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Evolving to the Impatience Trap:

The Example of the Farmer-Sheriff Game1

BY DAVID K. LEVINE, SALVATORE MODICA, FEDERICO WEINSCHELBAUM AND FELIPE

ZURITA

First Version: July 22, 2010

This Version: August 6, 2011

Abstract

The literature on the evolution of impatience, focusing on one-person decision problems,
finds that evolutionary forces favor the more patient individuals. This paper shows that in
the context of a game, this is not necessarily the case. In particular, it offers a two-
population example where evolutionary forces favor impatience in one group while
favoring patience in the other. Moreover, not only evolution but also efficiency may
prefer impatient individuals. In our example, it is efficient for one population to evolve
impatience and for the other to develop patience. Yet, evolutionary forces move the
wrong populations.

                                                
1 We thank Fernando Vega-Redondo, Ramon Marimon and participants at the EUI Microeconomics
working group for helpful comments. We are grateful to NSF grant SES-03-14713 for financial support.
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1. Introduction

Why are we horribly impulsive? To take one of many examples: although the

“cost” of getting a copy of a new book or the last model of a computer decreases

substantially with time, few people choose to wait. Moreover, in some cases there are

people that spend the night in line to be the first buyers. From the perspective of

evolution this poses a puzzle: evolution favors the very long run. Given the great

variation in patience and self-control in the population, will not evolutionary forces favor

those more willing to wait? Should we not evolve towards ever-greater patience and

absence of impulsivity? Indeed, Blume and Easley [1992] and more recently Bottazzi and

Dindo [2011]2 show in the context of a wealth accumulation problem that evolution

favors the patient so strongly that it favors the patient over the smart.

One explanation is the natural explanation, for example by Chowdhry

[forthcoming] that we are impatient because we may not live to see tomorrow. However

this does not in itself explain why we should evolve impatience: even a very patient

individual will behave impatiently in the face of uncertain life.

Here we explore an alternative explanation of the evolution of impatience. In an

investment problem short-sightedness is dysfunctional. The same is not true in a game.

Preferences can act as a form of commitment device. For example, a reputation for

laziness is very desirable in order to avoid requests for referee reports or letters of

recommendation. In a repeated game an impatient player can not be threatened with

future punishment, and so is harder to exploit.

The idea of impatience as commitment is a subtle one. Successful commitment -

as lovers of Dr. Strangelove will know – requires two elements: credibility and publicity.

Evolutionary forces by building impatience into preferences makes impatient behavior

credible. But how does this help against an opponent that cannot directly observe

preferences? Certainly it is reasonable that preferences might be inferred from past

behavior - but then there is an incentive even for a patient player to build a reputation for

impatience, and it is not so clear why evolution would favor the inflexibility of

commitment over the flexibility of pretense. Moreover, it is interesting to note that

                                                
2 See especially the discussion in Section 4.
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pretense requires patience to work. Building a reputation is something that an impatient

player would not choose to do. The patient can mimic an impatient, but the impatient will

not mimic anyone.

To attack this issue, we make the simplifying assumption that a player's play is

observed only at the end of his life. This eliminates any incentive for a patient player to

mimic an impatient player. Why then would evolution favor impatience over patience?

The answer is that while the player does not gain fitness from being impatient, his

children do. The player herself does not care about this, only about her own utility given

her patience. Evolutionary selection on the other hand is highly dependent on the

consequences of parental action for the children. If other players are able to infer a

player’s patience ex post from his play, if they can observe who her children are, and if

they understand that patience is hereditary – then children potentially benefit from the

parent’s impatience.

We explore these issues in the context of a simple game designed to illustrate both

how impatience can emerge as an evolutionary outcome and also to understand how

different social roles may result in different degrees of patience. Indeed despite anecdotal

evidence - the behavior of Charles Sheen comes to mind - that the rich may be as

impulsive as the poor there is statistical evidence, for example in Cunha and Heckman

[2009] that there is a strong connection between economically unsuccessful families and

impatience and lack of self-control.

This paper is designed to further advance the literature on the evolution of

preferences. The evolution of altruism has been much studied, for example, in Bowles

[2001]. They have been studied in the context of cultural evolution by Bisin and Topa

[2004] and the broader issue of cultural versus other forms of transmission have been

studied by Bisin [2001]. Other deep issues about kinship and selection have been

examined by Alger and Weibull [2010]. Authors such as Ely [2001] and Dekel, Ely and

Yilankaya [2007] have examined the theoretical underpinings of evolutionary

equilibrium when preferences evolve, relating evolutionary outcomes to equilibria of the

fitness game. However the evolution of impatience (as opposed to patience) has not been

much studied.

There are a variety of subtle issues about impulsive behavior and self-control that

have been explored in the behavioral economics literature - see for example Fudenberg
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and Levine [2006]. However, we do not examine these issues of commitment, present

bias and time consistency here - rather we focus on the simpler question of why

intertemporal preferences with a low geometric discount factor might emerge in an

evolutionary setting.

We also look at the inefficiency of equilibrium, which has a natural interpretation

when the model is viewed as a buyer-seller model. On this we elaborate in the

conclusions.

In all the above-mentioned cases, the gains from impatience are private. However,

there are also cases in which there are social gains from impatience. An example of this is

provided in the literature on conflict.3 In this literature people can satisfy their desires

either by producing or by appropriating others’ production (that is, through conflict). In

general, resources spent in conflict are a social waste. Thus, it is best for society that

people do not engage in appropriation by conflict; as a second best, it is best that those

who do it be more impatient, so that they do not invest much in technologies that are

detrimental to social welfare. This is an extreme case that can be explained in our model.

An alternative, less extreme case, is for example, is the case of speculators. They could

have a social function, namely helping the alignment of prices, yet they do appropriate

part of the gains from investments.

The rest of the paper is organized as follows. In Section 2 we develop the model.

In Section 3 we analyze the equilibrium of the evolutionary process. In Section 4 we

discuss efficiency issues. Finally, we conclude in Section 5.

2. The Model

There is a continuum of players divided into two populations, Farmers who

constitute a fraction φ  of the population and Sheriffs who are the other 1 φ−  of the

population. Each round Farmers and Sheriffs are randomly matched where the probability

of a meeting between a Farmer and a Sheriff is 2 (1 )φ φ− . The remaining Farmers and

Sheriffs are unmatched. All players have an initial endowment of one bushel of wheat,

and fitness is linear in wheat.
A round consists of either a one-person or two-person game that has three periods.
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Unmatched Farmer [Investment Game]:

� Period 1: invest [0,1]Ik ∈ , consume 1 Ik−

� Period 2: receive and consume output I Iy Ak α= , where 1Aα ≤  and

0 1, 0Aα< < > .

� Period 3: nothing

Unmatched Sheriff:

� Period 1: consume endowment of 1

� Period 2: nothing

� Period 3: nothing

Farmer-Sheriff Game:

� Period 1a: Sheriff invests [0,1]Sk ∈ , consumes 1 Sk−  and states a demand

0Sd ≥ .

� Period 1b: Farmer invests [0,1]Fk ∈ , consumes 1 Fk−  and agrees to pay the

Sheriff 0Fd ≥ .

� Period 2: Farmer produces output F Fy Ak Gα= + , consumes F Fy d−  and

the Sheriff consumes Fd  where 0G ≥  is the “gain to trade” from the match.

� Period 3: if F Sd d≥  nothing; if F Sd d<  the Sheriff issues a punishment that

costs the Farmer SABk α  where 1B > . This latter assumption implies that it

is easier to destroy output than to produce it.

Note that we allow the punishment to result in negative fitness.

A player’s preferences depend on fitness and are characterized by a discount

factor ,F Sδ δ . Discounting takes place between periods. In the Investment game the

objective function of the Farmer is 1 I F Ik yδ− + . In the Unmatched Sheriff game the

objective function of the Sheriff is 1. In the Farmer-Sheriff game the objective function

of the Farmer is

21 ( )
F SF F F F F d d Sk y d ABk αδ δ <− + − − 1

                                                                                                                                                
3 See Hirshleifer [1991]. Rent seeking is a particularly interesting special case of conflict that has received
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where 
F Sd d<1  is the indicator function that evaluates to 1 when d dF S<  and 0

otherwise, and that of the Sheriff

1 S S Fk dδ− + .

Entering each match the Farmer and the Sheriff know their own discount factor

and have independent common knowledge beliefs about the discount factor of the other

player given by probability measures ( ), ( )F S S Fµ δ µ δ . Except in the Farmer-Sheriff

game, these beliefs are irrelevant. We assume that at the end of each round strategies

during the round are commonly observed.

Notice that this assumption means that it is observed how a matched farmer

“would have played” if she had been unmatched and how an unmatched sheriff “would

have played” if she had been matched. What we have in mind is that players in actuality

play more than once and are sometimes matched and sometimes not so that in fact their

play is observed in both contingencies, however the notation to make this formal is quite

cumbersome and results in the same model.

To see what is captured by this game, consider first the case 0G = . In this case

the Sheriffs do not contribute to social welfare beyond their own endowment: only

Farmers are socially productive in the sense that they can make investments resulting in

an increase in wheat. However Sheriffs can appropriate some of the output of Farmers. In

this sense the model has a predator-prey flavor. Notice, however, that the model is

formulated so that there is no intrinsic distortion in the predation: the amount that the

Sheriffs can appropriate is independent of how much is produced by Farmers. The

predation takes place through threat of punishment: Farmers must choose whether or not

to comply with the Sheriffs’ demands. If Farmers fail to comply with the demand of the

Sheriff then they are punished. The level of punishment depends on the investment made

by the Sheriff. Notice that there is no commitment issue for the Sheriff: the more patient

they are the more they will invest in punishment – and as we will see Sheriffs will evolve

towards a high degree of patience.

                                                                                                                                                
much attention at least since Tullock [1967] and Krueger [1974].
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This game is unlike the Peasant-Dictator4 game where the Dictator faces a

commitment problem – but one that is not sensitive to patience. Here it is Farmers who

face a commitment problem: punishment takes place with a delay. For example, we can

imagine that Farmers choose whether to consume and conceal their output to avoid

complying with the demand of the Sheriff – later when it is discovered they have not

complied they are punished. Because of the delay a less patient Farmer is less willing to

give in to demands by the Sheriff, and if the Sheriff knows this, she will demand less.

Hence there is a commitment problem on the part of the Farmer.

So far we have discussed the case 0G = . Here Sheriffs have no social function

and are merely predators or parasites. If we think of the Sheriffs as landlords and the

Farmers as peasants, generally landlords provide some services, ranging from protection

to improvements to the capital stock. This we capture – somewhat crudely – through

0G > . This means that there is a positive surplus accruing to a match with a Sheriff.

Notice that the output from the match accrues to the Farmer, not the Sheriff. Here the

model becomes one of potentially beneficial trade – but the only mechanism the Sheriff

has for appropriating some of the gains to trade is by threatening the Farmer.

Unfortunately this mechanism is not related to the gain to trade: the amount the Sheriff

can appropriate does not depend on how good the match is. This captures a situation that

sometimes occurs in practice: if one party owns the enforcement mechanism, why not

appropriate the most that can be appropriated rather than some sort of amount determined

by efficiency considerations? Why should a large politically connected monopolist

merely appropriate what the market is willing to pay, when they can have a nice piece of

tax revenue to go with it?

One interpretation when 0G >  is that the Sheriffs are buyers and the Farmers

sellers, the amount of wheat provided to the Sheriff/buyer represents the quality of a

product and G  the gains to trade. Here the Farmer/sellers have an incentive to cheat the

Sheriff/buyers – and the only recourse that the Sheriff/buyers have is to retaliate against a

Farmer/seller who provides low quality. Hence the quality provided will be in proportion

to the ability of the Sheriff/buyer to punish the Farmer/seller. In a sense this provides the

opposite from the case where 0G = : in that case the Sheriffs are parasites. In the

                                                
4 See, for example, Van Huyck, Battalio and Walter [1995].
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buyer/seller case they are buyers who may receive too little share of the surplus to

provide them with adequate incentives.

3. Equilibrium

3.1 Equilibrium of a Match

We turn now to studying subgame perfect equilibria of the different matches.

First, and this is a critical point, information about a player’s strategy becomes public

only after the match ends, at which point the player dies and does not play again, so the

only consideration a player has is utility received during the match given preferences.

In the investment game the objective function for the Farmer is 1 I F Ik Ak αδ− + ,

the first order condition is 1 1 0F IAk
ααδ − − = , from which the optimum is

1/(1 ) 1/(1 )( )I Fk A α αα δ− −= .

In the Farmer-Sheriff game the objective function of the Farmer is

( )1 F F F Fk Ak d Gαδ− + − +  if F Sd d≥  or

 ( ) 21 F F F F F Sk Ak d G ABkα αδ δ− + − + −

if F Sd d< . Notice that this is rigged so that the optimal investment choice of the Farmer

is independent of Fd , whether or not there is punishment, the Farmer’s beliefs and is the

same as when the Farmer is unmatched: 1/(1 ) 1/(1 )( )F I Fk k A α αα δ− −= = .  Notice that

more impatient Farmers produce less so are potentially less fit than more patient Farmers.

Hence it is by no means a foregone conclusion that evolutionary forces will favor the less

patient Farmer.

In choosing how much to pay, clearly the Farmer should choose either 0Fd =

and get ( ) 21 F F F F Sk Ak G ABkα αδ δ− + + −  or F Sd d=  and get

( )1 F F F Sk Ak d Gαδ− + − + , whichever is larger – again regardless of beliefs.

The optimal play of the Sheriff depends on his beliefs. As this will be the case we

make use of, we solve only for the case in which these beliefs are a point mass Fδ . Then

the Sheriff should choose the largest demand consistent with payment: S F Sd ABk αδ= .

The (believed) utility of the Sheriff is then 1 S S F Sk ABk αδ δ− + . Finally, Sk  is chosen

by the Sheriff to maximize his utility, so that 1/(1 ) 1/(1 )( ) ( )S F Sk AB α αα δ δ− −= . The

corresponding demand is
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1/(1 ) 1/(1 )

/(1 ) 1/(1 ) 1/(1 ) /(1 )

(( ) ( ) )

( )

S F F S

F S

d AB AB

AB

α α α

α α α α α α

δ α δ δ

α δ δ

− −

− − − −

=

=

The amount demanded by the Sheriff is an increasing function of both the discount factor

of the Sheriff – since a patient Sheriff will invest more – and the (believed) discount

factor of the Farmer – since a patient Farmer is more susceptible to a threat.

Notice that beliefs of the Farmer are irrelevant to this equilibrium. At the end of

the match, the strategy of the Farmer is revealed, and in particular
1/(1 ) 1/(1 )( )I Fk A α αα δ− −= , so that the discount factor can be inferred by inverting this

function: 1 /( )F Ik Aαδ α−= .

3.2. The Evolutionary Process: Two Types

We now wish to consider the co-evolution of preferences as measured by δ  the

discount factors and the number of Farmers and Sheriffs. In the analysis overall fitness of

a particular population does not depend on preferences, but on the total, undiscounted

expected utility over the life of the individual.5

For simplicity we consider first the case where there are two possible preferences: either

patient preferences with discount factor one – corresponding to maximizing the same

total fitness objective function as evolutionary fitness – or impatient preferences with

some 1δ0 < < , that is , { ,1}F Sδ δ δ∈ .

In this simple model there are four types of individuals: patient Farmers, patient

Sheriffs, impatient Farmers and impatient Sheriffs. At the end of each round each group

gives birth to offspring who are identical in preferences and type: offspring are

commonly observed. Since beliefs going into a round are fixed no player has any

incentive to do other than maximize with respect to his true preferences; as we observed

above this means at the end of a round players’ preferences can be inferred from

behavior, so the preferences of offspring are known with certainty – and equal to their

                                                
5 A few words may be useful about fitness. Fitness is meant to be what evolution favors, and it is not utility.
Take a simple example: there are two people. One is miserable in a solid brick house and the other is happy
in the woods. The morning after a freezing night the first guy is complaining over his coffee, while the
second is dead. The former are preferences, the latter is fitness. Fitness is an objective measure independent
of preferences and is in general an elusive concept. In our case, however, preferences only enter as discount
factors, hence removing them yields the desired measure of fitness.
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true value. In this context: why should not evolution simply favor patient players as they

maximize fitness. The reason for this is that individuals simply maximize with respect to

their own preferences and do not take account of how this will effect subsequent

generations. In particular, for fixed Sheriff beliefs it is costly in fitness for an individual

Farmer to maximize with respect to a discount factor less than one. However, by doing

so, she (involuntarily) establishes that her offspring are impatient – and this means that

subsequent Sheriffs will demand less from her offspring. While the impatient Farmer

loses through her impatience, her offspring benefit, and this creates a potential

evolutionary force towards impatience.

Recall that φ  is the fraction of the population who are Farmers; let ψ  denote the

fraction of Farmers who are impatient;6 and let Sψ  denote the fraction of the Sheriffs

who are impatient. Let ( ), ( )F F S SV Vδ δ  denote the evolutionary fitness of Farmers and

Sheriffs as a function of their preferences. To compute this, we compute fitness in the

different matches. The fitness of an unmatched Farmer is

/(1 ) 1/(1 ) /(1 ) 1/(1 ) 1/(1 )( ) 1 ( )U
F F F FV A Aα α α α α α αδ α δ α δ− − − − −= + − ,

while in the Farmer-Sheriff game it is

 
/(1 ) 1/(1 ) 1/(1 ) /(1 )

( , ) ( )

( ) ( )

FS U
F F S F F S

U
F F F S

V V d G

V AB Gα α α α α α

δ δ δ

δ α δ δ− − − −

= − +

= − +

The fitness of an unmatched sheriff is one, while in the Farmer-Sheriff game it is

 
/(1 ) 1/(1 ) 1/(1 ) /(1 ) 1/(1 )

( , ) 1

1 ( ) ( )

FS
S F S S S

F S S

V k d

ABα α α α α α α

δ δ

α δ δ αδ− − − − −

= − +

= + −

Our model of evolution is the standard replicator dynamics based on evolutionary

fitness. If jφ  is the population fraction of group j , jV  is the fitness of the group and V

is the average fitness of the population, then

( )j j jV Vφ φ= −ɺ .

                                                
6 Anticipating, we omit the subscript F  for the Farmers on ψ .
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Our analysis is greatly aided by the observation that Sheriffs evolve strictly

towards greater patience:

Proposition 1: 0Sψ <ɺ

Proof: It suffices to show that ( , )FS
S F SV δ δ  is increasing in Sδ . We compute

/(1 ) 1/(1 ) 1/(1 ) 1 /(1 ) 1/(1 )

( , )

( ) ( ) 0
1

S

FS
S F S

F S S S

D V

AB

δ

α α α α α α α

δ δ

α
α δ δ δ δ

α
− − − − − −

=

− >
−

�

The interesting case in the long-run, therefore, has only three types: patient

Sheriffs, and both patient and impatient Farmers. In this case, on which we now focus,

we can compute the overall fitnesses of a (patient) Sheriff to be

/(1 ) 1/(1 ) 1/(1 )1 ( ) (1 ){(1 ) }SV ABα α α αα α ψ φ ψφδ− − −= + − − +

while that of Farmers is given by

/(1 ) 1/(1 ) /(1 )

/(1 ) 1/(1 ) 1/(1 )

( ) 1 (1 )

(1 ) ( ) (1 )

F F F F

F

V A

AB G

α α α α α

α α α α

δ α δ αδ

φ α δ φ

− − −

− − −

= + −

− − + −
.

Notice that this depends on how many farmers there are, but not, of course, what type

they are. The replicator dynamics can now be summarized by two equations:

(1 )[ ( ) (1)]F FV Vψ ψ ψ δ= − −ɺ

[ ] [ ](1 ){ ( ) (1 ) ( ) (1) )}F S F FV V V Vφ φ φ δ ψ δ= − − − − −ɺ

Theorem 2: Suppose 1/(1 ) 1/(1 )(1 )( 1)B Bα αα α− −< − − . Then for any 0 1δ< <  there

exists an open set of G ’s such that there is a unique interior steady state and it is

dynamically stable. At the steady state

/(1 )

1/(1 ) 1/(1 )

1 (1 )
* 1

(1 )B

α α

α α

α δ αδ
φ φ

δ

−

− −
− − −

= ≡ −
−

Proof: In Appendix A.
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�

Notice that *φ  does not depend on G . Notice also that the hypothesis
1/(1 ) 1/(1 )(1 )( 1)B Bα αα α− −< − −  is not vacuous since for any 1B >  it is satisfied for

sufficiently small α . We can also compute

1
/(1 )

1/(1 ) 1/(1 )

/(1 )
1/(1 )

1
*

1 (1 )

*
) 0

(1 )(1 )

D
B

α α
δ α α

α α
α

α δ
φ δ

α δ

φ
δ

α δ

−
−

− −

−
−

−
≡

− −

+ >
− −

so that if the impatient Farmers are less impatient there will be more of them at the steady

state.

The key observation here is that at a stable interior steady state in the long-run

there is a positive fraction of farmers who are impatient: evolution leads to impatience.

Furthermore, Appendix A shows that if the fraction of the population who are Farmers

falls below *φ  the fraction of Farmers who are impatient grow, and the fraction of the

population of Farmers rises above *φ  the fraction of Farmers who are patient grow. That

is: many Sheriffs favor the impatient since impatience reduces the demands of the

Sheriffs, while few Sheriffs favor the patient since patience leads to more productive

investment. The problematic aspect of this analysis is that with only two possible

discount factors the level of impatience δ  is specified exogenously. A more satisfactory

analysis would allow many different possible levels of impatience and ask which level

emerges endogenously. We turn to this next.

3.3 The Evolutionary Process: Many Types

It is not very natural to suppose that the only possible preferences are given by

two discount factors ,1δ . Suppose instead that there are individuals with every discount

factor in the interval [0,1]δ ∈ . The general case is intractable, but a simple

approximation gives us insight into the dynamics and enables us to determine a steady

state value of δ .

First observe that as with the case with two types, Sheriffs with 1δ =  always

have higher fitness than those with lower discount factors, so in the long run the Sheriffs

will evolve towards patience. As before, the interesting case is where there is a single

group of patient Sheriffs, and we will focus on this case.
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Next suppose that there is a density function over discount factors δψ  and that we

are near an interior steady state, the case of interest. Then as the steady state is

approached the density function must approach a spike as every type of Farmer evolves

towards the optimal discount factor. The replicator dynamic is given by

( ( ) )F FV Vδ δψ ψ δ= −ɺ ,

where FV  is the mean fitness of farmers. Since the distribution of types is very

concentrated near the mean value Fδ  we may introduce an approximation. First, we may

approximate the mean fitness FV  by the fitness FV  evaluated at the mean discount factor

Fδ .

( ( ) )

( [ ] )

[ ]

F F

F F F F

F F

V V

V DV V

DV

δ δ

δ

δ

ψ ψ δ

ψ δ δ

ψ δ δ

= −

≈ + − −

= −

ɺ

After a short interval of time τ  the system will evolve according to

( ) ( ) ( )

( ) ( ) [ ]F F

t t t

t t DV

δ δ δ

δ δ

ψ τ ψ ψ τ

ψ ψ δ δ τ

+ ≈ +

≈ + −

ɺ

We can then compute the mean discount factor by integrating:

[ ]

2

( ) ( )

( ) ( ) [ ]

( ) ( ) [ ]

( ) ( )[ ]

( ) ( )

F

F F

F F

F F F

F F

t t d

t t DV d

t d t DV d

t DV t d

t t DV

δ

δ δ

δ δ

δ

δ τ δψ τ δ

δ ψ ψ δ δ τ δ

δψ δ δψ δ δ τ δ

δ τ δψ δ δ δ

δ σ τ

+ = +

≈ + −

= + −

= + −

= +

∫
∫
∫ ∫

∫

This then gives the approximate dynamic equation for the mean discount factor of the

Farmers as

2( )F Ft DVδ σ≈ɺ .

The fact that the variance 2σ  is time varying does not matter for our stability analysis, so

we hold it fixed, and study the dynamic equation
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2
F FDVδ σ=ɺ

which is simply the continuous time best response dynamic – that is the mean moves in

the direction of increasing fitness. The dynamics of φ  are the replicator dynamic, now

based on the mean discount factor, so

(1 )( )F SV Vφ φ φ= − −ɺ .

Theorem 3: Assume 1/(1 )( )G AB αα −> . Then there is a unique interior steady state and

it is dynamically stable.

Proof: In Appendix B.

�

Notice that like Theorem 2, for stability Theorem 3 requires that G  not be too

small. However, unlike Theorem 2 it does not place an upper bound on G . From the

proof of Theorem 2 in Appendix A it transpires that the reason for the upper bound on G

does not involve stability, but rather is needed to insure the existence of an interior steady

state. To understand what is going on, recall that by Proposition 1 *φ  does not depend

on G . As we increase G  holding fixed the other parameters this increases the utility of

the Farmers, while not changing the utility of the Sheriffs. Hence once G  is big enough

at *φ   – regardless of the value of ψ  Farmers of both types will do better than Sheriffs,

and so the number of Farmers will be increasing. This implies that there is no interior

steady state: to the right of *φ  patient Farmers are favored over impatient ones.

However, this is an artifact of the fact that there are only two types. If the impatient

Farmers were less impatient – that is to say, if δ  were larger, we saw that this would shift

*φ  to the right, and so for this higher value of δ  there could be a steady state. Once we

endogenize Fδ  Theorem 3 shows that this is the right intuition: regardless of how large

G  is there is always a steady state.

We now establish some results concerning the steady state.

Theorem 4: (1) The steady state value of φ  is larger than 1/2 , and larger the larger is

G .

The comparative statics with respect to G and B are the following:
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(2) 0, 0G F GD Dδ φ> > , 0B FD δ < , and for sufficiently large G , 0BD φ < .

Proof: In Appendix B.

�

4. Efficiency and the Impatience Trap

We now turn to the issue of welfare. Our measure of welfare is the average fitness

for the whole population. Our goal is to show how an inefficient impatience trap arises in

which the wrong population becomes impatient.

To compute the average fitness of the entire population, observe that: there is a

fraction 2φ  of unmatched farmers with fitness ( )F
U
FV δ ; a fraction 2(1 )φ−  of

unmatched sheriffs with fitness 1; and a fraction 2 (1 )φ φ−  of matched farmers and

sheriffs who share a total fitness of ( ) ( ), ,FS
F S S F

S
S

F
FV Vδ δ δ δ+ . Therefore expected

average fitness is

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

22

1 1

0

1

0

0
1

, ,

1

1

U
F F F F F

FS
F S S F S F F S F

FS
F S SV

V V f d

V f f d d

φ δ δ δ φ

φ φ δ δ δ δ δ δ δ δ

−

− +

= +

+ ∫

∫

∫
(1)

We think of the social planner as choosing a distribution over discount factors for

Farmers and Sheriffs, ( ) ( ),F SF Sf fδ δ  respectively (which may and in fact will be Dirac

delta functions), and what fraction φ  of the population is assigned the role of a Farmer,

in order to maximize fitness. In turn, each individual chooses his optimal level of

investment. Since the planner is constrained to choose discount factors, we refer to this as

the second best.

Theorem 5: The second best distribution is given by

1

1 1 1

1

1
1 1

2 2
min 1,

A

G

α

α α αα α

φ

− − −
    −   

−
= +

        

,

whereas Ff  and Sf  assign point mass at 1Fδ =  and 0Sδ = , respectively.
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Proof: The social planner chooses the investment levels Fk  and Sk  indirectly, by

choosing the discount factors. The implemented investment satisfies:

1/(1 ) 1/(1 )( )F I Fk k A α αα δ− −= =

1/(1 ) 1/(1 )( ) ( )S F Sk AB α αα δ δ− −= .

 In terms of investments, fitness is given by:

( )

( ) ( )

1

, , 2

F

FS
F

U

S

F F F

FS
F FS FF SS

V Ak k

V Ak G k kV

α

α

δ

δ δ δ δ+

= + −

= + + − −

Given that fitness is strictly decreasing in Sk , the optimal distribution assigns point mass

to the value of Sδ  which implements 0Sk = , namely 0Sδ = . Similarly, fitness is

maximized when Farmers choose to maximize net output, which they do if 1Fδ = . Both

conclusions hold irrespective of φ . Hence, we may find the optimal value of this latter

parameter by maximizing Equation (1) when Ff  and Sf  are evaluated at their optimal

values, that is, they assign point mass at 1Fδ =  and 0Sδ = , respectively. Thus, the

objective becomes

2 2(1 - ) (1 - ) (1 - )(2 - - )F F F F SV Ak k Ak k G kα αφ φ φ φ= + + + + +

which is maximized as asserted.

�

The intuition for the optimal discount factors is simple: Sheriffs’ investments are

a social waste, which they would not do if they become extremely impatient. On the other

hand, Farmers are productive, and they would choose the optimal investment if they were

extremely patient. In fact, in the language of Hirshleifer Sheriffs obtain their wealth

through conflict; in the language of Tullock and Krueguer, Sheriffs are rent-seekers. In

contrast, Farmers obtain their wealth through production.

As for the optimal fraction of Farmers, it is less than 1 because there is a social

gain of G  whenever a Farmer and a Sheriff meet. The fraction of the matched population

is maximized at

1

2
φ = .
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In the spirit of the rent seeking literature this is saying that societies, optimally, would

have rent seekers only if when matched to productive agents they were to increase “social

output” (that is, 0G > ). Otherwise, if 0G = , it would be optimal not to have rent

seekers.

A related question has to do with the optimal mix of Farmers and Sheriffs when

the social planner does not choose their discount factors, but instead when they are at

their equilibrium values. The first order condition for this constrained maximization

problem gives

{ }1 1

2 2
min 1, F F

S

y G k

G k
φ

− −
−

= +

which is sufficient provided 0SG k− > .7 It is less than 1 for G  large enough, and tends

to 1/ 2 as G grows.

The fact that steady state 1/2φ >  (see Theorem 4) implies that if G  is large

enough, in the steady state there are inefficiently many Farmers, and too few Sheriffs.

The intuition is that this arises because the Sheriff’s have to pay to collect a share of G .

This is what we call the impatience trap. We see it as a trap when interpreting the

model as one where Sheriffs are Buyers and Farmers are Sellers, viewing Sk  as the short

run cost of enforcing reliability and G  as the long run gain of partnership and trust. Note

that inefficiency worsens the larger is G .

 In this interpretation, the final result of Theorem 4 says that if the gains to trade

G  are large enough increasing the effectiveness of punishment will raise the steady state

number of Sheriff/Buyers, thus reducing inefficiency. We will come back on this point in

the conclusions.

5. Extensions

In all our analysis we have focused in a particular sequence of the game. Now we

discuss the results under alternative sequences of the game.

In the equilibrium analysis of the model there is a “non-standard” result, namely,

that in a bargaining situation being impatient might be better. Usually we get the opposite

                                                
7 When the second order condition does not hold (that is 0SG k− < ) the optimal solution is 1φ = .
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result (for example, Rubinstein’s model). The reason for this has to do with the structure

of the game. Here, punishments are applied in the future and as such, a more patient

Farmer is more influentiable by threats, weakening his bargaining position to the

advantage of Sheriffs that get paid more. In contrast, in Rubinstein’s model being more

patient means that the cost associated to the delay to reach an agreement is smaller,

strengthening the bargaining position.

Under the current game structure (namely, Fk  and Sk  are chosen after a meeting

is produced, with the knowledge of the opponent’s type) we can distinguish two effects:

(E1, or direct effect) Meeting with a more patient Farmer renders any given investment

Sk  by the Sheriff more productive (privately), since a higher demand  d  will be accepted

by the Farmer, and (E2, or indirect effect) The Sheriff may take further advantage of this

by conditioning his investment level on Fδ . In our case, Sk  increases in Fδ . E1 makes d

depend on Fδ , and E2 makes Sk  depend on Fδ .

If the Sheriff makes his investment decision Sk  before knowing his opponent’s

Fδ , E1 remains and E2 goes away. The main result would still obtain, although Sheriffs

would have a lower expected utility implying a higher equilibrium φ . This would also be

the case if the Sheriff were to make his investment decision before knowing if he would

be matched or not, although admittedly resulting in an even lower fitness.

If the Sheriff makes both, his investment decision and his demand before knowing

his opponent’s Fδ , both effects go away. Besides not obtaining the effect we want, this

case is also cumbersome to analyze because in equilibrium there would be demands that

are not accepted by the more impatient farmers.

Both effects would also disappear if the punishment were to take place in period 2

rather than in period 3. Indeed, the discount factor affects the relationship between

promised punishment and willingness to accept demands exclusively because

punishments are promised to happen at a future date.

Regarding the welfare, the results are independent on the sequence of the game.

The efficient distribution of , Sφ δ  and Fδ  is independent of the sequence. Moreover,

given the efficient distribution all the results are independent of the sequence.

There are alternative characterizations, and real world situations, where in games

less patient people do better than patient people. For example, Blaydes [2004] uses a

version of Fearon’s [1998] model to explain the division of cartel profits within the
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OPEC. In the model there is a first step in which there is a bargaining that determines the

payoffs of a static game that is infinitely repeated. To enforce the “efficient” outcome in

the infinitely repeated game, more impatient players need a higher “static” payment.

Thus, impatience is also in this case a source of bargaining strength.

6. Conclusion

We have shown that impatience survives evolutionary forces when it keeps down

punishment by the opponents. This is in contrast to the single-person investment context

where (Blume and Easley, 1992) the patient beats the informed.

When interpreting the model as one of buyer and seller, where the Farmer is the

Seller and the Sheriff is the Buyer, we see G  as the long run gains of partnership, not

fully exploited in equilibrium owing to the presence of too many impatient sellers.

To put this discussion in context, the underlying issue here is: What makes a good

business environment? The most common, reasonable short answer is “competence and

reliability.” The model of this paper has something to say about reliability, which is

another face of patience. A reliable business does not “take the money and run” meaning

a reliable seller must be patient.  In our model suppose that potential gains from trade G

are large. Never-the-less the share that may be claimed by buyers in the form of Sd  may

be limited. In an underdeveloped economy the cost of investing in punishing recalcitrant

sellers in the face of resource constraints may be large. The result can be an evolutionary

stable impatience trap, in which the equilibrium is inefficient and sellers have little

money to run with because there are too few buyers to spoil.

Our Theorem 4 points to an instrument that can potentially be used to reduce

inefficiency, namely raising the effectiveness of punishment in the hand of the buyers,

the parameter B . This is not simple – it would indeed be not credible if it were. For B is

often nothing but social pressure on the unreliable producers. Said otherwise, the problem

is to raise awareness of the long run nature of the benefits of business, and this links

unreliability to the other component of a good business environment - competence or

education. In the way of prescriptions for development we are not uncovering something

new. On the other hand the model seems to be the first to uncover the source of the

problem's persistence: the inefficient equilibrium we have is not simply undone by

evolutionary forces.
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Appendix A: Proof of Theorem 2

From the text, the dynamical system is given by

(1 )[ ( ) (1)]F FV Vψ ψ ψ δ= − −ɺ

[ ] [ ](1 ){ ( ) (1 ) ( ) (1) )}F S F FV V V Vφ φ φ δ ψ δ= − − − − −ɺ .

From the fitnesses in the text, we can compute the fitness differences

/(1 ) 1/(1 )

/(1 ) 1/(1 ) 1/(1 )

1/(1 ) 1/(1 ) 1/(1 )

( ) (1 )

{ (1 )

{ (1 )(1 )}

F SV V G A

B

B

α α α

α α α α

α α α

δ φ α

δ αδ δ

φ δ α ψ ψδ

− −

− − −

− − −

− = − + ×

− −

+ − − − +

/(1 ) 1/(1 ) /(1 )

1/(1 ) 1/(1 )

( ) (1) {( (1 ) 1 )

(1 ) (1 )}

F FV V A

B

α α α α α

α α

δ α δ αδ α

φ δ

− − −

− −

− = × − − +

+ − −
.

Lemma A1: For 1 0ψ> >  we have 0ψ >=<ɺ  as *φ φ<=>  where

/(1 )

1/(1 ) 1/(1 )

1 (1 )
* 1

(1 )B

α α

α α

α δ αδ
φ

δ

−

− −
− − −

= −
−

lies between 0 and 1.

Proof: The computation of *φ  comes from solving ( ) (1) 0F FV Vδ − = , and we may also

compute

[ ] 1/(1 ) 1/(1 )( ) (1) (1 ) 0F FD V V B α α
φ δ φ δ− −− ∝ − − <

from which the signs follow.

Rewriting

1/(1 ) /(1 ) 1/(1 )

1/(1 ) 1/(1 )

1 (1 ) (1 )
1 *

(1 )B

α α α α

α α

δ δ δ α δ
φ

δ

− − −

− −

 − − − + − − =
−
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we can see that since 1B ≥  the numerator of the RHS is smaller than the denominator

implying 1 * 1φ− < , so that *φ  cannot be negative. We may also write the numerator

of 1 *φ−  as

/(1 ) 1/(1 )( ) 1 ( )f α α αδ α δ αδ− −≡ − − − .

We then compute

1 /(1 )

(0) 1

(1) 0

'( ) (1 ) 0
1

f

f

f α α

α

α
δ δ δ δ

α
− −

≡ −

≡

≡ − − <
−

from which it follows that ( ) 0f δ ≥ , and so * 1φ ≤ .

�

Lemma A2: a b c dφ φ ψ φψ∝ + + +ɺ  where the factor of proportionality is

1/(1 ) /(1 )A α α αα− −  and

1/(1 )

1/(1 )

/(1 ) 1/(1 ) 1/(1 )

1/(1 ) 1/(1 )

( 1)

( )

(1 ) 1 (1 )

(1 )

a G B

b B G

c B

d B

α

α

α α α α

α α

α

α

δ αδ α δ

α δ

−

−

− − −

− −

= − − −

= −

= − − + + −

= − −

ɶ

ɶ

with 1/(1 ) /(1 )/G G A α α αα− −=ɶ .

Proof: Direct computation using the fitness differences. �

Corollary A3: 0, 0d c d< + ≥

Proof: 0d <  is immediate. For c d+  we compute

/(1 ) 1/(1 ) 1/(1 )

1/(1 )

( )

(1 ) (1 )[ (1 ) 1]

(0) (1 )[ 1] 0

(1) 0

c d f

B

f B

f

α α α α

α

δ

δ αδ α δ

α

− − −

−

+ = ≡

− + − − −

= − − >

=
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and the derivative

{ }

/(1 )

1 1/(1 )

'( )

( 1) (1 )
1

f

B

α α

α

δ δ

α
δ α δ

α

−

− −

= ×

− − −
−

The part in brackets is decreasing, and this implies that ( )f δ  is single peaked. Hence it

follows from the boundary conditions that ( ) 0f δ ≥ .

�

Lemma A4: An interior steady state exists if and only if

1/(1 )(1 *) (1 ) [1 *] 0X G B αφ α αφ−≡ − + − − − <ɶ

1/(1 ) 1/(1 )(1 *) (1 ) [1 * (1 ) * ] 0Y G B α αφ α φ α φ δ− −≡ − + − − − + − >ɶ

and if it exists it is unique.

Proof: If there is an interior steady state by Lemma A1 it must occur for *φ φ= . This

implies that the fitness of both types of farmers is equal, so that the sign of φɺ  is

determined by

1/(1 )

1/(1 ) 1/(1 )

(1) ( )

(1 ) (1 ) (1 )

(1 ){ * * ( 1)}

F SV V f

G B

B

α

α α

ψ

φ α φ

α φ ψφ δ

−

− −

− ∝ ≡

− + − − −

− − + −

ɶ

This is linear and increasing in ψ . Hence there is an interior steady state if and only if

(0) 0f < , (1) 0f > , and in that case because ( )f ψ  is linear, it is unique. The conditions

in the Lemma follow from the expression for ( )f ψ .

�

Lemma A5: A sufficient condition for an interior steady state *, *φ ψ  to be stable is

0b < .

Proof: It is sufficient that in the system linearized at the steady state the trace be negative

and the determinant positive. Disregarding irrelevant factors, the matrix of the linearized

system is
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0

* *

e
M

c d b dφ ψ

 
 =  + +  

where

1/(1 ) 1/(1 )(1 ) 0e B α αδ− −= − − < .

Hence the sufficient condition is * 0c dφ+ >  and * 0b dψ+ < . By Corollary A3

0, 0d c d< + ≥  and * 1φ <  implies * 0c dφ+ > , so the remaining condition is

sufficient. Since 0d <  it is in turn sufficient that 0b < .
�

Theorem 2: Suppose 1/(1 ) 1/(1 )(1 )( 1)B Bα αα α− −< − − . Then for any 0 1δ< <  there

exists an open set of G ’s such that there is a unique interior steady state and it is

dynamically stable. At the steady state

/(1 )

1/(1 ) 1/(1 )

1 (1 )
* 1

(1 )B

α α

α α

α δ αδ
φ φ

δ

−

− −
− − −

= ≡ −
−

Proof: The characterization of *φ  is in Lemma A1. For sufficiently small 0ε >  we can

choose

1/(1 )[1 *] (1 )
0

(1 *)

B
G

α αφ α ε

φ

− − − − −
= >

−
ɶ .

The first condition from Lemma A4 for an interior steady state is

0X ε≡ − <

Moreover

1/(1 ) 1/(1 )

1/(1 ) 1/(1 )

(1 ) * (1 )

(1 ) * (1 )

Y X B

B

α α

α α

α φ δ

ε α φ δ

− −

− −

= + − −

= − + − −

which is positive for ε  sufficiently small. Hence for such choices of Gɶ  an interior steady

state exists.

Turning to stability, by Lemma A5, we require 0b < , by Lemma A2 this

condition is
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1/(1 )B Gα α− < ɶ .

Notice that

1/(1 )(1 )( 1)B αα ε−> − − −

By the assumption that
1/(1 ) 1/(1 )(1 )( 1)B Bα αα α− −< − −  this implies that

1/(1 )G B α α ε−> −ɶ , so that 0b <  for ε  sufficiently small.

�

Appendix B: Proof of Theorems 3 and 4

As in the model with two types we can compute the fitnesses

1/(1 ) /(1 ) 1/(1 )1 ( ) (1 )S FV AB α α α αα α φδ− − −= + −

/(1 ) 1/(1 ) /(1 ) 1/(1 )1 (1 ) {1 (1 ) }F F F FV G A Bα α α α α αφ α δ αδ φ δ− − − −= + − + − − − .

Define α α α= /(1 − )ɶ , B Bα+1= ɶɶ  and as in Appendix A /(G G αα α +1= Α)ɶɶ ɶ . Note

since 0, 0B α> >  that 1B >ɶ . Normalizing 2 1σ = 8 this enables us to write the

dynamical system as

1(
(1 (1

1F F F F

α
αα

δ δ δ α φ δ
α

+1
−1 −Α)  = − )− − )Β −

ɶ

ɶɺ ɶ

1 1

(1 ) ( , )

( , ) ( (1

F

F F F F F

h

h B B Gα α

φ φ φ φ δ

φ δ α δ α δ α δ φ δ φ+1 − −

= −

 ≡ Α) − − + + − ) 
ɶ ɶ

ɺ

ɶ ɶ

Lemma B1: There is a unique interior steady state.

Proof: Combining /( (1 )) 0φ φ φ− =ɺ  and 0Fδ =ɺ  yields

1 2 1 1( ) (1 ) (1 ) 0F FF Ff B B B G Gα αδ α δ α δ δ− + − +≡ + − + + − =ɶ ɶɶ ɶ ɶ ɶ ɶ

and letting 1ξ φ= −

                                                
8 This is relevant only to the stability analysis, and since that is based on a sign argument, the magnitude
does not matter.
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.

We show that each has a unique zero in (0,1) .

Examining g  first, we have g B(0) = −( −1) < 0ɶ  and
1 1 1 0g B G B αα α− − +(1) = + (1 + ) + 1 >ɶɶ ɶ ɶ . Moreover g  is the sum of a constant and two

increasing functions, so it is increasing, and hence has a unique zero in (0,1) .

Turning to f , we see that (0)f G= − < 0ɶ  and 1(1) ( 1) 0f B Bα−= − >ɶ ɶ , so that

there is at least one solution by continuity. To prove uniqueness, observe that

1 1 1'( ) ( (1 ) ( 1 (1 )F FFf B B B Gα αδ α α δ α α δ− + −= + 2) + − + ) + +ɶ ɶɶ ɶ ɶ ɶɶ ɶ

Hence '(0)f G= > 0ɶ , and

1 1

1 1

'(1) ( (1 ) ( 1 (1 )

(1 ) ( ( 1)

f B B B G

B B B G G

α α α α

α α α

− −

− −

= + 2) + − + ) + +

= + + + 2) − + >

ɶ ɶ ɶ ɶɶ ɶ

ɶ ɶ ɶ ɶ ɶɶ

The second derivative is

1 1 1''( ) ( ( 1)(1 ) ( 1 (1 )F F Ff B Bαδ δ α α α δ α α α− − − = + 2) + + − + ) + 
ɶɶ ɶɶ ɶ ɶ ɶ .

This is negative below 0 1 1(1 )/( (1 ) 1Bδ α α α α− −≡ + + 2) + <ɶɶ ɶ  and positive above. So

'f  decreases to its minimum at 0δ  then increases. There are two possibilities:
0 0'( ) 0 or '( ) 0f fδ δ≥ < . In the first case f  increases from (0) 0 to (1) 0f f< >  so has

a unique zero. In the second case it increases to a local maximum at 1 0(0, )δ δ∈ , then

decreases, then, since '(1) 0f >  increases again to (1) 0f > . A unique zero follows

provided that 1( ) 0f δ < . Since from 0 to 0δ , and in particular from 0 to 1δ , f  is

concave, it follows that 1 1 1 1( (0) '(0)f f f G G Gδ δ δ δ) < + = − + = − (1− ) < 0ɶ ɶ ɶ .
�

Lemma B2: If 1/(1 )( )G AB αα −>  then the interior steady state is stable.

Proof: As in the proof of Lemma A5 it is sufficient that in the system linearized at the

steady state the trace be negative and the determinant positive. Disregarding irrelevant

factors, the matrix of the linearized system is
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/ /

/ /

F F F

F

M
h h

δ δ δ φ

δ φ

 ∂ ∂ ∂ ∂  =   ∂ ∂ ∂ ∂  

ɺ ɺ

Consequently it is sufficient that / , / 0F F hδ δ φ∂ ∂ ∂ ∂ <ɺ  and

/ 0, / 0F Fhδ φ δ∂ ∂ > ∂ ∂ <ɺ .

We compute

2 1 1(
( ) (1 (1

1
F

F F F F
F

α
α α αδ α

α δ δ δ αα φ δ
δ α

+1
− −1 − −∂ Α)  = −1 − )− − − )Β ∂ −

ɶ

ɶ ɶ ɶ
ɺ

ɶɶ ɶ

Using the fact that when 0δ =ɺ  we have  
1(1 (1α φ δ δ− − )Β = − )/ɶ , from which one

obtains

2(
0

1
F

F
F

α
αδ α
δ

δ α

+1
−∂ Α)

= − <
∂ −

ɶ

ɶ
ɺ

.

Next

1(
0

1
F

F

α
αδ α

α δ
φ α

+1
−∂ Α)

= Β >
∂ −

ɶ

ɶ
ɺ

ɶ .

Using the definition of h  we have

{ }1 11 (1 ( F
F

h α α αα αδ α φ δ
δ

+ −1 −∂
= Α − + − )Β)

∂
ɶ ɶ ɶ ɶɶ

Using the steady state condition

1

1

1 (1
F

B
δ

α φ−=
+ − )ɶ

 the expression in brackets becomes 1δφ α−− Βɶ ɶ , so that

0
F

h
A Bα α αα δ

δ
+1∂

= − <
∂

ɶ ɶ ɶɶ .

Finally, compute

1( F

h
B Gα αα δ

φ
+1 +∂

= Α) −
∂

ɶ ɶɶ
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Since δ < 1 , ( (FB G B Gα α αα δ α+1 +1 +1Α) − < Α) −ɶ ɶ ɶɶ ɶ , which is negative for

(G Bαα +1> Α)ɶ ɶ , that is to say for the condition of the Lemma 1/(1 )( )G AB αα −> .
�

Theorem 3 follows directly from Lemmas B1 and B2.

Lemma B3: The steady state 1/2φ > .

Proof:  Using 1 1 1B Bαα ξ α ξ− + −(1 + ) > 1 +ɶɶ ɶ  it is easily checked that (1/2) 0g >  and g

is increasing in ξ  which implies that if 1/2ξ ≥  then ( ) 0g ξ > . It follows that the

steady state value of ξ  is less than ½, so that the steady state value of 1φ ξ= −  is

greater than ½. The last assertion follows from the fact that g  is larger for all ξ  the

larger is G .
�

Lemma B4: 0, 0G F GD Dδ φ> >

Proof: It suffices to show this for Gɶ  as given the other parameters Gɶ  is an increasing

linear function of G . From the definitions of ,f g  the former is decreasing and the latter

increasing in Gɶ . In the proof of Lemma B1 we showed that both ,f g  cross the horizontal

axis from below. The implicit function theorem then gives the desired result.
�

Lemma B5: 0B FD δ < , for sufficiently large G  0BD φ < .

Proof: It suffices to show the result with respect to  as this is an increasing function of

B . By inspection 0
F

D fδ >  and 0gξ∂ > , so 0D gφ < . We compute

( )1 1 1 1 12 (1 ) 2 (1 ) 0F F F FFBD f Bαδ α δ δ α α δ α δ+ − − − −= + − + > + − + > >ɶ
ɶ

ɶ .

It is also the case that 1FBδ >ɶ  in the steady state. This follows from the fact that

((1/ ) (1 )(1 ) 0f B B B GBα α− +1)= − + <ɶ ɶɶ ɶ ɶ ɶ ɶ .

Hence 0FBD δ <ɶ .

Finally

1 1 1(1 ) ( 1) 1BD g G B αξ α ξα α α ξ− − − = + + + (1 + ) − 
ɶ

ɶ
ɶ ɶɶ .

We can write ( ) 0g ξ =  as
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1
1 1(1 )B B
B

G G

αα
ξ α ξ

−
− + + −1 + (1 + ) =

  
ɶ

ɶ ɶ
ɶ

ɶ ɶ
.

The expression in brackets is bounded below by 1, so that as G → ∞ɶ  it must be that one

0ξ → . Rewriting the expression as

1
1 1(1 )

B
G

B
B

G

α

ξ
α

α ξ
−

− +

−1
=

+
+ (1 + )ɶ

ɶ
ɶ

ɶ
ɶ

ɶ

we see that as G → ∞ɶ , 0ξ →  the RHS approaches 1B −ɶ , and so 1BξΓ → −ɶ .

Hence as G → ∞ɶ  we have 1BD g → −ɶ . The implicit function theorem then gives the

second result.
�

Theorem 4 now follows directly from Lemmas B3, B4 and B5.


