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Abstract: This paper is concerned with the comparison of different scaling methods which are 
applied to a complex bridge evaluation problem. It is shown that both tangible and intangible 
data and satisfaction of multiple criteria are essential to the success of such projects. Some new 
inconsistency measures for the matrices emerging in the decision making process are also used. 
A detailed numerical analysis of the results is presented.  
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1 Introduction and problem description 
Bench-mark means altitude (fix) point or level in the field of geology. In management 
sciences this term is defined as a standard or point of reference by which something 
can be measured or judged. The term competitive benchmarking involves analyzing 
the performance and practices of best-in-class enterprises. Their performance becomes 
a benchmark to which a firm can compare its own performance and their practices are 
used to improve that firm’s practices. The potential benefits of this process are 
substantial. Not only is a firm able to recognize and adopt world-class standards, but it 
learns how these standards can be met. Although these goals may be challenging, in 
order to be successful, the management should aim to achieve them. 

Benchmarking also plays an important role in design, technology, construction and 
architecture. In this paper we will investigate the use of different scaling methods for 
these purposes. Both normative and descriptive type methods will be used for ranking 
the alternatives. Comparisons will be made among these techniques concerning the 
errors inherent in these subjective information based procedures. Three methods will 
be applied: the multi-criteria technique for systems’ evaluation (MTSE; see [6],[7]), 
the eigenvector method which is incorporated in the famous analytic hierarchy process 
(AHP; see [12],[13] and an extremal approach called least-squares method (LS, see  



[1],[10]). An extension of the LS method for improving its quality of assessment, in 
the form of a recursive LS algorithm will also be discussed briefly (LSR; see [9]).        

Recently, a considerable attention has shifted to rank and prioritize bridges by bridge 
management professionals. Some remarkable theoretical developments and real-world 
applications have been appeared in the literature in this topic, most notably [3].  
 
The following benchmarking study came from the author’s teaching experience in the 
fields of engineering and economics. Groups of students examined the ranking and 
evaluation problem of bridges serving urban transportation by stretching over the river 
Danube at the capital city of Budapest. Four bridges were selected for the analysis. 
They are displayed and coded below:  
 
 

 

 

 

 

 

 

  C = Chain bridge    E = Elisabeth bridge 

 

                                                

 

 M = Margaret bridge   A = Árpád bridge 

A fictitious bridge having the desired (ideal) characteristics has also been defined and 
denoted by R. This object will be referred to a benchmark, that is a standard or a 

 



reference point by which these bridges will be measured or judged. As a result of 
conducted surveys, the use of the Delphi method and an extensive literature review 
(for finding the engineering characteristics), the following set of the evaluation criteria 
Ci has been established:                       

  C1 = Urban traffic accessibility: Easy access from both sides of the city.  

  C2 = Multifunctional capabilities: Usability for different transportation means.  

 C3  = Lack of Environmental Impact: No ecological harm/air pollution/noise, etc.  

  C4 = Structure: Construction, bridge type and traffic safety.    

 C5 = Aesthetics appeal: Architectural attractiveness. 

 C6 = Lighting performance: The quality of lighting and illumination. 

 C7 = Cold allowance: Minimum temperature specified for the structure. 

 C8 = Engineering characteristics: An averaged dimensionless technical measure. 

 C9 = Traffic flow capacity: Maximum number of crossing vehicles per hour. 

 C10= Maintenance: Cost of inspection, potential major repairs and routine tasks.  

From these enumerated items, it is apparent, that both tangible attributes (measurable 
characteristics) and intangible attributes (where subjective judgements are needed) 
comprised the set of criteria.  

2  The use of the MTSE method for benchmarking 
In this Section a multi-attribute utility model (MAUT) called Multi-criteria Technique 
for Systems’ Evaluation (MTSE) for determining the preferences, and thus the priority 
ranking of the four bridges is applied [6]. 

A characteristic feature of most of these models is the postulation that the preference 
of an individual towards a choice object is related to its “distance” from his/her ideal 
object which is usually a hypothetical object (see e.g. [11]). The closer the object is to 
the ideal one, the greater the preference towards it. The distance is a compound 
measure which takes into account the location of each object on several attributes 
(criteria) which characterize the object. Given n alternatives for an object of similar 
type, each characterized by m attributes, the general form of the model can be 
described by the function [11]: 
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where Dj is the overall distance of alternative j from the ideal one, wi is the weight of 
attribute i, dji is the distance of the jth alternative from the ideal point on attribute i and 
εj is an error term. It is favored, that dji satisfies the metric properties, for example, let 
it correspond to the squared Euclidean distance. 

MTSE was designed to incorporate both tangible and intangible attributes. Its data 
matrix is partitioned into four blocks. Every criterion is then assigned to the block that 
represents the associated scale of measurement. The numbers may appear in forms of 
binary variables, ranks and quantitative data usually with different units of 
measurement. A weighting number can be assigned to each criterion to measure its 
relative importance. The preference order of the objects is determined by the particular 
ratings received from the respondents. Each alternative is compared to the reference 
object. The “best” alternative becomes the one which is closest to this “ideal” object.  

The decision makers’ preferences are expressed by the differences between the objects 
on a [0–100] point interval scale. Their priority ranking results directly from the order 
of magnitude of their relative standings. For the aggregation of the individual rankings 
into a composite ranking the minimum variance method is proposed (see [2]).  

The numerical values of the evaluation process for the selected Budapest bridges and 
those of the reference bridge are presented in Table 1.  

 

 Table 1.  Evaluation data for the bridge benchmarking problem     

Attribute Scale C E   M   A   R Weight   
  C1  Nominal [0 or 1] 0 0 1 1 1  0.10  
  C2  Nominal [0 or 1] 0 1 0 1 1  0.10 
  C3  Nominal [0 or 1] 0 0 0 0 1  0.10 
  C4  Ordinal [1-5] 2.5 3.5 4 3.5 5  0.10 
  C5  Ordinal [1-5] 5 4 3 2.5 5  0.10 
  C6  Ordinal [1-5] 2 3 3.5 5 5  0.10 

  C7  Interval [0-–45] [˚C]      –22 –30 –35 –40 –45 0.10 
  C8  Ratio [real] [dim.less] 4.2 5.1 3.2 7.6 8.7 0.10 
  C9  Ratio [real] [unit/hour] 1000 1450 1300 1600 1800 0.10 
  C10 Ratio [real] [BiHUF/y] 0.8 0.6 0.5 0.4 0.2 0.10  

 



Observe in Table 1 that criteria C1, C2 ,C3 are measured on a nominal scale, C4, C5, C6 
on an ordinal scale, C7 on an  interval scale and C8, C9, C10 on a ratio scale. On the 
ordinal scale the frequency of preference is given for these attributes, rather than their 
ranks, since we have applied a ten-point scale [1, 1.5, 2, 2.5, ..., 5] for the evaluation. 
C7 represents temperature in degrees Celsius with the lowest temperature being the 
most favourable. The second to last column of the data matrix contains the scores 
(ratings) of the reference object R. Notice also that for each criterion the weight 
numbers are identical. Hence, they equal 0.10. This choice is explained by simplicity 
reasons. In such a way, an average satisfaction of the stakeholders can be achieved, as 
they usually have wholly different perspectives and interests. 

Numerical computations were made by MAROM [5]. The formal description of MTSE 
with its mathematical background can be found in [6] and [7]. The priority scores pj’s 
of the relative standings sj, j=1,…,n, of the bridges are given by the composite vector: 
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By definition, the reference bridge (benchmark) received 100%. If we understand the 
up-to-date requirements of a modern metropolis like Budapest is, then, the priority 
ranking of the bridges under study must not come as a surprise to us. 

By forming pairwise ratios from the components pj, of the vector p, so that si/sj for i� j, 
i,j=1,2,...,n, and sii =1 for i=1,...,n, a positive matrix S=[sij] and an element-wise 
positive vector s=[si], i=1,…,n, can be constructed entries of which are the appropriate 
ratios of the priority scores. The entries of s are usually normalized so that the sum of 
the elements is unity.  

S =















1 0 4659 0 4844 0 3271 0 2598

2 1464 1 1 0397 0 7020 0 5576
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Observe here that by forming ratios from the elements of p, this interpretation leads to 
the derivation of a transitive matrix S termed the matrix of the relative standings, since 
the cardinal consistency condition, sij·sjk= sik  holds for all i,j,k=1,2,…,n.  The vector s 
is thus the principal right eigenvector of matrix S. We note that the components of s 
have been reordered such that the priority ranking of the bridges to appear in a 
descending order. From here on, all through the article, this practice will be followed.  

3 The use of the AHP method for benchmarking 
In this Section, a descriptive method is used for benchmarking. Being a multiple 
criteria scaling method, the AHP represents a basic approach to decision making. It 
was founded by Saaty T.L. [12]. An overview of the AHP methodology and a concise 
discussion of the mathematical basics can be found in [8]. In this approach, each 
respondent should take n(n–1)/2 pairwise comparison judgments for the pairs of 
alternatives using a scale: [1/9,…,1/2,1,2,…,9]. Then, these ratio estimates become the 
elements of a positive n×n matrix A=[aij] called a pairwise comparison matrix (PCM). 
Here an entry aij from Rn represents a ratio, i.e., aij indicates the strength with which 
alternative Ai dominates alternative Aj with respect to a given criterion Ck. Matrix A is 
a symmetrically reciprocal (SR) matrix since its entries satisfy aij·aji=1 for i≠j, i,j=1,2, 
...,n, and aii=1, i=1,2, ...,n.  

The basic objective is to derive implicit weights (the priority scores), w1,w2, ...,wm, 
with respect to each criterion Ck. A vector of the weights, w=[wi], wi>0, i=1,...,n, may 
be determined by using the eigenvalue-eigenvector method: Aw=λw. Saaty proved 
[12] that the priority score of an alternative, what he called the relative dominance of 
the ith alternative Ai, is the ith component ui of the principal right (Perron) eigenvector 
u of matrix A, even if the PCM is not transitive, i.e. where sets of distinct alternatives 
can be found for which aij·ajk≠aik, for i,j,k=1,2, ...,n. For a transitive (consistent) A the 
maximal eigenvalue is: λmax=n, whereas for a nontransitive (inconsistent) A: λmax>n. 
(see the proofs in [13]). The eigenvector method provides the true relative dominances 
of the alternatives only if A is a transitive matrix. In reality, however, an individual 
cannot give his/her estimates in a perfectly consistent way. Recognizing this fact, 
Saaty [12] proposed an index for measuring the inconsistency of a PCM in the form: 
µ(A)=(λmax–n)/(n–1). To compute the components of the overall priority scores, 
π1,π2,...,πn, for a given set of alternatives the AHP utilizes an additive type aggregation 
function: πi =∑

m
k=1 ck·wik, i=1,2, ...,n.  

In this study, the aggregated PCM with the right hand side Perron eigenvector elicited 
from the respondents is obtained as: 
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Observe here, that although there are only slight inconsistencies in the responses, A is 
not a transitive matrix, as λmax(A)=5.0523. The inconsistency index is: µ(A)=0.0131.  

4 The use of the LS method for benchmarking 
The objective here is to produce the ‘best’ transitive (rank one) matrix approximation 
B to matrix A where the ‘best’ is assessed in a least-squares (LS) sense. For that, the 
following expression should be minimized:   
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where the subscript F denotes the Frobenius norm; i.e. the error, which is the square 
root of the sum of squares of the elements. A stationary vector w (a local minimum) of 
the error functional S2(w) is a (positive) solution to a set of inhomogeneous nonlinear 
equations (see [10]). Using the Newton-Kantorovich numerical optimization method 
for carrying out the necessary computations we may obtain the rank one matrix B and 
the associated priority vector w–1. In approximating matrix A we get     
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1 0 4693 0 5309 0 3234 0 2556

2 1307 1 1 1312 0 6891 0 5446

1 8837 0 8841 1 0 6092 0 4815

3 0920 1 4512 1 6415 1 0 7903

3 9122 1 8361 2 0769 1 2653 1
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The interested reader may turn to [1] or to [10] for a detailed discussion of the least-
squares optimization method for SR matrices.  

In order to improve the adjustment of the right hand side principal eigenvector w–1 of 
matrix B to the Perron eigenvector u (and also to s) of the matrices A and S a recursive 
least-squares (LRS) algorithm has been developed [9]. The LRS generates a series of 
transitive matrices and converges to the residual matrices, denoted by B*

k and Hk, 
k=0,1,2,…,q, (derived from A), which have useful properties for this adjustment.  

In the present paper, two new measures for the perturbation of SR matrices are used to 
characterize the magnitude and the variability of the average inconsistency of matrix 
A. These measures are the geometric mean and the geometric standard deviation of the 
appropriate values of the residual matrix Hk=q. This matrix yields in the last step q of 
the iteration as function of a prescribed arbitrarily small level of accuracy ε>0.   

Running the LSR on “Mathematica” starting from the matrix A, a convergent process 
has produced the following transitive matrix and the associated priority vector at the 
last step of the iteration, k=q=5, in a limiting sense: 



B
5

1 0 4605 0 5297 0 3225 0 2648

2 1718 1 1 1504 0 7004 0 5752

1 8879 0 8693 1 0 6089 0 5000

3 1006 1 4277 1 6424 1 0 8212

3 7757 1 7386 2 0000 1 2178 1
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The residual matrix H5, wherein the deviations of the elements from the value of 1 are 
the perturbations of the entries of matrix A, yields 

H
5

1 1 0859 0 9439 1 0335 0 9439

0 9209 1 0 8693 1 4277 0 8693

1 0594 1 1504 1 0 8212 1

0 9676 0 7004 1 2178 1 1 2178

1 0594 1 1504 1 0 8212 1

=
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One obvious verification concerning the preservation of the spectral properties of 
matrix A is justified by the fact that λmax(H5)=λmax(A)=5.0523.   

5 Concluding remarks 
In this project a multi-criteria evaluation problem for benchmarking of bridges has 
been addressed. A comprehensive numerical analysis has demonstrated that there is no 
contradiction between the applied multi-attribute scaling methods of normative and 
descriptive types. Saaty himself stated that “measurements from an interval scale may 
be converted to ratios and used as priorities if there is adequate justification for using 
them in that manner” ([14], p.260). 

In this study, the Árpád bridge was ranked first as the best bridge design in Budapest 
among the four selected bridges under investigation. The examinations were based on 
a complex multi-criteria evaluation of the bridges. The backward of the other bridges 
(among them were the Chain bridge and the Elisabeth bridge contrary to their world 
famous recognition) may be attributed to their lack of suitability to the requirements 



and new challenges of the modern era. Remarkably, all scaling methods applied in this 
study have produced the same priority ranking of the alternatives. A more subtle 
analysis for a possible improvement on the single attributes of every bridge in relation 
to the standards of the benchmark bridge R, however, is a subject of future research.  

If one is willing to accept the reasoning for an itemized approach and the necessity of 
an adequate assignment of the attributes to the appropriate scales of measurement, 
then we might consider the final results derived by the MTSE method as a reference 
point (benchmark). 

Determining the ‘goodness’ of matrix approximations to matrix S in a least-squares 
sense, we found for the different approaches that 
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From the above results, it is straightforward that the LSR method produced the least 
error in approximating the matrix S. Thus, indeed, matrix B*

5 and its associated 
priority vector w–1* provide us the best approximations. This fact can also be observed 
through a direct numerical comparison of the corresponding eigenvector elements.  

The magnitude and the variability of the average inconsistency of matrix A can be 
characterized by the geometric mean and the geometric standard deviation of the 
entries which appear in the upper triangle of the residual matrix H5. This latter matrix   
yielded in the last step of the iteration with a prescribed level of accuracy: ε=10–6. 
With these matrix elements the measures of the level of inconsistency of the original 
matrix A can be computed. They are: g5(A)=1.0076 and sg5(A)=1.1741, respectively.  
After the initial step of the iteration, for the matrix H1 these measures were equal to: 
g1(A)=1.0254 and sg1(A)=1.1749, respectively. The smaller values of g5(A) and sg5(A) 
indicate that the “true” errors which have actually been committed by the respondents 
can be obtained by using the LSR method, if we wish to find the best adjustment of the 
right hand side principal eigenvector w–1 of matrix B to the Perron eigenvector u (and 
also to s) of the matrices A and S.  

Finally, it is essential to express our strong conviction that the approach presented in 
Section 4 would facilitate the practitioners to improve the original PCM in real world 
applications obtained through the judgmental process of the AHP method. In this way, 



a respondent is capable of finding the appropriate priority vector of the alternatives 
that best suits his/her needs.  
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