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Abstract 

 

In this paper, we study estimation of fixed and random effects 

nonparametric panel data models using penalized splines and its 

mixed model variant. We define a "within" and a "dummy variable" 

estimator and show their equivalence which can be used as an 

argument for consistency of the dummy variable estimator when the 

effects are correlated with regressors. We prove nonparametric 

counterparts to a variety of the relations between parametric fixed 

and random effects estimators. Another feature of the approach 

followed in this paper is the potential to estimate models with 

heteroscedasticity and autocorrelation in the error term without 

difficulty. We provide a simulation experiment to illustrate the 

performance of the estimators. 
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1. Introduction  

 

A number of studies have recently applied non- and semiparametric regression 

techniques to panel data models (for a review see e.g. Li and Racine 2007). These studies 

have mainly used kernel smoothing as their underlying nonparametric techniques. In this 

paper we use penalized splines and its mixed model representations to estimate regression 

models with panel data.  

 

There are two variants of panel data models: the fixed and the random effects models. In 

this paper we show how time-invariant fixed and random effects panel data models can 

be estimated when there are nonparametric elements in the regression function using a 

penalized spline approach. One important feature of the approach is that we are able to 

define a "within" and a "dummy variable" estimator and show their equivalence which can be 

used as an argument for consistency of the dummy variable estimator when the effects are 

correlated with the regressors. The other feature is that one can use available mixed model 

softwares to easily estimate the model; furthermore it allows heteroscedasticity and 

autocorrelation in the effects and error terms which can be a difficulty with most other 

nonparametric approaches.  

 

The structure of the paper is as follows: Because penalized spline is not a common 

nonparametric method in econometric literature we provide an overview of univariate 

nonparametric regression estimation using penalized splines in Section 2. Section 3 deals 

with the estimation of nonparametric versions of the fixed effects model. Section 4 is 

devoted to the estimation of the random effects model using penalized least squares and 

mixed models. In Section 5, we show the relations between our fixed and random effects 

estimators. Section 6 extends the analysis to the estimation of multivariate models and 

discusses models allowing heteroscedasticity and serial correlation. The paper concludes 

with a simulation experiment to illustrate the performance of the proposed estimators.  

 



 

2- Nonparametric Regression, Penalized Splines and Mixed Models 

 

There are a number of approaches to nonparametric estimation, most of them have been 

used effectively in a variety of situations and to some extent choice of the method is a 

matter of taste and experience and sometimes nature of a model or data play a role. In this 

paper we use penalized splines and one of our objectives is to show it is a desirable 

approach for estimation of panel data models.  

 

Consider the following regression model2 

                                                   
                                                         ( )i i iy f x v= +                                                      (2.1) 

 
where f  is assumed to be a smooth function. ix  is the only regressor, iv  represents 

statistical noise and 1,2,...,i n=  indexes the observations. One way of estimation of such 

a regression function is to divide the domain of  xi  into contiguous intervals and model 

the relationship between y and x with a separate polynomial in each interval. The dividing 

points are referred to as knots. The problem with this method is that the estimated 

function will be discontinuous at knots. This can be overcome by imposing restrictions on 

the parameters of the polynomials. In practice, ( )if x  in equation (2.1) can be 

approximated with the polynomial3  

                           0 1
1

( ) ..... ( )
K

p p
i i p i k i k i

k
p x x x w xβ β β κ +

=

= + + + + − =∑ x β                        (2.2) 

where ( ) ( 0)u uI u+ = ≥ , 1 ....... Kκ κ< <  are fixed knots, and 

1(1, ,..., , ( ) ,..., ( ) )p p p
i i i i i Kx x x xκ κ+ += − −x .  Note that ( ) p

i kx κ +−  is equal to zero when xi is 

smaller than kκ .  We can rewrite the model (2.1) as  
 

                                                 
2 For an extensive review of penalized spline approach to nonparametric estimation see Ruppert et al. 
(2003). 
3 In this paper we only discuss polynomial penalized splines, there are other kinds of spline basis for 
example B-splines and radial splines. For further information on these see e.g. Ruppert et al. (2003) and 
Eilers and Marx (1996). 



                                                            = +y Xβ v                                                       (2.3) 

where X is a matrix with ix  in its i-th row, and  0 1( ,...., , ,..., ) 'p Kw wβ β=β . Once the 

knots have been selected, (2.3) is a linear regression model and can be estimated using 

ordinary least squares. This method is known as the regression splines and its 

performance is crucially dependent on the number and location of the knots. Several 

procedures for selecting the number and locations of the knots are available (see e.g. 

Smith and Kohn, 1996). The problem with the regression splines is that knot selection 

procedures are complicated and computationally intensive. In the P-spline approach, we 

allow the number of knots to be large and fixed (e.g., 20-30 equidistant knots has been 

found to be adequate for most applications), but to avoid over-fitting (wiggliness) we put 

a penalty on the wks in (2.2) such that 

           2

1

K

k
k

w C
=

≤∑                                                          (2.4) 

Then the regression spline least squares minimization problem can be written as 

 
                                     'min ( ) ( )− −β y Xβ y Xβ subject to C≤β'Kβ                              (2.5) 

 
where K is a diagonal matrix whose first p+1 diagonal elements are 0 and the remaining 

diagonal elements are 1. It can be shown that the penalized least squares minimizer will 

be  

                                                    ( −= + 1β X'X K) X'y
�

λ                                                   (2.6) 
 

where λ  is a smoothing parameter (the higher the value of λ , the smoother the estimated 

function will be). The optimal value of λ  is usually obtained using a secondary 

optimization procedure e.g. a cross validation procedure.  

 

Most of what is known about properties of penalized spline estimator has been based on 

simulation experiments and it has gained popularity in statistical literature due to its 

numerous successful and easy applications. However, several papers have recently 

studied asymptotic properties of penalized spline estimators formally (see e.g. Claeskens 

et al. 2008 and Li and Ruppert 2008). Their basic finding is that with adequate number of 



knots and right choice of smoothing parameter, univariate penalized least square 

estimator can achieve optimal nonparametric convergence rate. 

It has also been shown (see e.g. Wand 2003) that the penalization criterion (2.4) can be 

incorporated into a mixed model framework. To see this, consider a generalized 

penalized least square problem 

                         
0

1
, 0 0 0 0min ' −− − − − + -1

β w (y X β Zw) R (y X β Zw) w'G w                    (2.7) 

 
where G  and R  are two symmetric positive definite matrices. It has been shown 

(Robinson, 1990, see also Lee and Griffiths 1979) that 0β and w obtained from this 

minimization is equal to solution to following mixed model.  

 
                                                 0 0y = X β + Zw + v                                                     (2.8) 

 
where 0β  is an unknown fixed parameter vector to be estimated; v represents the noise 

and w is a random vector satisfying the properties 

 

                                 andE Cov⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

w 0 w G 0
v 0 v 0 R

                                   (2.9) 

 

Such a model is referred to as a linear mixed model in the statistical literature. Estimation 

of it can be accomplished by rewriting it in the form  

 
                                         *

0 0y = X β + v   where  * =v Zw + v                                   (2.10) 

 
This is just a linear model with a generalized covariance matrix 

 
                                                  *( )Cov= =V v ZGZ' + R                                           (2.11) 

 
Therefore, 0β , V and w can be estimated\predicted using feasible generalized least squares 

or maximum likelihood.  

 
Now write the penalized least square problem (2.5) as 



                                    

                                        2 2

1 1min ' +β (y - Xβ) (y - Xβ) β'Kβ
vσ τ

                                 (2.12) 

where 2 2
vλ σ τ= , then using the above arguments the solution to this problem is also the 

solution to the following mixed model 

0 0y = X β + Zw + v  

                                               
2

2

⎛ ⎞⎡ ⎤
= ⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠

v I 0
w 0 I

v n

K

Cov
σ

τ
                                         (2.13) 

 

The mixed model representation of nonparametric regression models has been found to 

be very useful. It allows nonparametric estimation to be performed using mixed model 

methodology and software.  
 

3. Nonparametric Fixed Effects Model 

 

In this section, we consider a panel data model in which (i) unobserved heterogeneity is 

captured by a random term possibly correlated with regressors; (ii) the individual effects 

are time invariant; (iii) the regression function is nonparametric i.e. of an unknown 

smooth functional form. Specifically, we assume the relationship between a dependent 

variable and a single regressor can be represented as follows 

 
( )it i it ity f x vα= + +  

                                                     TtNi ,....,1,....,1 ==                                              (3.1) 

where iα  is an individual specific term (for identification, let 0
1

=∑
=

N

i
iα ), and itv is an 

error term with mean zero and variance 2
vσ . For simplicity, we assume the panel is 

balanced, and that there is only one regressor4.   

                                                 
4 For extension to multivariate cases see section 6. 
 



Estimation of equation (3.1) using a kernel method has been discussed in Henderson, 

Carroll and Li (2008). Here we show how (3.1) can be estimated using penalized splines 

by appealing to either penalized least squares or its mixed model representations.  

 

Similar to the parametric case, we first introduce a “within estimator” which is consistent 

even when the effects are correlated with regressors and later we show that this estimator 

is equivalent to a “dummy variable estimator”. Define the “within estimator” as follows: 

Take mean over t in (3.1) to obtain 

                                                  
1

1 ( )
=

= + +∑
t

i i it i
i

y f x v
T

α                                         (3.2) 

Subtracting (3.2) from (3.1) gives 

                                            
1

1( ) ( )
=

− = − + −∑
t

i i it it it i
i

y y f x f x v v
T

                          (3.3) 

We can write (3.3) in the following regression spline form 

                                                    ( )− = − +y y X X β vi i                                            (3.4) 

This is a linear regression function which can be estimated by ordinary least squares.  

However, following the discussion in Section 2, to avoid over-fitting a penalty must be 

put on the coefficients. The penalized least square “within estimator” of β  can be 

obtained as          

                              { } 1( ) '( ) ( )( )−
= − − + −β X X X X K X X y - y

�
w i i i iλ                        (3.5) 

 
where λ  is a smoothing parameter and its optimal value can be obtained using a 

secondary optimization procedure (e.g. cross-validation). Because equations 3.3 and 3.4 

are independent of the effects, the resulting estimator should have good properties5.  

 

                                                 
5 As it was mentioned in the previous section, studies on asymptotic behavior of penalized spline estimators 

are at early stages. In this paper we illustrate performance of our estimators using a limited simulation 

experiment and leave their asymptotic properties for another study.  

 



Now let us define a dummy variable estimator. Write the regression spline form of (3.1) 

in matrix form as follows 

                                                      = + +y Dα Xβ v                                                     (3.6) 

 

where X  is as defined above except we have removed the vector of ones from the first 

column to avoid dummy variable trap. The matrix D and vector α  are defined as  

 

                                     

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
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0 i 0

D
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"

# # % #
"

  and  

1

2

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
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⎝ ⎠

α
#

N

α
α

α

                                      (3.7) 

where i  is a column vector of ones and 0 is a vector of zeros, both of dimension T . By 

defining * ( , )=X D X and ( )* '=β α β  we can rewrite (3.6) in the following form 

                                                           * *= +y X β v                                                       (3.8) 

 

This is a linear regression function which can be estimated by ordinary least squares.  

Again to avoid over-fitting a penalty must be put on the spline coefficients in the form of 

2

1

K
k

k
w C

=
≤∑ . The penalized least squares estimator *β can then be easily obtained as   

                                                 * * * * * *( −= + 1β X 'X K ) X 'yλ                                        (3.9) 

where *K  is a diagonal matrix with the first N p+  diagonal elements equal to zero and 

the rest equal to one. We may call this a “dummy variable penalized least square” 

estimator.  

 

We expect the above estimator to have good properties when the effects are fixed 

parameters but how about when they are random and correlated with regressors? To 

answer this question we show that the “dummy variable penalized least square” of β  is 

equivalent to the “within estimator”: To prove this we use a generalized version of 

Frisch-Waugh theorem. 



Generalization of Frisch-Waugh theorem to penalized least square: Consider the 

following regression spline model (for proof see the appendix). 

1 1 2 2= + +y X β X β v  

Define 11 ,Kλ  and 22 ,Kλ as smoothing parameters and penalty matrix associated with 

1X  and 2X  respectively. Then 

{ } 1' '
2 2 1 2 2 2 2 1

−
= +β X M X K X M y

�
λ    

where ( ) 1' '
1 1 1 1 1 1 1

−⎧ ⎫
= − +⎨ ⎬
⎩ ⎭

M I X X X K Xλ . 1β  and M2 are defined similarly.� 

 

For Model (3.6) we have 

                                                ' 1 '
1 2 1( )−= +β X M X K X M y

�
λ                                      (3.10) 

where 01 =λ  and 1
'[ ]= −

DDM I
n

. 1M  is a mean scaling operator and it is an idempotent 

matrix. Therefore we can write 

                                  { } 1
2) '( ) ( )( )−

= − − + −β X X X X K X X y - y
�

i i i iλ                       (3.11) 

But this is exactly the within estimator defined in (3.5) if we set λλ =2 . The above 

argument shows that at least with 2 = λλ , the dummy variable estimator is consistent even 

if the effects are random and correlated with the error term.  

 

Is it plausible to assume identical λ s for both within and dummy variable estimators? 

The answer is yes. λ  is the Lagrangian associated with the penalty constraint and can be 

obtained from C=βK'β ˆˆ . It is reasonable to assume the same penalty constraint and C 

for both problems since we are trying to estimate the same parameters and the penalty is 

independent of α  for dummy variable model. This leads to the same λ̂ s for both 

problems because β̂ s obtained from both models are the same. Another argument can be 

made by appealing to the concept of degree of freedom, which is defined by trace of the 

hat matrix (i.e. ( −+ 1X X'X K) X'λ ) and is a major way of smoothing parameter selection. 



If a particular value say df  is specified for degree of freedom of the within model and 

dfN +  for degree of freedom of the dummy variable model (because of N extra iα s in 

dummy variable model). It can be shown that this choice leads to the same smoothing 

parameters for both models. Some other criteria like AIC also produce the same 

smoothing parameter values. However there are criteria like cross-validation which 

produce different optimal smoothing parameter values.  

 

A third estimator for the fixed effects model can be obtained by appealing to 

differencing. Such an approach has been followed in Henderson et al. (2008) under a 

kernel smoothing framework. Here we briefly discuss how differencing can be employed 

using penalized splines. Note that we can write 

 
                                           1 1 1( ) ( )− = − + −it i it i it iy y f x f x v v                                  (3.12) 

 
to remove the fixed effects (alternatively we can subtract 1−ity  from ity ). Using spline 

basis we can write the model in the following regression spline form  

 
                                                 1 1( )− = − +x x β �it i it i ity y v                                           (3.13) 

 
where 1

~
−−= ititit vvv . As before the above model can be estimated using the penalized 

least square or its mixed model variant. We can obtain a more efficient estimator by 

incorporating the following variance-covariance matrix as we see in the next section 

                                        2 '
1 1 1( ) { ( )}− − −= ⊗ +v I I i i� N v T T TCov σ                                 (3.14) 

In this paper our emphasis is on within and dummy variable estimator so we don’t 

discuss difference estimator in any further detail. 

 

The problem of choosing the value of the smoothing parameter by a secondary stage for 

any of the estimators can be avoided by appealing to mixed model representation of the 

model. This time we penalize the roughness by assuming w to be a random vector with 

mean vector zero and covariance structure 



                                        
2
w K

2
NT

σ
( , )

σ
Cov

⎡ ⎤
⎢ ⎥=
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I 0
w v

0 I
                                          (3.15) 

The model given by (3.4 or 3.6) and (3.15) is in the general format of a mixed model and 

can be estimated using standard mixed model methodology and software.  

 

4. Nonparametric Random Effects Model 

 

Consider the following model 

 
                                                    ( )= + +it i it ity u f x v                                                (4.1) 

where iu  is a time-invariant random variable assumed to be i.i.d. with mean and variance 

2(0, )uσ but it is uncorrelated with itx . itv s  are the usual random disturbances and are 

i.i.d. 2(0, )vσ . We also accept the standard assumption that andit iv u  are uncorrelated.  

 

Estimation of this model using a kernel smoothing approach has been studied by e.g. Lin 

and Carroll (2000), Henderson and Ullah (2005) and Su and Ullah (2007). Here we show 

how the model can be estimated using penalized splines [see also Welsh et al. 2002]. 

Following the discussion in Section 2 we rewrite (4.1) in its regression spline form 

 
                                               0 0= + + ⊗ +y X β Zw u i v                                              (4.2)    

 
Let 1 2 = [ ,  ,  . . . ,  ]'i i i iTε ε εε  then rewrite (4.2) as following generalized linear model 

                                                         * *= +y X β ε                                                         (4.3) 

where                              = ⊗ +ε u i v ,  *
0( )=X X , Z , 0* ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

β
β

w
.  

and 

                               ( ) = = ⊗ε Σ I ΩNCov    where 2 2 '= +Ω I i iv T u T Tσ σ                        (4.4) 

 



where IN denotes an identity matrix of dimension N and i is a column vector of ones. One 

might think of estimating model (4.4) using a penalized least squares method as 

explained in Section 3. However, the covariance matrix of ε  is not of an identity form. 

To obtain a more efficient estimator we must incorporate the information on the structure 

of the covariance matrix into the estimation process. So we may define a penalized 

generalized least squares estimator as:  

 

                     { }* 2 2
* * ' 1 * * *' *

, ,Argmin ( ) ( )−− − +β y X β Σ y X β β Kβ
u vσ σ λ                       (4.5) 

 
where λ  is a smoothing parameter which controls the smoothness of regression function 

and can be optimally chosen using e.g. a cross validation criterion. A similar penalized 

generalized least squares estimator has been proposed by e.g. Wang (1998) in a different 

context.  

 

Alternatively, we can give a mixed model interpretation to (4.1) by writing 

                                                         2~ (0, )w Iw KN σ                                                    (4.6)  

Then we can rewrite (4.1) together with (4.6) in the following form 

 

                                               0 0 [ , ]
⎡ ⎤

= + +⎢ ⎥
⎣ ⎦

w
y X β Z D v

u
                                               (4.7)     
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Cov

σ
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This is again in the format of a linear mixed model and, consequently, all the components 

of the model can be estimated using standard mixed model methodology and software.  

 

 

 

 



5- Comparison of Fixed and Random Effects Estimators 

 

Fixed and random effects estimators have been compared in a variety of ways within the 

parametric context. In this section we show that there are nonparametric counterparts to 

these results.  

 

First, consider the result that random effects estimator is a within estimator if the 

observations are “quasi time demeaned” (see e.g. Baltagi 2005). To prove the 

nonparametric counterpart consider the regression spline form of the nonparametric 

random effects model (4.3) 

                                                          = +y X β εi i i                                                       (5.1) 

where = +ε vi i iu  and  ( )2 2 '( ) = = +ε Ω I i ii v T u T TCov σ σ  

It can be shown that [ ]T
v

/'12/1 iiIΩ T γ
σ

−=−  where 
2/1

22

2

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
uv

v

Tσσ
σ

γ .  

Pre-multiplying both sides of (5.1) by 2/1−Ω  we obtain  

                                        = +y X β ε�� �i i i  where 2( ) =ε I�i u TCov σ                                     (5.2) 

The tth element of  iy~  is −it iy yγ  and similarly for iX~ . Therefore we can write 

                                            ( )− = − + −x x βit i it i it iy yγ γ ε γε                                        (5.3) 

This shows that similar to parametric case when 22
vuT σσ  is large, γ  becomes close to 

one. In fact, 1→γ  as ∞→T  or ∞→22
vu σσ . For large T, estimates from fixed effects 

and random effects are similar but even with small T, random effects is close to fixed 

effects if the estimated variance of iu  is large relative to the estimated variance of itv  as 

it is the case in many applications.  

 

Now consider the result that parametric random effects estimator is a weighted average of 

between and within estimator (see e.g. Hsiao 2003, pp 35-37 or Baltagi 2005, pp 18). To 

show the nonparametric counterpart, write the model as 

 



                     = + +y Xβ εμ                                                        (5.4) 

where here X does not include the vector of ones. Using the Corollary (1) in the appendix 

we can write 

                                            { } 1' '
1 1

−
= +β X M X K X M y

�
GLS λ                                      (5.5) 

where ( ){ }11/ 2 1/ 2 ' 1 ' 1/ 2 1/ 2
1

−− − − − −= −M Σ I Σ i i Σ i i Σ ΣNT NT NT NT  

 

It can be shown with Σ  defined in (4.4), M1 becomes 

                                        ( ){ }1 2
1

= ⊗ + ⊗'
N N N NM I Q I - i i P

u
Nψ

σ
                             (5.6) 

'1
= −Q I i iT TT

 , '1
=P i iT TT

 and 22

2
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v

Tσσ
σ

ψ
+

=  

With M١ defined as above we can write  

               { } 1' ( )
−

⎡ ⎤= ⊗ + − ⊗ +⎣ ⎦
'

N Nβ X I Q I i i P X K
�

GLS N N Nψ λ                                   (5.7) 

                                 { }' '( ) ( )⎡ ⎤× ⊗ + − ⊗⎣ ⎦
'

N NX I Q y X I i i P yN N Nψ  

This can be rewritten as a weighted average of a between and a within estimator  

                                                 ( )= + −β Δβ I Δ β
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GLS b K w                                              (5.8) 

if we write 21 ψλλλ += 6 and 

         { } 1' ( )
−

⎡ ⎤= ⊗ + − ⊗ +⎣ ⎦
'

N NΔ X I Q I i i P X KN N Nψ ψ λ  

                                                                  ( )'
2( )⎡ ⎤× − ⊗ +⎣ ⎦

'
N NX I i i P X KN N λ           (5.9) 

           { } 1' '
2( ) ( )

−
⎡ ⎤ ⎡ ⎤= − ⊗ + − ⊗⎣ ⎦ ⎣ ⎦

' '
N N N Nβ X I i i P X K X I i i P y

�
b N NN Nλ  

           [ ]{ } [ ]
1' '

1
−

= ⊗ + ⊗β X I Q X K X I Q y
�

w N Nλ  

                                                 
6 Our experiments have shown that always 1λλ >  and therefore 2λ  is well-defined although we haven’t 
been able to formally prove it. 



Finally, consider an extension of Mundlak (1978) model where ititiit vxfuy ++= )(  and 

iu  is correlated with itx  through following relation 

                                                   i

T

i
iti xg

T
u ω+= ∑

=1
)(1                                                  (5.10) 

Note that we are also extending the correlation structure in Mundlak model from a linear 

form to a nonparametric form. We can rewrite the model as 

                                         itiit

T

t
itit vxfxg

T
y +++= ∑

=

ω)()(1
1

                                    (5.11) 

If  we choose the same knots for g and  f  we can write  
 

                                                 1 1 ( )= + + +y Q Xβ P X β a ε                                           (5.12) 

where TN
'

1 TTiiIP ⊗= and 11 PIQ −= NT . It is easy to see that ' 1
1 1

− =X Q Σ P X 0  

therefore we can use the corollary 2 in the appendix to write 
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and 

( ) { } 1* ' 1 ' 1
1 1 2 1 1 1

−− −+ = +β a X P Σ P X K X P Σ P y
� �

GLS
λ                       

          { } 1' '
1 2 1 1

−
= + =X P X K X P y β

�
bλ                                       

                                                  *⇒ = − = −a β β β β
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GLS b GLS b w                                  (5.14) 

Combining (5.14) and (5.8) we obtain 

= +β Δa β
� ��

GLS w             

Pre-multiplying both sides by X we obtain 

                                     = ⇒ = +Xβ XΔa + Xβ f f XΔa
� � � �� �

GLS w GLS w                              (5.15) 

We expect f
�
w to be asymptotically unbiased but with T fixed and ∞→N  term XΔa�  

doesn’t converge to zero and therefore f
�
GLS  is asymptotically biased. With ∞→T   

XΔa�  converges to zero (because ψ  goes to zero) and  f
�
GLS  tends to f

�
w . 



6. Extensions    

 

The above analysis can be extended in many ways: First, consider extension to 

multivariate cases. The Multivariate model can be written as 

 

                                             1 2( , ,..., )= + +ii it it dit i ity f x x x u v                                       (6.1) 

 

where 1 2( , ,..., )dx x x ' is a vector of regressors and f is a smooth function containing some 

nonparametric components. It can be of partially linear, additive or a fully nonparametric 

form. The first step for estimation of model (6.1) under a penalized spline framework is to 

derive the regression spline equivalent of the model and to define the penalty matrix. Write 

the regression spline form of the model as 

 
                                                       = + ⊗ +y Xβ u I vT                                                    (6.2) 

where 0 1[ , ,... ]lX = X Z Z  and ' ' '
0 1 'l⎡ ⎤= ⎣ ⎦β β w w… . l  can be different from d (see below). 

Corresponding to andX β  define a penalty matrix with following block-diagonal 

structure 

                                              

0

1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0 0

I
K

0 I

"

# #

%
"

l

p

K

l K

λ

λ

                                             (6.3) 

Assuming linear splines if f is univariate we have 0 1[ , ]X = X Z  and [ ]0 1 '=β β w , K is 

consist of two block 
0p0  and 1 1

IKλ where  p0  (the dimension of 0β ) is equal to 2, we only 

have oneλ  parameter, and K1 (the dimension of 1w ) is equal to the number of knots. If f 

is a fully nonparametric multivariate function, every thing is the same except that p0 is 

equal to the number of regressors plus one and in Z matrix we have multivariate splines. 

If extra variables are added to the model in a linear parametric fashion (making the model 

partially linear), K, β  and X still have the same structure but p0 is equal to the number of 



regressors in nonparametric form plus the number of variables in the linear form plus 

one. If some variables are added in a nonparametric additive manner, we can have as 

many sλ  as there are additive functions, and Ki ( 1, 2,...., )i l= is the number of knots 

associated with the i-th variable in the additive form. We don’t go in any further detail, to 

learn more about multivariate estimation see e.g. Ruppert et al. 2003. What is worth 

noting here is that all the results obtained in previous sections apply to multivariate cases 

as well. 

 

Another feature of the penalized spline approach is that we can allow for a variety of 

heteroscedasticity and autocorrelation structures in the error term within the same 

framework and interestingly such an approach has been shown to have desirable 

properties. A series of studies have shown that the presence of correlation in the error 

term can have serious effects on nonparametric estimation. For example, Lin and Carroll 

(2000) found that first generation kernel-based estimators incorporating covariance 

matrix information are generally asymptotically less efficient than estimates from a 

model ignoring the correlation structure. Welsh et al. (2002) studied this in more detail 

and proposed a new kernel approach which is more efficient than standard kernel 

estimation ignoring the correlation structure, but the Welsh et al estimator is still 

significantly less efficient than the GLS spline estimator. More recently, Xiao et al. 

(2003) showed that a modified kernel-based approach proposed by Wang (2003) is as 

efficient as the GLS spline estimator.  

 

It is well-known that in the presence of correlated errors, standard smoothing parameter 

selectors fail to work (Altman, 1990, Hart, 1991 or Opsomer et al. 2001). The problem 

can be avoided by taking the correlation structure explicitly into account as it has been 

done by Wang (1998) for splines and in Altman (1990) and Hart (1991) for kernels. 

However, the correlation structure is typically unknown and even small misspecification 

of the correlation structure can result in serious over- or under–fitting, as demonstrated in 

Opsomer et al. (2001). Recently, Krivobokova and Kauermann (2007) provided both 

theoretical and simulation evidence that that a maximum-likelihood-based choice of the 



smoothing parameter (i.e. mixed model) is very robust against a misspecified correlation 

structure, and over-fitting is circumvented even for errors that are strongly correlated.  

 

In summary, both standard panel data models and those with more general covariance 

structures can be easily estimated using penalized splines and interestingly, studies in 

other contexts have shown that the resulting estimators are at least as good as other 

approaches. 

 

7. A Simulation Experiment 

 

In this section, we use a Monte Carlo simulation to study performance of the proposed 

estimators. We follow Wang (2003) and Henderson et al. (2008)7 to generate the 

following data generating process: itiitit vuxSiny ++= )2( π  where itx  is i.i.d. 

]1,1[−Unif , and itv  is i.i.d. Nor(0,1). Let itv denote an i.i.d. ]1,1[−Unif  sequence of 

random variables. We generate iii xcvu += , where ∑
=

=
T

t
iti Txx

1
/ . 0=c  gives the 

random effects and 1=c  gives the fixed effects model. Note that itx  and iu  are 

correlated for the fixed effects model and uncorrelated for the random effects. The 

variances of itv and iv  are set to one.  

 

We employed random effects, dummy variable and within estimators to estimate 

regression function  f. We used a mixed model approach to estimate all the models, 

therefore there was no need to use a secondary procedure to choose smoothing 

parameters. To assess the performance of the estimators we used average mean squared 

error (AMSE) criterion defined by 

[ ]∑∑∑
= = =

−=
M

m

N

i

T

t
mitmit NTMxfxfAMSE

1 1 1

2
,, )()(ˆ  

where the subscript m denotes the mth replication. In each experiment we use M = 1000 

replications. The number of time periods (t) is set at 3, while the number of cross-sections 

                                                 
7 Henderson et al. (2008) consider itiitit vuxSiny ++= )2(  



(N) is varied between 50, 100 and 200. The estimation results can be seen in Table 1 and 

they can be summarized as follows  

 

• When c = 0 i.e. the data generating process is that of a random effects model, we see 

that the random effects estimator is more efficient (it has a smaller AMSE than the fixed 

effects estimators). We also see that dummy variable and within estimators gives the 

same results when the same smoothing parameters are used for both models and they 

gives similar numbers when smoothing parameters are set according to a maximum 

likelihood criteria. Also as expected, for all estimators, the AMSE decreases as N 

becomes larger. 

• When c =1 i.e. the data generating process is that of a fixed effects model and xit and ui 

are correlated, we expect that the fixed effects estimator to be consistent but random 

effects estimator to be inconsistent. As we see from the table, the within and the dummy 

variable estimator provide results comparable to the previous case and AMSE gets 

smaller with similar rates when N increases. However, AMSE associated with the 

random effects estimator is larger and the bias doesn’t seem to converge to zero. To 

illustrate this, we calculated AMSE of random effects estimator for different values of N 

from 50 to 5000. The results have been depicted in Graph 1. As we see, AMSE of 

random effects model (c=0) seems to converge to zero but AMSE of fixed effects model 

(c=1) seems to converge to some nonzero value.  

 • We also depicted AMSE of the random effect estimator adjusting AMSE of the 

estimator of the model with N=50 by optimal nonparametric convergence rate 

[ 5/4)( −NT )]. The resulting graph closely follows the graph obtained from the simulation 

experiment. This limited experiment suggests that the random effects estimator might 

actually achieve the optimal convergence rate (a similar result can be obtained for fixed 

effects estimator). 

 

Conclusion 

 

In this paper, we showed how penalized splines can be employed to estimate fixed and 

random effects panel data models with nonparametric components. It was shown that, 



under this framework, we can define a within and a dummy variable estimator for the 

fixed effects model and proved that the dummy variable estimator is equivalent to the 

“within estimator” and therefore consistent when the regressors are correlated with the 

effects. It was also shown how random effects models can be estimated and proved that a 

variety of proven relationships between parametric fixed and random models also holds 

for our nonparametric estimators. A Monte Carlo experiment was employed to illustrate 

the performance of the estimators. 

 

 

Table 1: Average mean squared errors of the random effects, dummy variable and within 
estimators when the data generation process is a random effects model and when it is a 
fixed effects model.  
 
 
                                       Random Effects Model                    Fixed Effects Model 

 
No. Observation          50              100               200              50             100             200 
 
Random Effects     0.04792    0.02562     0.01426   0.09143    0.06405   0.04886 
 
 

Within                     0.06254    0.03546     0.01903   0.06254    0.03546   0.01903   

 
Dummy1                  0.06115    0.03422     0.01808   0.06115    0.03422   0.01808    
 
Dummy2                  0.06254    0.03546     0.01903   0.06254    0.03546   0.01903    
 
 
Note: “Within” refers to within estimator, “Dummy1” refers to dummy variable estimator 

when the smoothing parameter is set equal to that of within estimator and “Dummy2" 

refers to dummy variable estimator when the smoothing parameter has been selected 

automatically. All the estimations have been done using a mixed model approach. For 

AMSE calculations we have discarded the 10 lowest and highest x values to avoid 

boundary effects. The number of Monte Carlo replications is 1000. 

 

 

 



 

 

Graph 1. AMSE of Random Effects Estimator 
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N represents the number of cross sections. “Rand” and “Fixed” represent random effects 

and fixed effects models respectively. “Rand-Opt” depicts AMSE of the random effects 

model adjusted by optimal nonparametric convergence rate.  
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Appendix 1 
Generalization of Frisch-Waugh theorem to penalized least square: Consider the 

following regression spline model  

                                                    1 1 2 2= + +y X β X β v                                                  (A.1) 

Define 11 ,Kλ  and 22 ,Kλ as smoothing parameters and penalty matrix associated with 

1X  and 2X  then 

{ } 1' '
2 2 1 2 2 2 2 1

−
= +β X M X K X M y

�
λ  and   

where ( ) 1' '
1 1 1 1 1 1 1

−⎧ ⎫
= − +⎨ ⎬
⎩ ⎭

M I X X X K Xλ . 1β  and M2 are defined similarly.  

Proof: Penalized least square estimator associated with (A.1) with differing smoothing 

parameters and penalty matrix for X1 and X2 can be written as                

                             
' '
1 1 1 1' ' 1

1 2' '2 2 22 2
,

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤⎡ ⎤⎜ ⎟⎢ ⎥ ⎢ ⎥+ =⎢ ⎥⎢ ⎥⎣ ⎦⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

X K 0 X yβ
X X

0 K βX X y

�
�

λ
λ

                        (A.2) 

Performing the multiplications we obtain 

                                    
( )

( )
' ' '1 1 1 1 1 1 2 2 1

'' '
22 1 1 2 2 2 2 2

⎛ ⎞+ + ⎡ ⎤⎜ ⎟ ⎢ ⎥=⎜ ⎟ ⎢ ⎥+ +⎜ ⎟ ⎣ ⎦⎝ ⎠

X X K β X X β X y

X yX X β X X K β

� �

� �
λ

λ
                                (A.3) 

Pre-multiply both sides of the upper row by ( ) 1' '
2 1 1 1 1 1

−
+X X X X Kλ to obtain                                         

     
( )
( )

( )
1 1' ' ' ' ' ' '2 1 1 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1

' ' '
2 1 1 2 2 2 2 2 2
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⎜ ⎟+ + ⎢ ⎥⎣ ⎦⎝ ⎠

X X β X X X X K X X β X X X X K X y

X X β X X K β X y

� �

� �
λ λ

λ
    (A.4) 

Subtracting the lower row from the second and solve for 2β
�

 we obtain  

                                       { } 1' '
2 2 1 2 2 2 2 1

−
= +β X M X K X M y

�
λ                                        (A.5) 

where ( ) 1' '
1 1 1 1 1 1 1

−⎧ ⎫
= − +⎨ ⎬
⎩ ⎭

M I X X X K Xλ  

 



Corollary (1) If 2( ) =v VvCov σ  the above theorem applies but M1 should be defined as 

follows 

                ( ) 11/ 2 1/ 2 ' 1 ' 1/ 2 1/ 2
1 1 1 1 1 1 1

−− − − − −⎧ ⎫
= − +⎨ ⎬

⎩ ⎭
M V I V X X V X K X V Vλ           (A.6) 

This can be easily proven using transformation of 1
2/1*

1 XVX −=  and yVy 2/1* −=  and 

apply the theorem. 

Corollary (2) If  2( ) =v VvCov σ  and ' 1
1 2

− =X V X 0  then  

{ } 1' 1 ' 1
2 2 2 2 2 2

−− −= +β X V X K X V y
�

λ   and    { } 1' 1 ' 1
1 1 1 1 1 1

−− −= +β X V X K X V y
�

λ  

To prove this notice that with 2( ) =v VvCov σ  (A.3) becomes 

                         
( )

( )
' 1 ' 1 ' 11 1 1 1 1 1 2 2 1

' 1' 1 ' 1
22 1 1 2 2 2 2 2

− − −

−− −
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� �

� �
λ

λ
                     (A.7) 

Since we have assumed ' 1
1 2

− =X V X 0  we have (A.8) which proves the theorem 
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