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Abstract 

This paper investigates Value at Risk and Expected Shortfall for CAC 40, S&P 500, 

Wheat and Crude Oil indexes during the 2008 financial crisis.  We show an underestimation 

of the risk of loss for the unconditional VaR models as compared with the conditional models. 

This underestimation is stronger using the historical VaR approach than when using the 

extreme values theory VaR model. Even in 2008 financial crisis, the conditional EVT model 

is more accurate and reliable for predicting the asset risk losses. Banks have no interest in 

using it because the Basel II agreement penalizes banks using accuracy models like the 

conditional EVT model, and this is the case for the assets being studied in this paper.  
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 3

1. Introduction 

In recent years both practitioners and academics from the financial community have 

become interested in extreme events analysis particularly concerning financial risk 

management. From a practical point of view, protecting the financial system and investor’s 

wealth against unpredictable catastrophic events such as the October 1987 stock market crash, 

the 2000 Internet bubble burst or the 2007 subprime crisis, calls for reliable tools to measure 

extreme risks. Indeed, the ability to estimate extreme market movements can be particularly 

useful for detecting risky portfolios.  

Usually, risk estimation studies concentrate on two measures that attempt to describe 

the tail of a loss distribution – Value at Risk (VaR) and Expected Shortfall (ES). Value at 

Risk has become the standard measure of risk employed by financial institutions and their 

regulators. This risk measure can be defined as a high quantile of the distribution of losses, 

typically the 95th or 99th percentile. It provides a kind of upper bound for a loss that is only 

exceeded on a small proportion of occasions. However, some authors, like Artzner et al. 

(1999) have criticized VaR as a measure of risk on two grounds. First, VaR is not necessarily 

sub-additive meaning that VaR is not a coherent risk measure: there are cases where a 

portfolio can be split into sub-portfolios such that the sum of the VaR corresponding to the 

sub-portfolios is smaller than the VaR of the total portfolio. This may cause problems if the 

risk-management system of a financial institution is based on VaR-limits for individual 

books. Moreover, VaR tells us nothing about the potential size of the loss that exceeds it. 

Artzner et al. propose use of Expected Shortfall instead of VaR. The Expected Shortfall is the 

expected size of a loss that exceeds VaR and is coherent according to their definition. 

The suitability of VaR approaches in practice is questionable in light of considerable 

evidence of the non-normality of market returns. In fact, the exact distribution of financial 

returns remains unknown. Stylized facts about the distribution of financial returns generally 

concur that at monthly and longer horizons, return series appear to be normally distributed. 

However, at weekly, daily and higher frequencies, return distributions consistently display 

non-normal features. Indeed, many authors like Agarwal et al. (2000), Michell et al. (2000) 

and Liang (1999) recognize that the returns’ distributions have a leptokurtic and asymmetric 

shape.  Obviously, the use of a normal approximation of the marginal return distribution 

results in underestimated tails and disregards excess kurtosis and skewness displayed by the 

empirical marginal distributions of returns. 
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 4

Extreme Value Theory (EVT) uses alternative distributions and focuses on the tail 

behavior of the asset returns. EVT methods have two features which make them attractive for 

tail estimation: they are based on a sound statistical theory, and they offer a parametric form 

for the tail of a distribution. Two main approaches are proposed in the literature to calibrate extreme 

value theory: the Block Maxima (BM) based on the Generalized Extreme Value (GEV) and the Peak 

Over Threshold (POT) based on the Generalized Pareto Distribution (GPD). Since the seminal work 

of Longin (1998), the empirical applicability of EVT to estimate extreme risks of real market 

data has been tested by several authors. Neftci (2000) and Fromont (2005) demonstrate that 

the unconditional VaR from the POT method is more accurate than that from the normal 

distribution. Da Silva et al. (2003) study ten Asian stock markets and show the accuracy of 

GEV VaR calculated over more one-month horizon. McNeil et al. (2000) first combine the 

generalized Pareto distribution and the GARCH model to estimate conditional VaR. 

Fernandez (2003) and Gençay et al. (2004) also combine GPD and GARCH model to 

measure conditional VaR on several emerging markets. Marimoutou et al. (2009) apply the 

conditional GPD to the crude oil. Assaf (2009) use conditional generalized Pareto distribution 

to model emerging market risks. The majority of these studies show the empirical superiority 

of EVT for VaR and ES estimation. Most of these studies focus on a one-day horizon and 

don’t take into account the asymmetric returns.  

 In this study, we estimate Value at Risk and Expected Shortfall based on extreme 

value theory model and historical simulation approach and analyze their accuracy during the 

2008 financial crisis. We take into account the volatility clustering and asymmetric return 

problems by introducing a GJR-GARCH model (Glosten, Jagannathan and Runkle, 1993) in 

the historical simulation and EVT methods.  To our knowledge, implementation of the 

extreme value theory, (more particularly the generalized Pareto distribution) for VaR 

estimation has never been applied for more than a one day time horizon for measuring Value 

at Risk of financial assets, but there are several economic and practical  reasons for computing 

long-term risk measures. The risk horizons longer than one day are particularly important for 

risk liquidity management, for long term strategic asset allocation and for capital 

requirements. The Basel Committee obliges banks to compute their risk over ten-day horizon. 

To sum up, our paper contributes to the literature in three ways. First, we introduce GJR-

GARCH in EVT model and Filtered Historical Simulation (FHS) approach to take into 

account volatility clustering and asymmetric returns. Second, we calculate VaR and ES over 

5-day and 10-day horizons for risk liquidity management and Basel capital requirements. 

Finally, we focus on the accuracy of our risk models during the 2008 financial crisis, capital 
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 5

requirement measures and the opportunity of banks to choose a reliable model. The remainder 

of this paper is organized as follows.  In Section 2 we present our data sample and its 

descriptive statistics. We present generalized Pareto distribution parameter estimate in section 

3. We also check the adequacy between the empirical and theoretical generalized Pareto 

distributions. Section 4 explains relevant back-testing procedures for testing the accuracy of 

VaR and ES estimates. In section 5, our empirical results from the Historical Simulation 

method and EVT model are presented. Finally, Section 6 concludes and gives some 

suggestions for future research.  

2. Data sample and descriptive statistics 

 
Our study focuses on logarithmic returns of the CAC 40, S&P 500 stock indexes and 

Wheat, Crude Oil commodity indexes, extracted from the Datastream database. The Wheat 

and Crude oil are taken from the Goldman Sachs Commodity Index (GSCI) of Standard and 

Poor. The study covers the period from January 1988 to December 2010 for all stock and 

commodity indexes.   We have 6000 daily observations of logarithmic returns based on 

market closing price for each index. We calculate 5-day and 10-day returns by calculating the 

sum of daily returns. These returns are not overlapped. The choice of these indexes is 

motivated by their availability over a long period thus giving more extreme.  

Table 1 presents descriptive statistics for the analysis of the logarithmic returns of 

CAC 40, S&P 500, Wheat and Crude Oil. It gives an overview of the behavior of asset 

distributions for different time horizons. Excepting the Wheat, we observe that the skewness 

is negative for all time horizons, meaning that these stock and commodity indexes recorded 

returns lower than their average during the period which appears in the Gaussian model. 

Likewise, kurtosis is higher than 3 for the considered time horizons. We are thus confronted 

with a case of leptokurtic distributions, i.e. they have fat tails, in comparison with the normal 

distribution. These distributions do not follow normal distribution patterns confirmed by the 

Jarque-Bera test in Table 1. At first glance, the study of the behavior of the extremes in the 

left tails of these leptokurtic distributions seems justified as it should allow better estimation 

of extreme variations of financial returns. VaR and ES estimates based on the hypothesis of 

the normal distribution of returns must then be rejected and we need to compute them in the 

non-normal framework (EVT framework for example). 
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Table 1 
Descriptive statistics for different time horizons (data from January 1988 - December 2007) 

       Weekly and 2 weeks returns are respectively the sum of 5 and 10 daily logarithmic returns of assets and 
they do not overlap. The numbers in parentheses are the standard error. Kurtosis excess is the kurtosis minus 
three. For all returns, the kurtosis is greater than three meaning the distribution curves have fat tails. CAC 40, 
S&P 500 and Crude oil have skewed distributions. Wheat does not. The calculated p-values of Jarque Berra 
test are lower than chosen p-value and show our asset returns don’t follow the normal distribution. 
 

 
3.  Estimate of the tail distribution parameters with the POT method 

 
As we reject normality for the distribution of studied asset return series, we need to 

adequately fit the tail of the return distributions to estimate its risk parameters with EVT. 

Modeling extremes can be done in two different ways: by modeling the maximum of a 

collection of random variables or by modeling the largest values over some high threshold, 

known as the Peak Over Threshold method. We use the latter as it uses data more efficiently.  

Let (��, ��, …, ��) be a sequence of independent and identically random variables from 

unknown distribution F. We fix a sufficient threshold �. Consider ��, ��, …�� as the excesses 

above this threshold where �� 	 �� 
 �. 

Let us define the excess distribution above the threshold � as the conditional probability:  

���� 	 �� 
 � � � �� ⁄                                                                  (1) 

���� 	 � ��������������          , � � 00                              , � � 0�                                                      (2) 

For u large, the Gnedenko-Pickands-Balkema-deHaan theorem states that the 

distribution function converges to a generalised Pareto distribution. 

lim�!"# $�% &�'���(),*'���&+,,-�."#��                                                                           3�                                 

Minimum Maximum Mean Std. Deviation Skewness Kurtosis excess Jarque Bera test (5%)

Daily -0.077 0.070 0.00 0.013 -0.142(0.03) 3.179(0.07) 0.00

Weekly -0.121 0.110 0.00 0.027 -0.151(0.08) 1.15(0.15) 0.00

2 Weeks -0.189 0.146 0.00 0.039 -0.369(0.11) 1.142(0.21) 0.00

Daily -0.071 0.056 0.00 0.009 -0.235(0.03) 4.581(0.07) 0.00

Weekly -0.123 0.075 0.00 0.021 -0.48(0.08) 2.912(0.15) 0.00

2 Weeks -0.117 0.104 0.00 0.028 -0.257(0.11) 1.593(0.21) 0.00

Daily -0.061 0.079 0.00 0.015 0.225(0.03) 1.676(0.07) 0.00

Weekly -0.117 0.151 0.00 0.033 0.401(0.08) 0.979(0.15) 0.00

2 Weeks -0.134 0.177 0.00 0.047 0.37(0.11) 0.369(0.21) 0.00

Daily -0.384 0.136 0.00 0.021 -1.359(0.03) 24.922(0.07) 0.00

Weekly -0.323 0.201 0.00 0.044 -0.575(0.08) 3.964(0.15) 0.00

2 Weeks -0.332 0.264 0.00 0.061 -0.349(0.11) 2.403(0.21) 0.00

S&P 500 

GSCI Wheat

GSCI Crude oil

Descriptive Statistics

Returns

CAC 40 
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where 01,2 is the generalized Pareto distribution and given by:  

01,2�� 	 31 
 1 5 1�2  ��� 16   ,          7 8 01 
 exp<
 � =6 > ,             7 	 0�                                                      (4) 

where � � 0 for ξ �  0 and 0 @ � @ 
=/ξ  for ξ � 0. 

 

The parameter ξ determines the shape of the distribution, and in particular the decay of the 

left tail or heavy tailed behaviour. The parameter σ is a scale parameter and the location 

parameter u will be the threshold value. The generalized Pareto distribution subsumes three 

other distributions under its parameterization. So, when shape parameter 7 	 0, we obtain a 

type 1 distribution (tails decrease exponentially) like the normal distribution. If 7 � 0, we 

have a type 2 distribution (tails are finite) like a beta distribution.  For 7 � 0, we obtain a type 

3 distribution (tails decrease polynomially) as student’s t distribution. Assuming a GPD 

function for the tail distribution, analytical expressions for VaR and ES can be defined as a 

function of GPD parameters.                                                                        

BCDEF 	 � 5 2G1H IJ KK' 1 
 ��L�1H 
 1M                                                     (6)                                                                   

N is the number of observations in the left tail and N� is the number of excesses beyond the 
threshold �. 

The Expected Shortfall based on the GPD approach is defined as: 

O$EF 	 BCDEF 5 P�QRSTUG�����Q 	 RSTUG��Q 5  P�Q���Q                                                 (7) 

3.1. Conditional Generalized Pareto Distribution modelling 

 To take into account the volatility clustering in our studied assets we combine the POT 

method and GARCH model as first suggested by McNeil and Frey (2000). GJR-GARCH type 

(Glosten, Jagannathan and Runkle, 1993) is used to model the conditional VaR. The 

advantage of this GARCH-EVT combination lies in its ability to capture conditional 

heteroscedascity in the data through the GARCH framework, while at the same time modeling 

the extreme tail behavior through the EVT method. GARCH models explicitly model the 

conditional volatility as a function of past conditional volatilities and returns. We assume that 

the dynamics of the return series follows the stochastic process of GJR-GARCH(1,1): 
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 8

�V 	 WV 5 XV 	 Y, 5 Y��V��  5 ZV=[,V                                                             (8) 

WV 	 Y, 5 Y��V��                                                                         (9) 

=[,V� 	 \, 5 \�XV��� 5 ] _̂`ab.,XV��� 5 \�=[,V���                                (10) 

where ̂_`ab 	 0 if XV�� � 0 and ̂_`ab 	 1 otherwise, that allows to take into account the sign 

of the residuals’ disturbance. WV represents the conditional mean, XV the residuals, ZV the 

standardized residuals, =[,V�  the variance and Y�,  \� are the parameters of the estimation.  

The combined approach, denoted as conditional GPD, has the following steps: 

• Step 1: Fit a GJR-GARCH model to the return data by quasi-maximum likelihood. 

That is, maximize the log-likelihood function of the sample assuming normal 

innovations. Estimate WV and =[,V from the fitted model and extract the standardized 

residuals ZV. 
• Step 2: Consider the standardized residuals computed in step 1 to be realizations of a 

white noise process, and estimate the tails of the innovations using extreme value 

theory. Next, compute the quantiles of the innovations. 

• Step 3: Construct VaR from parameters estimated in steps one and two. VaR is 

computing with le same formula in Eq. (6). The conditional Expected Shortfall is 

given by: 

O$EF 	 u 5 σe fBCDEF1 
 ξ 5  σ 
 ξ�1 
 ξ  g                                                         11� 

            where σe is forecasted volatility from GJR-GARCH modeling. 

By first filtering the returns with a GJR-GARCH model, we essentially get i.i.d. series on 

which it is straightforward to apply the EVT technique. The main advantage of the 

conditional generalized Pareto distribution is that it produces a VaR which reflects the current 

volatility background. 

 
3.2.Threshold choice for EVT 

To apply the GPD, we need to choose a reasonable threshold �, which determines the 

number of observations, N�, in excess of threshold value. The choice of the threshold � is an 

important issue: on one hand, if � is too high, it results in too few excesses and consequently 
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 9

high variance estimators and on the other hand, if � too small, it provides biased estimators 

and the approximation to a GPD is not feasible. It is possible to choose an asymptotically 

optimal threshold by a quantification of a bias versus variance trade-off. So far, no automatic 

algorithm with satisfactory performance for the selection of the threshold u is available. For 

example, Gavin (2000) and Neftci (2000) arbitrarily chose to retain respectively 10 % and 5 

% of the sample while McNeil and Frey (2000) use the mean excess plot.  (ME plot), defined 

in the following way:  

hu, eiu��, Xi:i � � � X�:il                                                          (12) 

m��� 	 �K� ∑  K��+� �o 
 ���                                                                  (13) 

where X�:i et  Xi:i  are respectively the maximums and the minimums of the sample and 

m���, the sum of the excesses over the threshold  � divided by the number N� of data which 

exceed �. It is necessary to note that the mean excess function (ME) of the generalized Pareto 

distribution is: 

m��� 	 2�1���1  ,             ξ � 1                                                            (14)   

The sample mean excess function, which is an estimate of the mean excess function, should 

be linear. This property can be used as a criterion for the selection of u. We observe that for 

the CAC 40 and Wheat indexes, the curves become almost linear when the threshold � is 

equal to 0.02. This threshold corresponds to small stock market variations and was also 

applied to S&P 500 and Crude Oil indexes. Once a threshold for time horizon is chosen, the 

parameters 7, =� of the GPD can be computed. 

 

 
 

Fig.1. Mean Excess plot to choose thresholds of daily returns 
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Different methods can be used to estimate the parameters of the GPD. In this paper we 

use the maximum likelihood estimation method. For a sample y = {y1, ..., yn} the log-

likelihood function L(ξ, σ | y) for the GPD is the logarithm of the joint density of the n 

observations : 

 

                  (15) 

 

We compute the values ξ and σ that maximize the log-likelihood function for the sample 

defined by the observations exceeding the threshold u. 

 

Table 2 presents the results of the estimation by the maximum likelihood method of 

the generalized Pareto distribution parameters, fitting the Nu excess above the threshold �, for 

each time horizon. These results correspond to the average of the parameters’ estimations 

over 250 observations for a 1-day horizon, 157 observations for a 5-day horizon and 100 

observations for a 10-day horizon of the stock and commodity indexes. For all asset returns, 

except the 10-day horizon for wheat, the estimated tail index ξ of generalized Pareto 

distribution is positive. Left tails of these return distributions are fat, i.e the probability of 

occurrence of extreme loss is higher than what the normal distribution predicts. However, for 

10-day returns of Wheat, the average of the tail index is negative meaning these returns don’t 

follow the normal distribution and the probability of occurrence of extreme loss is low. 

Table 2 
Estimated parameters of GPD 

        N is the number of observations in the left tail distribution, Nu is the number of observations that exceed 
threshold �. (7) and (=) respectively correspond to the standard error of shape parameter and scale parameter. 
The positive value of shape parameter 7 means the probability of occurrence of extreme losses is high. 

N Nu µ ξ σ ( ξ ) (σ )
Daily 2449 295 0.02 0.07 0.01 0.07 0.001

Weekly 489 170 0.025 0.07 0.02 0.07 0.002

2 Weeks 220 94 0.03 0.12 0.03 0.11 0.004

Daily 2363 164 0.02 0.13 0.01 0.09 0.001

Weekly 462 99 0.025 0.22 0.01 0.13 0.002

2 Weeks 221 59 0.03 0.08 0.02 0.12 0.004

Daily 2476 408 0.02 0.05 0.01 0.06 0.001

Weekly 519 235 0.025 0.01 0.02 0.06 0.002

2 Weeks 270 143 0.03 -0.07 0.03 0.06 0.003

Daily 2407 674 0.02 0.15 0.01 0.04 0.001

Weekly 482 248 0.025 0.07 0.03 0.06 0.003

2 Weeks 239 142 0.03 0.05 0.04 0.08 0.005

S&P 500 

GSCI Wheat

GSCI Crude oil

Returns

CAC 40 

GPD Parameters
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To validate the previous results, we have to test the adequacy of the estimated asymptotic 

distributions to represent the behavior of the extreme returns of the considered assets. For that 

purpose, we use a graphical tool and a statistical test. 

3.3. Goodness of fit test 

 
To test adequacy between the empirical distribution of a variable and the theoretical 

distribution which in our special case is the generalized Pareto distribution, we first use a 

simple graphical tool: Quantile to Quantile plot (QQ-plot). The alignment of the points of 

QQ-plot (Fig. 2) shows that the estimated parameter of the GPD at the threshold 0.02 

describes the behavior of the excesses in the left tail for daily asset returns. 

 

Fig.2. Quantile-Quantile plot of S&P 500 and Crude oil 

 
The Kolmogorov-Smirnov test is a nonparametric test of adjustment allowing 

measurement of the adequacy between an empirical distribution function and an estimated 

function. An attractive feature of this test is that the distribution of the K-S test statistic itself 

does not depend on the underlying cumulative distribution function being tested. The 

Kolmogorov-Smirnov test statistic D is defined as: 

p 	 q�%|��� 
 0��|                                                                                (16) 

This is asymptotically distributed as follows: 

�<√tp � �> ! 0�� 	 ∑ 
1���u�u m���v�v�                                                            (17) 
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Where ��� and 0�� represent the empirical distribution function and estimated function of 

the generalized Pareto distribution. The hypothesis regarding the distributional form is 

rejected if the test statistic D is greater than the critical value. 

Table 3 provides the statistics of Kolmogorov-Smirnov obtained from the left tails of 

both assets. The difference between the empirical distribution and estimated function of the 

GPD seems to be not significant for a 95 % confidence level because for all time horizons, the 

statistic D is lower than the critical value. From these results, the distribution of the extremes 

can be replaced by the estimated asymptotic laws because they have a relatively good fit with 

the empirical distributions of the tails. So, it becomes possible to estimate potential losses for 

the stock and commodity indexes in extreme market conditions. 

 

Table 3 
Kolmogorov-Smirnov test 

 
    The calculated P-values and statistic value of Kolmogorov-Smirnov test allow replacing the empirical 
distributions of the tails by the generalized Pareto distribution. 
 
 

4. Evaluating  risk measure models accuracy  

 

In this section, we backtest our risk models using the Kupiec (1995) test and Wald test 

developed by Campbell (2005) for unconditional coverage and the Christoffersen (1998) test 

for conditional coverage. The backtesting procedure consists of comparing the VaR estimates 

with actual realized loss in the next period. We determine whether the frequency of 

exceedances is in line with the predicted confidence level VaR based on the unconditional 

coverage test. However, tests of unconditional coverage fail to detect violations of 

independence property of an accurate VaR measure, it is important to examine if the 

violations are also randomly distributed. An accurate VaR model must exhibit both the 

unconditional coverage and independence property, we jointly test both properties based on 

Christoffersen’s (1998) conditional coverage test. To backtest Expected Shortfall, we follow 

Returns Statistic D Critical value P-value (0.05)

Daily 0.03 0.08 0.97

Weekly 0.6 0.10 0.45

2 Weeks 0.04 0.13 0.99

Daily 0.04 0.12 0.97

Weekly 0.05 0.13 0.89

2 Weeks 0.08 0.16 0.68

Daily 0.03 0.07 0.87

Weekly 0.04 0.08 0.73

2 Weeks 0.05 0.11 0.80

Daily 0.05 0.14 0.97

Weekly 0.04 0.08 0.85

2 Weeks 0.04 0.11 0.90

CAC 40 

S&P 500 

GSCI Wheat

GSCI Crude oil

Kolmogorov Smirnov test
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the backtesting procedure used by Embrechts et al. (2005) in calculating a measure evaluating 

ES performance when returns are violating the corresponding VaR measure. 

4.1. Unconditional coverage test 

 Let N 	 ∑ V̂��wV+�  be the number of days over a T period that the portfolio loss was 
larger than the VaR estimate, where V̂�� is a sequence of VaR violations that can be 
described as: 

V̂�� 	 x1, oy �V�� � BCDV��/z0, oy �V�� � BCDV��/z{                                                    (18) 

 We use a likelihood ratio test developed by Kupiec (1995). This test examines whether 
the failure rate Y is statistically equal to the expected one. If the total number of such trials is 
T, the number of failure N can be modeled with a binomial distribution with probability of 

occurrence equaling Y. The correct null and alternative hypothesis are, respectively |, : Kw 	
Y and |� : Kw 8 Y. 

The appropriate likelihood ratio statistic is: 

}D�~ 	 2 �log fJKwLK J1 
 KwLw�Kg 
 log YK1 
 Y�w�K�� ,     }D�~ �! ��1�          (19)                                     

}D�~ �! ��1� under |, of good specification. Note that this backtesting procedure is a two-
sided test. Therefore, a model is rejected if it generates too many or too few violations, but 
based on it, the risk manager can accept a model that generates dependent exceptions.  

The Kupiec test doesn’t indicate if the risk model underestimates or overestimates the 
risk losses. To remedy that, we apply the Wald test which is defined by its statistic z: 

 Z 	  √�YG 
 Y��Y1 
 Y�        , � �! N0,1�                                                      20� 

Where YG is the risk level estimated by the model, Y is the chosen risk level and T the size of 

retained backtesting window.  

The hypothesis of unconditional coverage is rejected when statistic z is different from 0 or 

higher than the critical value of normal distribution associated with a certain confidence level. 

If the statistic is raised and negative, it means that the considered model significantly 

overestimates the risk of the asset while a positive value indicates an underestimation of the 

risk. Statistic z equal to zero indicates that the real number of VaR violations is identical at 

the risk level fixed for the calculation of the VaR. In this last scenario, it is considered that the 

model reliably allows in estimating asset risk. 
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4.2.Conditional coverage test 

The unconditional coverage test may fail to detect VaR measures that exhibit correct 

unconditional coverage but exhibit dependent VaR violations. So, we turn to a Christoffersen 

test, which jointly investigates if the VaR failure process is independently distributed through 

time. This test provides an opportunity to detect VaR measures which are deficient in one way 

or  another. Under the null hypothesis that the failure process is independent and the expected 

proportion of violations is equal to Y, the appropriate likelihood ratio is: 

}D~~ 	 
2�log YK1 
 Y�w�K��                                                                                                  (21) 

52�log 1 
 �,���##�,��#b�1 
 �����b#����bb� , }�� �! ��2� 

Where t�� is the number of observations with value o followed by �, for o, � 	 0,1 and ��� 	 ���∑ ����  are the corresponding probabilities. The values o, � 	 1 denote that a violation has 

been made, while o, � 	 0 indicates the opposite. The main advantage of this test is that it can 
reject a VaR model that generates either too many or too few clustered violations. 

4.3. Expected Shortfall backtesting 

To backtest the ES forecasts, we calculate the average difference between the realized 
returns and the forecasted ES’s, conditional on having a (negative) returns exceeding the 
corresponding VaR estimate.  

The test statistic is defined as follows: 

B 	 ∑ �V 
 O$V,��� "̂`.RST`,��V+� ∑ "̂`.RST`,��V+�                                                                         22� 

Given this formula, the negative value of the statistic indicates the underestimation of risk 

losses and the positive value, the risk losses’ overestimation. ES measures are accurate when 

the value of the B tends to zero. 

We choose to test the risk models over 250 days for a 1-day horizon, over 157 weeks 

for a 5-day horizon and over 100 2-weeks for a 10-day horizon. This time window of 250 

working days was recommended by the Basel committee as a backtesting window for the 

validation of internal models of market risk measure. Besides, in the document "Risk 

Management: In practical Guides" of the RiskMetrics group, this window is fixed at 90 days 
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minimum to obtain significant results. These periods includes the time of the Lehman 

Brothers5 bankruptcy corresponding to the bottom of the 2008 financial crisis. 

5. Empirical results 

 
Our empirical analysis differs from previous empirical research in two respects. First, 

most previous research has analyzed only VaR at the 95% and 99% confidence levels. To 

better reflect the extreme market conditions of this research we consider confidence levels for 

VaR and ES of 95%, 99% and 99.5%. The accuracy of our measures is assessed using 5,216 

observations for a 1-day horizon, 1,042 observations for a 5-day horizon and 499 observations 

for a 10-day horizon. Second, to take into account for market liquidity constraints and Basel 

regulations we consider a 5-day and 10-day risk horizons in addition to the more typical 1-day 

horizon. That allows calculating VaR over 10-day horizon without multiplying by the square 

root of 10. This rule is problematic for VaR measurement using the EVT model. According to 

the extreme value theory, to compute VaR over a time horizon, the daily VaR must be 

multiplied by the time horizon exponent of the tail index value of the generalized Pareto 

distribution which is less than 0.5 for financial assets. Following this rule, the VaR measures 

of the EVT model will underestimate financial risks. Each time VaR and ES are estimated, 

they are based on revised parameter estimates using the most recent estimation window of 

5,216 days, 1,042 weeks and 499 10-days for different time horizon. At the end of each risk 

horizon we calculate actual profit and loss for the trading portfolio. An exceedance occurs if 

the loss is greater than the estimated VaR or ES for that horizon. These exceedances are 

imputs to the tests of unconditional coverage, conditional coverage and ES backtest. Tables 4 

and 5 present results for the unconditional and conditional Historical Simulation and EVT 

methods. 

Clearly the unconditional HS method performs no better in tests of unconditional 

coverage (column (i.d) and column (i.e)) and of conditional coverage (column (i.f)). The 

performance in measuring ES (column (i.g)) is poor for different time horizons. The Wald test 

on the unconditional HS method indicates a strong underestimation for stock and commodity 

indexes over 1-day horizon. These underestimations decrease when the time horizon 

increases. 

 
 

                                                      
5 Lehman Brothers was an Investment bank in the USA which went bankrupt on September 15th, 2008 during 
the 2008 financial crisis. 
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Table 4 
Unconditional risk models backtesting 

     (a) The trading portfolio used for the analysis. (b) The confidence level at which VaR and ES are calculated. 
(c) The number of times that VaR is exceeded by real losses. (d) and (e) Test of null hypothesis that the actual 
number of violations is equal to the expected number of violations. (f) Joint test of the null hypothesis that 
violations spread evenly over time. (g) Test the underestimation or the overestimation of losses beyond the VaR. 
The back-testing runs from January, 2008 to December, 2008 for the 1-day horizon, from January, 2008 to 
December, 2010 for the 5-day horizon and from Mars, 2007 to December, 2010 for the 10-day horizon. 
     The values in the parentheses correspond at the p-value which must compare to Y for columns (c) and (d) 
concerning respectively VaR violations and the Wald test. For Kupiec and Christoffersen tests, p-value has to 
compare to 5%. 

 

Considering the unconditional EVT model, its backtesting results in Table 4 shows a 

slight underestimation of risk losses for our stock and commodity indexes at a 1-day horizon. 

However, according to Wald, Kupiec and Christoffersen tests, the unconditional EVT model 

performs better over 5-day and 10-day horizons. The Expected Shortfall based on the EVT 

model is poor but less than that of the Historical Simulation method. That is, the ES (ES6 test 

statistic in column (i.g) and (ii.g) of Table 4) underestimate the true potential losses beyond 

the VaR. The unconditional EVT model performs better in backtesting test than the 

unconditional Historical Simulation method. The EVT model has advantages to be modeled 

on the extreme left tail of asset returns. However, both models underestimate risk losses at a 

1-day horizon. This underestimation can be explained in part by the presence of the clustering 

volatility. To take into account this clustering volatility, we introduce in our risk models the 

GJR-GARCH modeling to compute the conditional VaR and ES’ measures. Moreover, this 

                                                      
6 The negative values of ES test statistic indicate the real losses are superior to the expected shortfall value. 
Embrechts et al. (2005) take the absolute of this statistic to appreciate the model accuracy. Don’t take the 
absolute value make sense to know about model underestimation or model overestimation.  

Assets 1-α (i) Unconditional HS (ii) Unconditional EVT
(a) (b)

VaR violations

Wald test 

statistic

Kupiec test 

statistic

Christoffersen 

test statistic

ES test 

statistic VaR violations

Wald test 

statistic

Kupiec test 

statistic

Christoffersen 

test statistic

ES test 

statistic

( c ) (d) ( e ) ( f ) ( g ) ( c ) (d) ( e ) ( f ) ( g )

1 -day horizon

CAC 40 95.00 40(0.00) 7.98(0.00) 41.37(0.00) 41.37(0.00) -0.0098 26(0.00) 3.92(0.00) 11.87(0.00) 11.87(0.00) -0.0104

99.00 19(0.00) 9.22(0.00) 37.04(0.00) 37.04(0.00) -0.0089 13(0.00) 6.67(0.00) 22.32(0.00) 22.32(0.00) -0.0052

99.50 13(0.00) 10.54(0.00) 37.95(0.00) 37.95(0.00) -0.0062 9(0.00) 6.95(0.00) 20.28(0.00) 20.78(0.00) -0.0024

S&P 500 95.00 50(0.00) 10.88(0.00) 69.89(0.00) 69.89(0.00) -0.0131 39(0.00) 7.69(0.00) 38.82(0.00) 38.82(0.00) -0.0113

99.00 27(0.00) 15.57(0.00) 82.01(0.00) 82.01(0.00) -0.0115 18(0.00) 9.85(0.00) 41.06(0.00) 41.27(0.00) -0.0105

99.50 21(0.00) 17.71(0.00) 80.61(0.00) 80.61(0.00) -0.0082 13(0.00) 10.54(0.00) 37.95(0.00) 38.98(0.00) -0.0074

GSCI Wheat 95.00 60(0.00) 13.78(0.00) 103.44(0.00) 103.44(0.00) -0.0109 43(0.00) 8.85(0.00) 49.35(0.00) 49.35(0.00) -0.0106

99.00 33(0.00) 19.39(0.00) 113.22(0.00) 113.22(0.00) -0.0068 25(0.00) 14.30(0.00) 72.24(0.00) 72.24(0.00) -0.0040

99.50 24(0.00) 20.40(0.00) 98.48(0.00) 98.48(0.00) -0.0052 18(0.00) 15.02(0.00) 63.67(0.00) 63.67(0.00) -0.0015

GSCI Crude Oil 95.00 36(0.00) 6.82(0.00) 31.57(0.00) 31.57(0.00) -0.0078 25(0.00) 3.63(0.00) 10.33(0.00) 12.30(0.00) -0.0023

99.00 17(0.00) 9.22(0.00) 37.04(0.00) 37.04(0.00) 0.0097 6(0.01) 2.22(0.01) 3.56(0.06) 3.56(0.17) 0.0051

99.50 7(0.00) 5.16(0.00) 12.75(0.00) 14.32(0.00) 0.0154 4(0.01) 2.47(0.01) 3.84(0.05) 3.84(0.15) 0.0150

5 -day horizon

CAC 40 99.00 6(0.00) 3.55(0.00) 7.36(0.01) 7.37(0.03) -0.0249 3(0.07) 1.15(0.13) 1.04(0.31) 1.04(0.59) -0.0566

S&P 500 99.00 7(0.00) 4.36(0.00) 10.26(0.00) 10.91(0.00) -0.0058 3(0.07) 1.15(0.13) 1.04(0.31) 5.52(0.63) -0.0227

GSCI Wheat 99.00 12(0.00) 8.37(0.00) 28.67(0.00) 28.67(0.00) -0.0086 7(0.00) 4.35(0.00) 10.26(0.00) 10.91(0.00) -0.0150

GSCI Crude Oil 99.00 5(0.01) 2.75(0.00) 4.80(0.03) 6.91(0.03) -0.0031 2(0.21) 0.35(0.37) 0.11(0.74) 0.11(0.95) -0.0360

10 -day horizon

CAC 40 99.00 3(0.02) 2.01(0.02) 2.63(0.11) 2.63(0.27) -0.0495 2(0.08) 1.01(0.16) 0.78(0.38) 0.78(0.68) -0.0547

S&P 500 99.00 4(0.00) 3.02(0.00) 5.18(0.02) 5.19(0.08) -0.0362 2(0.08) 1.01(0.16) 0.78(0.38) 0.78(0.68) -0.0957

GSCI Wheat 99.00 4(0.00) 3.01(0.00) 5.18(0.02) 5.19(0.08) -0.0385 2(0.08) 1.01(0.16) 0.78(0.38) 0.78(0.68) -0.0809

GSCI Crude Oil 99.00 3(0.02) 2.01(0.02) 2.63(0.11) 6.22(0.27) -0.0046 1(0.26) 0.00(0.50) 0.00(1.00) 0.00(0.99) -0.0749
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GARCH type takes into account the sign of residuals disturbance which has an impact on the 

volatility. After taking into account volatility and asymmetric problems in our risk models, we 

backtest them in the same way as the previous unconditional risk models.  

Turning to the conditional Historical Simulation (or Filtered Historical Simulation -

FHS) method presented in Table 5, we observe that while modeling heteroscedasticity 

improves performance, especially in terms of unconditional coverage (columns (i.d) and (i.e)) 

and conditional coverage (column (i.f)). There are slight underestimate according to the 

positive values of the Wald test. The Filtered Historical Simulation method performance is 

rejected by the backtesting procedure on the Wheat index at a 1-day horizon. The ES statistic 

(column (i.g) in Table 5) show that the conditional ES slightly underestimates risk losses. 

However, it performs better than its unconditional estimate at a 1-day horizon. 

 

Table 5 
Conditional risk models backtesting 

       (a) The trading portfolio used for the analysis. (b) The confidence level at which VaR and ES are calculated. 
(c) The number of times that VaR is exceeded by real losses. (d) and (e) Test of null hypothesis that the actual 
number of violations is equal to the expected number of violations. (f) Joint test of the null hypothesis that 
violations spread evenly over time. (g) Test the underestimation or the overestimation of losses beyond the VaR. 
The back-testing runs from January, 2008 to December, 2008 for the 1-day horizon, from January, 2008 to 
December, 2010 for the 5-day horizon and from Mars, 2007 to December, 2010 for the 10-day horizon. 
     The values in the parentheses correspond at the p-value which must compare to Y for columns (c) and (d) 
concerning respectively VaR violations and the Wald test. For Kupiec and Christoffersen tests, p-value has to 
compare to 5%. 
 

The risk models based on the Extreme Value Theory (EVT) are much more suited to 

risk measurement, especially in the conditional case (Fig.3). Results for conditional EVT are 

Assets 1-α (i) Conditional FHS (ii) Conditional EVT
(a) (b)

VaR violations

Wald test 

statistic

Kupiec test 

statistic

Christoffersen 

test statistic

ES test 

statistic VaR violations

Wald test 

statistic

Kupiec test 

statistic

Christoffersen 

test statistic

ES test 

statistic

( c ) ( d ) ( e ) ( f ) ( g ) ( c ) ( d ) ( e ) ( f ) ( g )

1 -day horizon

CAC 40 95.00 24(0.00) 3.34(0.00) 8.88(0.00) 9.23(0.01) -0.0002 9(0.81) -1.02(0.85) 1.14(0.29) 1.15(0.56) 0.5800

99.00 5(0.04) 1.59(0.06) 1.96(0.16) 1.96(0.38) -0.0051 2(0.46) -0.32(0.62) 0.11(0.75) 0.11(0.95) 0.5700

99.50 3(0.04) 1.57(0.06) 1.77(0.18) 1.77(0.41) -0.0083 2(0.13) 0.67(0.25) 0.54(0.28) 0.38(0.83) 0.5826

S&P 500 95.00 20(0.01) 2.18(0.02) 4.04(0.04) 4.04(0.13) -0.0023 11(0.60) -0.44(0.67) 0.20(0.66) 0.22(0.90) 0.5727

99.00 5(0.04) 1.59(0.06) 1.96(0.17) 1.96(0.38) -0.0030 2(0.46) -0.32(0.62) 0.11(0.74) 0.11(0.95) 0.5769

99.50 3(0.38) 1.57(0.06) 1.76(0.18) 1.77(0.41) -0.0010 0(0.71) -1.12(0.87) 2.50(0.11) 2.51(0.29) 0.0000

GSCI Wheat 95.00 48(0.00) 10.31(0.00) 63.76(0.00) 63.76(0.00) -0.0097 17(0.08) 1.34(0.10) 1.54(0.21) 1.54(0.46) 0.5608

99.00 27(0.00) 15.57(0.00) 82.01(0.00) 82.01(0.00) -0.0072 1(0.71) -0.95(0.83) 1.18(0.28) 1.18(0.56) 0.5658

99.50 22(0.00) 18.61(0.06) 86.47(0.00) 86.47(0.00) -0.0037 0(0.71) -1.12(0.87) 2.50(0.11) 2.51(0.29) 0.0000

GSCI Crude Oil 95.00 18(0.05) 1.60(0.06) 2.26(0.13) 2.26(0.32) 0.0036 8(0.88) -1.31(0.90) 1.94(0.16) 2.94(0.23) 0.6041

99.00 2(0.46) -0.32(0.11) 0.09(0.74) 0.11(0.95) 0.0182 1(0.71) -0.95(0.83) 1.18(0.28) 1.18(0.56) 0.6235

99.50 0(0.71) -1.12(0.87) 2.51(0.11) 2.51(0.29) 0.0000 0(0.71) -1.12(0.87) 2.50(0.11) 2.51(0.29) 0.0000

5 -day horizon

CAC 40 99.00 3(0.07) 1.15(0.13) 1.04(0.31) 1.04(0.59) -0.0678 2(0.21) 0.35(0.37) 0.11(0.74) 0.11(0.95) 0.4520

S&P 500 99.00 3(0.07) 1.15(0.13) 1.04(0.31) 5.52(0.06) -0.0547 3(0.07) 1.15(0.13) 1.04(0.31) 5.52(0.63) 0.5420

GSCI Wheat 99.00 4(0.02) 1.95(0.03) 2.66(0.10) 2.66(0.26) -0.0119 2(0.21) 0.35(0.37) 0.11(0.74) 0.11(0.95) 0.5594

GSCI Crude Oil 99.00 5(0.01) 2.75(0.00) 4.80(0.03) 6.91(0.03) 0.0229 2(0.21) 0.35(0.37) 0.11(0.74) 0.11(0.95) 0.6193

10 -day horizon

CAC 40 99.00 2(0.08) 1.01(0.16) 0.78(0.38) 0.78(0.68) -0.1044 2(0.08) 1.01(0.16) 0.78(0.38) 0.78(0.68) 0.4873

S&P 500 99.00 4(0.00) 3.02(0.00) 5.18(0.02) 5.19(0.08) -0.0507 3(0.02) 2.01(0.02) 2.63(0.11) 2.63(0.27) 0.5484

GSCI Wheat 99.00 3(0.02) 2.01(0.02) 2.63(0.11) 6.22(0.27) -0.0302 2(0.08) 1.01(0.16) 0.78(0.38) 0.78(0.68) 0.4724

GSCI Crude Oil 99.00 1(0.26) 0.00(0.50) 0.00(1.00) 0.00(0.99) -0.1305 1(0.26) 0.00(0.50) 0.00(1.00) 0.00(0.99) 0.3948
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presented in panel (ii) of Table 5. In all the cases we cannot reject the unconditional and 

conditional coverages. We find that the conditional Expected Shortfall (positive ES statistic 

value in Table 5, column (ii.g)) based on the EVT performs better than that of the conditional 

Historical Simulation approach. The negative values of the Wald test statistic indicate slight 

overestimation of risk losses.  The conditional EVT risk model for VaR measurement is 

accurate according to all backtesting procedures for all assets and time horizons. We note, 

however, that the Expected Shortfall based on the conditional EVT largely overestimate the 

potential losses beyond the VaR. 

 

               

  
Fig.3. Backtesting results of the conditional EVT model and the Historical Simulation approach on CAC 40,  

S&P 500, Wheat and Crude Oil. Backtesting window is 250 days and the VaR are calculated at 99% 
confidence level and over 1-day horizon. 

 

Coming back to banking supervision in which the Capital adequacy Directive defined 

in 1996 concerning market risks is still in force today. Our calculated values of risk 

measurement have to be multiplied by the multiplicative factor: “Each bank must meet, on a 

daily basis, a capital requirement expressed as the higher of its previous day's value-at-risk 

number measured according to the parameters specified in this section and an average of the 

daily value-at-risk measures on each of the preceding sixty business days, multiplied by a 

multiplicative factor. The multiplicative factor will be set by individual supervisory 
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authorities on the basis of their assessment of the quality of the bank's risk management 

system, subject to an absolute minimum of 3.”  

 

             

  

 Fig.4. Capital requirements under Basel rule for FHS and conditional EVT 
Capital requirements calculated as 3BCD,.,�,�,��S�  for conditional EVT (exceptions less than 
5 for all assets) and 3.4BCD,.,�,�,��S� for FHS (5 exceptions for CAC 40). The multiplier is 3 
for all assets under conditional EVT model. It is 3 for Crude Oil, 4 for Wheat and 3.4 for CAC 
40 and S&P 500 under FHS approach. 

 

According to the regulatory backtesting requirements, banks must calibrate VaR 

measures to daily profit and loss observations, and these VaR are predicated on a 99% 

confidence level. Backtesting must also be performed daily. If the number of VaR violations 

during the previous 250 business days is fewer than 5, the multiplier is 3; if the number of 

VaR violations is 5, the multiplier is 3.40, and so on; and 10 or more exceptions warrant a 

multiplier of 4. In this context and according to the backtesting results in Table 5 for our 

studied stock and commodity indexes, the conditional EVT model respects Basel II 

requirements (see fig.4). We observe that the number of exceptions using the conditional EVT 

model is 2 or 1, and that these are largely inferior to 5. Following this Basel rule, banks can 

choose a non accuracy model like FHS with the aim to optimizing their capital cushion. 
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6. Conclusion 

 
The estimation of the generalized Pareto distribution fitting the extreme returns allows 

us to bring to light the existence of fat tails. So, the risk of extreme loss on stock and 

commodity indexes is higher than the occurrence of expected gains. The study reveals that the 

tails index of the generalized Pareto distribution on returns are generally positive. These 

results particularly confirm the previous research results over 1-day horizon. We also find that 

these results are valid over 5-day and 10-day horizons. The last time horizon allows 

computing capital requirement over 10-day horizon. 

Through backtesting procedures, the unconditional Historical Simulation fails to 

accurately measure risk losses on the studied assets (CAC 40, S&P 500, Wheat and Crude 

Oil). We observe strong underestimation of VaR and Expected Shortfall measures using 

Historical Simulation approach. Comparatively, the unconditional EVT model performs better 

at 5-day and 10-day horizons but less well at a 1-day horizon. For both the unconditional risk 

models, the number of VaR violations decreases when the confidence level increases. The 

underestimation also decreases when the time horizon rises.  

We demonstrate in this study that introducing GJR-GARCH modeling in the EVT 

model to compute conditional VaR is more reliable for measuring financial risks in normal 

and abnormal market conditions. The backtesting results in panel (ii) of Table 5 show the 

accuracy of our conditional EVT VaR measures for all studied assets. We note, however, a 

strong overestimation for the Expected ShortFall measures based on the conditional EVT 

model. Even in the 2008 financial crisis, the conditional EVT model is more accurate and 

reliable for predicting the asset risk losses. We note the rules relating the capital multiplier to 

the number of exceptions are arbitrary, and there are concerns that the high scaling factor 

could discourage banks from developing and implementing best practices. 

For future research, it would be interesting to broaden this study to multivariate EVT 

modeling by taking into account asset correlation problems. Modeling stress testing using 

EVT model is a challenging area in respect to the Basel III perspective.  
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Appendix A: standard Historical Simulation method 

Let ��, ��, …, �� be as  n random variables independently and identically distributed 

measuring the daily returns of an investment at the moments 1, 2, n which is defined by the 

unknown cumulative distribution function F. The VaR at α risk level can be defined by: 

BCD��� 	 ��Ctzo�m�V�V+�� �                                                                              (23) 

where �� @  �� @ �  @  ��  

Expected Shortfall based on the historical simulation method is defined by: 

 O$��� 	 E�X/X � BCD�                                                             (24) 

Appendix B: Filtered Historical Simulation method 

The Filtered Historical Simulation approach combines the historical simulation and the 
conditional volatility models like GARCH. To estimate volatility, we use GJR-GARCH(1,1) 
model, which in addition to the characteristics of GARCH model, has a leverage effect 
(positive and negative return have different impact on volatility). This volatility can be 
obtained by: 

=[,V� 	 \, 5 \�XV��� 5 ] _̂`ab.,XV��� 5 \�=[,V���                                  (25) 

Where ] reflects an asymmetric effect on volatility whether the last period random residuals 
was positive or negative. 

The return is calculated with first-order autoregressive AR(1) model.  

�V 	 WV 5 XV 	 WV 5 ZV=[,V                                          (26) 

      WV 	 Y, 5 Y��V��                                                      (27) 

 

where WV is the conditional mean. The parameters Y� and \� are derived from Maximum 
Likelihood Estimation. 

To make residuals XV suitable for historical simulation, we divide residuals by conditional 
volatility forecast =V to obtain standardized residuals ZV.  

ZV 	 XV=[,V                                                                               28� 

That series of standardized residuals are then updated with forecasted volatility =FV�� to obtain 
current market condition 
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ẐV�� 	 ZV=F[,V��                                                                     29� 

Simulated returns can be generated by: 

�HV�� 	 WV 5 ẐV��                                                                30� 

Therefore, we can calculate desired VaR in Eq. (23) and ES in Eq. (24) for each simulated 
return series at chosen confidence level. For a complete discussion on the use of historical 
simulation approach for VaR estimation, you can see various articles such as Hendriks (1996) 
and Barone-Adesi et al. (2000). 
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