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ABSTRACT 

Public-private sectoral wage differentials have been studied extensively using quantile 

regression techniques. These typically find large public sector premiums at the bottom 

of the wage distribution. This may imply that low skill workers are ‘overpaid’, prompting 

concerns over efficiency. We note several other potential explanations for this result 

and explicitly test whether the premium varies with skill, using Australian data. We use 

a quasi-differenced GMM panel data model which has not been previously applied to 

this topic, internationally. Unlike other available methods, this technique identifies 

sectoral differences in returns to unobserved skill. It also facilitates a decomposition of 

the wage gap into components explained by differences in returns to all (observed and 

unobserved) skills and by differences in their stock. We find no evidence to suggest that 

the premium varies with skill. One interpretation is that the compressed wage profile of 

the public sector induces the best workers (on unobserved skills) to join the public 

sector in low wage occupations, vice versa in high wage occupations. We also estimate 

the average public sector premium to be 6% for women and statistically insignificant 

(4%) for men.  

JEL classification codes: J45, J31, J38 

Keywords: public sector, wages, quasi-differenced panel data, GMM, Australia 
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I INTRODUCTION 

In developed countries, the distributions of wages in the public sector are typically more 

condensed than in the private sector (see for example the review of Gregory and Borland 1999; 

and cross-national evidence from Lucifora and Muers 2006). Studies using quantile regressions 

and quantile regression decompositions find that this is not fully explained by the mix of ‘skill’ 

(proxied by education and years of experience) in the two sectors (Birch 2006; Blackaby et al. 

1998; Cai and Liu 2011; Gregory and Borland 1999; Lucifora and Muers 2006; Melly 2005; Mueller 

1998). A typical finding across countries and sexes is that public sector workers at the bottom of 

the wage distribution receive a large pay premium (holding education and experience constant), 

whilst public sector workers near the top of the wage distribution receive a wage penalty, or a 

small premium. Such results motivate concerns that low-skill public sector workers are overpaid, 

resulting in public sector inefficiency, whilst high-skill public sector workers are underpaid, leading 

to difficulties in retainment (Birch 2006; Lucifora and Muers 2006; Mueller 1998). These concerns 

assume that the quantile regression findings reflect a public sector wage premium that varies with 

skill. In other words, the public sector may provide lower overall returns to skill (whilst paying a 

premium that is independent of skill). But there are other possible explanations for the quantile 

regression results. There may be greater variation in private sector wages for each given level of 

skill (Bender 2003). It is also possible that in this context, education and experience are 

inadequate proxies of skill which bias the results (we expand on this suggestion below). The 

source of these results has major implications for assessing public sector efficiency as well as for 

interpreting the effect of public sector employment on the distribution of wages. Are low skill 

public sector workers overpaid, whilst high skill public sector workers are underpaid? Our primary 

aim in this paper is to examine explicitly whether the public sector wage premium varies with skill.  

We feel that insufficient consideration has been given in this literature to the role of 

‘unobservables’ in the sorting of workers into sectors. In most studies, experience and education 

are the only proxies for skill. To illustrate the possible implication of this, consider the notion that 

workers with little experience or education are better paid in the public sector than in the private 

sector, vice versa for more educated and experienced workers. This is implicit in the results of 

studies which estimate separate wage equations for each sector which find that returns to 

education and earnings are lower in the public sector (see the review by Bender 1998; and recent 

evidence for Australia in Birch 2006). But economic theory (and common sense) suggests that less 

educated and inexperienced workers would hence prefer to work in the public sector, vice versa 

for more educated and experienced workers. If employers (in hiring, firing and promotions) 

observe better indicators of skill than are available to econometricians, the standard quantile 
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regression results may be partially (or completely) explained by bias due to sector selection. There 

are many such indicators of skill available to employers, even at the stage of recruitment. These 

include the relevance of qualifications (field of study), the quality of the institution of study, 

relevance of work experience (firms and industries worked for), proxies of intelligence and work 

ethic (school grades), interpersonal skills (observed during the interview) and so on. Thus it is 

conceivable that the lower public sector returns to observables are offset by sector sorting on 

unobservables, due to the information that is available to employers (but not econometricians). 

This argument concords with the corresponding union wage effects literature. Reviewing the 

empirical evidence, Card et al. (2004) argue that failure to account for unobserved characteristics 

leads to overstating the extent to which union wage effect varies with skill (see also Card 1996). 

Selectivity corrections would seem to be a potential solution to this problem. These have been 

used extensively in the related literature on decomposing the mean wage premium (Gregory and 

Borland 1999). They have also been attempted in a quantile regression context (Melly 2006). 

However, selectivity corrections have major limitations in this context. They cannot differentiate 

between sectoral differences in the stock of unobserved skills from sectoral differences in returns 

to such skills. They do not, therefore, facilitate Oaxaca-type decompositions which treat observed 

and unobserved skills symmetrically (Gyourko and Tracy 1988; Neuman and Oaxaca 2004). 

Secondly, there appears to be a lack of credible exclusion restrictions to implement such 

methods.1

Here, we address these issues through an alternate approach. We implement an estimator 

proposed by Lemieux (1993; 1998), using Australian data. This is a quasi-differenced panel data 

model, estimated by GMM. To our knowledge, it is the only available estimator that fully 

 Further, sector selection is a non standard selection problem, since workers select 

from a set of potential employers and vice versa (see Card 1996; Farber 1983 in the related 

context of union status). Fixed effects quantile regressions have also been developed (Bargain and 

Melly 2008). But they too do not allow for differences in returns to unobservables. 

                                                           
1  Some have used father’s sector of employment as an exclusion restriction (e.g. Bender, 2003; Dustmann 

and van Soest, 1998; Hartog and Oosterbeek, 1993; Hou, 1993; Melly, 2006; Terrell, 1993). Such estimates 

are biased if intergenerationally transmitted attitudes to public sector employment are correlated with 

intergenerationally transmitted (unobserved) skills. Others have used attitudes towards unions (eg. Bender, 

2003; Heitmeuller, 2006; Melly, 2006), which are likely to be endogenous to working in a unionised 

environment. Some use parent’s education (Hartog and Oosterbeek, 1993; Hou, 1993), which is also likely 

to be correlated with unobserved skills. Others have used age (Borland et al., 1998; Kanellopoulos, 1997). 

But age is correlated with risk aversion (Halek and Eisenhauer, 2001; Pålsson, 1996), which may be 

rewarded differently in the two sectors (Gregory and Borland, 1999).  
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disentangles returns from stocks of all (observed and unobserved) skills and it has not been 

applied to this topic before. In our adaptation, we use a single index of (latent) skill. Our main 

interest is in whether returns to this concept of skill vary between sectors. We find no evidence of 

differences in returns. This conforms to our expectations of sector sorting on unobserved 

characteristics and it informs the interpretation of established quantile regression results. We also 

decompose the average wage gap into the components explained by returns and stocks of (all) 

skills. We estimate a positive average public sector premium for women and an insignificant 

positive premium for men. 

The estimator is discussed in Section II. The data source is the Household Income and Labour 

Dynamics in Australia (HILDA) panel survey, which is described in Section III. Section IV presents 

results, including estimated parameters, a decomposition of the raw average wage gap, sensitivity 

tests and comparisons with other estimators. Section V offers conclusions. 

 

II METHODS 

The model is adapted from Lemieux (1993, 1998), who used a similar approach to estimate the 

effect of unions on wages.2

itiit
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R

itit
R

tit PPXPw εθψβββδδ +−++−+++= )]1(1[)]([ln

 The intuition of the model is in some respects similar to that of a first-

difference model. The key parameters are estimated by sector movers and sector choice can be 

correlated with (unobserved) characteristics. The main innovation of Lemieux’s approach is that 

unlike all other approaches used for this topic, it accounts for differences between sectors in 

returns to unobserved characteristics. The method is centred around a single wage equation of 

the following form: 

 
  (1) 

The wage observed for employee i at time t is a function of sector (P = 1 if the employee is in the 

public sector and zero otherwise), job characteristics (X), a single (latent) index of skill (θ) and an 

idiosyncratic error. The coefficient δ
 
represents a constant public sector premium, independent 

of skill. Returns to skills are allowed to differ between sectors through ψ . If ψ = 1, returns to skills 

are equal across sectors. If ψ < 1, returns to skills are systematically lower in the public sector that 

the private sector, which would imply that any public sector wage premium is smaller for high skill 

workers than for low skill workers, vice versa if ψ > 1. Our main interest is thus to test whether ψ 

= 1. The only job characteristics (X) of interest are those which attract compensation for working 

                                                           
2 See also Gibbons et al. (2005) who use a similar approach in the context of industry wage models. 
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conditions (such as shift work, or an absence of job security or leave entitlements). Returns to 

such job characteristics (β) are also allowed to differ by sector, with the superscripts P and R 

denoting returns in the public and private sectors, respectively. 

A Decomposition of the Raw Sectoral Wage Gap 

If estimable, the parameters in (1) can be used in a decomposition of the raw average wage gap, 

which distinguishes between the effects of differences in the stock of skills and job characteristics 

as well as the effects of differences in returns to both skills and job characteristics. Consider the 

mean wage difference between sectors: 

ln( ) ln( ) ( ) ( )P P R R
P R t P P t R Rw w X Xδ β ψθ δ β θ− = + + − + +     

RPR
R

P
P XX θθψββδ −+−+=  

)]()[(])1()([ RP
R

RPR
RP

P XXX θθβθψββδ −+−+−+−+=  (2) 

The contents of the first square brackets represent the effects of differences in wage setting 

policies, which includes a constant difference (δ ) and differences in returns to characteristics. 

The second term represents the effects of differences in characteristics. 

B Estimation3

The first step to estimate (1) is to ‘quasi-difference’ the wage equation. That is, to substitute θ for 

the expression obtained when θ is made the subject of the argument in a first lag as follows:  
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Substituting into (1): 
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3 Analysis was conducted using SAS V9 and Stata V11. 
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Equation (4) is nonlinear and includes an endogenous regressor: 1ln −itw , which is correlated with 

1−itε
 
and hence with ite . It would seem natural for 1ln −itw  to be instrumented by 2ln −itw , which 

is available for this study. However, the likely serial correlation between 2itε −  and 1−itε  renders 

2ln −itw  an invalid instrument. This is because the sample (described in Section III) is restricted to 

job changers between t-1 and t, most of whom did not also change jobs between t-2 and t-1. 

Given that ε’ will include a job-specific component, the correlation between 2itε −  and 1−itε  will be 

greater than between 1−itε
 
and itε . As such, 2ln −itw

 
will also be correlated with ite . 

An alternative instrument is the interaction of the lagged and unlagged sector indicators: 1−itit PP . 

The complete sector history indicators described by Lemieux (1998) are equivalent to the three 

sector variables: itP , 1itP − and 1−itit PP . The validity of 1−itit PP
 
as an instrument follows from the 

assumed exogeneity of itP and 1itP − . The relevance of 1−itit PP
 
as an instrument for 1ln −itw  results 

from the correlation between 1−itit PP
 
and iθ . In other words, 1−itit PP

 
is a relevant instrument if 

the average skill of public sector joiners is different to the average skill of public sector leavers 

(see Lemieux 1993: Appendix 1 for further discussion of these issues). Since iθ is not observed, 

this is difficult to test.4

1−itX

 However, an approximate alternative is to test whether the average wage 

of joiners is different to that of leavers (averaged across their public and private sector 

observations). The three sector variables are also interacted with  and itX  to create further 

instruments. 

Equation (4) can be estimated efficiently by GMM. The GMM estimator minimises the following 

objective function: 

)()( αα eZZWe ′′  

where the weighting matrix W is the inverse of the estimated variance matrix of the moment 

functions, estimated by NLIV (see Davidson and MacKinnon 1993; Greene 2003; Hansen 1982). 

In order to separately identify R
tδ , R

t 1−δ and δ , it is necessary to impose a further restriction on 

the parameters. The mean value of θ across all people and both years is constrained to be zero: 
                                                           
4 In linear IV, instrument relevance can be determined by testing the significance of the instrument(s) in the 

first stage regression. This is not the case for nonlinear GMM (see Stock et al., 2002). 
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where N is the number of people and 
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This restriction involves the sum of a nonlinear function across the entire sample. However, it can 

be easily imposed by noting that the denominator of this expression can only take two values: 1 

and ψ. 

C Identification 

The estimates of δ  and ψ are identified only by movers between sectors. This can be seen by 

noting that both disappear from (4) when 1−= itit PP . Thus reasonable estimates of δ  and ψ can 

only be obtained with a data set that has a sufficiently large number of movers. 

Similarly, the coefficients of X in each sector (βP and βR) are only independently identified by 

people whose X changes between t-1 and t. In the present application, only job characteristics are 

included in X. In principle, observed time varying human capital variables could also be included in 

X. Consider the standard human capital variables: experience and education. Sectoral differences 

in returns to education could be identified by individuals (in each sector) whose educational 

attainment changed between observations. In the case of experience, the main issue for 

identification is the ability to distinguish it’s effect from that of pure wage inflation or other 

changes between observations that affect all workers (as measured by R
t

R
t 1−− δδ ). The returns to 

experience could thus be identified by the set of people whose experience increased by less than 

the time elapsed between observations. 

An alternate identification strategy is used in this paper. Education can be treated as time 

invariant if people whose highest educational qualification changed between t-1 and t (of whom 

there are very few as shown in the following section) are excluded from the analysis. Education 

can thus be incorporated as a component of θ, and differences in returns to education can be 

incorporated in ψ. This highlights a key difference between this model and standard panel data 

models. In a FE model, leaving education in θ implies an assumption of no sectoral differences in 

returns to education. This is not the case here. Thus differences in time invariant skills (including 

education) are identified by movers between sectors. One advantage of this identification 

strategy is that it does not require any education changers. By leaving education in θ, the 



8 
 

approach also avoids several other problems characteristic of the standard panel data approach. 

These include the assumptions that returns to education are immediate rather than lagged and 

that returns to education for students who simultaneously work are representative of all 

employees. It also avoids ambiguity over whether the highest level of educational qualification is 

the appropriate human capital measure, or whether the total quantity of education (in years) is 

more appropriate. A consequence of this strategy is that sectoral differences in returns to 

education are not separately identified from differences in returns to other time invariant skills. 

A similar strategy is available to incorporate the effects of experience. Since the two observations 

are only one year apart, experience is almost completely time invariant and can thus be 

incorporated into θ , similarly to the treatment of education. The effect of the last one year 

increase in experience is incorporated into R
t

R
t 1−− δδ .5

D Exogenous Switching Assumption 

 

The model relies on the assumption that sector choice is uncorrelated with e, conditional on X 

and θ. It allows sector selection to be correlated with θ. But it does not allow for the possibility 

that workers switch sectors due to changes in person and sector specific productivity (i.e. time-

varying comparative advantage). Lemieux argues that this problem is reduced by considering only 

involuntary job changers. These were people who changed jobs due to ‘plant closing, family 

responsibilities, illness, geographic moves, dismissal, or other forms of layoffs’. This is 

problematic. Workers may be dismissed or laid off precisely due to a fall in sector-specific 

productivity (especially if institutional constraints prevent a wage reduction). Even if an 

involuntary job loss is assumed exogenous, there is no reason to believe that subsequent sector 

choice is unaffected by time-varying comparative advantage. Thus we do not follow Lemieux’s 

approach of limiting the sample to the set of involuntary job changers. In any case, the number of 

                                                           
5 It is acknowledged that the effect of a one year increase in experience may differ across the experience 

distribution, as reflected by the standard practice of including experience in quadratic form in wage 

equations (Mincer, 1974; Preston, 1997). It would be possible to include experience in quadratic form in the 

wage equation here. This is not pursued for a number of reasons. First, such an inclusion would make the 

interpretation of ψ  more difficult. In the preferred model, ψ facilitates a simple assessment of whether 

differences in returns to skills differ between sectors. Second, the nonlinearity in returns to experience 

would only be identified through an increase in one year of experience for each employee. To reiterate the 

nature of this restriction, it assumes that returns to the last single year of experience do not vary across 

experience levels. However, there is no restriction to the functional form of returns to all previous years of 

experience. This restriction is thus unlikely to be of any substantive consequence. 
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job changers who report changing jobs involuntarily is too small in HILDA to adopt this approach, 

as it would reduce the sample size by approximately 75%. 

Instead, we provide empirical support (in the next section) for the exogenous switching 

assumption. The rationale is based on the following arguments. If time-varying comparative 

advantage were an important factor in sector switching, one would expect to find an apparent 

public sector premium for public sector joiners and a corresponding private sector premium for 

public sector leavers. In other words, switching sectors would be associated with an increased 

wage, regardless of the direction of the switch. With purely exogenous switching, one would 

expect to see a public sector premium (or penalty) that does not depend on the direction of the 

switch (public to private or private to public). This is indeed what we find in the data. Next, even if 

time-varying comparative advantage were an important factor in sector switches, it would only 

bias the key results in specific circumstances. The mean public sector premium would be biased 

up (down) only to the extent that the number of public sector joiners (leavers) in the sample 

dominate the number of leavers (joiners). A similar argument holds for ψ. Time-varying 

comparative advantage would lead to downward bias in ψ only to the extent that public sector 

leavers are concentrated at the top of the skill distribution (relative to joiners), vice versa for an 

upward bias. Whilst the distribution of θ is not attainable, the wage distribution of leavers and 

joiners (averaged across their public and private sector observations) is arguably a close substitute 

in the present context. We will show that this distribution is similar for leavers and joiners. 

E Factors Not Included in the Model 

Some factors that may affect sectoral wage differences have not been incorporated in the model 

and need to be taken into account when interpreting the results. In particular, earnings are an 

incomplete measure of the total return to labour. Employees may be willing to accept lower 

earnings in exchange for other benefits. Superannuation and paid maternity leave entitlements 

may be important considerations and both are more generous in the public sector. 

Employer contributions to superannuation are a major component of total remuneration. Under 

the Superannuation Guarantee, employers have been required to contribute to each employee’s 

superannuation at a rate equal to at least 9% of earnings since 2002. Historically, superannuation 

in the public sector has been generous. The Commonwealth Superannuation Scheme commenced 

in 1922, providing some public sector retirees with a defined benefit pension equal to up to 70% 

of their final salary, indexed to inflation (Department of Finance and Administration 2001). 

Subsequent reforms have resulted in less generous pensions. If superannuation schemes remain 

more generous in the public sector, this may have a downward effect on public sector earnings 
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through a compensating wage differential. However, sectoral comparisons of employer 

contributions are hampered by differences in the benefit structures of superannuation schemes. 

Schemes fall into three main structures: accumulation, defined benefits and a hybrid of the two. 

In accumulation funds, employers contribute superannuation continuously, in proportion to 

earnings. In defined benefit funds, the value of employer contributions is unknown at the time 

that wages are earned because the benefits are often defined in relation to employees’ final 

salary. For this reason, the major recent survey of superannuation in Australia, the Survey of 

Employment Arrangements and Superannuation (SEAS), only provides a measure of employer 

contributions for those who have active accumulation funds (and no defined benefit or hybrid 

accounts) (Australian Bureau of Statistics 2001). This excludes 63% of public sector employee 

respondents and 15% of those in the private sector. For the remaining sample, average employer 

contributions are similar in the two sectors (6.6% in the public sector and 6.8% in the private 

sector).6

Paid maternity leave was not mandatory In Australia until January 2011 (after the period of data 

coverage used here). In the pre-2011 era at least, public sector employers were much more likely 

to provide paid maternity leave than private sector employers. In 2005, the Australian Bureau of 

Statistics surveyed women who had a child under two years of age. Of those who were public 

sector employees whilst pregnant, 76% accessed paid maternity leave, compared to 27% in the 

private sector (Australian Bureau of Statistics 2007: 135). HILDA includes data on paid maternity 

leave entitlement. But it is poorly reported, with missing values recorded for approximately 40% 

of females in the sample used here, most of whom did not know whether they were entitled. Paid 

maternity leave may have a downward effect on public sector wages for females to the extent 

that they are willing to sacrifice some earnings in order to access this benefit. See Edwards (2006) 

for recent evidence of a compensating wage differential associated with paid maternity leave in 

Australia.  

 This is unlikely to be a good indication of the overall generosity of employer 

contributions in the public sector. It does suggest, however, that few private sector employees 

receive more than the minimum legislated contribution from their employer. 

                                                           
6 Author’s calculations from the SEAS Expanded Confidentialised Unit Record File. The percentage 

contribution was calculated by the author for each employee as total employer contributions divided by 

usual weekly income from main job. The sample was restricted to employees, excluding employees of own 

business. People with more than one job were excluded as the employer contribution variable does not 

differentiate between jobs. At the time of the survey, the minimum legislated employer contribution was 

8%. Employees with monthly income below $450 per month are exempt, as are those under 18 years of age 

working less than 30 hours per week. Thus it is reasonable for the average contribution to be less than 8%. 
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There may also be sectoral differences in job security and flexibility and differences in the utility 

derived from the work itself. Such factors would induce compensating wage differentials in less 

attractive jobs. These are only partly measured by the casual status variable (which will capture 

some of the effects of job instability) and the shiftwork variable (which will capture the 

compensation paid for the disutility of shift work), as discussed in the following section. No 

controls are included for industry and occupation. This implies an assumption that the industries 

and occupations of jobs in one sector are not generally less appealing compared to the other 

sector, in the sense that they detract from utility directly. Some supporting evidence for this 

assumption is presented in the following sections. It is shown in Section IV that the inclusion of 

industry and occupation controls in related models makes almost no difference to the estimates. 

Further, there is no evidence of sectoral differences in work stress and work satisfaction in 

Australia, as discussed in Section V. At a practical level, the samples in the preferred models are 

too small to accurately identify compensating differentials off movers between industries and 

occupations. 

We do not control for size of employer or union status. The public sector is a highly unionised 

workforce characterised by large employers. Both of these factors are associated with higher 

hourly earnings (Miller and Mulvey 1996; Wooden 2001). We treat these as inherent features of 

the public sector which we do not abstract from. Wooden (2001) has shown that in the Australian 

labour market, characterised by enterprise bargaining, the effect of unions on wages operates at 

the level of the workplace rather than the individual. Thus workers in highly unionised workplaces 

enjoy a wage premium, regardless of their personal union membership. Since HILDA does not 

include such data on the workplace, any attempt to explicitly account for the effect of 

unionisation is likely to be misleading.  

 

III DATA 

The data used for this study are from the Household, Income and Labour Dynamics in Australia 

(HILDA) Survey. HILDA is a nationally representative household-based panel survey, with annual 

observations taken since 2001, with an initial sample of 7682 households and 19,914 individuals. 

The analysis utilises all eight available waves (2001-2008). 

The estimation sample is defined as the set of employees who changed employers between any 

two consecutive observations (e.g. between Waves 1 & 2; or between Waves 2 & 3; and so on).7

                                                           
7  Employees employed by their own business at either observation were excluded. 
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The restriction to job changers is because sector of employment is self reported and thus may be 

measured with error.8 Since only a small proportion of employees change sectors between 

consecutive years, a large proportion of apparent sector movers may be incorrectly identified due 

to reporting error. Indeed, preliminary analysis revealed that more than half of apparent sector 

movers did not report a change in employer in the same period, suggesting that a large 

proportion of movers may be misclassified.9

The dependent variable is the natural logarithm of hourly earnings. Hourly earnings are derived as 

‘current weekly gross wage and salary in main job’ divided by ‘hours per week usually worked in 

main job’. Wage inflation is accounted for by scaling observed wages in each year by gender-

specific full time ordinary time average weekly earnings to 2008 levels. 

 To address this issue, the sample is limited to those 

who reported a change in employer, which follows Lemieux’s (1998) approach. 

The only observed characteristics included in the model (X) are dummy variables for shift or 

irregular work and for ‘casual’ employment contracts. The shift work variable captures any 

compensating wage differentials resulting from the disutility of shift work.10

                                                           
8 Public sector employees are those who identified their employer as a ‘Government business enterprise or 

commercial statutory authority’ or ‘Other governmental organisation’. 

 The casual status 

variable is included because the wages of ‘casual’ employees usually include a loading that 

compensates for a lack of entitlements received under other contracts. The size of such loadings, 

however, varies considerably, depending on the Award or enterprise agreement under which an 

employee is covered. Watson (2005) notes a variation of 15% to 33.3% amongst enterprise 

bargaining agreement in the ACIRRT ADAM database between 1994-2002. The loading is also 

between 15% and 33% in most Awards, but is sometimes less than this and can be as high as 50% 

(Owens 2001). Furthermore, many self-identified casuals do not receive any loading at all 

(Wooden and Warren 2003). A manual adjustment to the wages of casual workers is considered 

infeasible, since it is unclear how large such an adjustment would need to be. Thus the size of the 

loading is estimated by the model. Secondly, it is possible that average casual loadings are 

9 There are, however, a number of other possible explanations. It may result from reporting errors in the 

change in employer variable, since this relies on retrospective recall. It is also possible for employees to 

change sector without changing employer. This is the case when a public corporation is privatised. In any 

case, the conservative approach is taken here, by limiting the sample to employees who reported a change 

in employer. 
10 Current work schedule is self-reported. Shift work is defined as any schedule other than a ‘regular 

daytime schedule’. Most employees classified as shift workers reported ‘A rotating shift (changes from days 

to evenings to nights)’; an ‘Irregular schedule’; or a ‘Regular Evening Schedule’. 
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different between the two sectors. In the main set of estimates, however, the loading is 

constrained to be equal, because no significant difference is found between sectors when the 

parameter is allowed to vary. The results are not sensitive to this restriction as will be shown. 

Separate models are estimated for men and for women. Exclusions from the sample are detailed 

in Table 1. Observations were excluded due to missing data at either observation (missing wage, 

sector, highest educational qualification, casual or shift status). Observations were also excluded 

where the real wage was recorded to have changed by more than one log point between 

observations (i.e. by a factor of more than 2.72). A small number of people whose highest 

educational qualification changed between observations were excluded to ensure that education 

is time invariant, as discussed in the previous section. The estimation sample consists of 2703 

men and 2520 women. 

The sector movers consist of 294 men and 461 women. These observations identify δ
 
and ψ.  

Casual status changed between observations for 741 men and 767 women. These records identify 

the estimated casual loading. Shift work status changed between observations for 628 men and 

663 women. These records identify the estimated compensation for shift work. 

Table 2 shows weighted means for the main sample by sex and sector. It also facilitates 

comparisons of the characteristics of sector movers to that of the full sample. This table shows 

that the raw public-private difference in mean log wages is 0.14 for men and 0.23 for women. 

Public sector employees are much more likely to hold a degree or higher qualification and to work 

in professional occupations. Amongst females, public sector employees also have more 

experience, less so for men. Private sector employees are more likely to be employed in casual 

jobs and to work in shift work arrangements. It is also clear that sector movers are similar to the 

rest of the sample, with their mean characteristics lying between the public and private means on 

most measures. Approximately half of male job changers also changed occupation, regardless of 

sector. This proportion is slightly higher for male sector movers (57%). Amongst females, the 

proportion of sector changers who changed occupation was similar to that of job changers 

overall.  

Table 3 facilitates an evaluation of the extent to which sector movers resemble the set of all 

employees (not just job changers). It is based on Table 2, with the sample expanded to the set of 

all employees. The mean characteristics of sector movers are similar to that of all employees in 

most regards. The main differences are that sector movers are less experienced (especially 

amongst males) and had worked for their employer for a shorter period (at t-1). Amongst males, 

they are also less likely to be ‘Managers’. 
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The wage distribution of sector movers is compared to that of other groups in Figure 1 and Figure 

2. Figure 1 shows that the wage distribution of sector movers is very similar to that of all job 

changers, especially those in the public sector. Figure 2 shows that the wage distribution of sector 

movers is not strikingly different to that of all employees in each sector either, perhaps 

resembling the private sector distribution slightly more than the public sector distribution.  

A slightly higher proportion of sector movers moved into the public sector rather than away from 

the public sector (60% of male sector movers and 57% of female sector movers). This is not 

surprising given that public sector workers are more experienced on average. There were no 

major changes in this proportion across the years included in the sample. 

It was suggested in Section II that an approximate test of instrument relevance is to test whether 

the mean wage of public sector leavers is different to that of joiners. The results of such tests are 

shown in Table 4, which shows the mean ln wage for public sector joiners and leavers, across both 

observations, so that both the public and private sector wage is included in the calculation for 

each employee. There is clear evidence that public sector leavers have a higher wage than public 

sector jointers amongst both males and females (a difference of 0.103 for males and 0.070 for 

females). These differences are statistically significant (p = 0.030 for males; p = 0.012 for females) 

which provides evidence for instrument relevance (see section II.B). If the male and female 

samples are pooled, the evidence is stronger still (p = 0.002). For this reason, the model is re-

estimated for a pooled sample of males and females as a robustness test. It will be shown that the 

three sets of results, that for men, women and overall are similar and that the key estimates for 

the pooled model lie in between that of the male and female models. 

The middle panel of Table 4 shows mean log wage changes leavers, joiners and job changers who 

did not change sector. Relative to job changers who did not change sector, the log wage of public 

sector joiners increased by a mean of 0.041. The corresponding change for leavers is a decrease of 

0.054. Thus endogenous sector switching does not appear to have empirical support in this 

application. Table 4 also shows the numbers of leavers and joiners in the sample, which are fairly 

similar. 

Figure 3 shows the wage distributions for leavers and joiners (averaged across their public and 

private sector observations). These are similar, strongly suggesting that leavers and joiners are 

similarly distributed across the skill distribution. The corresponding distributions by sex (not 

shown) are noisier, but lead to the same qualitative conclusion. 
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IV RESULTS 

A Parameter Estimates 

The results of the GMM estimation are shown in Table 5. There is no evidence of sectoral 

differences in returns to skills. A value of ψ that is less than 1 suggests that returns to skills are 

smaller in the public sector than the private sector. For males, ψ is estimated to be 0.954, while 

for females it is 1.118. In the pooled model it is 0.960. This parameter is not significantly different 

from 1 in any model. Thus there is no evidence to suggest that the size of the public sector wage 

premium depends on the level of skill. This important result is considered in more detail in Section 

V. 

The constant effect (δ ) of public sector employment on wages is estimated to be positive and 

small (0.044 for men and 0.042 for women). This parameter is statistically significant for men (p = 

0.038), and borders on significance for women (p = 0.073). The estimate is slightly higher in the 

pooled model across sexes (0.052) and is highly significant. 

Positive and statistically significant loadings for casual status are estimated for both sexes and in 

the pooled model. Compensation for shift work is not statistically significant. The coefficients of 

casual and shift were constrained to be equal across sectors in the results reported in, since Wald 

tests do not reject the hypothesis of equality across sectors for either parameter in any model. 

The results are not sensitive to these restrictions, as will be shown. 

The Hansen statistic, reported at the bottom of Table 5, facilitates partial tests of instrument 

validity in overidentified GMM models. It is equal to the minimised value of the objective function 

multiplied by the sample size. Under the null hypothesis the statistic follows a χ2 distribution with 

degrees of freedom equal to the number of overidentifying restrictions, which is the difference 

between the number of instruments and the number of parameters (Hansen 1982). In the models 

estimated here, there are 14 overidentifying restrictions. In the male and pooled models the p-

values greatly exceed 0.05 and so the null hypothesis is not rejected. In the female model the p-

value is slightly less than the critical value (0.044). However this may simply result from parameter 

heterogeneity in the population, with the different instruments picking up various local averages. 

B Decomposition of the Raw Wage Gap 

The decomposition results are shown in Table 6. The main result is that the average public sector 

wage premium is estimated to be positive but small for men (0.040), slightly larger for women 

(0.059), with the estimate from the pooled model lying between the two (0.048). Statistically, this 
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estimate is significantly different from zero for women (p<0.001) and the pooled model (p<0.001), 

but not for men (p=0.072).11

Returning to 

 The 95% confidence intervals are (-0.004, 0.083) for men, (0.029, 

0.089) for women and (0.022, 0.073) overall. These imply an average public sector wage premium 

of e0.040 – 1 = 4.1% for men, e0.059 – 1 = 6.1% for women and e0.048 – 1 = 4.9% overall. 

Table 6, the majority of the raw wage gap is explained by differences in 

characteristics. In particular, the largest component of the wage gap is accounted for by sectoral 

differences in the stock of time invariant skills (which include education, experience and 

unobserved characteristics). In each model, this is a positive effect, suggesting that the average 

public sector employee is more skilled than their private sector counterpart. This is consistent 

with Table 2, which shows that they are more educated and more experienced. Differences in 

casual and shiftwork status are not major factors. 

C Robustness Tests 

This subsection considers the robustness of the results with respect to a number of modifications 

to the preferred model. As discussed by Stock et al. (2002: 527), sensitivity to minor 

methodological changes is suggestive of weak identification in nonlinear GMM models. The 

estimates of primary interest are δ  (the constant effect of public sector employment on wages), 

ψ (returns to skills in the public sector relative the private sector), and the total average effect of 

public sector employment on wages. These are shown for a range of alternate specifications in 

Table 7. 

The first set of results are for a model where returns to ‘casual’ and ‘shift’ are not constrained to 

be equal in the two sectors. These estimates are similar to that of the preferred model, though 

they are slightly less precise, reflecting the increase in the number of parameters estimated by 

the model. The constant effect δ  becomes statistically insignificant. As shown in the next two 

sets of results, if the models are estimated by NLIV or iterated GMM, the results are very similar 

to the preferred model. When sample weights are applied, the estimates also remain similar to 

the preferred model. 

                                                           
11 The results of the decomposition are a function of the estimated coefficients and the sample means. The 

standard errors of the decomposition take account of the variance-covariance matrix of the estimated 

parameter vector. They also take account of the standard errors on the sample means. They also account 

for the fact that the estimated mean time invariant characteristics of workers in each sector ( Pθ and Rθ ) 

are functions of the estimated parameters and the sample means. 
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In the next seven sets of results, the sample is restricted to job changers between any single pair 

of consecutive waves (e.g. between Waves 1 & 2 only). Thus the sample size is severely restricted 

to approximately one seventh of the main models. Consequently, the estimates vary between 

these models. It is clear, however, that the changes to the estimates are always within reasonable 

realms of sampling error (the majority of point estimates are within one standard error of those in 

the preferred model, almost all are within two standard errors, and all are within three standard 

errors). This constitutes strong support for the validity of inference for the main set of estimates. 

Thus the results are generally robust to the methodological modifications considered. 

The final set of results in Table 7 was generated by estimating the quasi-differenced wage 

equation (equation 7) by nonlinear least squares, thereby ignoring the endogeneity of 1ln −itw . 

The standard errors on these estimates are smaller than in the preferred model (especially for ψ), 

but they are qualitatively similar. Like in the preferred model, the estimates of δ  are small 

positives for both sexes and the estimates of ψ are not significantly different from 1. The average 

wage premiums are also positive, statistically significant and similar to the preferred model. 

D Comparison with other Methods 

The estimated average public sector wage premiums are compared in Table 8 to corresponding 

estimates generated through other methods. 

The OLS and Oaxaca decomposition models are estimated using observations for employees 

across all six waves of HILDA.12 Observations are excluded if the real recorded wage was less that 

$5 per hour or more than $100 per hour. Control variables include experience, experience 

squared, highest educational qualification (6 dummy variables), casual status, shift work status, 

years with current employer, years in current occupation, occupation (46 dummy variables for 

men; 43 for women), proficiency in English (3 dummy variables), married, state or territory (7 

dummy variables) and remoteness (3 dummy variables).13

Table 8

 The OLS and Oaxaca decomposition 

results do not differ greatly, suggesting that differences in returns to observed characteristics are 

not a major driver of the average wage differential. Using the similar data, Cai and Liu (2011) also 

estimated the average public wage premium using OLS and Oaxaca decompositions. Their 

estimates are lower than those in , and are in some cases negative. Much of this 

discrepancy is explained by their inclusion of control variables for employer size. 

                                                           
12 The decompositions were estimated using the user-written Stata module –oaxaca– (Jann, 2008) 
13 Industry dummies are not included due to the heavy industrial segregation of public sector employment. 
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The fixed effects and first difference (full controls) models use the same variables and the same 

sample as the OLS model, with the following exceptions. Employees with only a single observation 

are excluded from the fixed effects model. Employees without consecutive observations are 

excluded from the first difference model. Employees whose wage changed by more than one log 

point were also excluded in each model.  These results suggest that for both sexes, some of the 

apparent public sector wage premium may be explained by higher unobserved skills of public 

sector employees.14

The next estimates are also generated using a first difference approach. Here, the set of control 

variables is limited to those in the preferred model and education changers are excluded. The 

results here are quite similar to the previous model, suggesting that the larger set of controls 

makes little difference to the estimates, thereby justifying their exclusion from our preferred 

model. 

 However, these estimates are likely to be subject to considerable attenuation 

bias due to reporting error in the sector variable, as discussed above in the description of the 

data. 

To examine the issue of attenuation bias, a third pair of first difference results is estimated with 

the sample limited to job changers (the same sample as the preferred model). For both sexes, the 

estimated wage premium is considerably larger than the previous estimate, which conforms to 

the hypothesised attenuation bias in the larger sample.  

The first difference model estimated on the job changer sample is equivalent to the preferred 

model with ψ restricted to equal 1. Since ψ is estimated to be close to 1, so it is unsurprising that 

the estimated average wage premiums are similar in the first difference models. 

 

V CONCLUSION 

We have used an adaptation of Lemieux’s (1993, 1998) quasi-differenced panel data estimator to 

test whether the public sector wage premium varies with skill in Australia. This estimator allows 

us to identify sectoral differences in returns to a latent index of overall skill. We find no evidence 

to suggest that the public sector wage premium varies with skill. This suggests that if low skill 

public sector workers receive a wage premium, it is no larger than that of high skill workers. This 

is despite the typical results of quantile regressions, which suggest that the premium is usually 

much larger at the bottom of the wage distribution. How can these results be reconciled? The 

quantile regression results could be explained by greater variance in private sector wages for a 
                                                           
14 The fixed effects models were estimated using the user-written Stata module –xtivreg2– (Schaffer, 2005) 
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given level of skill. Another explanation is that the compressed wage profile of the public sector 

induces the best workers (on unobserved skills) to join the public sector in low wage occupations, 

vice versa in high wage occupations. This would be consistent with the recent work of Bargain & 

Melly (2008) for France, who use a fixed effects quantile regression approach. Whilst they are 

unable to account for differences in returns to unobserved skills, they find that the apparent 

variation in the French public sector wage premium across the wage distribution is mostly 

explained by sector selection on unobserved skills. French public sector workers were found to 

have higher unobserved skills at the bottom of the wage distribution, while the opposite is true at 

the top of the distribution.  

Our findings suggest that caution should be taken before inferring (from quantile regression) that 

low skill public sector workers are considerably overpaid. If the public sector does attract the best 

workers (on unobservables) in low skill occupations, this is likely to translate to higher 

productivity. The finding also calls into question the ability of governments to use wage setting 

policies to achieve redistributive goals. If, for instance, governments aim to provide a wage 

premium to public sector workers in low wage occupations, it may simply be inducing the best 

workers (on unobserved characteristics) to join the public sector. 

Our results are consistent with concerns over the ability of the public sector to retain highly skilled 

workers. When compared to the results of Cai & Liu (2011), the lack of a public sector wage 

penalty for high skill workers in our study suggests that the best workers (on unobserved 

characteristics) in high wage occupations select into the private sector. 

Further research is required to investigate these issues, since this literature has paid insufficient 

attention to sectoral differences in unobserved skills (and in their returns). In particular, the 

standard errors for ψ must be taken into account. The 95% confidence intervals do not rule out 

moderate sectoral differences in returns to skills. It would thus be useful to conduct related 

studies using other data sources. 

We also find that the average Australian public sector employee is paid slightly more than he or 

she would be paid in the private sector. The preferred estimates of this public sector wage 

premium are 4% for men and 6% for women, though the estimate is not statistically significant for 

men. This does not include the value of benefits such as superannuation and paid maternity leave 

which are also more generous in the public sector. This positive average premium is consistent 

with most of the international literature on this topic. It may result from the higher rates of 

unionisation in the public sector. It is also possible that this ‘premium’ compensates public sector 

workers for unfavourable working environments. However, the evidence for Australia suggests 
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little or no sectoral difference in levels of work-related stress or job satisfaction (Lewig and 

Dollard 2001; Macklin et al. 2006).  
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Table 1 Sample selection (number of observations) 

  Men Women Pooled 

Job changers between any consecutive waves 3116 3043 6159 

   with missing data 149 225 374 

   outliers 103 88 191 

   changed education 161 210 371 

Final sample 2703 2520 5223 

 

Table 2 Sample means – job changers* 

  Men   Women 

Variable Public Private Sector 
Movers 

  Public Private Sector 
Movers 

ln wage 3.26 3.12 3.18  3.21 2.98 3.13 

Experience (years) 15.4 14.5 14.8  15.4 12.6 14.1 

Education        

   University degree 0.46 0.17 0.34  0.52 0.21 0.43 

   Trade 0.22 0.38 0.29  0.19 0.29 0.23 

   Year 12 0.16 0.21 0.18  0.16 0.26 0.19 

   less than Year 12 0.16 0.24 0.19  0.13 0.24 0.16 

Casual 0.17 0.27 0.20  0.21 0.37 0.26 

Shift / irregular 0.20 0.23 0.22  0.18 0.26 0.23 

Occupation        

   Managers 0.06 0.10 0.03  0.05 0.07 0.06 

   Professionals 0.39 0.15 0.32  0.48 0.17 0.38 

   Technicians and Trades Workers 0.13 0.25 0.19  0.02 0.05 0.02 

   Community and Personal Service Workers 0.12 0.05 0.12  0.14 0.16 0.18 

   Clerical and Administrative Workers 0.15 0.08 0.13  0.27 0.29 0.28 

   Sales Workers 0.02 0.10 0.05  0.01 0.17 0.04 

   Machinery Operators and Drivers 0.04 0.13 0.05  0.00 0.01 0.01 

   Labourers And Related Workers 0.09 0.16 0.11  0.02 0.08 0.03 

Tenure (years) with employer at t-1  3.50 2.74 3.62  3.19 2.41 2.87 

Changed occupation between observations 0.53 0.48 0.57  0.41 0.46 0.46 

Sample size 300 2,403 294   479 2,041 461 

* The sample is limited to that of the main analysis as reported in the text. ‘Public’ denotes all public sector 
employees who changed employer since the previous observation. ‘Private’ denotes all private sector 
employees who changed employer since the previous observation. ‘Sector movers’ denotes all employees who 
changed employer and sector since the previous observation. 
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Table 3 Sample means – all employees* 

  Men   Women 

Variable Public Private Sector 
Movers 

  Public Private Sector 
Movers 

ln wage 3.37 3.12 3.18  3.26 2.97 3.13 

Experience (years) 23.1 17.5 14.8  19.6 14.6 14.1 

Education        

   University degree 0.42 0.18 0.34  0.50 0.20 0.43 

   Trade 0.34 0.36 0.29  0.23 0.26 0.23 

   Year 12 0.11 0.18 0.18  0.11 0.22 0.19 

   less than Year 12 0.13 0.27 0.19  0.16 0.32 0.16 

Casual 0.08 0.22 0.20  0.14 0.35 0.26 

Shift / irregular 0.24 0.26 0.22  0.22 0.27 0.23 

Occupation        

   Managers 0.11 0.13 0.03  0.06 0.07 0.06 

   Professionals 0.37 0.15 0.32  0.51 0.17 0.38 

   Technicians and Trades Workers 0.12 0.24 0.19  0.02 0.05 0.02 

   Community and Personal Service Workers 0.14 0.05 0.12  0.17 0.15 0.18 

   Clerical and Administrative Workers 0.14 0.07 0.13  0.20 0.25 0.28 

   Sales Workers 0.01 0.09 0.05  0.01 0.19 0.04 

   Machinery Operators and Drivers 0.06 0.13 0.05  0.00 0.01 0.01 

   Labourers And Related Workers 0.06 0.15 0.11  0.03 0.10 0.03 

Tenure (years) with employer at t-1  10.57 4.92 3.62  7.93 3.82 2.87 

Sample size 5,714 21,419 294   7,987 19,120 461 

* ‘Public’ denotes all public sector employees. ‘Private’ denotes all private sector employees. ‘Sector movers’ 
denotes all employees who changed employer and sector since the previous observation. 
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Table 4 Mean wages of public sector leavers and joiners 

  Males Females Pooled 

 
mean ln wage 

Leavers 3.213 3.141 3.168 
Joiners 3.110 3.071 3.087 
Difference 0.103 0.070 0.081 
Standard error of difference 0.048 0.030 0.026 
p-value of difference 0.030 0.012 0.002 

    

 
mean change in ln wage 

Leavers -0.002 -0.009 -0.006 
Joiners 0.082 0.093 0.089 
Other job changers (not sector switchers) 0.053 0.042 0.048 

    

 
Number of observations 

Leavers 117 198 315 
Joiners 177 263 440 
Other job changers (not sector switchers) 2,409 2,059 4,468 

* The upper panel shows the mean log wage for public sector leavers and joiners, where for each switcher, the 
log wage is averaged across one public sector observation and one private sector observation (the observations 
immediately before and after the sector switch). 
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Table 5 GMM estimates of wage equations* 

  Men Women Pooled 

  coefficient SE coefficient SE coefficient SE 

Constant effect (δ ) 0.044 0.021 0.042 0.024 0.052 0.014 

Returns to time invariant skills 
in public sector (ψ) 

0.954 0.146 1.118 0.159 0.960 0.104 

Returns to varying 
characteristics 

      

   Casual 0.062 0.014 0.066 0.013 0.063 0.009 

   Shift Work 0.010 0.014 -0.017 0.015 -0.003 0.010 
R

tδ  3.112 0.006 2.992 0.008 3.055 0.004 
R

t 1−δ  3.060 0.007 2.949 0.008 3.008 0.005 

       

Hansen overidentification 
statistic 

16.616 24.146 17.350 

   (p-value) (0.277) (0.044) (0.238) 

Sample size 2703 2520 5223 

 * The dependent variable is the log wage. The sample is limited to that of the main analysis as reported in the 
text. The Hansen overidentification test statistic follows a χ2 distribution with 14 degrees of freedom. 

 

Table 6 Decomposition of Raw Average Wage Gap from GMM results 

  Men Women Pooled 

  Estimate SE Estimate SE Estimate SE 

Public Sector Wage Premium:       

   constant effect (δ ) 0.044 0.021 0.042 0.024 0.052 0.014 

   differences in returns to fixed    
…characteristics 

-0.005 0.015 0.017 0.022 -0.004 0.012 

   Total average wage premium 0.040 0.022 0.059 0.015 0.048 0.013 

             

Effect of differences in characteristics:             

   casual and shiftwork status -0.006 0.002 -0.009 0.003 -0.007 0.001 

   fixed characteristics 0.110 0.022 0.176 0.016 0.132 0.013 

   Total effect of different 
…characteristics 

0.104 0.022 0.166 0.016 0.124 0.013 

       

Unadjusted Wage Gap 0.144   0.225   0.172   
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Table 7 Sensitivity Tests of Main Results 

  δ  SE ψ SE 

Average  
public 
wage 

premium SE 

Unrestricted returns to casual and shift     
   Men 0.034 0.026 1.021 0.172 0.047 0.022 
   Women 0.011 0.034 1.262 0.212 0.062 0.015 
NLIV       
   Men 0.048 0.020 0.954 0.135 0.043 0.022 
   Women 0.039 0.021 1.174 0.153 0.063 0.016 
ITGMM       
   Men 0.044 0.021 0.954 0.145 0.040 0.022 
   Women 0.044 0.023 1.106 0.157 0.059 0.015 
Weighted       
   Men 0.020 0.024 0.974 0.163 0.018 0.023 
   Women 0.036 0.027 1.190 0.200 0.060 0.018 
Waves 1 & 2       
   Men 0.118 0.041 0.601 0.172 0.035 0.064 
   Women 0.003 0.059 1.815 0.375 0.108 0.027 
Waves 2 & 3       
   Men 0.011 0.079 1.771 0.587 0.084 0.045 
   Women 0.025 0.064 1.582 0.411 0.105 0.033 
Waves 3 & 4       
   Men 0.050 0.050 0.877 0.194 0.044 0.057 
   Women 0.082 0.038 0.874 0.192 0.065 0.037 
Waves 4 & 5       
   Men 0.036 0.039 1.415 0.244 0.045 0.031 
   Women -0.011 0.067 1.059 0.332 -0.003 0.038 
Waves 5 & 6       
   Men 0.030 0.036 0.694 0.093 -0.042 0.070 
   Women 0.062 0.043 0.937 0.161 0.050 0.042 
Waves 6 & 7       
   Men 0.048 0.046 1.104 0.199 0.053 0.044 
   Women 0.027 0.038 0.778 0.227 -0.013 0.052 
Waves 7 & 8       
   Men -0.108 0.129 2.494 0.841 0.024 0.042 
   Women -0.008 0.060 1.530 0.454 0.055 0.027 
Nonlinear Least Squares       
   Men 0.047 0.020 0.957 0.042 0.043 0.020 
   Women 0.059 0.016 0.936 0.040 0.050 0.016 
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Table 8 Estimated Average Public Sector Wage Premium - Comparison to other Methods 

  Men   Women 

  

Average 
public 
wage 

premium SE N   

Average 
public 
wage 

premium SE N 

OLS 0.037 0.011 25,178   0.065 0.008 25,116 

Oaxaca decomposition 0.050 0.007 25,178   0.053 0.006 25,116 

Fixed Effects 0.032 0.010 19,171  0.040 0.008 18,294 

First Difference (full controls) 0.018 0.011 18,294  0.020 0.009 17,085 

First Difference (limited controls) 0.024 0.012 17,736  0.022 0.009 16,849 

First Difference (job changers only) 0.046 0.020 2,703  0.054 0.007 2,520 

Quasi-Difference (preferred model) 0.040 0.022 2,703   0.059 0.015 2,520 
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Figure 1 Density of ln wage distribution amongst job changers* 
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* The sample is limited to that of the main analysis as reported in the text. ‘Public’ denotes all public sector 
employees who changed employer since the previous observation. ‘Private’ denotes all private sector 
employees who changed employer since the previous observation. ‘Sector movers’ denotes all employees who 
changed employer and sector since the previous observation. 
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Figure 2 Density of ln wage distribution amongst all employees* 
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* ‘Public’ denotes all public sector employees. ‘Private’ denotes all private sector employees. ‘Sector movers’ 
denotes all employees who changed employer and sector since the previous observation. 
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Figure 3 Density of ln wage distribution amongst public sector joiners and leavers* 
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* The population is limited to sector switchers. For each switcher, the log wage is averaged across one public 
sector observation and one private sector observation (the observations immediately before and after the 
sector switch). 
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