
TÜSİAD-KOÇ UNIVERSITY ECONOMIC RESEARCH FORUM  
WORKING PAPER SERIES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

COMPETITIVE EQUILIBRIA IN DECENTRALIZED 
MATCHING WITH INCOMPLETE INFORMATION 

 
Alp E. Atakan 

 
 
 
 

Working Paper 1031 
October 2010  

 
 
 
 
 

 
 
 
 

 
 
 

TÜSİAD-KOÇ UNIVERSITY ECONOMIC RESEARCH FORUM  
Rumeli Feneri Yolu 34450 Sarıyer/Istanbul 



COMPETITIVE EQUILIBRIA IN DECENTRALIZED MATCHING WITH
INCOMPLETE INFORMATION

ALP E. ATAKAN

Abstract.

This paper shows that all perfect Bayesian equilibria of a dynamic matching game with

two-sided incomplete information of independent private values variety are asymptotically

Walrasian. Buyers purchase a bundle of heterogeneous, indivisible goods and sellers own

one unit of an indivisible good. Buyer preferences and endowments as well as seller costs

are private information. Agents engage in costly search and meet randomly. The terms of

trade are determined through a Bayesian mechanism proposal game. The paper considers a

market in steady state. As discounting and the fixed cost of search become small, all trade

takes place at a Walrasian price. However, a robust example is presented where the limit

price vector is a Walrasian price for an economy where only a strict subsets of the goods

in the original economy are traded, i.e, markets are missing at the limit. Nevertheless,

there exists a sequence of equilibria that converge to a Walrasian equilibria for the whole

economy where all markets are open.

Keywords: Matching and Bargaining, Search, Foundations for Perfect Competition, Two-

sided Incomplete Information

JEL Classification Numbers: C73, C78, D83.

1. Introduction

This paper shows that all equilibria of a dynamic matching game with two-sided in-
complete information of the independent private values variety converge to Walrasian (or
competitive) equilibria, as search frictions disappear. In the model each buyer aims to
purchase a bundle of heterogeneous, indivisible objects and each seller owns one unit of
a heterogeneous indivisible good (as in Kelso and Crawford (1982) or Gul and Stacchetti
(1999)). Buyer preferences and endowments as well as seller costs are private information.
Agents engage in costly search and meet randomly in a market that remains in steady state.
The terms of trade are determined through a Bayesian mechanism proposal game.

Numerous researchers have explored the non-cooperative foundations for competitive
equilibria in indivisible goods markets using dynamic matching games. Previous work has
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focused almost exclusively on markets for an homogeneous good and has assumed complete
information until recently. In particular, Gale (1987) and Mortensen and Wright (2002)
establish convergence of dynamic matching game equilibria to competitive equilibria as
search friction disappear under complete information, while Satterthwaite and Shneyerov
(2007) extend the analysis to the two-sided incomplete information case.

Often cited examples of markets, where indivisible goods are exchanged through bilateral
negotiations, are the labor and the housing markets. Although cited as motivating examples,
neither of these markets fit the mold of a market for an homogeneous good where buyers only
differ in their valuations for the good, and sellers only differ in their cost of providing the
good. For example, in the labor market potential employees differ in their productivity and
their disutility of labor. Firms usually search for multiple employees, that may complement
or substitute each other. Also, the vacancies in the firms are rarely exactly alike, and
an employees productivity may depend crucially on the type of vacancy that a firm has
available. In the housing market the potential homes are far from being homogenous and
buyers in search of homes may have diverse needs. Moreover, many home purchases are
bundles that include the home, nearby parking, architectural services for the home and
brokerage services for the transaction. This paper presents a dynamic matching game, with
two sided incomplete information, that preserves many of the attributes of markets such as
the labor market and the housing market.

A brief description of the model presented here is as follows: In each period a unit
measure of each type (of buyers and sellers) from a finite set of types is available for entry
and those who expect a non-negative return voluntarily enter the market. The market is in
steady-state with the measure of agent types endogenously determined to balance the flow
of types through the economy. Once in the market, each agent pays a per period cost, and
receives a “draw” from the distribution of active players. Also, finding a bargaining partner
takes time and agents discount the future. The probability that any buyer (or seller) is
paired with a particular type is proportional to the frequency of that type among all sellers
(buyers) active in steady state. After two agents are paired, nature designates a proposer,
the proposer offers a mechanism, and the responder decides whether to participate (i.e.,
the Bayesian mechanism proposal game of Maskin and Tirole (1990) is played). During
this bargaining stage buyer preferences and endowments, as well as, seller costs are private
information. The good that the seller offers, however, is observed by the buyer. If a meeting
between a pair results in a trade, then the seller leaves the market, otherwise the agents
return to the population of active players. Buyers leave the market voluntarily after they
have purchased all the goods that they want.
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The competitive equilibrium benchmark under consideration is a “flow” equilibrium as in
Gale (1987) or Satterthwaite and Shneyerov (2007), generalized to accommodate heteroge-
nous goods and multi-unit demand. In each period, flow supply is the measure of sellers of
a particular good entering the market and flow demand is the measure of agents willing to
purchase a particular good entering the market. In a flow equilibrium, the buyer and seller
continuation values, which are the implicit prices, equate flow supply to flow demand for
each of the goods traded in the market.

The first central result of this paper shows that as the discount factor δ → 1 and the
explicit search costs c → 0, all trade takes place at competitive prices. As search becomes
increasingly cheap, buyers wait until they have accumulated their most favored bundle.
While accumulating these goods, buyers reject “high” prices. Also, sellers become more
discerning and wait until they receive the best price offer possible. At the limit incomplete
information stops playing a role, trade in each good occurs at a unique price and each buyer
purchases their most preferred bundle at these prices. However, the limit price vector may
not comprise a competitive price vector for the whole economy. Instead, the limit price may
be a competitive price vector for a economy where only a strict subset of goods are traded.
This is because markets for some goods are possibly “closed” (or “missing”) at the limit.

The second central result of this paper establishes that a search equilibrium exists for any
configuration of search frictions. In this equilibrium all proposers optimally choose take-it-
or-leave-it offers (à la Riley and Zeckhauser (1983)) from a rich set of possible mechanisms.
Also, when small search frictions are small, the paper shows that an equilibrium exists where
the markets for all goods are open. Consequently, there exists a sequence of equilibria that
converge to a competitive equilibrium for the whole economy.

Although the literature on dynamic matching and search is vast, Satterthwaite and
Shneyerov (2007) is the work most closely related to this one. Satterthwaite and Shneyerov
(2007) established that equilibria of a dynamic matching game converge to a competitive
equilibrium in the case of a single homogeneous good and two sided incomplete informa-
tion. Also, in a market for a homogeneous good, Satterthwaite and Shneyerov (2008) show
convergence to a competitive equilibrium with an exogenously given exit rate; Lauermann
(2008) shows convergence does not depend on the distribution of bargaining power; and
Shneyerov and Wong (2007) establish results on the rate of convergence.

The analysis provided here differs from the previous literature in two main respects.
First, the homogeneous good, unit demand restrictions are lifted. In a search market for
a homogeneous good the limit of any sequence of stable equilibria is competitive and so
efficient. In contrast, with heterogeneous goods, there are robust examples where some
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markets are closed at the limit and the limit equilibrium is inefficient.1 Second, in all
previous work the bargaining protocol, that governs the interaction of buyers and sellers, is
exogenously imposed. For example, in Satterthwaite and Shneyerov (2007), Satterthwaite
and Shneyerov (2008) and Shneyerov and Wong (2007) the buyers and sellers that meet,
are assumed to participate in a double auction where any seller bids her continuation value
truthfully. In contrast, here the proposer is allowed to choose any finite mechanism. So,
strategic behavior is allowed for both the proposing and responding agents and also a
large set of bargaining protocols are permitted. Consequently, the results here show that
an asymptotically efficient bargaining protocol will be endogenously chosen by individual
agents in equilibrium.

In related models presented in DeFraja and Sakovics (2001), Serrano (2002) and Wolin-
sky (1990), convergence to a competitive equilibrium fails. The failure of convergence to
competitive equilibrium is caused by the bilateral bargaining protocol in Serrano (2002);
results from the inefficiency of aggregating common value information through bilateral
meeting in Wolinsky (1990); and is due to a “clones” assumption in DeFraja and Sakovics
(2001) (see Lauermann (2006) for a detailed discussion of these issues).

The paper proceeds as follows: Section 2 outlines the dynamic matching and bargaining
game as well as the competitive benchmark, Section 3.1 presents the main results that show
convergence to a competitive equilibrium, Section 3.2 outlines the equilibrium existence
argument, and Section 4 concludes. Proofs that are not included in the main text are in
the Appendix.

2. The Model

Buyers and sellers in the economy search for possible trading partners over the infinite
horizon. Each seller owns one indivisible good for sale and each buyer wants to purchase a
bundle of the indivisible goods offered for sale. The game progresses in discrete time and
agents discount the future with a common discount factor δ = e−r∆ ∈ [0, 1], where ∆ is the
period length and r is the discount rate. In each period, an agent incurs a positive explicit
search cost c = κ∆ > 0 and meets pairwise with a potential partner.2 Either the buyer
or the seller is designated as the proposer and then the pair play a three-stage Bayesian
mechanism choice game. The mechanism choice game is exactly the game thoroughly
analyzed in Maskin and Tirole (1990). The probability that the buyer is designated as the

1With a homogeneous good there is always a no trade equilibrium. However, this equilibrium is not stable.
In contrast, with heterogeneous goods Example 1 demonstrates a sequence of stable equilibria with an
inefficient limit.
2Although, I assume that all agents share a common discount factor δ and explicit search cost, c, this is for
convenience only. All results in the paper go through even if agents have heterogeneous search costs.
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proposer is β ∈ (0, 1). In the first stage, the proposer offers a mechanism chosen from the
set of feasible mechanisms. Throughout the paper assume that a take-it-or-leave-it offer
is a feasible mechanism choice for the proposer. In section 3, the argument for existence
further assumes that the set of feasible mechanisms is the set of all finite mechanisms as in
Maskin and Tirole (1990). In the second stage, the responder chooses whether to participate
in the mechanism. If the responder accepts to participate in the mechanism, then in the
third stage the agents play the mechanism and the mechanism chooses the probability with
which a trade occurs and specifies the transfers to be paid by the buyer to the seller. Sellers
who trade permanently leave the market. Buyers remain in the economy until they have
purchased all the goods that they want, and then they leave the market and consume their
bundle. Agents who fail to trade return to the searching population. The distribution
of agents searching for trading partners is assumed to remain in steady state. Utility is
transferable. In particular, if a buyer of type b consumes bundle G, then she enjoys utility
hbG. A seller incurs cost rs when she sells her good. So trade between b and sellers s ∈ G
creates total transferable utility fbG = hbG −

∑
s∈G rs.

2.1. Population of Types and Private Information. Let I and S denote the finite sets
of initial buyer and seller types. A seller’s type specifies the good she owns, xs, and her
reservation value (or cost) rs. A buyer’s initial type specifies the buyer’s utility function
hi : P(S)→ R, where P(S) denotes the set of all subsets of S. The utility function satisfies:

(i) Normalization: hi∅ = 0,
(ii) Monotonicity: If G ⊃ A, then hiG ≥ hiA,
(iii) Identity Independence: For any s and s′ with xs = xs′ (i.e., for sellers s and s′ who

own the same good), hiG∪{s} = hiG∪{s′} for all G.

Once in the market, a buyer’s type changes after each trade and includes information on
all trades that the agent has made, and consequently, the goods that the buyer owns. So,
refer to a buyer type by b = iG, where i ∈ I is the initial type, i.e., her utility function, and
G is the set of seller types with whom she has already traded. Consequently, the set of buyer
types, potentially available for trade in the market, is B = I × P(S). For b ∈ B, G(b) ⊂ S

denotes the sellers with whom b has already traded; and i(b) ∈ I denotes the initial type of
b. The notation b ∪ s denotes a type b′ with i(b) = i(b′) and G(b′) = G(b) ∪ {s}. Similarly,
the notation b \ s denotes a type b′ with i(b) = i(b′) and G(b′) = G(b) \ s.

In each period, a unit measure of each i ∈ I and s ∈ S are available to enter the market.
Consequently, in each period a measure |I| of buyers and measure |S| of sellers potentially
enter the market.3 Buyers and sellers, who do not enter the market in a given period, are

3The assumption that there is unit entry of each type is without loss of generality and is only for expositional
convenience.
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assumed to have opted for an outside option and are thus not available for entry in any
subsequent periods.

Let l = (l1, ..., lb, ..., l|B|, l1, ..., l|S|) denote the steady state measure of buyers and sellers
present in the market. The steady state probability for any seller of meeting buyer b, or
any buyer meeting a seller s in a given period is

(1) pb =
lb

max{LB, LS}
or ps =

ls
max{LB, LS}

where LB =
∑

b∈B lb and LS =
∑

s∈S ls. Assume that the agents know the distribution of
types in the economy.4 In particular, the (sub) probability measures pb and ps (or type
distributions) are commonly known by all agents. Observe that the population of types
available for entry in each period is a primitive of the model and is given exogenously. In
contrast, the steady state measure, l, is determined endogenously by the measure of agents
entering and exiting the market in each period.

The analysis here assumes independent private values. More precisely, if a buyer and
seller consummate a trade, then the payoff to each agent depends on the terms of trade and
the agent’s own private information; but does not depend on the trading partner’s private
information, i.e., there is no “Lemons” problem. Reference to this assumption, which is
stated formally below, is omitted from the statements of the results presented since it is
maintained throughout the paper.

Assumption. Independent Private Values. If buyer b = iG and seller s meet, then
the buyer observes, xs, the good that seller s has for sale, while the buyer type b and seller
cost rs remain as private information.

2.2. Agent Behavior, Strategies and Beliefs. Let σj denote a strategy for type j, πj
denote beliefs for type j, σ = (σj)j∈I denote a strategy profile, and π = (πj)j∈I denote
a profile of beliefs. The paper focuses on equilibria where all agents use stationary (time-
invariant) strategies (σt = σ for all t); beliefs are stationary (πt = π for all t); and agents of
the same type use the same strategy and entertain the same beliefs. Since agents know the
distribution of types in the economy, an agent’s belief that she will meet an agent of type j
coincides with the actual probability of meeting this agent (i.e., the steady state probability
of meeting j, pj). Consequently, an agent’s belief at the start of any period is given by the
steady state distribution. At other points of the stage game played during a period, beliefs

4This requirement is stronger than what is needed for showing convergence to a competitive equilibrium. As
long as the support of any agent’s prior belief about the distribution of agents in the economy coincides with
the support of the steady state distribution, the convergence results presented in the paper will continue to
hold.
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are obtained, where possible, using Bayes’ rule by conditioning on equilibrium strategies as
well as observed characteristics and actions of their opponents for the period.5

At the start of each period, a strategy determines whether the agent remains in (or enters)
the market and pays the cost c. Denote by σj(in) the probability that agent j remains in
(or enters) the market at the start of any period.

If j is paired in the current period and is the proposer, then the strategy σj specifies a
mechanism. If agent j is the responder, then the strategy specifies whether she accepts to
participate in the mechanism. If the responder accepts to participate, then the agents send
messages chosen from the message space specified by the mechanism; and the mechanism
chooses a probability of trade and the transfer to be paid by the buyer to the seller.

Given a profile of strategies and beliefs, let the match probability mbs(σ, π) (or msb(σ, π))
denote the probability that b and s trade, given that the two are paired in the period and
b (or s) is chosen as the proposer. Let Mbs = Msb = βmbs + (1 − β)msb denote the total
probability of trade, given that b and s are paired in the period. Also, let tbs(σ, π) (or
tsb(σ, π)) denote the expected transfer paid by the buyer to the seller, given that b and s

are paired in the period and b (or s) is chosen as the proposer.6 In what follows, match
probabilities and transfers will be denoted mij and tij with the dependence on σ and π

suppressed for notational convenience.
The period reward for a buyer b equals hi(b)G(b) if the buyer chooses to exit the market at

the start of the period; equals −c if she chooses to remain in the market but fails to meet
a seller; and equals −c − tbs (or −c − tsb) if she gets to propose (or respond) to seller s.
Likewise, the period reward for a seller s equals zero if the seller chooses to exit the market
at the start of the period; equals −c if she chooses to remain in the market but fails to meet
a buyer; and equals −c+ tsb (or −c+ tbs) if she gets to propose (or respond) to buyer b. If
an agent has exited the market in a prior period, then the period reward for that agent is
equal to zero 0. Given that all other agent in the economy behave according to strategies
σ and beliefs π, each agent of type j chooses their strategy σj to maximize their expected
discounted stream of utility.

2.3. Steady State. As stated earlier, the measure of agents in the economy is assumed to
remain in steady state (i.e., lt+1 = lt = l for all t). The steady state assumption requires
that the inflow of type b buyers (or type s sellers) into the market in each period must equal

5Observe that all beliefs obtained through Bayes’ rule are stationary as a consequence of the steady state
assumption on the distribution of types and the assumption that agents use stationary strategies. All other
belief, that is beliefs (conditional on zero probability events) that cannot be obtained using Bayes’ rule, are
further assumed stationary.
6For example, if the probability of trade is mbs(σ, π) and the buyer pays the seller t in case a trade occurs
and zero otherwise, then the expected transfer tbs(σ, π) = mbst.
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the outflow of that type exiting the market in each period. Consequently, given strategies
and implied match probabilities, the steady state measure must satisfy Equations (2), (3)
and (4) given below, in equilibrium. The left hand side of Equation (2) gives the outflow
of type s sellers resulting from successful trades or voluntary exit from the market; and
the righthand side gives the inflow of new type s sellers. The left side of the Equation (4)
(or Equation (3) for types with b(G) = ∅) gives the outflow of type b buyers resulting from
agents leaving the market or transforming into another type following a trade; and the right
hand side gives the inflow of type b buyers via new entry or as a result of buyers of another
type being transformed into type b following a trade. The steady state equations are as
follows:

ls(
∑

b∈B
pbMbs + σs(out)) = σs(in)(2)

lb(
∑

s∈S
psMbs + σb(out)) = σb(in)(3)

for all types b ∈ B with b(G) = ∅ and all sellers s ∈ S, where σb(out) = (1−
∑

s∈S psMbs)(1−
σb(in)) denotes the fraction of type b buyers, who failed to trade in the previous period,
that choose to leave at start of the current period; and σb(in) ≤ 1 is the flow of new buyers
into the market at the start of the period. Also,

(4) lb(
∑

s∈S
psMbs + σb(out)) = σb(in)

∑
s∈G(b)

lb\spsMb\ss

for b ∈ B with b(G) 6= ∅, where σb(in)
∑

s∈G(b) lb\spsMb\ss is the measure of newly created
type b buyers who remain in the market, that is, buyer types, that were an “s” away from
type b, who traded with a type s in the previous period.

2.4. Search Equilibrium. A steady state search equilibrium is comprised of a strategy
profile σ, a profile of beliefs π and a steady state measure l, that are all mutually compatible.
That is to say, the measure l satisfies the steady state equations, given that agents behave
according to strategy profile σ and the profile of belief π; and the strategy profile σ and
belief π, comprises a perfect Bayesian equilibrium for the three-stage mechanism proposal
game, given that types are drawn according to the steady state measure l.

2.5. Values. Let vk denote the expected discounted value for a type k agent given match
probabilities m, expected transfers t, and steady state distibution of types p. The expected
future value at the start of a period for a buyer equals the maximum of the value of remaining
in the market and the value of leaving the market and consuming the bundle that she owns,
that is, vb = max{vb(in), hbG(b)}. The value of remaining in the economy, vb(in), satisfies
the following Bellman equation:
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vb(in) = −c+
∑

s
psβ(mbsδvb∪s−tbs) +

∑
s
ps(1− β)(msbδvb∪s − tsb)

+ (1−
∑

s
psβmbs −

∑
s
ps(1− β)msb)δvb.

In words, buyer b pays the search (sampling) cost c, then successfully makes a trade as
the responder with seller s with probability (1−β)psmsb; makes a trade when she proposes
to buyer s with probability βpsmbs; and does not trade in the period and receives her con-
tinuation value δvb with probability 1−

∑
s psβmbs−

∑
s ps(1−β)msb = 1−

∑
s psMbs. The

expected future value at the start of a period for a seller equals the maximum of the value
of remaining in the market and the value of leaving the market, i.e., vs = max{vs(in), 0}.
The value of remaining in the economy for a seller, vs(in), is defined similarly to a buyer.
Rearranging the equations for vk(in) gives the following for buyers and sellers:

vs(in) =− c+
∑

b∈B
pb(βtbs + (1− β)tsb −Mbs(rs + δvs)) + δvs

vb(in) =− c+
∑

s∈S
ps(Mbs(δvb∪s − δvb)− βtbs − (1− β)tsb) + δvb

2.6. The Competitive Benchmark. The competitive equilibrium benchmark considered
here is a “flow” equilibrium as in Gale (1987) or Satterthwaite and Shneyerov (2007),
generalized to accommodate heterogenous goods and multi-unit demand. In each period,
flow supply is the measure of sellers of a particular good entering the market and flow
demand is the measure of agents willing to purchase a particular good entering the market.
In a flow equilibrium, the buyer and seller continuation values, which are the implicit prices,
equate flow supply to flow demand for each good that is traded in the market. It is well
known that the competitive equilibrium allocations for economy I∪S are fully characterized
by the following linear program (and its dual) which is just the classical Assignment Problem
where fractional assignments are permitted. (See, for example, Roth and Sotomayor (1990).)
This formulation is a generalization of Shapley and Shubik (1972) to a setting where buyers
can purchase multiple commodities as in Kelso and Crawford (1982) or Gul and Stacchetti
(1999, 2000).
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Primal Dual

P = max
q≥0

∑
i∈I

∑
G⊂S

qiG(hiG −
∑

s∈G
rs) D = min

v≥0

∑
i∈I
vi +

∑
S
vs

Subject to Subject to∑
i∈I

∑
s�G

qiG ≤ 1 for all s, vi +
∑

s∈G
vs ≥ hiG −

∑
s∈G

rs ∀i, G.(5) ∑
G⊂S

qiG ≤ 1 for all i.(6)

The vector q that solves the program is a competitive allocation and denotes the measure
of matches between buyer i and sellers in the set G that are created in each period of time.
Any vector v that solves the dual program is a competitive equilibrium utility vector and
the competitive price of a traded good is pxs = vs+rs. The constraint given by equation (5)
states that the flow demand for sellers of type s, i.e.,

∑
i∈I
∑

s�G qiG, must be less than the
flow supply of that type, which is at most one. This constraint will bind, if the good’s price
is positive, or more precisely, if vs > 0 and thus pxs = vs + rs > rs. The constraint given
by equation (6) states that the flow supply to buyers of type b, must be less than the flow
demand by type i, which is at most one. Again, this constraint will bind if vi > 0. Together
inequalities (5) and (6) ensure market clearing. Observe that, if q solves the primal and
v the dual, then each buyer consumes her most preferred bundle, sellers offer their good
only if pxs ≥ rs, and all markets clear. Conversely, if q is a competitive allocation and p a
competitive price, then q solves the primal Assignment Problem by the first welfare theorem;
and buyer values vi = maxG⊂S hiG−

∑
s∈G pxs and seller values vs = max{0, pxs − rs} solve

the dual Assignment Problem.7

3. Convergence to Competitive Equilibria

The development in this section analyzes the limit economy as search becomes costless,
i.e., as 4 → 0. The analysis focuses on sequences of equilibria, the associated sequences
of equilibrium match probabilities mn, type distributions pn and values vn and their limit
(m̂, p̂, v̂). This section’s main result, Theorem 1, shows that all trades take place at com-
petitive prices for the economy with agents in the set I ∪ Ŝ, asymptotically. The set Ŝ is
defined as the set of markets open at the limit. More precisely, Ŝ is the set of sellers for
whom limn l

n
s > 0. In general, Ŝ need not equal S. That is, Ŝ may be a proper subset of

S, and all markets may not be open at the limit. Consequently, trade may not occur at
competitive prices for the economy I∪S. Example 1, at the end of the section outlines such

7The substitutes assumption of Kelso and Crawford (1982) or Gul and Stacchetti (1999, 2000) is not needed
here. This because there are a continuum of each type and so effectively fractional assignments are allowed.
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an example. The corollary to Theorem 1, Corollary 2, assumes that an arbitrarily small
fraction of sellers for each good x enter the market in every period. Under this assumption
Corollary 1 shows that all trade takes place at competitive prices for the whole economy
I ∪ S, asymptotically.

Let qiG denote the measure of buyers with initial type i ∈ I leaving the market with
bundle G. Also, let

eiG = hiG −
∑

s∈G
rs − δ vi −

∑
s∈G

δvs

denote the Excess between any initial buyer type i ∈ I and sellers in the set G; and similarly

ebs = δvb∪s − δvb − δvs − rs

denote the excess between buyer b ∈ B and seller s.
The proof of Theorem 1 first establishes that the per-period exit rate of buyers with

goods in the set G (i.e., q̂iG) is a feasible choice for the Assignment Problem, and so, the
flow creation of value in the economy is at most as large as the maximized value of the
Assignment Problem. The argument proceeds to show that the Excess between any initial
type i and sellers in the set G (i.e., êiG) is non-positive. No Excess then implies that the
vector of equilibrium values v is a feasible choice for the dual of the Assignment Problem,
and consequently, that the flow creation of value in the economy is at least as large as the
maximized value of the Assignment Problem.8

Theorem 1. Suppose (qn, vn, pn)→ (q̂, v̂, p̂), let Ŝ = {s ∈ S : lim sup lns > 0}, then q̂ solves
the primal Assignment Problem and is a competitive equilibrium allocation for the economy
with agents in I ∪ Ŝ; v̂ solves the dual Assignment Problem and is a competitive equilibrium
utility vector for the economy with agents in I ∪ Ŝ; and v̂s + rs is a competitive equilibrium
price for good xs.

Proof. Note that vk ≥ 0 since k has the option not to enter the market; the best buyer i
can do is to consume that agent’s favorite bundle G without paying any transfers to any
sellers so vi ≤ h̄ = maxi,G hiG; the best seller j can do is to receive transfer h̄ without
incurring any costs so vj ≤ h̄; and hence −(|S| + 1)(h̄ + r̄) ≤ eiG ≤ h̄, where r̄ = maxs rs.
Below it is shown that qiG ≤ 1 for all i and G. Consequently, the sequence (qn, en, vn, pn) is
included in a compact set and has a convergent subsequence. From hereon restrict attention
to convergent subsequences (qn, en, vn, pn)→ (q̂, ê, v̂, p̂).

Let b = iG and observe that, qiG, the measure of buyers with initial type i ∈ I leaving
the market with bundle G, is given by the following equation:

qniG = lnb σ
n
b (out) + (1− σnb (in))

∑
s∈G(b)

lnb\sp
n
sM

n
b\ss

8Observe that the constraint of the dual Assignment Problem only requires No Excess.
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Note that li =
∑

G⊂S l
n
iG

is the measure of buyers, whose initial type was i, present in the
market. li is in steady state since it is the sum of measure lniG that are by assumption
in steady state measures. The measure of buyers, whose initial type was i, permanently
leaving the market in each period is

∑
G⊂S q

n
iG and the measure entering is at most 1.

Consequently,
∑

G q
n
iG ≤ σni (in) ≤ 1.

Note that
∑
{b∈B:s∈G(b)} l

n
b + lns denotes the measure of agents who own the good that

initially belonged to a seller of type s and this measure is in steady state since it is a sum
of steady state variables. In each period, the measure of agents leaving with a good that
initially belonged to a seller of type s is∑

i∈I

∑
s�G

qniG + lns σ
n
s (out)

and the number of type s agents entering the market is σs(in). Consequently,∑
i∈I

∑
s3G

qnbG + lns σ
n
s (out) ≤ 1.

Taking limits shows ∑
i∈I

∑
s3G

q̂iG + l̂sσ̂s(out) ≤ 1 for all s and∑
G
q̂iG ≤ 1 for all i.

This implies that the vector q̂ satisfies equation (5) and equation (6) and is feasible for the
primal Assignment Problem. Consequently,∑

i∈I

∑
G⊂S

q̂iG(hiG −
∑

s∈G
rs) ≤ P.

By Lemma 3, given in the Appendix, êiG ≤ 0 for all i and G , this implies that v̂ is feasible
for the dual and consequently,

∑
I v̂i +

∑
S v̂s ≥ D. But,∑

I

v̂i +
∑
S

v̂s ≤
∑

i∈I

∑
G⊂S

q̂bG(hiG −
∑

s∈G
rs)

by Lemma 4, given in the Appendix. Consequently,

D ≤
∑
I

v̂i +
∑
S

v̂s =
∑

i∈I

∑
G⊂S

q̂iG(hiG −
∑

s∈G
rs) ≤ P = D

and so q̂ is a competitive allocation and v̂ is a competitive equilibrium utility vector. �

Assumption (FD), stated below, posits that the choice of not-entering the market and
taking an outside option is not available for an arbitrarily small fraction εx > 0 of the lowest
cost seller type of each good, at the start of their first period in the market. This choice
becomes available only after one period in the market. Consequently, εx ≤

∑
xs=x

ls for all
goods x. This assumption ensures that some sellers of each good enter the market and there
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are no coordination problems in entry that could result in a missing market. If the first
draw was not for free, then no agent entering the economy is an equilibrium. Also, Example
1 at the end of the section, outlines a more robust demonstration of a coordination failure.

Assumption. Free First Draw (FD). In each period, there is εx > 0 entry by the lowest
cost seller of each good x. These sellers do not pay the cost c in the first period.

The (FD) assumption allows one to show that, if a buyer waits long enough, then she
can meet a seller of any good and make this seller a take-it-or-leave-it offer. This drives the
Excess between any two agents to zero as search frictions vanish.

Corollary 1. Assume (FD). If (qn, vn) → (q̂, v̂), then q̂ solves the primal Assignment
Problem and is a competitive equilibrium allocation; v̂ solves the dual Assignment Problem
and is a competitive equilibrium utility vector; and v̂s + rs is a competitive equilibrium price
for good xs.

Proof. To show convergence, êiG ≤ 0 (no excess) is established for all G ⊂ S. If êiG ≤ 0,
then the corollary follows from Theorem 1. Define Ŝ as in Theorem 1. Let jx denote the
lowest cost seller of good x and observe that {jxs}s∈S ⊂ Ŝ by assumption, where {jxs}s∈S is
the set of lowest cost sellers in the market. Thus for any G ⊂ {jxs}s∈S , and i ∈ I, êiG ≤ 0.

For any two sellers of good x, vs − vs′ ≤ vs(in)− vs′(in) and so,

(vs(in)− vs′(in))(1− δ) ≤ β
∑

b∈B
pbmbs(rs′ + δvs′ − rs − δvs)

+ (1− β)
∑

b∈B
pbmsb(rs′ + δvs′ − rs − δvs)

Also, suppose, without loss of generality, that rs′ ≥ rs.

(vs − vs′)(1− δ) ≤ ((rs′ − rs)− δ(vs − vs′))
∑

b∈B
Msb

vs − vs′ ≤ (rs′ − rs)
∑

b∈BMsb

(1− δ) + δ
∑

b∈BMsb
≤ rs′ − rs

Consequently, δvs+rs ≤ δvs′+rs′ . For any set G of sellers, let H denote the set of sellers
where each s ∈ G is replaced by jx(s), i.e., the lowest cost seller who owns the same good as
seller s. So, hiG = hiH , also, δvs + rs ≤ δvs′ + rs′ for any s′ ∈ G and s ∈ H with xs′ = xs.
Consequently,

eiG = hiG −
∑

s∈G
(δvs + rs)− δvi ≤ hiH −

∑
s∈H

(δvs + rs)− δvi = eiH

However, eniH → êiH ≤ 0 since H ⊂ {jxs}s∈S . So, êiG = lim enbG ≤ lim eniH ≤ 0 proving that
êiG ≤ 0. �

As pointed out the condition outlined in Assumption (FD), or a similar condition im-
posed on the buyer side of the market, is also necessary in the following limited sense: if
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Assumption (FD) does not hold, then there exists a sequence of steady state equilibria
for an economy that fails to converge to a competitive equilibrium of that economy. The
following is such an example.

Example 1. Necessity of Assumption (FD). Consider an economy with two buyer
types and two seller types, where each buyer wants to purchase only one good and the two
seller types own two different goods. Let h12 = h21 = 0 and h11 = h22 = 1, that is h
is super-modular; buyer 1 likes seller 1’s good and buyer 2 likes seller 2’s good. Suppose
r1 = r2 = 0. Let δ = 1. For any c ≤ 1/2, a unit measure of type 1 buyers and a unit
measure of type 1 sellers entering, no type 2 buyers or sellers entering and all meetings
resulting in a trade at a price of 1/2 is an equilibrium. Clearly such a sequence does not
converge to the competitive equilibrium of the economy. However, if a tiny fraction ε2 of
type 2 sellers where to enter in each period, then for c ≤ ε2

1+ε2
the buyers of type 2 would

also find it profitable to enter. This results in the markets for both goods operating and leads
to convergence to a competitive equilibrium.

4. Existence and Characterization of Steady State Search Equilibria

The main result in this section, Theorem 2, shows that, for any configuration of search
frictions, that is, for any δ ∈ [0, 1] and c > 0, a steady state search equilibrium exists.
Proposition 2 shows that, in this equilibrium, all proposers make take-it-or-leave-it offers.
Also, Corollary 2 to Theorem 2, establishes the existence of full-trade equilibria for small
search frictions and shows that these equilibria converge to a competitive equilibrium of the
whole economy I ∪ S.

First, the focus is on the analysis of the three-stage Bayesian game. As stated earlier,
in the first stage of the game the proposer chooses a mechanism from the set of feasible
mechanisms, in the second stage the responder chooses whether to participate in the mech-
anism, and in the third stage, if the responder chooses to participate, then the two agents
simultaneously report their messages to the mechanism. A mechanism, µ, specifies a set of
feasible messages for the proposer and the responder; and for each pair of messages chosen
by the two agents, it specifies the probability of trade m and the expected transfer t to be
paid by the buyer to the seller. Let hbx = δ(vb∪s − vb) denote the “dynamic” value for a
buyer trading with any seller that owns good x, that is, any s ∈ Sx = {s : xs = x}.9 Also,
let r̂s = rs + δvs ≥ 0 denote a seller’s “dynamic” reservation value. If a buyer meets a seller
of good x, then the buyer’s and seller’s prior beliefs about the other’s type (i.e., the other’s
dynamic value) is obtained using the steady state measure l; and, in the case of the buyer,
conditioning on s ∈ Sx. Once the steady state measure and agent continuation values, and

9Observe that vb∪s = vb∪s′ for any s and s′ ∈ Sx.
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consequently the dynamic values, are fixed, the three-stage Bayesian game played in each
period is identical to the extensive form game analyzed by Maskin and Tirole (1990). Con-
sequently, for any vector of dynamic values and any steady state measure, existence of an
perfect Bayesian equilibrium follows from Proposition 6 of Maskin and Tirole (1990), under
two additional assumptions retained by Maskin and Tirole (1990).10 First, assume that the
set of feasible mechanisms is the set of all finite mechanisms where the number of messages
available for each type of agent is finite. Second, assume that the players have access to a
public randomization device in the third stage of the game, that is, the randomization device
is available in the continuation game after a mechanism has been chosen by the proposer
and accepted by the responder.11

Proposition 1. For any steady state measure l and any vector of continuation values v,
there exists a perfect Bayesian equilibrium for the three-stage mechanism proposal game.
Moreover, in this equilibrium all proposers offer the same direct mechanism and all respon-
ders accept to participate.

Proof. Follows immediately from Maskin and Tirole (1990) Proposition 6. �

Having established that an equilibrium exists for the stage game the next proposition
characterizes equilibria for the stage game. In particular, the proposition argues that each
proposer making a take-it-or-leave-it offer to the responder is an equilibrium of the stage
game. Moreover, any equilibrium of the stage-game is payoff equivalent to the equilibrium
where every proposer makes a take-or-leave-it offer. This property is a consequence of
quasilinear preferences and was established for the case where there are two agent types
by Maskin and Tirole (1990) and for the case where there are a continuum of agents and
the monotone hazard rate condition is satisfied by Yilankaya (1999). The argument here
generalizes the proof in Maskin and Tirole (1990) to the case of arbitrarily many discrete
types.

For any steady state measure l and continuation values v pick an equilibrium with strategy
and belief profile σ∗ and π∗ for the three-stage game with the related match probabilities

10Maskin and Tirole (1990) consider a model where the number of possible types of the proposer is unre-
stricted but the number of possible types of the responder is restricted to two. Also in their model utilities
for the buyers are strictly concave. However, it can be easily verified that these restrictions are immaterial
for their proof of existence.
11This randomization device is needed to ensure that the equilibrium payoff set is convex in the third stage
after any choice of mechanism. As in Maskin and Tirole (1990) the randomization device is not used on
the equilibrium path but is used to support off equilibrium path beliefs. In particular, the randomization
device facilitates the coordination of play on a particular Nash equilibrium if the subgame in the third stage,
defined by the choice of mechanism, has multiple Nash equilibria.
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and expected transfers m∗ and t∗.12 Consider the case when a seller s ∈ Sx is chosen as the
proposer and let V s denote the expected value for a seller if that seller makes a take-it-or-
leave-it offer when that seller is chosen as the proposer. Since the take-it-or-leave-it offer is
always available to a seller and can be implemented irrespective of the buyer’s beliefs about
the seller’s type, the expected payoff in the three-stage game when proposing must exceed
V s for all s ∈ Sx, i.e.,

∑
b∈B pb(t

∗
sb −m∗sbr̂s) ≥ V s.

The following optimization maximizes the total expected utility for all sellers of good
x ignoring the incentive compatibility constraints for the various seller types. Since the
seller incentive constraints are ignored, the mechanism identified by the program might not
be chosen by the sellers in the game even though the expected total utility of all seller is
maximized by this mechanism.

V = max
m,t≥0

∑
B×Sx

pbls(tsb −msbr̂s)

subject to incentive compatibility and individual rationality:∑
S
ls(msjhb − tsj) ≤

∑
S
ls(msbhb − tsb) ∀b, j ∈ B (αbj)(ICbj)

0 ≤
∑

S
ls(ms1h1 − ts1) (ψ)(IR)

msb ≤ 1 (γsb)

where the Lagrange multipliers are given to the right. The equilibrium match probabilities
and expected transfers are incentive compatible and individually rational. So, in particular,
they satisfy the constraints of the above maximization problem. This implies that V ≥∑

B×Sx lspb(t
∗
sb − m∗sbr̂s). The following proposition shows that the expected value from

all sellers making a take-it-or-leave-it-offer exceeds the value of the above maximization
problem, i.e.,

∑
s∈sSx lsV

s ≥ V ≥
∑

B×Sx pb(t
∗
sb − m∗sbr̂s). Consequently, the expected

utility for each seller
∑

B pb(t
∗
sb −m∗sbr̂s) must equal V s. Also, since each seller’s expected

equilibrium payoff in any equilibrium equals V s, each seller making a take-it-or-leave-it-offer
is a perfect Bayesian equilibrium for the stage game, where off-equilibrium path beliefs and
play, are given by any other equilibrium belief and strategy profile pair σ∗, π∗.13

12As a consequence of the Inscrutability Principle of Myerson (1983) all proposers offering the same direct
mechanism given by m∗ and t∗, all responders accepting and then truthful revelation is also an equilibrium
for the three-stage game where equilibrium path beliefs never change and are given by l and off equilibrium
path actions and beliefs are given by σ∗, π∗.
13The take-it-or-leave-it offer is incentive compatible and individually rational given any equilibrium beliefs
for the proposer since it gives the proposer their equilibrium payoff and also is trivially incentive compatible
and individually rational for the responder.
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Proposition 2. For any steady state measure l and any vector of continuation values v,
in any perfect Bayesian equilibrium of the three-stage game, the proposer’s payoff is equal
to the payoff the proposer would have received had she made an optimal take-it-or-leave-it
offer to the responder. Also, each proposer making an optimal take-it-or-leave-it offer is a
perfect Bayesian equilibrium of the three-stage game.

Proof. The problem for a seller s ∈ Sx, when the seller’s reservation value r̂s is known by
the potential buyers, is given by the following maximization problem

V s = maxm,t≥0

∑
B
pb(tbs −mbsr̂s)

hbmjs − tjs ≤ hbmbs − tbs (αsbj)(ICsbj)

0 ≤ h1m1s − t1s (ψs)(IRs)

mbs ≤ 1 (γsb )

Riley and Zeckhauser (1983) showed that a appropriately chosen take-it-or-leave-it offer is
optimal when a seller’s cost is know and consequently must solve the above program. Let
m′s and t′s solve problem V s for each s. The choice m = (m′s) and t = (t′s) is feasible for
problem V : m′s and t′s satisfies the (ICs) and (IRs) constraints for each s consequently
m = (m′s) and t = (t′s) satisfy (IC) and (IR) for problem V , since these constraints are l
weighted sums of constraints (ICs) and (IRs). This implies that V ≥

∑
s lsV

s. The dual
of the linear maximization problem V, is as follows:

D = min
γ≥0,α≥0,ψ≥0

∑
B×Sx

lsγsb

subject to: ∑
j∈B

(hbαbj − hjαjb) ≤ γsb + pbr̂s ∀b 6= 1, s,(Mb) ∑
j∈B

(αjb − αbj) + pb ≤ 0 ∀b 6= 1,(Tb) ∑
j∈B

(h1α1j − hjαj1) + h1ψ ≤ γs1 + p1r̂s ∀s,(M1) ∑
j∈B

(αj1 − α1j) + p1 ≤ ψ.(T1)

Also, the dual of V s is as follows

Ds = minγ≥0

∑
b
γsb
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subject to: ∑
j∈B

(hbαsbj − hjαsjb) ≤ pbr̂s + γsb∀b 6= 1,(Mbs) ∑
j∈B

(αsjb − αsbj) + pb ≤ 0∀b 6= 1,(Tbs) ∑
j∈B

(αsj1 − αs1j) + p1 ≤ ψs,(M1s) ∑
j∈B

(h1α
s
1j − hjαsj1) + h1ψ

s ≤ p1r̂s + γs1.(T1s)

By Lemma 5 in the appendix, one can pick multipliers αsbj = αbj for all b, j and s; ψs = 1
for all s ; and γs such that α, ψ and γs solve the dual problems Ds for each s. That is, there
are dual solutions αs, ψs, γs for the dual problems Ds where the αs and the ψs components
are equal across all s. Observe if α, ψ and γs satisfy the constraints (Mbs) and (M1s) for all
b and s , then α, ψ and γs satisfy constraints (Mb) and (M1) for problem (D). Likewise if α
and ψ satisfy constraints (Tbs ) and (T1s) for all b and s, then α and ψ satisfy constraints
(Tb) and (T1) for problem D. Consequently, α, ψ and γ = (γs)s∈Sx is a feasible solution for
D. α, ψ and γ feasible for D implies that V = D ≤

∑
B×Sx lsγ

s
b =

∑
Sx
lsDs =

∑
Sx
lsV

s

and thus proving the result. �

The main theorem, proved in this subsection, establishes that an equilibrium exists, for
any δ ∈ [0, 1] and c > 0. In the model presented here, without an assumption along the
lines of (FD), a trivial no-trade equilibrium always exists. Consequently, for a meaningful
existence result, the theorem below posits (FD) and establishes the existence of an equi-
librium with trade, that is an equilibrium where the markets for all the goods are open.
The proof of the theorem involves a straight forward application of Kakutani’s fixed point
theorem on a mapping defined from the set of feasible measures l, strategy profiles σ and
values v, into itself.

Theorem 2. Assume (FD). For any (c, δ) a search equilibrium (l, σ) exists.

Example 1 demonstrated that without (FD) there may exist sequences of equilibria that
fail to converge to competitive equilibria. The following corollary to Theorem 2 drops
Assumption (FD) but maintains the two additional assumptions outlined below. Corollary
2 shows that there exists a sequence of equilibria that converges to a competitive equilibrium
for the economy.

The first additional assumption (UNQ), requires that the set of goods traded in any
competitive is unique, that is, the same goods are traded in any competitive equilibrium.
It should be pointed out that this assumption is automatically satisfied in economies with
an homogeneous good such as Gale (1987) and Satterthwaite and Shneyerov (2007), which
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are special cases of the economy under consideration here. Also, the assumption is satisfied
generically for the economies that we consider.14

Assumption. Uniqueness (UNQ). The set of goods traded in any competitive equilibrium
is the same. That is if good x is not traded in one competitive equilibrium, then it is not
traded in any other CE.

Assumption (DR) requires the goods in the economy are substitutes for each other from
the point of view of all buyers. This assumption is always trivially satisfied in a subset of
the economies consider here where buyers have unit demand preferences.

Assumption. Decreasing Returns (DR). If G ⊂ H, then hbH∪{s}−hbH ≤ hbG∪{s}−hbG
for all b and s.

The argument for the corollary is as follows: First fix the set of goods traded in any
competitive equilibrium. Assume that a small measure of the lowest cost seller of each
of these goods enters in each period, i.e., (FD) holds for the traded goods. Given this
assumption a sequence of equilibria, that converges to a competitive equilibrium exists
by Corollary 1 and Theorem 2. However, if the measure of sellers with (FD) is picked
sufficiently small, then for sufficiently small cn and 1 − δn, the measure of sellers of the
traded goods entering the economy must exceed the measure of sellers entering due to the
(FD) assumption. Consequently, the (FD) assumption is non-binding and can be dropped
thus proving the existence of the desired sequence of convergent equilibria. The convergent
sequence, however, converges to an competitive equilibrium for the economy where the set
of traded goods is a subset of the set of all goods. Assumption (DR) is then used to show
that this also a Competitive Equilibrium for the set of all goods.

Corollary 2. Assume (UNQ) and (DR). There exists a sequence (qn, vn) → (q̂, v̂), such
that q̂ solves the primal Assignment Problem and is a competitive equilibrium allocation;
v̂ solves the dual Assignment Problem and is a competitive equilibrium utility vector; and
v̂s + rs is a competitive equilibrium price for good xs.

Proof. By (UNQ), the set of goods can be partitioned into two sets H ⊂ X and X \ H
where H denotes the set of goods that are traded in any competitive equilibrium. Let qx
denote the measure of good x traded by the lowest cost sellers of good x, i.e., by sellers
Sx = {s : xs = x and rs ≤ r′s for all s′ with xs′ = x}, traded in a competitive equilibrium.
More precisely

qx =
∑

s∈Sx

∑
b

∑
s3G

qbG

14This is because the linear program that characterizes the set of competitive allocations generically has a
unique solution.
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Also, let qx = minq∈Qqx where Q denotes the set of competitive allocations. Note that
Q is a compact and convex set and qx > 0 for any x ∈ H. Assume (FD) for all x ∈ H

and let the measure of low cost sellers of good x ∈ H receiving the first draw free be
0 < εx < qx. Observe that given this set-up, the sequence of equilibria will converge to q̂,
which is competitive equilibrium for the economy comprised of sellers such that xs ∈ H and
b ∈ B. Also, observe that since only goods in H are traded, q is also an efficient allocation
for the original economy I. For any buyer b with l̂b > 0, êbG ≤ 0 for any G ⊂ S. For
any buyer with l̂b = 0, êbG ≤ 0 for any G ⊂ {s : xs ∈ X \H}. This is because otherwise,
i.e., is êbG > 0, then allocating to b, who is not trading, the goods in G, which are not
being traded, would improve the efficiency of the matching which would contradict that the
matching q̂ is efficient. So êbG ≤ 0 for G ⊂ {s : xs ∈ X \H}. Also, for l̂b = 0, êbG ≤ 0 for
any G ⊂ {s : xs ∈ H}. But, êbG ≤ 0 for G ⊂ {s : xs ∈ H} and G ⊂ {s : xs ∈ X \H} in
conjunction with (DR) implies that êbG ≤ 0 for all b and G ⊂ S. This, in turn, shows that
the allocation q̂ is a competitive equilibrium allocation for I and v̂ is a competitive utility
vector.

Now observe that for sufficiently large n, σnsx(in) > εx since the measure of lowest cost
sellers leaving the market must converge to competitive competitive equilibrium which ex-
ceeds qx. This implies that for n sufficiently large vs(in) ≥ 0. This shows that we can drop
the (FD) assumption which is not binding for sufficiently large n and just take entry by
type sx to equal σnsx(in). �

5. Discussion and Conclusion

This paper presented a model where buyers purchase a bundle of indivisible, heteroge-
neous goods from sellers who are each endowed with one unit of a good. Trade takes place
in a decentralized market under two sided incomplete information. A small measure of the
lowest cost seller of each good is assumed to sample the market at least once. Under this
assumption an equilibrium is shown to exist (Theorem 2) and any sequence of equilibria is
shown to converge to a competitive equilibrium.

The model presented here considered the case where agents bargain pairwise, where
as other studies in the literature, such as Satterthwaite and Shneyerov (2007), analyze
bargaining in larger coalitions. The convergence result is not sensitive to this assumption. In
particular, the results presented here are robust to any random matching technology as long
as any buyer and seller whose exist with positive measure in the economy meet with positive
probability. Also, the analysis proceeded under the assumption of two sided incomplete
information. However, all the results presented also go through without alteration under
complete information. Finally, a central assumption in the model maintained throughout
the paper was that the economy remains in steady state. An immediate way to extend
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this model is to drop the steady state assumption and consider a non-stationary market
with finitely many, instead of a continuum, of agents entering in each period. Under such a
formulation, the goal would be to show that trade always occurs at competitive prices and
that the market clears on average.

Appendix A. Omitted Proofs

A.1. Proof of Theorem 1.

Lemma 1 (No Excess 1). If max{p̂b, p̂s} > 0, then ebs ≤ 0.

Proof. For any c and δ a seller (or buyer) can offer to sell her good for δvb∪s − δvb − ε

and ensure that buyer b purchases if they meet, since the payoff that buyer b gets from
purchasing the good strictly exceeds her continuation payoff δnvb. Also, any buyer can offer
to buy a good for rs + δvs + ε, and ensure that she makes a purchase if she meets seller s.
Consequently, for any c and δ

vs ≥ −c+ (1− β)pb(δvb∪s − δvb − rs) + δ(1− (1− β)pb)vs

(1− δ)vs ≥ −c+ (1− β)pb(δvb∪s − δvb − δvs − rs), and

(1− δ)vb ≥ −c+ βps(δvb∪s − δvb − δvs − rs).

So

lim
n

(1− δn)vns ≥ lim
n
−cn + (1− β)pnb e

n
bs,

lim
n

(1− δn)vnb ≥ lim
n
−cn + βpns e

n
bs.

Taking limits shows that p̂bêbs ≤ 0 and p̂sêbs ≤ 0. However, since max{p̂b, p̂s} > 0, êbs ≤
0. �

Lemma 2. Let Ln = max{LnB, LnS}, limn c
nLn = 0 and limn(1− δn)Ln = 0.

Proof. If lim supLn < ∞, then since 0 ≤ Ln, limn c
nLn = 0 and limn(1 − δn)Ln = 0.

If lim supLn = ∞, then either (inclusive) lim supLnb = ∞ or lim supLns = ∞. Assume,
lim supLn = ∞ and, without loss of generality, that lim supLnb ≥ lim supLns . For lb > 0,
vb = vb(in) and thus the following equation is satisfied for all b ∈ B,

(1− δ)lbvb + lbc =
∑

s∈S
lbps(Mbs(δvb∪s − δvb)− βtbs − (1− β)tsb)

Observing that 0 ≤ (1− δ)lbvb and summing up over all buyers in B gives∑
b∈B

lbc ≤ L
∑
b∈B

pb
∑
s∈S

ps(Mbs(δvb∪s − δvb)− βtbs − (1− β)tsb)
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Individual rationality for any seller s implies that
∑

B pb(βtbs+(1−β)tsb−Mbs(rs+δvs)) ≥ 0
since otherwise this seller would do strictly better off by not trading. Substituting this for
transfers above gives∑

b∈B
lbc ≤ L

∑
B×S

pbpsMbs(δvb∪s − δvb − (rs + δvs))

=
∑
B̂×S

lbpsMbsebs +
∑

(B\B̂)×S

lbpsMbsebs

where B̂ = {B : p̂b > 0}. In Lemma 1 it was shown that (1 − δ)vb + c ≥ βpsebs for each b

and also vb ≤ h̄ consequently∑
b∈B

lbc ≤
∑
B̂×S

lbpsMbsebs +
∑
B\B̂

lb|S|
β

(c+ (1− δ)h̄).

Observe that lim 1−δn
cn = lim∆t→0

1−e−ρ∆t
∆tκ = ρ

κ > 0. Consequently, for ∆t sufficiently small
there exists ξ such that c+ (1− δ)h̄ ≤ c(1 + ξ). Substituting yields∑

b∈B
lbc ≤

∑
B̂×S

lbpsMbsebs +
∑
B\B̂

lbc
|S|(1 + ξ)

β(∑
b∈B

lbc

)1−
Lc
∑

B\B̂ pb
|S|(1+ξ)

β

Lc
∑

b∈B pb

 ≤∑
B̂×S

lbpsMbsebs

(∑
b∈B

lbc

)1−
∑

B\B̂ pb
|S|(1+ξ)

β∑
b∈B pb

 ≤∑
B̂×S

lbpsMbsebs

The assumption of steady state implies that
∑

s lbpsMbs ≤ 1 for each b and consequently,(∑
b∈B

lbc

)1−
∑

B\B̂ pb
|S|(1+ξ)

β∑
b∈B pb

 ≤∑
B̂×S

ebs

By the definition of B̂, limn
∑

B\B̂ p
n
b = 0, limn

∑
b∈B p

n
b = 1 and limn 1−

∑
B\B̂ p

n
b
|S|(1+ξ)

β∑
b∈B p

n
b

= 1
and consequently,

lim
n

(∑
b∈B

lnb c
n

)
lim
n

1−
∑

B\B̂ p
n
b
|S|(1+ξ)

β∑
b∈B p

n
b

 ≤ lim
n

∑
B̂×S

enbs

lim
n

∑
b∈B

lnb c
n ≤ lim

n

∑
B̂×S

enbs
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However, if p̂b > 0, then limn e
n
bs = 0 for any s , by Lemma 1. This implies that

0 ≤ lim
n

∑
b∈B

lnb c
n ≤ lim

n

∑
B̂×S

enbs = 0

Also, limLncn = 0, implies, limn(1− δn)Ln = 0 because lim 1−δn
cn = ρ

κ . �

Lemma 3. êiG ≤ 0 for all i ∈ I and G ⊂ Ŝ.

Proof. By the argument provided in Lemma 1, for i ∈ I,

(1− δn)vni ≥ −cn + βpns1(δnvi{s} − δ
nvni − δnvns − rns ).

Multiply both sides by Ln = max{LnB, LnS} which gives

((1− δn)vni + cn)Ln ≥ βLnpns1(δnvni{s1} − δ
nvnii − δnvns1 − rns1).

However, by Lemma 2,
limn((1− δn)vni + cn)Ln = 0.

Also, by assumption, limLnpns = lim lns > 0 for all s ∈ Ŝ, and consequently,

v̂i{s} − v̂b − v̂s − rs ≤ 0.

Also, again by the argument provided in Lemma 1,

((1− δn)vni{s,s2} + cn)Ln ≥ βLnpns2(δnvi{s,s2} − δ
nvni{s} − δ

nvns2 − rns2).

So, v̂i{s,s2} − v̂i{s} − v̂s2 − rs2 ≤ 0. Substituting gives

v̂i{s,s2} − v̂i − v̂s2 − v̂s − rs − rs2 ≤ 0

Repeating |G| times shows that

v̂iG − v̂i −
∑

s∈G
(v̂s + rs) ≤ 0.

However, vniG ≥ hiG for all n and so v̂iG ≥ hiG. Thus

hiG − v̂i −
∑

s∈G
(v̂s + rs) ≤ 0

proving the result. �

Lemma 4.
∑

i∈I v̂i +
∑

S v̂s ≤
∑

i∈I
∑

G q̂iG(hiG −
∑

s∈G rs).

Proof. The value equations for the buyers implies

lbvb(1− δ) ≤ β
∑

s
lbpsmbs(σb∪s(in)δ(vb∪s − hi(b)G(b∪s)) + δhi(b)G(b∪s) − δvb − tbs)

+ (1− β)
∑

s
lbpsmsb(σb∪s(in)δ(vb∪s − hi(b)G(b∪s)) + δhi(b)G(b∪s) − δvb − tsb)
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Summing up over all buyers and taking the limit as δ → 1 and observing that tbs goes to
vs + rs for any b and s with mbs > 0 gives

0 ≤
∑

b∈B

∑
s∈S

(1−σ̂b∪s (in))(βl̂bp̂sm̂bs+(1−β)l̂bp̂sm̂sb)(hi(b)G(b∪s)−v̂i(b)−
∑

j∈G(b∪s)
(v̂j+rj))

rearranging shows that

0 ≤
∑

b∈B

∑
s∈S

(1−σ̂b(in))(βl̂b\sp̂sm̂b\ss+(1−β)l̂b\sp̂sm̂sb\s)(hi(b)G(b)−v̂i(b)−
∑

j∈G
(v̂j+rj))

However ∑
s∈S

(1− σ̂bG(in))(βl̂bG\s p̂sm̂bG\ss + (1− β)l̂bG\s p̂sm̂sbG\s) = q̂i(b)G(b)

which implies that

0 ≤
∑

b∈B
q̂i(b)G(b)(hi(b)G(b) − v̂i(b) −

∑
j∈G(b)

(v̂j + rj))

0 ≤
∑

i∈I

∑
G
q̂iG(hiG − v̂i −

∑
j∈G

(v̂j + rj))

Observe that for i with v̂i > 0
∑

G q̂iG = 1 and for s with v̂s > 0,
∑

b

∑
s�G q̂bG = 1 so∑

i∈I
v̂i +

∑
S
v̂s ≤

∑
i∈I

∑
G
q̂iG(hiG −

∑
s∈G

rs)

proving the result. �

A.2. Proof of Proposition 2. Let the buyers in the set B are arranged in decreasing
order of their dynamic value with h1 being the lowest and h|B| the highest dynamic buyer
value. For the proposition we need to show that there exists α, ψ and (γs)s∈Sx such that α,
ψ and γs solve Ds for each s where the α and ψ are independent of s . In the case where the
marginal revenue is decreasing, this is straight forward. Suppose that the marginal revenue
is increasing in b for all b ∈ B, that is,

∆b = hb − (hb+1 − hb)(
|B|∑

k=b+1

pk)/pb

is increasing in b. Set ψs = ψ =
∑|B|

b=1 pb = 1 for all s; αsb,b−1 = αb,b−1 =
∑|B|

k=b pk and all
other αbk = 0 for all s; and γsb = pb max{∆b − r̂s, 0}. Observe that

∑
j∈B

(hbαsbj − hjαsjb) = hbαb,b−1 − hb+1αb+1,b = hb

|B|∑
k=b

pk − hb+1

|B|∑
k=b+1

pk = pb∆b

Also,
pbr̂s + γsb = pb max{∆b − r̂s, 0}+ pbr̂s = pb max{∆b, r̂s}
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Consequently, ∑
j∈B

(hbαsbj − hjαsjb) = pb∆b ≤ pbr̂s + γsb = pb max{∆b, r̂s}

and so (Mbs) is satisfied.
Also,

∑
j∈B

(αsjb − αsbj) + pb = αb+1,b − αb,b−1 + pb =
|B|∑

k=b+1

pk −
|B|∑
k=b

pk + pb = 0

and so (Tbs) is satisfied. Consequently, these multipliers satisfy all constraints for the dual
optimization problems Ds.

In the case where the marginal revenue is not necessarily decreasing, the argument is
more involved. The following lemma proves the general result.

Lemma 5. There exists α, ψ and (γs)s∈Sx such that α, ψ and γs solve Ds for each s.

Proof. Observe that the optimal solution to each V s is a take it or leave it offer. In an
optimum for the primal optimization problem V s the upward incentive constraints, i.e,
(ICsjb) where j < b, never bind so always take αjb = 0 if j < b.

The proof is by induction. Take ψ = 1. Pick α such that (α, 1, γs) ∈ arg minDs for all
s = 2, ..., |Sx| with r2 < r3... ≤ r|Sx|. I show that there exists α′ such that (α′, 1, γs) ∈
arg minDs for all s = 1, 2, ..., |Sx| with r1 < r2 < r3... ≤ r|Sx|.

Let b(s) ≡ minb{ms
b > 0, (m, t) ∈ arg maxV s}. Choose (α, 1, γs) ∈ arg minDs s =

2, ..., |Sx| such that the primal solution has m2
b(2) > 0. Observe for b > b(2) and k < b(2),

αbk = 0. This is because αbk is the multiplier associated with ICsbk which holds strictly.
Also, let αb(2)k = 0 for all k > 1 and let αbk = 0 for all b < b(2) and k ≥ 1. This works
because all constraints (IC2

b(2)k) are identical and have righthand sides equal to zero, and
all constraints (IC2

bk) for all b < b(2) and k ≥ 1 the same and have both left and righthand
sides equal to zero. Summing over all constraints (Tb2) (which hold strictly since they are
the dual constraint associated with transfer payments T ) gives

∑
b>b(2)

(pb +
∑
k>b

αkb −
∑
k<b

αbk) + pb(2) +
∑
k>b(2)

αkb(2) − αb(2),1 = 0

αb(2),1 =
∑
b≥b(2)

pb.

For b < b(2), γsb = 0 since this is the multiplier on constraint Mbs ≤ 1. Also, for b ≥ b(2)∑
k<b

hbαbk −
∑
k>b

hkαkb = pbrs + γsb
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since the multiplier Mbs > 0 for all b ≥ b(2).
Claim 1. There exists (α1, 1, γ′) ∈ arg minD1 such that α1

bj = αbj for b ≥ b(2) and
j > b(2) and γb = γ2

b + (r2 − r1)pb for b ≥ b(2).

Proof. Take the alternative maximization problem where all buyers with valuation hb ≥ hb(2)

are viewed as one buyer with mass
∑

b≥b(2) p(b) and valuation hb(2). This maximization has
an identical solution (to the maximization problem under consideration) for seller r1. Pick
the multipliers α1

bj for b ≤ b(2) and j < b(2) and γ′b for b < b(2) using the alternative
maximization problem and set α1

bj = αbj for b ≥ b(2) and j > b(2) and γ′b = γ2
b + (r2− r1)pb

for b ≥ b(2). These multipliers satisfy dual constraints and solve the dual maximization
problem. �

Claim 2. Pick (α1, 1, γ′) ∈ arg minD1 from Claim 1. There exists 0 ≤ γ1
b such that

γ1
b ≤ pb min(hb − r1, r2 − r1) for all b(1) ≤ b < b(2),

b(2)−1∑
k=b

γ1
k ≥ (hb − r1)

b(2)−1∑
k=b

pk − (hb(2) − hb)(
∑
k≥b(2)

pk)

for all b(1) ≤ b < b(2). Also, for (α1, 1, γ′) ∈ arg minD1 from Claim 1, γ1
k = γ′k for k ≥ b(2)

and
∑

k γ
′
k =

∑
k γ

1
k .

Proof. Pick (α1, 1, γ′) ∈ arg minD1 from Claim 1. Observe that (hb − r2)
∑b(2)−1

k=b pk −
(hb(2) − hb)(

∑|B|
k=b(2) pk) < 0 for any b < b(2) because otherwise b(2) would not be the

cut-off type for seller with cost r2. Shuffle γ1
b for b = b(2) − 1, ..., b(1) to ensure the above

inequalities hold. �

Let

∆b(α) =
∑
k<b

hbαbk −
∑
k>b

αkbhk − pbr1.

Observing that
∑

k<b αbk = pb +
∑

k>b αkb, gives

∆b(α) = pb(hb − r1)−
b(2)∑

k=b+1

(hk − hb)αkb.

Claim 3. There exists (α′, 1, γs) ∈ arg minDs for s = 2, ..., |Sx| such that γ1
b(2)−1 identi-

fied in Claim 2 with α′ satisfy dual constraints (Mb(2)− 11) and (Tb(2)− 11) for problem
D1. Also, this process can be repeated so that γ1 and α′ satisfy dual constraints (Mk1)
and (Tk1) for all k for problem D1.
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Proof. Pick (as above) (α, 1, γs) ∈ arg minDs s = 2, ..., |Sx|. Let b = b(2)− 1. Observe that
αb(2),1 =

∑
k≥b(2) pk. For zb ∈ [0, 1] set α′b(2)b = zbαb(2)1. So

∆b(α′) =
∑
k<b

hbα
′
bk −

∑
k>b

α′kbhk − pbr1

∆b(α′(zb)) = pb(hb − r1)− zb(
∑
k≥b(2)

pk)(hb(2) − hb).

The definition of ∆b(α′(zb)) presumes that (Tb1) hold with equality. Observe that if zb = 0,
then ∆b(α′(0)) = pb(hb − r1) ≥ pb min{r2 − r1, hb − r1} ≥ γ1

b and ∂∆b(α
′(0))

∂zb
< 0. Also,

∆b(α′(1)) = (hb − r1)pb − (
∑
k≥b(2)

pk)(hb(2) − hb) ≤ γ1
b

by Claim 2. Consequently, there exists zb ∈ [0, 1] such that ∆b(α′(zb)) = γ1
b . For b − 1

set α′b(2),b−1 = zb−1(1 − zb)αb(2)1, α′b,b−1 = zb−1(pb + zbαb(2),1) and let
∑

k<b−1 α
′
b−1,k =

pb−1 + zb−1(pb + αb(2)1) so that constraint (Tb1) holds. Again, Claim 2 can be used to pick
zk ∈ [0, 1].

Define α
′

kb(1) = pk+
∑

j>k α
′
jk−

∑
b(1)<j<k α

′
kj and α

′

b(1),1 = pb(1)+
∑

k>b(1) α
′

kb(1) ensuring

that (Tb1) hold with equality. Observe that α
′

b(1),1 = pb(1) +
∑

k>b(1) α
′

kb(1) =
∑

b≥b(1) pb.
By Claim 2

b(2)−1∑
k=b(1)

γ1
k = (

b(2)−1∑
k=b(1)

pk)hb(1) − r1(
b(2)−1∑
k=b(1)

pk)− (
∑
k≥b(2)

pk)(hb(2) − hb(1))

= (
∑
k≥b(1)

pk)hb(1) − r1(
b(2)−1∑
k=b(1)

pk)− (
∑
k≥b(2)

pk)hb(2)

Also, by the choice of α1,

b(2)−1∑
k=b(1)+1

γ1
k =

b(2)−1∑
k=b(1)+1

α′kb(1)hk − (
b(2)−1∑

k=b(1)+1

α′b(2)k)hb(2) − r1

b(2)−1∑
k=b(1)+1

pk
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Consequently,

γ1
b(1) =

b(2)−1∑
k=b(1)

γ1
k −

b(2)−1∑
k=b(1)+1

γ1
k

= (
∑
k≥b(1)

pk)hb(1) −
b(2)−1∑

k=b(1)+1

α′kb(1)hk − hb(2)(
∑
k≥b(2)

pk − (
b(2)−1∑

k=b(1)+1

α′b(2)k))− r1pb(1)

= (
∑
k≥b(1)

pk)hb(1) −
b(2)−1∑

k=b(1)+1

α′kb(1)hk − hb(2)α
′
b(2)b(1) − r1pb(1) = ∆b(1)(α

′)

proving the result. �

The α′, 1, γs identified by the previous claim is an element of arg maxDs for s = 1, ..., |Sx|
since

∑
γ1
b = (hb(1) − r1)

∑
pb and α′ and γ1 satisfy all constraints of the problem D1 thus

completing the proof. �

A.3. Proof of Theorem 2.

Proof. The argument identifies a candidate equilibrium where each proposer chooses an op-
timal mechanism as if their type is observed (the take-it-or-leave-it offer is a optimal choice),
and the steady state measure and values are consistent with the matching probabilities and
transfer payments generated by these optimal mechanisms. The candidate equilibrium is
generated via a fixed point argument outlined below. Proposition 2 implies that the take-
it-or-leave offer that solves the mechanism choice problem where the proposer’s type is
observed (or any other solution) is also a solution to the mechanism choice problem where
the proposer’s type is private information for appropriately chosen off-equilibrium path be-
liefs π. Consequently, the candidate equilibrium is an equilibrium for the economy with the
off equilibrium path beliefs given by π.

For any c and δ, 0 ≤ vi ≤ h̄. Let V = {v ∈ R|I|×2|S|+|S| : 0 ≤ vi ≤ h̄} denote the set of
possible values.

Let εs = εx, if s is the lowest cost seller of good xs and εs = 0 otherwise. For all
i ∈ I and s ∈ S, if vs(in) < 0, then ls = εs by Assumption (FD), and if vi(in) < 0, then
li = 0. If vs(in) ≥ 0, then ls = 1/(

∑
b∈T pbMbs + σs(out)). For i ∈ I, if vi(in) ≥ 0, then

li = 1/(
∑

s∈SMis + σi(out)). Also, if σb(in)
∑

s∈G(b) lb\sMb\ss ≥ 0, then

lb =
σb(in)

∑
s∈G(b) lb\spsMb\ss∑

s∈S psMbs + σb(out)
.

Observe that vj(in) ≤ −c+
∑

k pkMjkh̄ and so c/h̄ ≤
∑

k pkMjk. Consequently, 1 ≤ lj ≤
h̄
c . Let Λ = {l : 1 ≤ lj ≤ h̄

c } denote the set of possible steady state measures. Let mbs and
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transfer tbs be the mechanism choice by the buyers and msb and tsb the mechanism choice
by the sellers, and σi = (σi0, µi). Start with any l ∈ Λ, σ ∈ Σ, v ∈ V and let

l′s(l, σ, v) =
max{σs(in), εs}

max{c/h̄,
∑

b∈B pbMbs}
,

l′i(l, σ, v) =
σb(in)

max{c/h̄,
∑

s∈S psMis}
for i ∈ I and,

l′b(l, σ, v) =
σb(in)

∑
s∈G(b) lb\spsMb\ss

max{c/h̄,
∑

s∈S psMbs}
for b ∈ B

where the M ’s are calculated according to σ. This defines a continuous function from
Λ× Σ× V into Λ, where (l, σ, v) 7→ l′i for each i.

Let

v′b(in|l, σ, v) = max(m′b,t
′
b)≥0−c+ β

∑
ps(m′bs(δvb∪s − δvb)− t′bs)

+ (1− β)
∑
s

ps(msb(δvb∪s − δvb)− tsb) + δvb

subject to

t′bs −m′bs(rs + δvs) ≥ t′bj −m′bj(rs − δvs) for all s and j ∈ S

t′bs −m′bs(rs + δvs) ≥ 0 for all s

m′bs ≤ 1 for all s.

Also, let S′b,1(l, σ, v) denote the set of maximizers for the above program. Observe that
the objective function of this maximization problem is continuous and concave in m and
t, and the constraint set, defined by linear inequalities, is non-empty (m = 0 and t = 0 is
always feasible), convex and compact for any choice of (l, σ, v) ∈ Λ×Σ× V . Consequently,
v′b(in|l, σ, v) is a continuous function of (l, σ, v) and S′b,1(l, σ, v) is a upper-hemi-continuous
(UHC), non-empty, convex and compact valued correspondence of (l, σ, v). Let,

v′(l, σ, v) = max
σ0∈∆{in,out}

σ0v
′
b(in, l, σ, v) + (1− σ0)hbG(b)

S′b,0(l, σ, v) = arg max
σ0∈∆{in,out}

σ0v
′
b(in, l, σ, v) + (1− σ0)hbG(b).

Again, by the same reasoning as above, since v′b(in, l, σ, v) is continuous, v′(l, σ, v) is con-
tinuous, S′b,0(l, σ, v) is UHC, nonempty, convex and compact valued.

Similarly, for a seller, let

v′s(in|l, σ, v) = maxm′s,t′s −c+ (1− β)
∑

b∈B
pb(t′sb −m′sb(rs + δvs))

+ β
∑

b∈B
pb(tbs +mbs(rs + δvs)) + δvs
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subject to

m′sb(δvb∪s − δvb)− t′sb ≥ m′sj(δvb∪s − δvb)− t′sj for all b and j ∈ B

m′sb(δvb∪s − δvb)− t′sb ≥ 0 for all b

m′sb ≤ 1 for all b

Also, let S′s,1(l, σ, v) denote the set of maximizers for the above program and

v′s(l, σ, v) = max
σ0∈∆{in,out}

σ0v
′
s(in, l, σ, v)

S′s,0(l, σ, v) = arg max
σ0∈∆{in,out}

σ0v
′
s(in, l, σ, v).

Finally let S′i(l, σ, v) = S′i,0(l, σ, v) × S′s,1(l, σ, v) and S′(l, σ, v) =
∏
i S
′
i(l, σ, v). Define

correspondence (l, σ, v) 7→ (l′, S′, v′). This correspondence maps Λ×Σ× V into Λ×Σ× V ,
is UHC, compact, and convex valued; thus by Kakutani’s theorem has a fixed point. This
fixed point is an equilibrium for the economy. �
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