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Abstract

We study coalitional games where the coalitional payoffs depend on

the entire coalition structure. The recursive core (Kóczy, 2007) is a gen-

eralisation of the coalition structure core for such games.

We introduce a noncooperative, sequential coalition formation model

and show that the set of equilibrium outcomes coincides with the recursive

core. In order to extend past results to games that are not totally balanced

(understood in this special setting) we introduce subgame-consistency

that requires perfectness in relevant subgames only, while subgames that

are never reached are ignored.
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1 Introduction

Throughout its history the theory of coalitional games has mostly focussed on

the study of games with orthogonal coalitions, that is, coalitions, which can be

studied independently of each other. The most obvious example is the com-

monest form of a TU-game with a characteristic function that assigns a payoff
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and Maastricht University, Department of Economics, P.O.Box 616, 6200 MD Maastricht,

The Netherlands, koczy.laszlo@kgk.bmf.hu

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6504734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


to a coalition disregarding other players and coalitions. When we look at the

usual interpretations of coalitions, be those trading blocks (Yi, 1996), trusts

(Bloch, 1995) or international environmental agreements (Funaki and Yamato,

1999; Eyckmans and Tulkens, 2003), the orthogonality assumption is difficult

to maintain; we believe it is the exception rather than the rule that coalitions

can be studied independently of each other.

Since the seminal paper of Thrall and Lucas (1963) introducing the parti-

tion function form numerous cooperative approaches and solution concepts have

been proposed to solve games with externalities, but in the absence of an im-

plementation by non-cooperative equilibria these remain interesting heuristics

(Chander and Tulkens, 1995; Ray and Vohra, 1997; Hyndman and Ray, 2007).

For games with orthogonal coalitions the implementation of cooperative solution

concepts, such as the core has an extensive literature (Chatterjee et al., 1993;

Lagunoff, 1994; Perry and Reny, 1994), but these results do not directly gen-

eralise to games with externalities. In this domain Huang and Sjöström (2006)

and Kóczy (2009) have provided partial results that are limited to games with

non-empty cores in all subgames, or, in terms of sequential coalition formation

games: to games with stationary perfect equilibria. It turns out that perfectness

is a very demanding condition and the implementation might fail even for simple

TU games. We therefore introduce a generalisation, subgame-consistency, and

show that the set of partitions formed under the resulting equilibria coincides

with the recursive core.

Subgame-consistency is a weaker concept than subgame-perfectness, but

more demanding than time-consistency (Kydland and Prescott, 1977). If we

define each of these concepts in corresponding sets of subgames, for subgame-

perfectness all subgames are relevant, while for time-consistency only the sub-

games on the equilibrium path. In particular subgame-perfect equilibria are also

subgame-consistent and subgame-consistent equilibria are also time-consistent.

Moreover stationary perfect equilibria are stationary consistent. For more on

the relation of subgame-perfect and time-consistent strategies see Fershtman

(1989) and Asilis (1995).

The structure of the paper is as follows. After this introduction a long second

section follows introducing both the cooperative and noncooperative theories to
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solve games in partition function form, we introduce the notation and simple

terminology we are going to use. We present the cooperative solution, namely

the recursive core and similarly the noncooperative coalition formation game

and its equilibria. A novel equilibrium concept, subgame consistency and the

corresponding notion of relevant subgame are also introduced here. We state

and prove our main result in the third section. The paper ends with a brief

conclusion.

2 Preliminaries

Let N denote the set of players. Subsets are called coalitions. A partition S of

S is a splitting of S into disjoint coalitions. Π(S) denotes the set of partitions

of S. In general we use capital and calligraphic letters to denote a set and its

partition (the set of players N being an exception), indexed capital letters are

elements of the partition. We write i ∈ S if there exists Sk such that i ∈ Sk ∈ S

and if i ∈ S we write S(i) for the coalition embedded in S containing i.

The game (N,V ) is given by the player set N and a partition function (Thrall

and Lucas, 1963) V : Π(N)→ (2N → R), where V (Si,S) denotes the payoff for

coalition Si in case partition S forms. For vectors x, y ∈ RN we write xS for

the restriction to the set S and xS > yS if xi ≥ yi for all i ∈ S ⊂ N and there

exists j ∈ S such that xj > yj .

The pair ω = (x,P) consisting of a payoff vector x ∈ RN and a partition

P ∈ Π(N) is a payoff configuration (or outcome) if
∑
i∈S xi = V (P,P) for all

P ∈ P. The set of outcomes of game (N,V ) is denoted Ω(N,V ).

Our main result is the equivalence of the partitions produced by certain

noncooperative coalition formation game and a cooperative solution concept.

In the following we spell out these approaches.

2.1 Recursive core

The first model is a cooperative solution concept, a generalisation of the core

to games in partition function form. The core is defined in terms of deviations,

but unlike in games with orthogonal coalitions, in games with externalities the

profitability of a deviation can only be determined once the partition of the
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remaining, residual players is also known, or at least some assumption is formu-

lated about their behaviour. While most of the approaches (see Kóczy, 2007,

for further references) tried to get rid of the externalities and solve the game as

a characteristic function form game, Huang and Sjöström (2003) and (Kóczy,

2007) assume that these residual players play a residual game that is a game

on its own and thus can be solved using the same concept. Once the solution

of this game is known, we know which partition is formed, and then it is also

possible to tell the deviating players’ payoffs. If this partition is not unique

(or not determined, in case the residual core is empty) Kóczy (2007) considers

optimistic and pessimistic scenarios depending on the deviating players’ expec-

tations regarding these alternatives. Our results will apply to the pessimistic

case, so only this version of the definition is given.

First we introduce residual games and then the recursive core:

Definition 1 (Residual Game). Let (N,V ) be a game and consider the set

L ( N of live players. Assume K = N \L have committed to form partition K.

Then the residual game (L, V K) is the partition function form game over the

player set L and with the partition function V K : ΠL → (2L → R), where

V K(C,L) = V (C,L ∪ K) ∀C,L : C ∈ L ∈ ΠL. (2.1)

The residual game is derived from the original game using the partition K, but

it is a partition function game on its own. So if we use the core to solve (N,V ),

we must also use it to solve (L, V K): Deviating coalitions must expect a residual

core outcome to form. Should the core be empty this solution does not present a

selection of the outcomes, and all possible responses must be considered. Even if

the residual core is non-empty it may contain payoff configurations with different

partitions. This gives rise the the following definition.

Definition 2 (Recursive core). Let (N,V ) be a partition function form game.

1. Trivial game. The core of ({1} , V ) is the only outcome with the trivial

partition: C({1} , V ) =
{(
V
(
1, (1)

)
, (1)

)}
.

2. Inductive assumption: The core C(N,V ) has been defined for all games
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with |N | < k players. The assumption about game (N,V ) is

A(N,V ) =

C(N,V ) if C(N,V ) 6= ∅

Ω(N,V ) otherwise.

3. Dominance. The outcome (x,P) is dominated via the coalition K forming

partition K if for all assumptions (yL,L) ∈ A(L, V K) of the remaining set

of players L = N \K there exists an outcome ((yK , yL),K∪L) ∈ Ω(N,V )

such that yK > xK .

The outcome (x,P) is dominated if it is dominated via a coalition.

4. Core. The core, denoted C(N,V ), is the set of undominated outcomes.

A partition is only dominated via a coalition if the deviation of this coali-

tion (as a partition) is profitable for every residual (core) partition. When the

residual core is empty, we have no information about the solution of the resid-

ual game, so we assume that any reaction is possible. As such, we do not, for

instance, exclude inefficient partitions – just as the sequential game will be free

from such limitations in Equation 2.3. Our results, however, generalise to such

modifications – as long as they are introduced in both models. For a general

discussion of the properties of the recursive core see Kóczy (2007).

In the following we simply refer to the recursive core as core and to the

(recursive) core of a residual game as residual core.

2.2 Sequential coalition formation

In the following we describe the noncooperative coalition formation game that,

together with an appropriate equilibrium concept will implement the recursive

core. Our setup is closest to the models of (Bloch, 1996) and Perry and Reny

(1994).

We begin with a brief, informal description. The purpose of the game is to

form coalitions as this is the only way players can collect payoffs. Coalitions

can form with unanimous agreement of the members: a member proposes a

coalition and the rest one-by-one accept. Such agreements must also specify the

distribution of the coalitional payoffs, which, in turn, are only determined once

the game ends and the complete partition forms. Following Huang and Sjöström
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Figure 1: Stationary decision with beliefs

(2006) we assume that a proposal also specifies the percentual distribution of

the payoff among the members of the coalition. For efficiency reasons we allow

for the simultaneous formation of coalitions (See also Kóczy, 2009). When a

coalition forms, its members leave the game.

We are interested in self-confirming strategies of this game. It is common to

study stationary-perfect equilibria, but here perfectness turns out to be too

strong a condition and therefore we introduce the somewhat weaker notion

of subgame-consistency that requires the perfectness property only in relevant

subgames. We insist on stationarity, but allow players to form beliefs about

history: their actions may thus depend not only on the status quo, but also on

the common belief, decided by nature.

The decision at each node can therefore be described as on Figure 1. At

a node there may be several possible moves each of which are optimal for a

different history. Also here, the player should follow the dotted arrow, but,

due to stationarity the decision can only be conditional on the belief. The

possibility, however is there that the right action is chosen, as the belief can

possibly coincide with the true history.

In the following we formalise the model.

The sequential coalition formation game (N,V ) is defined over the same
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player set N and the same partition function V , but the game is played in an

entirely different way. Without loss of generality we assume 0 < minP,S V (S,P)

therefore staying in the game forever is never optimal.

1. Initially all players are active and no proposals have been made.

2. Player i makes a proposal to an active subset S 3 i of the players specifying

a partition S as well as a distribution of the coalitional values.

3. If it is attractive, players in S accept the proposal one-by-one.

4. When all players have accepted, the proposed coalitions form and leave

the game.

5. The coalitions that have left receive some payment based on what they

have already earned, that is, the minimal payment for these coalitions in

any embedding partition taking the exited coalitions given.

6. The belief about the order of exits of departed coalitions is updated by

nature; the game continues with the remaining players with Step 2.

7. If a proposal is not attractive, the invited players do not accept it and

another proposal is made. Return to Step 2.1

8. If all players have left, the game ends.

Proposals A proposal p = (T , w) ∈ ΠT × [0, 1]T by player i is offered to a

set of players T 3 i, where T ⊆ N \ K specifying a partition T ∈ ΠT and

a distribution w of coalitional payoffs in each of the coalitions in T such that∑
i∈Ti

wi = 1 for all Ti ∈ T . The vector w specifies the share of the payoff a

particular player will receive, the actual payment is only known once the payoff

of the coalition can be determined. Specifying individual payoffs adds only

complexity to the model (Huang and Sjöström, 2006).

The set of proposals available to i are denoted Pi while P collects all possible

proposals.
1Here we use the assumption that there are plenty of opportunities to accept a proposal so

if a player does not, but allows another one to make another proposal, then he is essentially

rejecting it. Bloch (1996) only allows the rejecting player to make a proposal, but with this

assumption our setup is essentially the same.
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History The game is specified in an extensive form, where decisions are made

at each node. History, denoted ht at time t encompasses the entire activity log

of the game including proposals made, acceptances if any, which coalitions have

left etc.

Time’s passing has no relevance here, so we drop the reference in the nota-

tion. We can, however say that if h1 ⊂ h2, then h1 happened before h2.

History has more data we will ever need, among others it contains.

• the set of players K(h) =
⋃
S∈K(h) S ⊂ N who have already left the game

forming partition K(h) ∈ ΠK(h),

• the set of feasible proposals P (h) = {(T , w) ∈ P |T ⊆ N \K(h)} and

Pi(h) = P (h) ∩ Pi,

• the current proposal p(h) = (T (h), w(h)) ∈ P (h),

• the distribution rule for the quit players w(h) ∈ RN , where we set wi(h) =
1
|L| for all i 6∈ K,

• the set of players A(h) ⊂ T (h) who have already accepted the proposal,

• and finally β(h) the belief at node h.

The set of histories is denoted by H.

When a history h has been reached, all future histories can only be extensions

of h. The set of such feasible histories is denoted Hh = {h′ ∈ H |h ⊆ h′ }.

Strategies Strategy σi of player i is a mapping from H to his actions set:

σi(h) ∈ Pi(h) ∪ {accept,wait} . (2.2)

We assume that making or accepting a proposal is preceded and followed by

a nonempty open passive interval of time. This is to ensure that other players

have a chance to react. Further, we assume

1. Initially there is no active proposal so “accept” is the same as “wait”.

2. The same applies if i accepts a proposal (T , w), while i 6∈ T .

3. Actions of departed players are ignored.
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4. A new proposal cancels the previous proposal: if it was not accepted,

by our assumption this is due to lack of interest not shortage of time.

Here the question whether a race-to-react could realise in some situations.

Fortunately the answer is no, in equilibrium this will not happen, but to

see this we first must specify payoff (the incentives to play the game) and

the equilibrium concept.

We denote the restriction of σ to a subgame corresponding to history h by σh.

Beliefs In games with externalities stationary information is not sufficient to

achieve stable outcomes. Indeed a departed player’s payoff is partly determined

by the actions of the remaining players allowing the latter to punish deviations.

A strategy will typically specify punishment strategies off equilibrium, but whom

should one punish depends on the history, that is not available when stationary

strategies are selected. Instead players form a common belief on whom should

be punished. The belief is common to all players, and is decided by nature and

is updated each time a player leaves a game.

For all h, the belief β(h) at h is a subset of the departed coalitions, β(h) ⊆

K(h). As for strategies, the restriction of β to subgame h is denoted by βh. The

set of beliefs is denoted B, the set of restrictions to h by Bh.

In equilibrium the outcome of the game will not depend on beliefs, but

to make the influence of recollections more explicit in general, the outcome

resulting from the strategy profile σ and the recollection-function β can be

written as ω(σ, β). Kreps and Wilson (1982) use expectations to aggregate

results from different beliefs, we use the conservativism of the players: They

focus on the worst outcomes, essentially trying to minimise loss.

Payoffs Not all players will necessarily leave the game – if so, the departed

players form a coalition structure that is not a partition and therefore the coali-

tional payoffs are ill-defined. Assuming that players are careful, conservative

and thus always look out for the worst case and with a slight abuse of notation

we generalise the payoff function for such “incomplete partitions”.
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V (S,P(σ, β)) =

minP⊃P(σ,β) V (S,P) S ∈ P(σ, β)

0 otherwise.
(2.3)

In addition to the coalitional payoffs, the strategies also determine the in-

dividual ones. Let xi(σ, β) denote the payoff of player i in case the strategy

profile σ is played and β is the belief function. Formally

xi(σ, β) = wi(σ, β)V (P(σ, β, i),P(σ, β)), or (2.4)

xi(σ) = min
β′∈Bh

wi(σ, β′)V (P(σ, β′, i),P(σ, β′)), (2.5)

as a function of strategies only.2

Before we proceed to study equilibria we introduce some additional notation.

At history h the continuation payoff for i using strategy profile σ is

xi(σ, h) =

minβh∈Bh wi(h)V (K(h, i),K(h) ∪ P(σh, βh)) if i ∈ K(h)

minβh∈Bh wi(σh, βh)V (P(σh, βh, i),K(h) ∪ P(σh, βh)) otherwise
(2.6)

Now suppose that at history h there is a proposal p = (D, w). For a player

i ∈ D, should the proposal be accepted the payoff becomes

xi(σ,D, w, h) = min
βh∈Bh

wiV (D(i),K(h) ∪ D ∪ P({accept} ∪ σh−i, βh)). (2.7)

Finally we introduce the following notation: Suppose x(β) and y(β) are

payoff vectors. We say that x is larger than y for all β ∈ B and write x(B) >

y(B) if x(β) ≥ y(β) for all β ∈ B and there exists β ∈ B such that x(β) > y(β).

Equilibria Now that we have specified the available strategies (actions), the

resulting payoffs (incentives) we can focus on the outcomes of the coalition

formation game. We hope to answer two questions simultaneously: (i) which

2Bloch (1996) considers optimistic players: vi(P(σ)) = maxP⊃K vi(P) for i ∈ P(σ). How-

ever, a deviation (a concept we formalise later) is profitable if it is weakly profitable to all

players. Suppose this deviation creates a subgame where any of the partitions might form.

Optimistic players expect the best: a partition beneficial to the deviation will form. Bloch’s

players’ optimism goes further, they individually hope the best: a deviation may appear prof-

itable even if for every single possible reaction someone is worse off. Pessimism is consistent

in this sense: a deviation K is profitable for K if and only if it is profitable for each player in

K and for each possible partition.
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coalitions will form (ii) how are coalitional payoffs distributed. We look for

strategies that do not need revisions, but are final already as the game starts

and for strategies that are stationary, that is, do not depend on time, but only

on the current state of the game. In nonstationary strategies the set of equilibria

may be too inclusive; for a discussion of folk-theorem-like results see Muthoo

(1990, 1995); Perry and Reny (1994); Osborne and Rubinstein (1990).

Definition 3. A strategy is stationary if it does not depend on history, if for

all i and for all histories h, h′ ∈ H such that K(h) = K(h′) and p(h) = p(h′) we

have σi(h) = σi(h′).

Such strategies only depend on the current state s = (K, p), a pair consisting of

the partition K of departed players and the ongoing proposal p ∈ P i(h).

Now recall that players are conservative and only go for certain profits: If

different beliefs lead to different subsequent actions from the other players, a

deviation may or may not be profitable under all such scenarios.

Definition 4. The strategy profile σ∗ is a subgame-perfect equilibrium (with

beliefs) if for all i ∈ N , for all h ∈ Hi and for all strategies σi we have

xi(σ∗hi , σ∗h−i, B
h) > xi(σhi , σ

∗h
−i, B

h). (2.8)

Definition 5. A stationary perfect equilibrium σ∗ is a strategy profile that is

both subgame-perfect and stationary.

The set of stationary perfect equilibrium partitions coincide with the re-

cursive core (Kóczy, 2009) (for games with nonempty residual cores). This

equivalence result predicts that games with empty residual cores do not have

stationary perfect equilibria.

Bloch (1996) presents a 3-player example, where player 1 would like to form a

coalition with 2, 2 with 3, 3 with 1. This game does not have stationary-perfect

equilibria. Since residual games are also partition function form games, the

smallest residual game for which the corresponding subgame of the sequential

game has no stationary strategies has an empty core. By a sufficiently large

payoff for the grand coalition the core of the original game is nevertheless empty.

Perfectness only holds globally, that is, if the tiniest subgame fails to have

stationary perfect equilibria this imperfection spreads to the entire game. On
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the other hand, just as the recursive core may be non-empty even if the game

has empty residual cores, with a weaker concept of perfection we may retain an

essentially perfect behaviour in the corresponding sequential coalition formation

games, too.

Time-consistency (Kydland and Prescott, 1977) merely requires that the

equilibrium strategy does not need revision and thus will naturally be unaf-

fected by empty cores in subgames elsewhere. Clearly, most subgames are never

reached so it is superfluous to insist on this property everywhere, on the other

hand time-consistency does not check deviations carefully enough. Subgame-

consistency, that we introduce soon is the right compromise and in the following

we study strategies where the perfectness/consistency criterion is not checked

per se for every subgame, but is only required in relevant subgames.

Definition 6. For a strategy profile σ and belief β a subgame at history h is

relevant if

1. h is the original game (K(h) = p(h) = ∅), or

2. there exists a modification σ′ and a belief βh such that

(a) σ and σ′ differ in a single action in history h, resulting in the set D

forming partition D = K(h) \ P(σ, β) leaving the game,

(b) K(h) ⊆ P(σ′, βh), and

(c) xD(σ′, βh) > xD(σ, βh), or

3. it is a relevant subgame of a relevant subgame.

The first case is trivial. In Case 2 we consider an elementary irreversible

deviation (the wrong set D of players or the wrong partition D exits), that

is, nevertheless profitable for D under some belief. Finally if some elementary

deviation results in a subgame this subgame is relevant and of course after the

departure of some of the original players, it is a game on its own, and is therefore

evaluated the very same way: we want to check relevant subgames.

Definition 7. The strategy profile σ∗ is a subgame-consistent equilibrium3 if
3In this equilibrium concept perfectness is only required in the neighbourhood of the equi-

librium strategies and so the name quasi-perfect equilibrium would be more appropriate.
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• for all players i ∈ N , for all histories h and for all strategies σi

xi(σ∗hi , σ∗h−i, B
h) > xi(σhi , σ

∗h
−i, B

h) (2.9)

• restrictions to subgames relevant for σ are also subgame-consistent.

Definition 8. A stationary consistent equilibrium σ∗ is a strategy profile that

is both subgame-consistent and stationary.

We denote the set of stationary consistent equilibria by SCE(N,V ) and

outcomes resulting from playing such equilibrium strategies by Ω∗(N,V ).

3 Results

Theorem 1. Let (N,V ) be a partition function form game. Then its recur-

sive core C(N,V ) coincides with the set Ω∗(N,V ) of outcomes supported by

stationary consistent equilibrium strategy profiles.

The rest of this section is devoted to the inductive proof of this theorem. As

the proof is long, we break it into a number of propositions and finally present

a summary of these results. The first proposition requires no proof:

Proposition 2. Let ({1} , V ) be a trivial, single-player partition function form

game. Then C({1} , V ) = Ω∗({1} , V ).

Now assume that Theorem 1 holds for all games with less than k players. In

the following we extend it to games with k players. In order to show Ω∗(N,V ) =

C(N,V ), first we show Ω∗(N,V ) ⊆ C(N,V ) then Ω∗(N,V ) ⊇ C(N,V ).

Lemma 3. If Theorem 1 holds for all games with up to k−1 players, Ω∗(N,V ) ⊆

C(N,V ) for all k-player games.

Proof. If Ω∗(N,V ) = ∅ the result is trivial, otherwise there exists a SCE σ

producing ω(σ, β) = (x(σ, β),P(σ, β)) ∈ Ω∗(N,V ) for some belief-function β.

In particular, we assume that ω(σ, β) 6∈ C(N,V ) and prove contradiction.

Unfortunately that term is already taken and quasi-perfect equilibria (van Damme, 1984) are,

however not related to our concept, in fact even their relation to subgame perfect equilibria

is not well defined. Our concept is a weakening of subgame-perfectness.
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By this assumption there exists a profitable deviation D by some set D of

players. The induced subgame has fewer players so the inductive assumption

can be applied. In the sequential game the deviation at h is expressed by the

strategy profile σ′ against the original strategy profile σ, where σ′(h′) = σ(h′)

for all h′ ⊂ h. We discuss three cases.

Case 1. The induced subgame with K(h) = D, p(h) = ∅ is not relevant.

Then for all σ−i(h) there exists i ∈ D and β such that xi(σ′, β) < xi(σ, β) –

thus the deviation cannot be profitable in the cooperative game; contradiction.

Case 2. The resulting subgame is relevant, the core of the corresponding

residual subgame is empty. Then V (D,D ∪ PN\D) >
∑
i∈S xi(σ, β) for all

PN\D. Since V (D,D ∪PN\D) = minβh∈Bh

∑
i∈S xi(σ

′, β) a player in D should

immediately propose D. By subgame consistency all in D will accept. There-

fore σ is not a stationary consistent equilibrium, moreover the outcome ω(σ, β)

cannot be supported by other equilibria either. Contradiction.

Case 3. The induced subgame is relevant and the core of the corresponding

residual subgame is not empty. Since σ is a SCE its restriction σh to this

relevant subgame (where K(h) ⊃ D and p(h) = ∅) is stationary consistent, too.

Moreover the deviation from σ to form D is not profitable, therefore

xD(σh, Bh) > xD(σ′h, Bh) (3.1)

On the other hand, by the inductive assumption,

ω(σh, βh) ∈ C(L(h), V D) ∀β(h). (3.2)

This, however, implies that the deviation D is not profitable in the cooperative

game; contradiction.

We have discussed all cases, and found the assumptions contradicting. There-

fore ω(σ, β) ∈ C(N,V ).

Punishment strategy Before we move on to our next lemma, we introduce

what we call the punishment strategy. A strategy-profile can only form an equi-

librium if it specifies a “response” to each deviation that deems these deviations

unprofitable. In the recursive core a deviation is only profitable if it represents

an improvement in the payoffs for all residual assumptions. In the sequential
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game, however, primary deviations can be punished, but due to stationarity,

but with multiple departed coalitions finding the right punishment is difficult.

Consider the following example. In equilibrium players obtain a payoff x.

Suppose coalitions A and B have left the game and they do not form a subset of

the equilibrium partition (for simplicity: none of them do), therefore someone

has deviated. If A deviated first N \A (including B) should stop this deviation

producing payoff yA such that yAA < xA. When B deviates, too, the remaining

N \ A \ B should also choose an action to get a payoff zB such that zBB < yAB .

Consequently B does not deviate, yA forms which is bad for A, hence A does

not deviate and the equilibrium is preserved.

If, however N \ A \ B are misinformed and think B deviated first. They

want response yB , which A did not comply with thus A must be punished by

zA, where yBB < xB and zAA < yBA . If zAB > yBB and zAA > xA the response does

not work. Fortunately, when the deviations are made it is not yet known what

will be the belief of N \A \B: it can also be the correct history.

In the following we specify the punishment strategy to a deviation knowing

that some other coalitions left, too. We assume that K has already left the

game, but D was (or at least we think it was) the last to exit. Consider a

proposal p = (D, w). In the partition function form game (N \K ∪D,V K\D)

the partition D, as a deviation, defines a residual game (N \K,V K). We discuss

two cases based on the emptiness of the core of this residual game.

If the residual core is not empty a “punishment strategy” toD is (x̃D|K, P̃D) ∈

C(N \ K,V K) ensuring that the deviation D is not profitable. That is, P̃D|K

satisfies4

∃S ∈ D : V (S,K ∪ P̃D|K) <
∑
i∈S

x̃i, or (3.3)

∀S ∈ D : V (S,K ∪ P̃D|K) =
∑
i∈S

x̃i. (3.4)

Since (x̃, P̃) ∈ C(N,V ) such a P̃D|K exists for all deviations D. Without loss of

generality let w̃D|Ki = x̃
D|K
i∑

j∈P̃D|K(i)
x̃
D|K
j

.

If the residual core is empty we observe that in order for a deviation to

be profitable it must be profitable for all residual partitions. Since (x̃, P̃) ∈
4Observe that from the point of view of externalities only the residual partitions matter,

and therefore we ignore payoffs.
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C(N,V ), in the partition function form game the deviation is not profitable

guaranteeing the existence of a residual partition P̃D|K ∈ ΠN\D satisfying

Condition 3.3 or Condition 3.4. Here w̃D|K can be chosen arbitrarily, so let

w̃
D|K
i = 1

|P̃D|K(i)| .

Lemma 4. If Theorem 1 holds for all games with less than k players, then

Ω∗(N,V ) ⊇ C(N,V ) for all k-player games (N,V ).

Proof. The proof is inspired by that of Bloch (1996, Proposition 3.2) in part,

and is by construction. We show that if (x̃, P̃) ∈ C(N,V ) there exists a station-

ary consistent strategy profile σ̃ such that for all β we have P(σ̃, β) = P̃ and

x(σ̃, β) = x̃. Let w̃ = x̃i∑
j∈P̃(i) x̃j

.

In the following we define the stationary strategy σ̃i for player i. Due to sta-

tionarity it is sufficient to specify the strategy for each triple (K, p,B) consisting

of the partition of players who have already quit, the current proposal and the

current belief (thus B ⊆ K).

σ̃i(K, T , w,B) =



(w̃, P̃) if K = T = ∅

(w̃B|K, P̃B|K) if T = ∅, but K 6= ∅

accept if xi(σ̃, T , w, (K, B)) > xi(σ̃, (K, B))

wait otherwise.

(3.5)

In equilibrium P(σ̃) = P̃ and the strategy is stationary by construction so

we only need to verify subgame-consistency. We show this by induction. As

subgame-consistency holds for a trivial game we may assume that it holds for

all games of size less than |N |.

Now consider game (N,V ) and observe that if K departed to form K the

subgame is simply a coalition formation game with less players. We discuss two

cases based on the emptiness of the residual core.

1. If the residual core is not empty, the proposed strategy exhibits the same

similarity property: in equilibrium the core partition is proposed and accepted,

while residual cores form off-equilibrium.

The inductive assumption then ensures that the off-equilibrium path is subgame-

consistent so we only need to check whether a deviation T is ever accepted.
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This deviation corresponds to a deviation in the partition function game. Since

(x̃, P̃) ∈ C(N,V ), by the construction of (w̃B|K, P̃B|K) we know that for some B

there exists a player in T for whom the deviation T is not profitable. Given the

pessimism of the players, this is sufficient to deter this player from accepting

the proposal to deviate.

2. If the residual core is empty, the deviation is not profitable irrespective

of the residual partition that forms, the subgame is not relevant, and therefore

the second condition for subgame-consistency is satisfied.

The emptiness of the residual core, by our assumption, also implies that

there are no stationary consistent equilibrium strategy profiles. In the absence

of such strategy profiles the players in T cannot predict the partition of PN\K
– in this case, by Expression 2.3, they individually expect the worst. As T only

forms if it is profitable, it will, only, if it is profitable for all xi(σ̃, T , w, (K, B))

for all B. Since (x̃, P̃) ∈ C(N,V ) this is not the case. This, on the other

hand implies that the formation of P̃ is unaffected by possible deviations in this

subgame, meeting the first condition of subgame-consistency.

Proof of Theorem 1. The proof is by induction. The result holds for trivial,

single-player games. Assuming that the result holds for all k − 1 player games,

the result for k-player games is a corollary of Lemmata 3 & 4.

4 Conclusion

Theorem 1 holds for arbitrary games in discrete partition function form, but

of course it is most interesting for games where some of the residual cores are

empty. When a proposal is made in a game without externalities the invited

players do not even (need to) consider the residual game and therefore the

emptiness of a residual core is not addressed. Huang and Sjöström (2006) and

Kóczy (2009) simply restrict their attention to games where the residual cores

are non-empty, in fact the r-core (Huang and Sjöström, 2003) is not even defined

for games with empty residual cores. As already pointed out by Kóczy (2007)

this is not only an enormous limitation given the number of conditions such

games must satisfy (one for each residual game), but the definitions/results do

not apply to some games without externalities and so they are not generali-
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sations of the well-known results for TU-games. The present paper heals this

deficiency.
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