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This Version: August 6, 2011

Abstract

The literature on the evolution of impatience, fiag on one-person decision problems,
finds that evolutionary forces favor the more patiadividuals. This paper shows that in
the context of a game, this is not necessarilydhse. In particular, it offers a two-
population example where evolutionary forces fawapatience in one group while
favoring patience in the other. Moreover, not oelolution but also efficiency may
prefer impatient individuals. In our example, iteficient for one population to evolve

impatience and for the other to develop patiencet, ¥volutionary forces move the
wrong populations.

! We thank Fernando Vega-Redondo, Ramon Marimon garticipants at the EUI Microeconomics
working group for helpful comments. We are gratéduNSF grant SES-03-14713 for financial support.



1. Introduction

Why are we horribly impulsive? To take one of maxamples: although the
“cost” of getting a copy of a new book or the lasbdel of a computer decreases
substantially with time, few people choose to whklbreover, in some cases there are
people that spend the night in line to be the flvayers. From the perspective of
evolution this poses a puzzle: evolution favors tleey long run. Given the great
variation in patience and self-control in the p@piain, will not evolutionary forces favor
those more willing to wait? Should we not evolvevands ever-greater patience and
absence of impulsivity? Indeed, Blume and Easl®@®] and more recently Bottazzi and
Dindo [2011f show in the context of a wealth accumulation peoblthat evolution
favors the patient so strongly that it favors théent over the smart.

One explanation is the natural explanation, for ngxde by Chowdhry
[forthcoming] that we are impatient because we matylive to see tomorrow. However
this does not in itself explain why we should ewlmpatience: even a very patient
individual will behave impatiently in the face aficertain life.

Here we explore an alternative explanation of thellgion of impatience. In an
investment problem short-sightedness is dysfunatiohhe same is not true in a game.
Preferences can act as a form of commitment deWoe.example, a reputation for
laziness is very desirable in order to avoid retpudésr referee reports or letters of
recommendation. In a repeated game an impatieyeplean not be threatened with
future punishment, and so is harder to exploit.

The idea of impatience as commitment is a subtke &uccessful commitment -
as lovers of Dr. Strangelove will know — require® telements: credibility and publicity.
Evolutionary forces by building impatience into ferences makes impatient behavior
credible. But how does this help against an oppbrieat cannot directly observe
preferences? Certainly it is reasonable that peefsys might be inferred from past
behavior - but then there is an incentive everafpatient player to build a reputation for
impatience, and it is not so clear why evolutionuldo favor the inflexibility of
commitment over the flexibility of pretense. Moreoy it is interesting to note that

2 See especially the discussion in Section 4.



pretense requires patience to work. Building a t&pan is something that an impatient
player would not choose to do. The patient can mani impatient, but the impatient will
not mimic anyone.

To attack this issue, we make the simplifying agsiion that a player's play is
observed only at the end of his life. This elimesaany incentive for a patient player to
mimic an impatient player. Why then would evolutif@avor impatience over patience?
The answer is that while the player does not gdime$s from being impatient, his
children do. The player herself does not care atiosit only about her own utility given
her patience. Evolutionary selection on the othandhis highly dependent on the
consequences of parental action for the childrerather players are able to infer a
player’s patiencex postfrom his play, if they can observe who her chifdege, and if
they understand that patience is hereditary — ttieldren potentially benefit from the
parent’s impatience.

We explore these issues in the context of a simahee designed to illustrate both
how impatience can emerge as an evolutionary owcanmd also to understand how
different social roles may result in different degg of patience. Indeed despite anecdotal
evidence - the behavior of Charles Sheen comesino mthat the rich may be as
impulsive as the poor there is statistical eviderice example in Cunha and Heckman
[2009] that there is a strong connection betweemewically unsuccessful families and
impatience and lack of self-control.

This paper is designed to further advance thealiee on the evolution of
preferences. The evolution of altruism has beenhnaiadied, for example, in Bowles
[2001]. They have been studied in the context difucal evolution by Bisin and Topa
[2004] and the broader issue of cultural versuemtborms of transmission have been
studied by Bisin [2001]. Other deep issues aboutship and selection have been
examined by Alger and Weibull [2010]. Authors swshEly [2001] and Dekel, Ely and
Yilankaya [2007] have examined the theoretical wpitngs of evolutionary
equilibrium when preferences evolve, relating etiohary outcomes to equilibria of the
fithness game. However the evolution of impatierae dpposed to patience) has not been
much studied.

There are a variety of subtle issues about impelbehavior and self-control that
have been explored in the behavioral economiceatitee - see for example Fudenberg



and Levine [2006]. However, we do not examine thesaes of commitment, present
bias and time consistency here - rather we focusthensimpler question of why
intertemporal preferences with a low geometric alist factor might emerge in an
evolutionary setting.

We also look at the inefficiency of equilibrium, iwwh has a natural interpretation
when the model is viewed as a buyer-seller model. this we elaborate in the
conclusions.

In all the above-mentioned cases, the gains fropatiance are private. However,
there are also cases in which there are socia$ g@m impatience. An example of this is
provided in the literature on confliétin this literature people can satisfy their desire
either by producing or by appropriating others’darction (that is, through conflict). In
general, resources spent in conflict are a socadtev Thus, it is best for society that
people do not engage in appropriation by conflist;a second best, it is best that those
who do it be more impatient, so that they do neest much in technologies that are
detrimental to social welfare. This is an extrerasecthat can be explained in our model.
An alternative, less extreme case, is for examplé)e case of speculators. They could
have a social function, namely helping the alignir@nprices, yet they do appropriate
part of the gains from investments.

The rest of the paper is organized as follows.dati®n 2 we develop the model.
In Section 3 we analyze the equilibrium of the etiohary process. In Section 4 we
discuss efficiency issues. Finally, we conclud&attion 5.

2. The Model

There is a continuum of players divided into twopplations, Farmers who
constitute a fractionp of the population and Sheriffs who are the other ¢ of the
population. Each round Farmers and Sheriffs ardaaaty matched where the probability
of a meeting between a Farmer and a Sheriffgid — ¢). The remaining Farmers and
Sheriffs are unmatched. All players have an ingatiowment of one bushel of wheat,

and fitness is linear in wheat.
A round consists of either a one-person or two-gregame that has three periods.
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Unmatched Farmer [Investment Game]:

> Period 1: invesk; € [0,1], consumel — k;

» Period 2: receive and consume output= Ak;*, whereaA <1 and
O<a<lLA>0.

» Period 3: nothing

Unmatched Sheriff:

» Period 1: consume endowment of 1

» Period 2: nothing

» Period 3: nothing

Farmer-Sheriff Game:

> Period la: Sheriff investgs € [0,1], consumesl — kg and states a demand
dg > 0.

> Period 1b: Farmer invests. € [0,1], consumed — kr and agrees to pay the
Sheriff dp > 0.

» Period 2: Farmer produces outpyt = Akx“ 4+ G, consumesyr — dr and
the Sheriff consumesg; whereG > 0 is the “gain to trade” from the match.

» Period 3: ifdp > dg nothing; if dp < dg the Sheriff issues a punishment that

costs the FarmeABks* where B > 1. This latter assumption implies that it

is easier to destroy output than to produce it.

Note that we allow the punishment to result in tiegditness.

A player's preferences depend on fithess and aegacterized by a discount
factor 6p,65. Discounting takes place between periods. In tineedtment game the
objective function of the Farmer is— k; 4+ 6py;. In the Unmatched Sheriff game the
objective function of the Sheriff is 1. In the FamSheriff game the objective function
of the Farmer is

1— kp + 6p(yr — dr) — 65" 1y, <q;, ABkg®

% See Hirshleifer [1991]. Rent seeking is a partidyl interesting special case of conflict that heseived



where 1,, ;4 is the indicator function that evaluates to 1 whép <dg and O
otherwise, and that of the Sheriff

1— kg + 8gdp .

Entering each match the Farmer and the Sheriff ktt@ir own discount factor
and have independent common knowledge beliefs abeudiscount factor of the other
player given by probability measuresy(ds),us(6r). Except in the Farmer-Sheriff
game, these beliefs are irrelevant. We assumeathtite end of each round strategies
during the round are commonly observed.

Notice that this assumption means that it is olekrow a matched farmer
“would have played” if she had been unmatched awl &n unmatched sheriff “would
have played” if she had been matched. What we law@nd is that players in actuality
play more than once and are sometimes matchedamnetisnes not so that in fact their
play is observed in both contingencies, howevemtitation to make this formal is quite
cumbersome and results in the same model.

To see what is captured by this game, considdrthescasez = 0. In this case
the Sheriffs do not contribute to social welfareydred their own endowment: only
Farmers are socially productive in the sense tieg tan make investments resulting in
an increase in wheat. However Sheriffs can appatgpsome of the output of Farmers. In
this sense the model has a predator-prey flavoticBlohowever, that the model is
formulated so that there is no intrinsic distortionthe predation: the amount that the
Sheriffs can appropriate is independent of how misclproduced by Farmers. The
predation takes place through threat of punishniesmmers must choose whether or not
to comply with the Sheriffs’ demands. If Farmer# fa comply with the demand of the
Sheriff then they are punished. The level of pumisht depends on the investment made
by the Sheriff. Notice that there is no commitmissue for the Sheriff: the more patient
they are the more they will invest in punishmerind as we will see Sheriffs will evolve
towards a high degree of patience.

much attention at least since Tullock [1967] anddgrer [1974].



This game is unlike the Peasant-DictAtgame where the Dictator faces a
commitment problem — but one that is not sensitiv@atience. Here it is Farmers who
face a commitment problem: punishment takes plate avdelay. For example, we can
imagine that Farmers choose whether to consumecandeal their output to avoid
complying with the demand of the Sheriff — lateremhit is discovered they have not
complied they are punished. Because of the delagsapatient Farmer is less willing to
give in to demands by the Sheriff, and if the Shdmows this, she will demand less.
Hence there is a commitment problem on the patieofarmer.

So far we have discussed the c@se= 0. Here Sheriffs have no social function
and are merely predators or parasites. If we tlohkhe Sheriffs as landlords and the
Farmers as peasants, generally landlords proviohe services, ranging from protection
to improvements to the capital stock. This we cagptd somewhat crudely — through
G > 0. This means that there is a positive surplus &ogrto a match with a Sheriff.
Notice that the output from the match accrues & Rarmer, not the Sheriff. Here the
model becomes one of potentially beneficial tradaut-the only mechanism the Sheriff
has for appropriating some of the gains to tradebys threatening the Farmer.
Unfortunately this mechanism is not related to ghé to trade: the amount the Sheriff
can appropriate does not depend on how good thehmsatThis captures a situation that
sometimes occurs in practice: if one party ownsdahiBrcement mechanism, why not
appropriate the most that can be appropriatedréthe some sort of amount determined
by efficiency considerations? Why should a largditipally connected monopolist
merely appropriate what the market is willing toypahen they can have a nice piece of
tax revenue to go with it?

One interpretation wheir > 0 is that the Sheriffs are buyers and the Farmers
sellers, the amount of wheat provided to the Stieayer represents the quality of a
product andG the gains to trade. Here the Farmer/sellers haviecentive to cheat the
Sheriff/buyers — and the only recourse that thaiShriyers have is to retaliate against a
Farmer/seller who provides low quality. Hence thealdy provided will be in proportion
to the ability of the Sheriff/lbuyer to punish tharfmer/seller. In a sense this provides the
opposite from the case whe&@ = 0: in that case the Sheriffs are parasites. In the

* See, for example, Van Huyck, Battalio and Wali€95].



buyer/seller case they are buyers who may recaiuvelittle share of the surplus to
provide them with adequate incentives.

3. Equilibrium

3.1 Equilibrium of a Match

We turn now to studying subgame perfect equiliteiathe different matches.
First, and this is a critical point, informationalt a player’s strategy becomes public
only after the match ends, at which point the plalies and does not play again, so the
only consideration a player has is utility receidealing the match given preferences.

In the investment game the objective function Fer Earmer isl — k; + 0p Ak~ ,
the first order condition isadpAk* ' —1=0, from which the optimum is
ky = (A)/ (=) gt /0=a)

In the Farmer-Sheriff game the objective functioi the Farmer is
1—kp + 6p (Akp® —dp + G) if dp > dg oOF

1—kp + 6p (Akp® —dp + G) — 6p* ABkg"

if dp < dg. Notice that this is rigged so that the optimalestment choice of the Farmer
is independent ofl,, whether or not there is punishment, the Farnmslgefs and is the
same as when the Farmer is unmatchigd:= k; = (ad)/0-%)6,1/0-%) Notice that
more impatient Farmers produce less so are poligrigas fit than more patient Farmers.
Hence it is by no means a foregone conclusiongbalutionary forces will favor the less
patient Farmer.

In choosing how much to pay, clearly the Farmemughahoose eitherl; = 0
and get 1—kp+6p(Ak°y +G)—6°ABks® or dp =dg and  get
1—kp + 6p (Akp® — ds + G'), whichever is larger — again regardless of beliefs

The optimal play of the Sheriff depends on hisddsliAs this will be the case we
make use of, we solve only for the case in whigs¢hbeliefs are a point ma&s. Then
the Sheriff should choose the largest demand demsisvith paymentdy = 6ABks" .
The (believed) utility of the Sheriff is theh— kg + 830z ABks®. Finally, ks is chosen
by the Sheriff to maximize his utility, so thaty = («AB)"/0=9)(6,64)"/(=*) . The
corresponding demand is



ds = BpAB((@AB)/1) G850
o’ /(1-a) (AB>1/(17(1) gFl/(lfoz)(sSa /(1—a)

The amount demanded by the Sheriff is an incredsinction of both the discount factor
of the Sheriff — since a patient Sheriff will intemore — and the (believed) discount
factor of the Farmer — since a patient Farmer isemsasceptible to a threat.

Notice that beliefs of the Farmer are irrelevanthis equilibrium. At the end of
the match, the strategy of the Farmer is revealehd in particular
ky = (A)/(1=0)g,1/(1=2) "o that the discount factor can be inferred haeiiting this
function: 65 = k' /(aA).

3.2. The Evolutionary Process: Two Types

We now wish to consider the co-evolution of prefiees as measured ldy the

discount factors and the number of Farmers andif&hén the analysis overall fithess of
a particular population does not depend on pretagnbut on the total, undiscounted
expected utility over the life of the individual.
For simplicity we consider first the case wherer¢hare two possible preferences: either
patient preferences with discount factor one —esponding to maximizing the same
total fitness objective function as evolutionarinéiss — or impatient preferences with
somel < ¢ < 1, thatisép,ds € {6,1}.

In this simple model there are four types of induals: patient Farmers, patient
Sheriffs, impatient Farmers and impatient Sheréisthe end of each round each group
gives birth to offspring who are identical in pnefieces and type: offspring are
commonly observed. Since beliefs going into a roamd fixed no player has any
incentive to do other than maximize with respechittrue preferences; as we observed
above this means at the end of a round playerdemeces can be inferred from
behavior, so the preferences of offspring are knauth certainty — and equal to their

® A few words may be useful about fithess. Fithesméant to be what evolution favors, and it isutiity.
Take a simple example: there are two people. Onmaserable in a solid brick house and the othéajspy
in the woods. The morning after a freezing nigh finst guy is complaining over his coffee, whileet
second is dead. The former are preferences, tee iaffitness. Fitness is an objective measurepeddent
of preferences and is in general an elusive contejour case, however, preferences only enteise®ant
factors, hence removing them yields the desiredsaresof fitness.



true value. In this context: why should not evaatsimply favor patient players as they
maximize fitness. The reason for this is that irdirals simply maximize with respect to
their own preferences and do not take account af ks will effect subsequent
generations. In particular, for fixed Sheriff bédiét is costly in fithess for an individual
Farmer to maximize with respect to a discount fat#es than one. However, by doing
so, she (involuntarily) establishes that her offgprare impatient — and this means that
subsequent Sheriffs will demand less from her oiffigp While the impatient Farmer
loses through her impatience, her offspring benedind this creates a potential
evolutionary force towards impatience.

Recall thate is the fraction of the population who are Farm&sy) denote the
fraction of Farmers who are impatiéhgnd letyy denote the fraction of the Sheriffs
who are impatient. LeVy(6r),Vs(65) denote the evolutionary fitness of Farmers and
Sheriffs as a function of their preferences. To pota this, we compute fitness in the
different matches. The fitness of an unmatched Ears

V}](ép) =1+ aa/(1—a)A1/(1—a)6Fa/(1—a) _ (aA)l/(l_a)(SFl/(l_a) ’

while in the Farmer-Sheriff game it is
Vs (6p,85) = VF (6p) — ds + G
— VF(’] (6F> . aa/(lfa)(AB)I/(lfa)5F1/(17(1)5Sa/(17(1) +G

The fitness of an unmatched sheriff is one, whiléhie Farmer-Sheriff game it is
VE® (6p,65) = 1— ks + dg
=1+ aa/(l—a)(AB)l/(l—a)6F1/(1—04)<6Sa/(1—04) o a6sl/(1—a))

Our model of evolution is the standard replicatpnaimics based on evolutionary
fitness. If ; is the population fraction of group, V; is the fitness of the group and
is the average fitness of the population, then

o = ¢,(V; = V).

® Anticipating, we omit the subscrigft for the Farmers onp .
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Our analysis is greatly aided by the observatiost tBheriffs evolve strictly

towards greater patience:
Proposition 1: 1)y < 0
Proof: It suffices to show that ™ (6,8) is increasing infg . We compute

Ds Vi (6p,65) =

o 657’1(65(1/(17(1) _ 551/(17(1)) > 0

a/(l—a) AB 1/(17(1)6 1/(1-a)
@ (AB) F 1 a

M
The interesting case in the long-run, therefores baly three types: patient
Sheriffs, and both patient and impatient Farmerghis case, on which we now focus,

we can compute the overall fithesses of a (pati&hériff to be
Vs =14 a®/C0ABNII (1 — a){(1 = ) + Yg8"/ 17}
while that of Farmers is given by
Vp(6p) = 14 /(- gt /el a/0=0)(] — ady)
—(1-— ¢)aa/(1—a)(AB)l/(l—a)5Fl/(1—a) +(1—¢)G '

Notice that this depends on how many farmers theee but not, of course, what type

they are. The replicator dynamics can now be sumetby two equations:

b = (1 — ) [Vp(8) — Vi(1)]
¢ = (1 — ) {[Ve(6) — Vs ] — (L= ) [Vp(8) = Ve(1)])}

Theorem 2: SupposeB!/=%a < (1 — a)(BY1=* —1). Then for any0 < § < 1 there

exists an open set a¥’s such that there is a unique interior steady etand it is

dynamically stable. At the steady state

1—a— 860791 — ad)

—o¥=1-—
¢ - ¢ =1 Bl/(lfa)(l _ 61/(17(1))

Proof: In Appendix A.
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]

Notice that ¢ * does not depend onG. Notice also that the hypothesis
BY/0=0q < (1 — a)(BY(1=%) —1) is not vacuous since for any > 1 it is satisfied for
sufficiently smalla. We can also compute

-1
* — _ & a/(l-a) o6 -1
Ds¢™ = 1— o Y B1/(1w)(1 _ 61/(1’“))
¢ * 6(1/(17(1)) >0

_I_
1—a)1—8Y/0=)

so that if the impatient Farmers are less impatieerte will be more of them at the steady
state.

The key observation here is that at a stable orttesieady state in the long-run
there is a positive fraction of farmers who are atngnt: evolution leads to impatience.
Furthermore, Appendix A shows that if the fractwinthe population who are Farmers
falls below ¢ * the fraction of Farmers who are impatient growd &éme fraction of the
population of Farmers rises aboye* the fraction of Farmers who are patient grow. That
is: many Sheriffs favor the impatient since impate reduces the demands of the
Sheriffs, while few Sheriffs favor the patient snpatience leads to more productive
investment. The problematic aspect of this analysighat with only two possible
discount factors the level of impatienéeis specified exogenously. A more satisfactory
analysis would allow many different possible levefsimpatience and ask which level
emerges endogenously. We turn to this next.

3.3 The Evolutionary Process: Many Types

It is not very natural to suppose that the onlysgade preferences are given by
two discount factors),1. Suppose instead that there are individuals widryediscount
factor in the interval 6 € [0,1]. The general case is intractable, but a simple
approximation gives us insight into the dynamicd anables us to determine a steady
state value ob .

First observe that as with the case with two ty@dseriffs with 6 = 1 always
have higher fitness than those with lower discdaators, so in the long run the Sheriffs
will evolve towards patience. As before, the inséirey case is where there is a single
group of patient Sheriffs, and we will focus orsthase.
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Next suppose that there is a density function digrount factorg)s and that we
are near an interior steady state, the case ofestteThen as the steady state is
approached the density function must approach ke s every type of Farmer evolves

towards the optimal discount factor. The replicatgmamic is given by

by = Ys(Ve(8) — Vi),

where V, is the mean fitness of farmers. Since the distidouof types is very
concentrated near the mean valizewe may introduce an approximation. First, we may
approximate the mean fitne$s by the fitnessl, evaluated at the mean discount factor
Op .

Uy = Vs (Ve(6) — Vi)
~ Ys(Vp + DVp[é — ép] = Vi)
= YsDVp[6 — ép]

After a short interval of time- the system will evolve according to

Ut + 1) = Ys(t) + s ()7
~ Ps(t) + Vs (t)DVp[6 — opr

We can then compute the mean discount factor legiating:
6p(t+7) = [ 6us(t +7)ds
~ f&[%(t) + Ys(t)DVp[6 — op T ]dd
= f S5 (£)d6 + f S5 (D V(S — 6p]rds

= 6p(t) + DVpr f S5 ()6 — 66
= 6p(t) + o*(t)DVpT

This then gives the approximate dynamic equationttie mean discount factor of the

Farmers as

5};’ ~ Uz(t)DVF.

The fact that the variancg’ is time varying does not matter for our stabitityalysis, so

we hold it fixed, and study the dynamic equation
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5F = UzDVF

which is simply the continuous time best respongeathic — that is the mean moves in
the direction of increasing fitness. The dynamitspoare the replicator dynamic, now
based on the mean discount factor, so

¢ = d(1—¢)(Vp = Vs).

Theorem 3: AssumeG > (aAB)/1=%) Then there is a unique interior steady state and

it is dynamically stable.

Proof: In Appendix B.
M

Notice that like Theorem 2, for stability Theorenre®juires thatG not be too
small. However, unlike Theorem 2 it does not placeupper bound ori-. From the
proof of Theorem 2 in Appendix A it transpires thia reason for the upper bound Gn
does not involve stability, but rather is neededthsure the existence of an interior steady
state. To understand what is going on, recall biyaProposition 1¢ * does not depend
on G. As we increas&; holding fixed the other parameters this incredbesutility of
the Farmers, while not changing the utility of Sleeriffs. Hence oncé’ is big enough
at o * —regardless of the value gf Farmers of both types will do better than Sheriffs
and so the number of Farmers will be increasings Tplies that there is no interior
steady state: to the right of * patient Farmers are favored over impatient ones.
However, this is an artifact of the fact that thare only two types. If the impatient
Farmers were less impatient — that is to say, Were larger, we saw that this would shift
¢ * to the right, and so for this higher valuefothere could be a steady state. Once we
endogenizedr, Theorem 3 shows that this is the right intuitioegardless of how large
G is there is always a steady state.

We now establish some results concerning the steiadky.

Theorem 4: (1) The steady state value ofis larger thanl/2, and larger the larger is

G.

The comparative statics with respect@@nd B are the following:



14

(2) Dgoérp > 0,Dge > 0, Dpér < 0, and for sufficiently large&r, Do < 0.

Proof: In Appendix B.

4. Efficiency and the Impatience Trap

We now turn to the issue of welfare. Our measuneeaifare is the average fitness
for the whole population. Our goal is to show hawirgefficient impatience trap arises in
which the wrong population becomes impatient.

To compute the average fitness of the entire pdipulaobserve that: there is a
fraction ¢> of unmatched farmers with fitnesk;" (65 ); a fraction (1 —¢)* of
unmatched sheriffs with fithess 1; and a fract@ml — ¢) of matched farmers and
sheriffs who share a total fitness ®f° (65,85 )+ V&® (8p,6¢). Therefore expected
average fitness is

V= ¢2L/(;1VUF(6F)fF(6F)d6F +(1-0)1

1l 1)
+6(1=0) [ | (VES (8r,85) + VE™ (8,85) fir (8 i (85 ) dopdés

We think of the social planner as choosing a dhistion over discount factors for
Farmers and Sheriffsg, (6,), fs (65) respectively (which may and in fact will be Dirac
delta functions), and what fractiam of the population is assigned the role of a Faymer
in order to maximize fitness. In turn, each induatl chooses his optimal level of
investment. Since the planner is constrained t@shaliscount factors, we refer to this as

thesecond best

Theorem 5: The second best distribution is given by

11 o
1— Al-a | gl-a — gl-a

1 1
— mindl1=+ = ,
¢ = min ,2—|—2 e

whereasfr and f; assign point mass & = 1 and 6; = 0, respectively.
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Proof: The social planner chooses the investment levglsand kg indirectly, by
choosing the discount factors. The implementedstment satisfies:

kp = k; = (aA)l/(l—a)5F1/(1—a)

kS _ (aAB)l/(lfoz)(6_F(SS)1/(17(1) )

In terms of investments, fitness is given by:
VE (6p) =14 AkE — kg
VES (6,65) + Vi (8p,85) = 2+ Ak + G — kp — kg

Given that fitness is strictly decreasingfig, the optimal distribution assigns point mass
to the value ofégy which implementsky = 0, namely §g = 0. Similarly, fitness is
maximized when Farmers choose to maximize net ouyhich they do if6, = 1. Both
conclusions hold irrespective @f. Hence, we may find the optimal value of thisdatt
parameter by maximizing Equation (1) whén and f; are evaluated at their optimal
values, that is, they assign point massiat=1 and 6¢ = 0, respectively. Thus, the
objective becomes

V=¢*(1+ Akp -kp) + (1-0)? +o(1-0)(2 + Ak - kp + G - kg)

which is maximized as asserted.
]

The intuition for the optimal discount factors imple: Sheriffs’ investments are
a social waste, which they would not do if theydree extremely impatient. On the other
hand, Farmers are productive, and they would chti@septimal investment if they were
extremely patient. In fact, in the language of Hiedfer Sheriffs obtain their wealth
through conflict; in the language of Tullock andukkguer, Sheriffs are rent-seekers. In
contrast, Farmers obtain their wealth through pctida.

As for the optimal fraction of Farmers, it is laban 1 because there is a social
gain of G whenever a Farmer and a Sheriff meet. The fracifadhe matched population
IS maximized at
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In the spirit of the rent seeking literature théssaying that societies, optimally, would
have rent seekers only if when matched to prodecients they were to increase “social
output” (that is,G > 0). Otherwise, ifG = 0, it would be optimal not to have rent
seekers.

A related question has to do with the optimal mix-armers and Sheriffs when
the social planner does not choose their discoactofs, but instead when they are at
their equilibrium values. The first order conditidar this constrained maximization

problem gives

: 1 lyp —G—k
¢ = m1n{1,§ + EyFG——kSF}
which is sufficient provideds — k¢ > 0.7 It is less than 1 foty large enough, and tends
to 1/2 asGgrows.

The fact that steady state > 1/2 (see Theorem 4) implies that & is large
enough, in the steady state there are inefficiem&ny Farmers, and too few Sheriffs.
The intuition is that this arises because the #tehave to pay to collect a share Gf.

This is what we call the impatience trap. We sessia trap when interpreting the
model as one where Sheriffs are Buyers and FaranerSellers, viewingg as the short
run cost of enforcing reliability and as the long run gain of partnership and trusteNot
that inefficiency worsens the largeras.

In this interpretation, the final result of Theorel says that if the gains to trade
G are large enough increasing the effectivenessinishment will raise the steady state
number of Sheriff/Buyers, thus reducing inefficign@/e will come back on this point in

the conclusions.
5. Extensions

In all our analysis we have focused in a particakquence of the game. Now we
discuss the results under alternative sequencibe @gfame.

In the equilibrium analysis of the model there ifan-standard” result, namely,
that in a bargaining situation being impatient ntigé better. Usually we get the opposite

" When the second order condition does not hold {$h& — kg < 0) the optimal solution i) = 1.
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result (for example, Rubinstein’s model). The reafw this has to do with the structure
of the game. Here, punishments are applied in tinerd and as such, a more patient
Farmer is more influentiable by threats, weakenmg bargaining position to the
advantage of Sheriffs that get paid more. In cattria Rubinstein’s model being more
patient means that the cost associated to the delagach an agreement is smaller,
strengthening the bargaining position.

Under the current game structure (namely,and kg are chosen after a meeting
is produced, with the knowledge of the opponentise} we can distinguish two effects:
(E1, or direct effect) Meeting with a more patié@rmer renders any given investment
ks by the Sheriff more productive (privately), sircéigher demandd will be accepted
by the Farmer, and (E2, or indirect effect) TherBhmay take further advantage of this
by conditioning his investment level @g . In our casekg increases i, . E1 makesd
depend ond,, and E2 makegy depend ordy .

If the Sheriff makes his investment decisiéfn before knowing his opponent’s
op, E1 remains and E2 goes away. The main resultdvstill obtain, although Sheriffs
would have a lower expected utility implying a hégrequilibrium¢ . This would also be
the case if the Sheriff were to make his investnugatision before knowing if he would
be matched or not, although admittedly resultingnreven lower fitness.

If the Sheriff makes both, his investment decisaod his demand before knowing
his opponent’ss, , both effects go away. Besides not obtaining fiiecewe want, this
case is also cumbersome to analyze because inbegun there would be demands that
are not accepted by the more impatient farmers.

Both effects would also disappear if the punishnvegrte to take place in period 2
rather than in period 3. Indeed, the discount faetibects the relationship between
promised punishment and willingness to accept demaexclusively because
punishments are promised to happen at a future date

Regarding the welfare, the results are independerthe sequence of the game.
The efficient distribution ofp,65 and 6 is independent of the sequence. Moreover,
given the efficient distribution all the result®andependent of the sequence.

There are alternative characterizations, and realdisituations, where in games
less patient people do better than patient pedfie.example, Blaydes [2004] uses a
version of Fearon’s [1998] model to explain theislon of cartel profits within the
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OPEC. In the model there is a first step in whinére is a bargaining that determines the
payoffs of a static game that is infinitely repeat€o enforce the “efficient” outcome in
the infinitely repeated game, more impatient playreed a higher “static” payment.
Thus, impatience is also in this case a sourceuafdining strength.

6. Conclusion

We have shown that impatience survives evolutiofarges when it keeps down
punishment by the opponents. This is in contrashéosingle-person investment context
where (Blume and Easley, 1992) the patient beatsfiormed.

When interpreting the model as one of buyer ankrsevhere the Farmer is the
Seller and the Sheriff is the Buyer, we Sgeas the long run gains of partnership, not
fully exploited in equilibrium owing to the presenof too many impatient sellers.

To put this discussion in context, the underlyissuie here is: What makes a good
business environment? The most common, reasonhbte answer is “competence and
reliability.” The model of this paper has somethittgsay about reliability, which is
another face of patience. A reliable business do¢Stake the money and run” meaning
a reliable seller must be patient. In our mod@psise that potential gains from trade
are large. Never-the-less the share that may lmedaby buyers in the form afy may
be limited. In an underdeveloped economy the cbsivesting in punishing recalcitrant
sellers in the face of resource constraints malatgge. The result can be an evolutionary
stable impatience trap, in which the equilibriuminefficient and sellers have little
money to run with because there are too few bugespoil.

Our Theorem 4 points to an instrument that can i@y be used to reduce
inefficiency, namely raising the effectiveness ohighment in the hand of the buyers,
the paramete3. This is not simple — it would indeed be not cbégliif it were. For B is
often nothing but social pressure on the unreligbbelucers. Said otherwise, the problem
is to raise awareness of the long run nature ofbémeefits of business, and this links
unreliability to the other component of a good bess environment - competence or
education. In the way of prescriptions for develeptrwe are not uncovering something
new. On the other hand the model seems to be tbieté uncover the source of the
problem's persistence: the inefficient equilibrivme have is not simply undone by

evolutionary forces.
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Appendix A: Proof of Theorem 2

From the text, the dynamical system is given by
b = (1 — ) [Vr(6) — Vr(1)]
¢ = (L= O){[Vr(6) = Vs ] — (L= 9)[Vr(8) = Ve(D)])}.

From the fitnesses in the text, we can computditihess differences

Vp(8) = Vs = (1 — ¢)G + a®/U=0)41/(1=a)
{604/(1—04)(1 - Oé(S) o Bl/(l—oa)(sl/(l—oa)
+OBHITHE I — (L= a)(1 = + 6 /1))

VF((S) _ VF(l) — @/(=a) g1/(=0a) {(5(1/(17(1)(1 . a5) 14+ a)
+(1 _ ¢)B1/(1fa)(1 . 51/(1711))}

LemmaAl: For 1> 1 > 0 we havey >=< 0 as¢ <=> ¢ * where

ot =1 Lma =001 —ag)
T T — s /)y

lies between 0 and 1.
Proof. The computation o * comes from solvind/»(6) — Vx(1) = 0, and we may also
compute
Dy [Vi(8) = Vp(1)] o&x —p B 1)1 — /0=y <
from which the signs follow.

Rewriting

1— 61/(1—&) - [604/(1—04)(1 - (5) + Oé(l - 61/(1—&))]

S S
1 ¢ o Bl/(l—a)(l - 61/(1—&))
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we can see that sincB > 1 the numerator of the RHS is smaller than the denator
implying 1 — ¢* < 1, so that¢ * cannot be negative. We may also write the numerato

of 1—¢* as
J6) = 1—a — (8/0-0) _ gg1/0-a).

We then compute

f0O)=1-a
fa) =
£1(8) = —%5—1504/(1—@(1 —8) <0

from which it follows thatf(6) > 0, and sop* < 1.
M

Lemma A2 ¢ x a+bo+cp+dgp where the factor of proportionality is
Al/(l—a)aa/(l—a) and

a=G—a—(BY0 )

b = (B — @)

¢ = 601 — ad) — 1+ a + BY/U=0) (1 — §t/1-)y
d = —BY/1=a)g(1 — /01—

with G = G / A1/0-ga/0-a),
Proof. Direct computation using the fitness differences. %}
Corollary A3: d < 0,c+d >0
Proof: d < 0 is immediate. Foe + d we compute
c+d=f(6)=
50— (1 — ad) + (1 — a)[BY/ =91 — §Y/0-9)) — 1]

fO)=(1—-a)BY0= —1]>0
f =20
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and the derivative

f'(é) — 6(1/(17(1) >

{%(5—1 S)-(- a)Bl/(l_O‘)6}

The part in brackets is decreasing, and this imph&at f(§) is single peaked. Hence it

follows from the boundary conditions thats) > 0.
M

Lemma A4: An interior steady state exists if and only if
YV=(01-¢"G+1-a)-— B1/(1—a)[1 —p*+1—a)p* 51/(1—a)] >0

and if it exists it is unique.
Proof: If there is an interior steady state by Lemma Amitst occur forp = ¢ *. This

implies that the fitness of both types of farmessequal, so that the sign af is

determined by

Ve(l) = Vs o< f(¢) =
(1-¢)G+(1—a)—(1—¢)B"/1"
—BY0=)(1 — a){g * +4pgp * (617 — 1)}

This is linear and increasing i . Hence there is an interior steady state if angt dn
f(0) <0, f(1) > 0, and in that case becaugg)) is linear, it is unique. The conditions
in the Lemma follow from the expression ff{y) .

M

Lemma A5: A sufficient condition for an interior steady &tap*,) * to be stable is
b<0.
Proof. It is sufficient that in the system linearizedla¢ steady state the trace be negative

and the determinant positive. Disregarding irretevfactors, the matrix of the linearized

system is
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0 e
ct+do* b+dy*

where

e = —BY/(1-0)(q — g/1-a)y < 0,

Hence the sufficient condition is + d¢* > 0 and b + dy* < 0. By Corollary A3
d<0,c+d>0 and ¢* <1 implies ¢+ d¢* > 0, so the remaining condition is

sufficient. Sinced < 0 itis in turn sufficient that < 0.
]

Theorem 2: SupposeB'/"%q < (1 — a)(BY/1=%) —1). Then for any0 < § < 1 there

exists an open set af’s such that there is a unique interior steady etand it is
dynamically stable. At the steady state

1— o= §°/0-0)(1 = ag)
Bl/(l—a)(l - 61/(1—&))

o=¢*=1-
Proof. The characterization af * is in Lemma Al. For sufficiently small > 0 we can
choose

BYW=91 —ap¥|—(1—a) —¢
(1 —¢%)

G = > 0.

The first condition from Lemma A4 for an interideady state is
X=—-—-5<0
Moreover
Y = X + BY0=9(1 —a)p * (1 — §/01-)
= — + BY1=9(1 —a)p * (1 — §/0-)
which is positive fore sufficiently small. Hence for such choices®fan interior steady
state exists.

Turning to stability, by Lemma A5, we requirk< 0, by Lemma A2 this

condition is
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BY(1=y <« @ |

Notice that
By the assumption that

B'/(1-%q x (Il = a)(B" @) — 1) this implies that

G > B'1=%q — ¢, so thath < 0 for ¢ sufficiently smalll.

Appendix B: Proof of Theorems 3 and 4

As in the model with two types we can compute ttreegses

VS =14 (AB)I/(lfa)(l . a)aa/(lfa)(zs(sFl/(lfa)

Vi =141 —¢)G + /(-0 gt/(0-a)g /=0l f] _ a5, — (1 — ¢)B/1-g,1.

Define @ = /(1 —a), B = B*"! and as in Appendix AG = aG /(aA)*™. Note
since B > 0, > 0 that B > 1. Normalizing o> = 1® this enables us to write the
dynamical system as

(ozA)d+1
11—«

bp = &t [(1 —bp)—a (1~ ¢)B6F]

¢ = ¢(1 — ¢)h(e,6p)
W, 6p) = (@A) 63 [a! — 6p —a ' Bép + ¢B6r | + (1 - ¢)G
LemmaB1: There is a unique interior steady state.
Proof. Combining¢ /(¢(1 — ¢)) = 0 andé, = 0 yields
f(6p) = BA+ o 'B)6a*? — (14 o H)B&H + G6p — G =0

and letting = 1—¢

8 This is relevant only to the stability analysisgdasince that is based on a sign argument, the itnagn
does not matter.
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9() = §[(1+ a™)B + G(1+ a7 BY™ |~ (B—1) = 0.

We show that each has a unique zer@i).

Examining g first, ~we have g(0)=—-(B-1)<0  and
g(1) = 'B+G(1+a'B)* +1> 0. Moreoveryg is the sum of a constant and two
increasing functions, so it is increasing, and ledmas a unique zero {0,1).

Turning to f, we see thaff(0) = —G' < 0 and f(1) = o 'B(B — 1) > 0, so that

there is at least one solution by continuity. Toyer uniqueness, observe that
f'(éF) =(a+ Q)E(l + Oflé)ég+l —(a+ 1)(1 + 071)36}@ e
Hencef'(0) = G > 0, and

M =(@+2)BAl+a'B)—(@@+1)1+a " )B+G
—(+aB+a@+2BB-1)+G>a

The second derivative is

f"(6p) = Bog (@ +2)(@+ 1)+ a 'B)ép — (@ +Dal + o).

This is negative below’ = a(1 + o ') /(@ +2)1 + o 'B) < 1 and positive above. So
f' decreases to its minimum at’ then increases. There are two possibilities:
f'(6°) >0 or £'(6°) < 0. In the first casef increases fromyf(0) < 0 to f(1) > 0 so has

a unique zero. In the second case it increasesldoah maximum ats' € (0,6°), then
decreases, then, sincé(l) > 0 increases again tg(l) > 0. A unique zero follows
provided that f(§') < 0. Since from 0 toé’, and in particular from 0 t&', f is

concave, it follows thaf(6') < f(0) + f'(0)6' = -G + G¢' = —-G(1 - &) < 0.
M

LemmaB2: If G > (aAB)"/(=% then the interior steady state is stable.

Proof: As in the proof of Lemma A5 it is sufficient that the system linearized at the
steady state the trace be negative and the detemtpositive. Disregarding irrelevant

factors, the matrix of the linearized system is
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Do | D6y Dby | D
Oh /86y  Oh /O

Consequently it is sufficient that  9ép / 06p,0h /P < 0 and
by | Op > 0,0h /D6y < 0.

We compute

96 A+ . a1 - .
o <Oi_)a (G — 1§21 — 8p) — 677 — Ga~'(1 — ¢)B6GF ]

Using the fact that whed = 0 we have o '(1 - ¢)B = (1 —6)/6, from which one
obtains

85F _ _(O‘A)&H a—2
3or - op © <0.

Next

3(5F o (O!A)&+1
06 1—a«

o 'B6% > 0.

Using the definition of. we have

(9h a A Q-+l ~ ca— - B
a5 = 0" AT {1 (14 (o7 — 9B )

Using the steady state condition

1

S e B— )

the expression in brackets become®Ba ', so that

oh ¢ 4G+ B
= —a"A"MB6* < 0.
a5, o <0

Finally, compute
g_g _ ( A)&+1E5g+l -G
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Since §<1, (aA)X BT —G < (aA)*TB—~G, which is negative for

G > (aA)**' B, that is to say for the condition of the Lemifia> (aAB)Y/(1=)
M

Theorem 3 follows directly from Lemmas B1 and B2.

Lemma B3: The steady state > 1/2.

Proof: Using (14 o 1B&)**! > 1 + o B¢ itis easily checked thig(1/2) > 0 and g

is increasing in¢ which implies that if¢ > 1/2 then g(§) > 0. It follows that the
steady state value of is less than %, so that the steady state valug of1 — ¢ is
greater than Y. The last assertion follows from fde that g is larger for all{ the

larger isG .
M

LemmaB4: Dg;ér > 0,Dgp > 0
Proof: It suffices to show this folG' as given the other parametafsis an increasing
linear function ofG . From the definitions off, g the former is decreasing and the latter

increasing inG . In the proof of Lemma B1 we showed that bgtl cross the horizontal

axis from below. The implicit function theorem thgines the desired result.
M

LemmaB5: D6 < 0, for sufficiently largeG Dy < 0.

Proof: It suffices to show the result with respectBoas this is an increasing function of
B. By inspectior Ds, f > 0 and9d.g > 0, so D,g < 0. We compute

DBf = (Sg+1 <2O£71(5FB + 6F — (1 + Oéil)) > 20&71 + 6F — (1 + Oéil) > 6F > 0 .
It is also the case th6,B > 1 in the steady state. This follows from the faatth
f1/B) = B 9(1 - B)1+ GBY) < 0.

HenceDjor < 0.

Finally
Dpg = ¢[(l+a ')+ Géa H(a+1)(1+a 'BE* |- 1.

We can writeg(§) = 0 as



The expression in brackets is bounded below by that asG' — oo it must be that one
¢ — 0. Rewriting the expression as

Ge = B-1

1
(1 +g )B + (1 + O[il_éé:)d‘l»l

we see that aG — oo, ¢ — 0 the RHS approache® — 1, and sol'¢ — B —1.

Hence asG — oo we haveDzg — —1. The implicit function theorem then gives the
second result.

M
Theorem 4 now follows directly from Lemmas B3, BtlaB5.



