost surely to the random variable

ω 7→
∫

f(x) N
(

0, H(ω)(V (ω) − V 2(ω))
)

(dx).

More briefly, the statement of the above theorem can be so reformulated: with
respect to the conditioning system G = (Gn)n, the sequence (Wn)n converges to
the Gaussian kernel

N (0, H(V − V 2)) =
(

N (0, H(ω)(V (ω) − V 2(ω)))
)

ω∈Ω

in the sense of the almost sure conditional convergence (see Crimaldi, 2007,
Sec. 2). In particular, it follows that the sequence (Wn)n converges A-stably to
the kernel N (0, H(V − V 2)). It is well known that this fact implies that the
sequence (Wn)n converges in distribution to the probability measure ν1 on R

defined by

ν1(B) =
∫

N
(

0, H(ω)(V (ω) − V 2(ω))
)

(B) P (dω).

Remark 4.2. Note that the random variables Qk have been defined in such a
way that Qk = 0 when i(k) = i(k + 1).

Remark 4.3. If we are in the case ui−1 + 1 = ri for all i, then assumption (iii)
is obviously satisfied since the third sum is zero.

Proof. It will be sufficient to prove that the G-martingale (Vn)n satisfies condi-
tions (a) and (b) of Proposition 2.2 in Crimaldi (2007) with U = H(V − V 2)
(see the appendix). To this end, we recall firstly that we can have only two
cases i(k + 1) = i(k) or i(k + 1) = i(k) + 1. Then, after some calculations, we
get

Vk − Vk+1 =
(

Vk

∑ri(k+1)

j=ui(k)+1 Nj −
∑ri(k+1)

j=ui(k)+1 YjNj

)

(b + r +
∑i(k+1)

i=1

∑ri

h=ui−1+1 Nh)
−1.

(5)

Moreover, it is immediate to verify that
∑ri(k+1)

j=ui(k)+1 Qk,j = Qk (6)

(Note that, if i(k + 1) = i(k), then ri(k+1) < ui(k) + 1 and the sums in the
above relations are equal to zero. On the contrary, if i(k + 1) = i(k) + 1, then
ri(k+1) = ri(k)+1 ≥ ui(k) + 1.) Thus, from (5) and (6), we have

|Vk − Vk+1| =
∣

∣

∣

∑ri(k+1)

j=ui(k)+1(Vk − Yj)Nj

∣

∣

∣
(b + r +

∑i(k+1)
i=1

∑ri

h=ui−1+1 Nh)
−1

≤∑ri(k+1)

j=ui(k)+1 |Vk − Yj|Qk,j

≤∑ri(k+1)

j=ui(k)+1 Qk,j = Qk,

7



and so, using assumption (ii), we find

supk k2 |Vk − Vk+1|4 ≤
∑

k≥0 k2Q4
k ∈ L1.

Furthermore, we have

∑ri(k+1)

j=ui(k)+1 Nj

(

b + r +
∑i(k+1)

i=1

∑ri

h=ui−1+1 Nh

)−1 ∼ Qk for k → +∞,

Nj

(

b + r +
∑i(k+1)

i=1

∑ri

h=ui−1+1 Nh

)−1 ∼ Qk,j for k → +∞,

and hence, by (5),

∑

k≥n(Vk − Vk+1)
2 ∼∑k≥n

(

VkQk −
∑ri(k+1)

j=ui(k)+1 YjQk,j

)2

for n → +∞.

Therefore, in order to complete the proof, it suffices to prove, for n → +∞, the
following convergence:

n
∑

k≥n

(

VkQk −
∑ri(k+1)

j=ui(k)+1 YjQk,j

)2 a.s.−→ H(V − V 2).

Since we have Y 2
j = Yj, the above sum can be rewritten as

n
∑

k≥n

[

V 2
k Q2

k + (
∑ri(k+1)

j=ui(k)+1 YjQk,j)
2 − 2VkQk

∑ri(k+1)

j=ui(k)+1 YjQk,j

]

=

n
∑

k≥n V 2
k Q2

k + n
∑

k≥n

∑ri(k+1)

j=ui(k)+1 YjQ
2
k,j+

2n
∑

k≥n

∑ri(k+1)

j=ui(k)+1 YjQk,j

∑j−1
h=ui(k)+1 YhQk,h − 2n

∑

k≥n VkQk

∑ri(k+1)

j=ui(k)+1 YjQk,j.

Now, by assumption (i) and the almost sure convergence of (Vk)k to V , we have

n
∑

k≥n V 2
k Q2

k
a.s.−→ V 2H. (7)

In the sequel, we are going to prove the following convergences for n → +∞:

(c1) n
∑

k≥n

∑ri(k+1)

j=ui(k)+1 YjQ
2
k,j

a.s.−→ V H;

(c2) n
∑

k≥n VkQk

∑ri(k+1)

j=ui(k)+1 YjQk,j
a.s.−→ V 2H;

(c3) n
∑

k≥n

∑ri(k+1)

j=ui(k)+1 YjQk,j

∑j−1
h=ui(k)+1 YhQk,h

a.s.−→ 0.

Let us start with convergence (c1). By assumptions (i) and (iii), we have

n
∑

k≥n

∑ri(k+1)

j=ui(k)+1 Q2
k,j

=n
∑

k≥n

(

∑ri(k+1)

j=ui(k)+1 Qk,j

)2

− 2n
∑

k≥n

∑ri(k+1)

j=ui(k)+1 Qk,j

∑j−1
h=ui(k)+1 Qk,h

=n
∑

k≥n Q2
k − 2n

∑

k≥n

∑ri(k+1)

j=ui(k)+1 Qk,j

∑j−1
h=ui(k)+1 Qk,h

a.s.−→ H

(8)

Thus, by the almost sure convergence of (Vj)j to V , we have

n
∑

k≥n

∑ri(k+1)

j=ui(k)+1 Vj−1Q
2
k,j

a.s.−→ V H (9)

Therefore, it will be enough to prove the following convergence:

n
∑

k≥n

∑ri(k+1)

j=ui(k)+1(Yj − Vj−1)Q
2
k,j

a.s.−→ 0. (10)
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Indeed, from this and (9), we obtain convergence (c1).

In order to prove (10), we consider the process (Zn)n∈N defined by

Zn :=
∑n−1

k=0 k
∑ri(k+1)

j=ui(k)+1(Yj − Vj−1)Q
2
k,j.

The random variable Zn is Gn-measurable and we have

Zn+1 =

{

Zn if i(n + 1) = i(n)

Zn + n
∑ri(n)+1

j=ui(n)+1(Yj − Vj−1)Q
2
n,j if i(n + 1) = i(n) + 1

where
E[(Yj − Vj−1)Q

2
n,j | Gn] = E[(Yj − Vj−1) | Gn] Q2

n,j = 0.

Indeed, for ui(n) + 1 ≤ j ≤ ri(n)+1, we have Gj−1 = Gn and so

E[(Yj − Vj−1) | Gn] = E[Yj | Gj−1] − Vj−1 = 0.

We have so proved that (Zn)n is a martingale with respect to the filtration
G = (Gn)n∈N. Moreover, by assumption (ii), we have

E[Z2
n] =

∑n−1
k=0 k2 E

[

(

∑ri(k+1)

j=ui(k)+1(Yj − Vj−1)Q
2
k,j

)2
]

≤∑n−1
k=0 k2 E

[

(

∑ri(k+1)

j=ui(k)+1 Q2
k,j

)2
]

≤∑n−1
k=0 k2 E

[

(

∑ri(k+1)

j=ui(k)+1 Qk,j

)4
]

=
∑n−1

k=0 k2 E[Q4
k]

≤∑k≥0 k2 E[Q4
k] < ∞.

Hence, the martingale (Zn)n is bounded in L2 and so it converges almost surely;
that is, the series

∑

k≥0 k
∑ri(k+1)

j=ui(k)+1(Yj − Vj−1)Q
2
k,j

is almost surely convergent. On the other hand, by a well-known Abel’s result,
the convergence of a series

∑

k ak, with ak ∈ R, implies the convergence of the
series

∑

k k−1ak and the relation n
∑

k≥n k−1ak → 0 for n → +∞. Applying
this result, we find (10).

From (c1), we obtain (c2). Indeed, we have

n
∑

k≥n VkQk

∑ri(k+1)

j=ui(k)+1 YjQk,j

=n
∑

k≥n Vk

∑ri(k+1)

j=ui(k)+1 YjQ
2
k,j + n

∑

k≥n Vk

∑ri(k+1)

j=ui(k)+1 Yj(Qk − Qk,j)Qk,j.

From (c1) and the almost sure convergence of (Vk) to V , we get that

n
∑

k≥n Vk

∑ri(k+1)

j=ui(k)+1 YjQ
2
k,j

a.s.−→ V 2H.

Moreover, from (6), (8) and (i), we get

n
∑

k≥n Vk

∑ri(k+1)

j=ui(k)+1 Yj(Qk − Qk,j)Qk,j ≤
n
∑

k≥n

∑ri(k+1)

j=ui(k)+1(Qk − Qk,j)Qk,j =

n
∑

k≥n Q2
k − n

∑

k≥n

∑ri(k+1)

j=ui(k)+1 Q2
k,j

a.s−→ 0.
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Finally, we observe that, by assumption (iii), we have

n
∑

k≥n

∑ri(k+1)

j=ui(k)+1 YjQk,j

∑j−1
h=ui(k)+1 YhQk,h ≤

n
∑

k≥n

∑ri(k+1)

j=ui(k)+1 Qk,j

∑j−1
h=ui(k)+1 Qk,h

a.s.−→ 0.

The proof is so concluded.

Example 4.4. Let us suppose that ri = 2i−1 and ui = 2i for each i ≥ 1. Then
we have

li = 1 and Li = N2i−1 for each i ≥ 1.

Let us assume that the random variables Ni are identically distributed (that is
µi = µ for each i ≥ 1) with E[N 4

i ] < +∞. If we set

m := E[Ni], δ := E[N 2
i ], h :=

δ

m2
,

then, using the same notation as in the previous theorem, we get that Wn

converges G-stably in the strong sense to the Gaussian kernel N (0, 2h(V −V 2)).

In order to prove this fact, we have to verify conditions (i), (ii) and (iii) of
the previous theorem. We firstly observe that ui−1 + 1 = ri for all i ≥ 1 and
so assumption (iii) is obviously fulfilled. Moreover, for each k ≥ 0, we have
i(k) = [k/2] where the simbol [ · ] denotes the integer part. Therefore, we have

Qk :=

{

0 if k is even

(
∑i(k+1)

i=1 N2i−1)
−1 N2i(k+1)−1 = (

∑i(k)+1
i=1 N2i−1)

−1 N2i(k)+1 if k is odd

and so
∑

k≥0 k2E[Q4
k] ≤

∑

j≥1(2j − 1)2E[Q4
2j−1]

≤ E[N 4
1 ]
∑

j≥1(2j − 1)2j−4 ≤ 4E[N 4
1 ]
∑

j≥1 j−2 < +∞.

Further, we have for n → +∞
n
∑

k≥n Q2
k = n

∑

j∈N, j≥(n+1)/2 Q2
2j−1 ∼ 2n

∑

j≥n Q2
2j−1

= 2n
∑

j≥n N2
2j−1(

∑j
i=1 N2i−1)

−2.

Since the random variables Ni are independent, identically distributed and in-
tegrable, then, by the strong law of large numbers, we get

∑j
i=1 N2i−1

a.s∼ jm for j → +∞
and so we obtain

n
∑

k≥n Q2
k

a.s∼ 2m−2n
∑

j≥n j−2N2
2j−1.

Now, for each j ≥ 1, let us set

Xj :=
(N2

2j−1 − δ)

j
.

The random variables Xj are independent, with mean equal to zero and variance
Var[Xj] = j−2 Var[N 2

1 ]. Thus, the series
∑

j≥1 Xj converges almost surely and
so we obtain

n
∑

j≥n j−1Xj
a.s.−→ 0.

10



This implies that
n
∑

j≥n j−2Nj
a.s.∼ δn

∑

j≥n j−2 → δ

and we can conclude that assumption (i) is satisfied with H = 2h.

5 Another central limit theorem

We have the following result.

Theorem 5.1. For each n ≥ u1, let us set

Sn =
√

ri(n)(Mri(n)
− Vn)

and

Xn,j = 1√
ri(n)

(
∑ri(j)

k=ri(j−1)+1 Yk + (ui(j) − ri(j))Vui(j)−1
− min(ri(n), ui(j)) Vui(j)

− (ui(j−1) − ri(j−1))Vui(j−1)−1
+ min(ri(n), ui(j−1)) Vui(j−1)

)

for 1 ≤ j ≤ n. Suppose:

(a) Un =
∑n

j=1 X2
n,j

P−→ U .

(b) X∗
n = sup1≤j≤n |Xn,j| L1

−→ 0.

Then the sequence (Sn)n≥1 converges A-stably to the Gaussian kernel N (0, U).

In particular, condition (a) and (b) are satisfied if the following conditions
hold:

(a1) ri = ui for all i and
ri(n)−1

ri(n)
→ 1 for n → +∞.

(b1) Un =
∑n

j=1 X2
n,j

a.s.−→ U .

(c1) supn E[S2
n] < +∞.

As we have already recalled, the A-stable convergence of (Sn)n to the Gaus-
sian kernel N (0, U) implies that (Sn)n converges in distribution to the probabi-
lity mesure ν2 on R defined by

ν2(B) =
∫

N
(

0, U(ω)
)

(B) P (dω).

Remark 5.2. It is worthwhile to note that, for each n, we have Xn,j = 0 when
i(j − 1) = i(j).

Remark 5.3. If rj = uj = j, the above conditions become the same conditions
as in Berti et al. (2004) or in Berti et al. (2005).

Proof. We will use Theorem A.1 in appendix. For each n ≥ u1, let us set

Dn =
√

ri(n)(Mri(n)
− V ),

and for 0 ≤ j ≤ n
Ln,j = E[Dn | Gj] Fn,j = Gj.

Then, for each n ≥ u1, the sequence (Ln,j)0≤j≤n is a martingale with respect to
(Fn,j)0≤j≤n such that Ln,0 = E[Dn|G0] = 0 and

Ln,j − Ln,j−1 = E[Dn | Gj] − E[Dn | Gj−1] = Xn,j for 1 ≤ j ≤ n.

11



Indeed we have

E[Dn | Gj] − E[Dn | Gj−1]

= 1√
ri(n)

(
∑ri(j)

k=1 Yk +
∑ui(j)

k=ri(j)+1 E[Yk|Gj] +
∑ri(n)

k=ui(j)+1 E[Yk|Gj] − ri(n)Vj

−∑ri(j−1)

k=1 Yk −
∑ui(j−1)

k=ri(j−1)+1 E[Yk|Gj−1] −
∑ri(n)

k=ui(j−1)+1 E[Yk|Gj−1] + ri(n)Vj−1)

= 1√
ri(n)

(
∑ri(j)

k=ri(j−1)+1 Yk +
∑ui(j)

k=ri(j)+1 Vui(j)−1
+
∑ri(n)

k=ui(j)+1 Vui(j)
− ri(n)Vui(j)

−∑ui(j−1)

k=ri(j−1)+1 Vui(j−1)−1
−∑ri(n)

k=ui(j−1)+1 Vui(j−1)
+ ri(n)Vui(j−1)

)

= 1√
ri(n)

(
∑ri(j)

k=ri(j−1)+1 Yk + (ui(j) − ri(j))Vui(j)−1
+ +(ri(n) − ui(j))

+ Vui(j)
− ri(n)Vui(j)

−(ui(j−1) − ri(j−1))Vui(j−1)−1
− (ri(n) − ui(j−1))

+ Vui(j−1)
+ ri(n)Vui(j−1)

)

= 1√
ri(n)

(
∑ri(j)

k=ri(j−1)+1 Yk + (ui(j) − ri(j))Vui(j)−1
− min(ri(n), ui(j)) Vui(j)

−(ui(j−1) − ri(j−1))Vui(j−1)−1
+ min(ri(n), ui(j−1)) Vui(j−1)

)

=Xn,j .

Moreover, we have

Sn = E[Dn | Gn] = Ln,n =
∑n

j=1 Xn,j .

Finally, if N denotes the sub-σ-field generated by the P -negligible events, then

Vj = lim infn Fn,j∧n = lim infn Gj∧n = Gj

and
V = N ∨∨j≥0 Vj = N ∨∨j≥0 Gj

and so the random variable U is measurable with respect to the σ-field V . At
this point we can apply Theorem A.1 together with Remark A.2 and the proof
of the first assertion is concluded.

If conditions (a1) and (b1) hold, then condition (a) is obviously verified and
we have

Xn,j = 1√
ri(n)

Zj

where
Zj =

∑ri(j)

k=ri(j−1)+1 Yk − ui(j) Vui(j)
+ ui(j−1) Vui(j−1)

.

Therefore, since i(ui(n)) = i(n) and i(ui(n) − 1) = i(n) − 1, we can write

1
ri(n)

Z2
ri(n)

= X2
ui(n),ui(n)

=
∑ui(n)

j=1 X2
ui(n),j

−∑ui(n)−1

j=1 X2
ui(n),j

=
∑ui(n)

j=1 X2
ui(n),j

− 1
ri(n)

∑ui(n)−1

j=1 Z2
j

= Uui(n)
− ri(n)−1

ri(n)

Uui(n)−1
a.s.−→ 0,

This fact implies that

X∗
n = sup1≤j≤n |Xn,j| a.s.−→ 0,
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Indeed,

sup0≤j≤n X2
n,j = sup0≤j≤n

1
ri(n)

Z2
j

= sup0≤j≤ri(n)

1
ri(n)

Z2
j

a.s.−→ 0.

(Note that the second equality holds because Zj = 0 for ri(n) = ui(n) < j ≤ n
since i(j − 1) = i(j).) Further, we have

E[(X∗
n)2] = E[sup1≤j≤n X2

n,j] ≤
∑n

j=1 E[X2
n,j ]

=
∑n

j=1 E
[(

Ln,j − Ln,j−1

)2]

=
∑n

j=1 E
[

L2
n,j − L2

n,j−1

]

= E
[

L2
n,n

]

= E[S2
n].

From (c1) we obtain that the sequence (X∗
n) is bounded in L2 and so we get

condition (b).

6 Other interpretation

The proposed model can be employed also for the following experiment. At
time 0 an urn contains b ∈ N

∗ black and r ∈ N
∗ red balls. At each time i ≥ 1,

a sample of ui − ui−1 patients are assigned to a treatment by this procedure:
for each patient we pick a ball from the urn, we observe its color and we put
it again in the urn. Then ri − ui−1 “significant” responses arrive, we give for
convenience number j = ui−1 + 1, . . . , ri to the corresponding patients and the
urn is so updated: for each j = ui−1 + 1, . . . , ri, we add Nj balls of the color
corresponding to the treatment assigned to patient j (Yj = 1 means black ball
and first treatment and Yj = 0 means red ball and second treatment). In this
context, the random variable Cui

=
∑ui

k=1 Yk represents the number of patients
allocated to the first treatment until time i.

A Appendix

For the reader’s convenience, we state some results used above. For more details
on the stable convergence or on the amost sure conditional convergence, we refer
to Jacod-Memin (1981) and Crimaldi (2007), respectively.

Theorem A.1. Let (ln)n≥1 be a sequence of strictly positive integers. On a
probability space (Ω,A, P ), for each n ≥ 1, let (Fn,j)0≤j≤ln be a filtration and
(Ln,j)n≥1,0≤j≤ln be a triangular array of real random variables on (Ω,A, P ) with
values such that, for each n, the family (Ln,j)0≤j≤ln is a martingale with respect
to (Fn,j)0≤j≤ln and Ln,0 = 0. For each pair (n, j), with n ≥ 1, 1 ≤ j ≤ ln, let us
set Xn,j = Ln,j − Ln,j−1 and

Sn =
∑ln

j=1 Xn,j = Ln,ln , Un =
∑ln

j=1 X2
n,j, X∗

n = sup1≤j≤ln |Xn,j|.
Let us suppose that the sequence (Un)n≥1 converges in probability to a positive

random variable U . Further, let us suppose X∗
n

L1

−→ 0. Finally, let N be the
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sub-σ-field generated by the P -negligible events and let us set

Vj = lim infn Fn,j∧ln for j ≥ 0, V = N ∨∨j≥0 Vj.

If U is measurable with respect to the σ-field V , then (Sn)n≥1 converges V-stably
to the Gaussian kernel N (0, U).

Remark A.2. We recall that, if the random variable Sn is V-measurable for
each n, then the V-stable convergence implies the A-stable convergence.

For a proof of this theorem, the reader may look at Th. 5 and Cor. 7 in sec. 7
of Crimaldi et al. (2007). It maybe worthwhile to note that in Crimaldi et al.
(2007) there exists a stronger version of the previous result and so also Theorem
5.1 could be enunciated in a stronger way.

Proposition A.3. (see Prop. 2.2 in Crimaldi (2007))
On a probability space (Ω,A, P ), let (Vn)n∈N be a real martingale with respect
to a filtration G = (Gn)n∈N. Suppose that (Vn)n converges in L1 to a random
variable V . Moreover, setting

Un := n
∑

k≥n(Vk − Vk+1)
2, Y := supk

√
k |Vk − Vk+1|,

assume that the following conditions hold:

(a) The random variable Y is integrable.

(b) The sequence (Un)n≥1 converges almost surely to a positive real random
variable U .

Then, with respect to G, the sequence (Wn)n≥1 defined by

Wn :=
√

n(Vn − V )

converges to the Gaussian kernel N (0, U) in the sense of the almost sure condi-
tional convergence.

In particular, the sequence (Wn)n converges A-stably to N (0, U).
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